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Abstract

We present a new rearrangement of short-range interactions in the 1S0 nucleon-nucleon channel

within Chiral Effective Field Theory. This is intended to address the slow convergence of Weinberg’s

scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum

' 340 MeV) at leading order. After the power counting scheme is modified to accommodate the

zero at leading order, it includes subleading corrections perturbatively in a way that is consistent

with renormalization-group invariance. Systematic improvement is shown at next-to-leading order,

and we obtain results that fit empirical phase shifts remarkably well all the way up to the pion-

production threshold. An approach in which pions have been integrated out is included, which

allows us to derive analytic results that also fit phenomenology surprisingly well.
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I. INTRODUCTION

The nuclear effective field theory (EFT) program [1, 2] conceives nuclear physics as the

renormalization-group (RG) evolution of Quantum Chromodynamics (QCD) at low energies,

formulated in terms of effective degrees of freedom (nucleons, pions, etc.). The link with

QCD written in terms of more fundamental objects (quarks and gluons) is ensured by im-

posing QCD symmetries (particularly approximate chiral symmetry) as the only constraints

on the otherwise most general EFT Lagrangian. Power counting (PC) rules tell which terms

in this Lagrangian (out of an infinite number) should be taken into account when computing

observables at a given order in an expansion in powers of the small parameter Q/Mhi, where

Q is the characteristic external momentum of a process and Mhi
<∼MQCD ∼ 1 GeV is the

EFT breakdown scale. Thanks to the recent development of ab initio methods, which bridge

the gap between nuclear forces and currents on one hand and nuclear structure and reactions

on the other, Chiral EFT (χEFT) [1–3] is now better exploited than ever. However, prob-

lems remain in the formulation of this EFT, some of which we address here in the simplest,

yet surprisingly challenging, two-nucleon (NN) channel — the spin-singlet, isospin-triplet S

wave, 1S0.

The initial applications of χEFT followed a scheme suggested by Weinberg [4, 5] and Rho

[6], where a PC dictated by naive dimensional analysis (NDA) [7, 8] was assumed to apply

to the nuclear potential and currents. The truncated potential is inserted into a dynamical

equation — Lippmann-Schwinger (LS), Schrödinger, or one of their variants for the many-

body system — from whose exact solution nuclear wave functions are obtained. Averages

of the appropriate, truncated currents give rise to scattering amplitudes when the system

is probed by external particles such as photons or pions. To deal with the singular nature

of the potential and currents, an arbitrary regularization procedure must be introduced.

Unfortunately, already at leading order (LO) NDA does not yield all the short-range inter-

actions necessary for the NN amplitude to be approximately independent of the regulator

choice [9–11]. Similar issues appear at higher orders [12–14] and also affect electromagnetic

currents [15]. Given that non-perturbative renormalization can differ significantly from the

perturbative renormalization used to infer NDA, it is perhaps unsurprising that a scheme

based solely on NDA fails to produce nuclear amplitudes consistent with RG invariance.

This problem appears even in NN scattering in the 1S0 channel, where one-pion exchange
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(OPE) has a delta-function singularity in coordinate space. While NDA prescribes that the

contact term, which supplements OPE in the LO potential, is chiral-invariant, renormaliza-

tion demands that a chiral-symmetry-breaking short-range interaction also be present [9].

According to NDA, such a chiral-breaking interaction, being proportional to two powers of

the pion mass, should not appear before two more orders (next-to-next-to-leading order, or

N2LO) in the Q/Mhi expansion. This “chiral inconsistency” motivated Kaplan, Savage, and

Wise [16, 17] to propose a PC where pion exchanges are treated as perturbative corrections

starting at next-to-leading order (NLO) 1. However, higher-order calculations soon made

clear that such an approach is not valid at low momenta in certain partial waves [20]. The

alternative is to treat OPE as LO only in the lower waves [10, 21–27], where suppression by

the centrifugal barrier is not effective. The angular-momentum suppression factor has been

studied recently in peripheral spin-singlet channels [28].

The 1S0 partial wave was excluded from the analysis in Ref. [28] because this particular

channel presents, in addition to the above renormalization issue, other features that are not

completely understood. The situation has not improved greatly since the late 90s, despite

considerable effort [13, 26, 29–57]. Some of this work has been reviewed recently in Refs.

[58, 59].

A unique feature of this channel, which was recognized early on, is fine tuning in the

form of a very shallow virtual bound state. OPE is characterized by two scales, its inverse

range given by the pion mass mπ and its inverse strength given by MNN ≡ 16πf 2
π/(g

2
AmN) =

O(fπ), where mN = O(MQCD) is the nucleon mass, fπ = O(MQCD/(4π)) is the pion decay

constant, and gA = O(1) is the axial-vector coupling constant. At the physical pion mass

mπ ≈ 140 MeV, the virtual state’s binding momentum ℵ ∼ 10 MeV is much smaller than

the pion scales, and can only be reproduced at LO through a fine tuning of the short-

range interaction. Physics of this state can be described simply by another successful,

renormalizable EFT, Pionless (or Contact) EFT (/πEFT). In the very-low-energy regime of

nuclear physics, Q� mπ, pion exchange cannot be resolved, the EFT Lagrangian contains

1 Note that throughout the present paper NLO refers to subleading contributions of O(Q/Mhi), N2LO to

O(Q2/M2
hi), and so on. This notation differs from that used by some authors (see e.g. Ref. [3]) who work

under the assumptions of NDA — in which case O(Q/Mhi) contributions to the parity-conserving NN

potential vanish [18, 19] — and refer to contributions of O(Q2/M2
hi) as “NLO”. When RG invariance is

imposed, however, O(Q/Mhi) contributions do not vanish even for parity-conserving processes.
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only contact interactions, and the two-body amplitude reduces [16, 17, 60, 61] to the effective

range expansion (ERE). To simultaneously capture physics at Q ∼ mπ, however, pion

exchange needs to be retained. The perturbative expansion in Q/MNN prescribed by Refs.

[16, 17] converges very slowly, if at all, in the low-energy region [38], which leads to the

identification of MNN as a low-energy scale Mlo, just as suggested by NDA.

Yet, it is disturbing that the NDA-prescribed LO potential produces 1S0 phase shifts

that show large discrepancies with the Nijmegen partial-wave analysis (PWA) [62, 63] even

at moderate scattering energies. In Ref. [26] it was shown that — again at variance with

NDA — the first correction in this channel appears already at NLO, in the form of a

contact interaction with two derivatives. Still, only about half of the energy dependence

of the amplitude near threshold is accounted for at LO, so Ref. [54] went a step further

by suggesting the promotion to LO of an energy-dependent short-range interaction that

reproduces the effective range — a generalization of the same suggestion for /πEFT [64]. Even

this promotion leaves significant room for improvement when compared to the Nijmegen

PWA. In particular, the empirical 1S0 phase shift, thus the amplitude, vanishes at a center-of-

mass momentum k = k0 ' 340 MeV. Since k0 is significantly below the expected breakdown

scale MQCD, we should consider it as a soft scale where the EFT converges. In contrast, we

find that the LO phase shift of Ref. [54] is around 25◦ at k = k0 and does not vanish until

k reaches a few GeV. Since higher orders need to overcome LO, convergence at momenta

k ∼ k0 will be at best very slow. This can only be remedied if LO contains the amplitude

zero. As pointed out in Ref. [61], a low-energy zero requires a different kind of fine tuning

than the one that gives rise to a shallow bound state. When the zero appears at very low

energies, a contact EFT can be devised (the “other unnatural EFT” of Ref. [61]) which

gives rise to a perturbative expansion of the amplitude. Such an expansion around k = k0

in the presence of pions was developed in Ref. [37].

Here we propose a rearrangement of the short-range part of χEFT that leads to the

existence of the amplitude zero at LO, in addition to the shallow virtual state. The PC

of Ref. [61] is generalized with the purpose of including the non-perturbative region that

contains the virtual state. This is patterned on an idea originally developed for doublet

neutron-deuteron (nd) scattering at very low energies [65], where the amplitude has a zero at

small imaginary momentum, in addition to a shallow virtual state. We develop an expansion

in Q/Mhi for Q ∼ Mlo, which gives a renormalizable amplitude order by order. Following

4



a successful approach to /πEFT [66], the virtual state is assumed to be located right at

threshold at LO and is moved to a binding momentum ∼ M2
lo/Mhi at NLO. We calculate

NLO corrections and show a systematic improvement in the description of the phase shift.

We also show results where the binding momentum is taken as an LO fitting parameter.

A challenging feature of χEFT is that it usually does not yield analytical expressions for

amplitudes. In order to facilitate an understanding of the properties of the NN amplitude,

we also consider a version of our PC for the theory without explicit pions, where we retain

k0 ∼ Mlo but artificially take MNN → ∞. To our surprise, even though k0 > mπ, this

hypothetical version of /πEFT also produces a good description of the empirical phase shifts.

Our approach is in line with Refs. [35, 50], which argued that short-range forces in the

spin-singlet S wave must produce rapid energy dependence. It is a systematic extension of

the potential proposed in Ref. [29], and it resembles the unitarized approach of Ref. [37].

More generally, it can be seen as the EFT realization of Castillejo-Dalitz-Dyson (CDD) poles

[67] in S-matrix theory. Traditional S-matrix tools, such as the N/D method, have recently

received renewed attention in the NN system (e.g. Ref. [68]). The D function is determined

modulo the addition of CDD poles, which result in zeros of the scattering amplitude. In

particular, the momentum k0 may be identified with the position of a CDD pole in the 1S0

channel [69]. An EFT provides a systematic description of the two-body CDD pole that can

be naturally extended to more-body systems.

This article is structured as follows. In Sec. II we present an initial approach (“warm-

up”) to the problem on the basis of a modified organization of /πEFT up to NLO. The

proposed PC is discussed in detail, and RG invariance is demonstrated explicitly. In Sec.

III we bring OPE into LO; also, we compare with the results [63] of the high-quality Nijm93

potential [70] before and after the inclusion of the NLO potential in this χEFT. Conclusions

and outlook are presented in Sec. IV.

II. PIONLESS THEORY

Our first approach to the problem will omit explicit pion exchange (and also electro-

magnetic interactions, which are small for k & 10 MeV anyway, as well as other small

isospin-breaking effects [66]). Since the amplitude zero appears at a center-of-mass momen-

tum above the pion mass, it is unlikely that a pionless EFT can describe it. Our main goal
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here is to illustrate how RG invariance and PC work in a systematically improvable contact

theory whose amplitude includes both a near-threshold pole and a low-energy zero. The

great benefit of removing pions is simply to find analytical results, which cannot be reached

if one includes OPE in (fully iterated) LO. Such results provide an important guide to the

analysis of the pionful case we perform in Sec. III.

In the absence of explicit pions and nucleon excitations, all interactions among nucleons

are of contact type. The part of the /πEFT Lagrangian relevant for the NN 1S0 channel is

L(ct)
/π = N †

(
i∂0 +

∇2

2mN

)
N − C0

(
NT ~P1S0

N
)†
·
(
NT ~P1S0

N
)

+ · · · , (1)

where N is the isodoublet, bispinor nucleon field and the NN 1S0 projector is expressed

in terms of the Pauli matrices σ (~τ) acting on spin (isospin) space as ~P1S0
= σ2~ττ2/

√
8,

while “· · · ” means more complicated interactions and relativistic corrections suppressed by

negative powers of the breakdown scale of the theory. Now, the interaction term in Eq.

(1) may be rewritten if, following Ref. [29], an auxiliary “dibaryon” field ~φ with quantum

numbers of an isovector pair of nucleons is introduced,

−C0

(
NT ~P1S0

N
)†
·
(
NT ~P1S0

N
)
↔ ~φ † ·∆~φ− g

(
~φ † ·NT ~P1S0

N + H.c.
)
. (2)

The dibaryon residual mass ∆ and the dibaryon-NN coupling g are such that C0 = g2/∆, as

can be straightforwardly checked if one performs the corresponding Gaussian path integral.

This parameter redundancy permits the convenient choice [71]

g2 ≡ 4π

mN

. (3)

Higher-order contact interactions can be reproduced by the inclusion of the dibaryon’s kinetic

term and derivative dibaryon-NN couplings.

The established PC of /πEFT [16, 17, 60, 61] accounts for the presence of a shallow virtual

state at LO, but does not produce as much energy dependence as the phenomenological phase

shifts. A promotion of the dibaryon kinetic term to LO [64] allows for the reproduction of

the derivative of the amplitude with respect to the energy around threshold. However, these

approaches are equivalent to different truncations of the ERE and are unable to generate an

amplitude zero. This is actually not a problem in /πEFT, since k0 — numerically larger than

mπ — is presumably outside the scope of this theory. But here we aim at reformulating the

theory in a way such that k0 is considered below the breakdown scale, so as to illustrate the

proposed reformulation of the χEFT PC in Sec. III.
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Inspired by an EFT for nd scattering at very low energies [65], we consider here a gener-

alization with two such dibaryon fields, ~φ1,2,

L(2φ)
/π = N †

(
i∂0 +

∇2

2mN

)
N +

∑
j=1,2

~φ †j ·
[
∆j + cj

(
i∂0 +

∇2

4mN

)]
~φj

−
√

4π

mN

∑
j=1,2

(
~φ †j ·NT ~P1S0

N + H.c.
)

+ · · · , (4)

where we have made use of Eq. (3) and displayed explicitly the kinetic dibaryon terms with

dimensionless factors cj. As we will see, such an extension naturally allows us to reproduce

the amplitude zero already at LO, greatly improving the description of the empirical phase

shifts.

To illustrate the effects of the two dibaryons, we neglect for now the interactions rep-

resented by “· · · ” in Eq. (4). At momentum k =
√
mNE, where E is the center-of-mass

energy, the on-shell T matrix is written in terms of the S matrix and the phase shift δ as

T (k) =
2πi

mNk
[S(k)− 1] =

4π

mN

[−k cot δ(k) + ik]−1 . (5)

Loops are regularized by a momentum cutoff Λ in the range Λ & Mhi � k and a regulator

function fR(q2/Λ2), with q the magnitude of the off-shell nucleon momentum, that satisfies

fR(0) = 1, fR(∞) = 0. (6)

Computing the two-dibaryon self-energy, i.e. dressing up the bare two-dibaryon propagator

B(k; Λ) =
∑
j

(
∆j(Λ) + cj(Λ)

k2

mN

)−1
≡ mN

4π
V (k; Λ) (7)

with nucleon loops (see Fig. 1), yields

D(k; Λ) =

(
1

B(k; Λ)
+ I0(k; Λ)

)−1
≡ mN

4π
T (k; Λ). (8)

In this equation we introduced the regularized integral

I0(k; Λ) = 4π

∫
d3q

(2π)3
fR(q/Λ)

q2 − k2 − iε
= ik + θ1Λ +

k2

Λ

∞∑
n=0

θ−1−2n

(
k

Λ

)2n

, (9)

where the dimensionless coefficients θn depend on the specific regularization employed. For

example, for a sharp-cutoff prescription with a step function it turns out that θn = 2/(nπ),
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FIG. 1: Full two-dibaryon propagator (solid box) resulting from the non-perturbative dressing

of bare dibaryon-1 (dashed box) and dibaryon-2 (plain box) propagators with nucleon bubbles

(circles).

while in dimensional regularization with minimal subtraction we have simply θn = 0. We

thus arrive at[mN

4π
T (k; Λ)

]−1
=

[∆1(Λ) + c1(Λ) k2/mN ] [∆2(Λ) + c2(Λ) k2/mN ]

∆1(Λ) + ∆2(Λ) + [c1(Λ) + c2(Λ)] k2/mN

+ ik

+ θ1Λ + θ−1
k2

Λ
+O

(
k4

Λ3

)
. (10)

When k is much smaller than any other scale, this inverse amplitude reduces at large

cutoff to the ERE, [mN

4π
T (k)

]−1
=

1

a
+ ik − r0

2
k2 − P0

4
k4 + · · · , (11)

where, for neutron-proton (np) scattering, a ' −23.7 fm ' −(8 MeV)−1 [72] is the scattering

length, r0 ' 2.7 fm ' (73 MeV)−1 [73] is the effective range, P0 ' 2.0 fm3 ' (158 MeV)−3 [74]

is the shape parameter, and so on. In addition, Eq. (10) allows for a pole at a momentum

k0 ' 340 MeV [63], around which the amplitude can be expanded as [61]

mN

4π
T (k) =

k2 − k20
k30

[
z1 + z2

k2 − k20
k20

+O
(

(k − k0)2

k20

)]
(12)

in terms of dimensionless parameters zn, with |zn| = O(1) in the absence of further fine tun-

ing. One can easily check that δ(k) behaves linearly around k = k0, with a slope proportional

to z1,

δ(k ∼ k0) = −2z1
k0

(k − k0) + · · · . (13)

From the Nijm93 phase shifts [63] we find z1 ' 0.6.

It has long been recognized that the anomalously large value of |a| is a consequence

of a fine tuning that places a virtual bound state very close to threshold, and intro-

duces an accidental, small scale ℵ ∼ 10 MeV corresponding to its binding momentum.

In /πEFT, higher ERE parameters are assumed to depend on a single higher-energy scale
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M̃hi, 1/r0 ∼ 1/P
1/3
0 ∼ · · · = O(M̃hi). The PC then organizes the contributions to an ob-

servable characterized by a momentum Q ∼ ℵ in an expansion in powers of Q/M̃hi, i.e. M̃hi

is the breakdown scale of the theory. Naively one expects M̃hi . mπ, but there is some

evidence that /πEFT works also at larger momenta. For example, the binding momenta for

the ground states of systems with A = 3, 4, 6, 16 nucleons are near 100 MeV, and yet their

physics is well described by the lowest orders of /πEFT (see, for example, Refs. [75–78]).

In fact, it has been suggested that the characteristic scale of /πEFT is set by these binding

momenta through the LO three-nucleon force, so that ℵ appears only at NLO or higher

[66, 79].

Here we exploit a possible enlarged range of validity of /πEFT in the 1S0 channel to

illustrate the idea of a low-energy zero. This can be done with the replacement M̃hi →

Mlo. Simultaneously, we take into account the smallness of 1/a with the replacement ℵ →

M2
lo/Mhi. The phenomenological parameters of the theory are assumed to scale as

1/a = O
(
M2

lo/Mhi

)
, k0 ∼ 1/r0 ∼ 1/P

1/3
0 ∼ · · · = O(Mlo), (14)

with Mhi � Mlo. This assumption will allow us to develop an expansion for an observable

at typical momentum Q ∼ Mlo in powers of Q/Mhi. The usefulness of such an expansion

is far from obvious, but as we show below it seems to give good results when compared to

empirical low-energy data. Our prescription includes the correct position of the amplitude

zero at LO, and moves the virtual state at NLO very close to its empirical position. For

Q ∼ ℵ the NLO amplitude is similar to that of standard /πEFT with M̃hi = O(Mlo). The

assignment ℵ → M2
lo/Mhi is somewhat arbitrary but motivated by the expectation that

Mlo ∼ 100 MeV and Mhi ∼ 500 MeV, when it holds within a factor of 2 or so. If ℵ were

taken to be smaller, a reasonable description of observables at momenta Q ∼ ℵ would

only emerge at higher orders. Conversely, had we decided to treat ℵ as Mlo, the very-low-

energy region would be well reproduced already at LO, but it would be more difficult to see

improvements at NLO.

Quantities in the theory can be organized in powers of the small expansion parameter

Mlo/Mhi. For a generic coupling constant g, we expand formally

g(Λ) = g[0](Λ) + g[1](Λ) + · · · , (15)

where the superscript [ν] indicates that the coupling appears at NνLO. The “renormalized”
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coupling ḡ[ν] — i.e. the regulator-independent contribution to the bare (running) coupling

g[ν] (Λ) — is nominally suppressed by O(Mν
lo/M

ν
hi) with respect to ḡ[0].

Likewise, the amplitude is written

T (k; Λ) = T [0](k; Λ) + T [1](k; Λ) + · · · , (16)

where

T [0](k; Λ) = V [0](k; Λ)

[
1 +

mN

4π
V [0](k; Λ)

(
ik + θ1Λ +

k2

Λ

∞∑
n=0

θ−1−2n
k2n

Λ2n

)]−1
, (17)

T [1](k; Λ) =

(
T [0](k; Λ)

V [0](k; Λ)

)2

V [1](k; Λ), (18)

etc., in terms of

V [0](k; Λ) =
4π

mN

∑
j

(
∆

[0]
j (Λ) + c

[0]
j (Λ)

k2

mN

)−1
, (19)

V [1](k; Λ) = − 4π

mN

∑
j

(
∆

[0]
j (Λ) + c

[0]
j (Λ)

k2

mN

)−2(
∆

[1]
j (Λ) + c

[1]
j (Λ)

k2

mN

)
, (20)

etc. Neglecting higher-order terms, the phase shifts at LO, LO+NLO and so on can be

written as

δ[0](k; Λ) = − cot−1
(

4π

mNk
Re
(
T [0](k; Λ)

)−1)
, (21)

δ[0+1](k; Λ) = − cot−1
(

4π

mNk
Re

[ (
T [0](k; Λ)

)−1(
1− T [1](k; Λ)

T [0](k; Λ)

)])
, (22)

etc. At higher orders interactions in the “· · · ” of Eq. (4) appear. We now consider the first

two orders of the expansion in detail.

A. Leading Order

From Eq. (10) we see that reproducing the amplitude zero at LO with a shallow pole

requires a minimum of three bare parameters. Both residual masses, ∆1(Λ) and ∆2(Λ),

must be non-vanishing, otherwise the resulting inverse amplitude at threshold would be

proportional to Λ, i.e. not properly renormalized. At the same time, at least one of the

kinetic factors, which we choose to be c2(Λ), needs to appear at LO, otherwise the amplitude

zero could not be reproduced.
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Since we attribute in Eq. (14) the smallness of the inverse scattering length to a suppres-

sion by one power of the breakdown scale Mhi, we take

1

a[0]
= 0. (23)

In other words, we perform an expansion of the NN 1S0 amplitude around the unitarity

limit, as in Refs. [66, 79]. One of the dibaryon parameters, which turns out to be ∆2(Λ),

carries such an effect, so that its observable contribution vanishes at LO. The regulator-

independent parts of the remaining LO parameters, ∆1 and c2, are assumed to be governed

by the scale Mlo
2. In a nutshell,

∆̄
[0]
1 = O (Mlo) ,

c̄
[0]
1

mN

= 0, ∆̄
[0]
2 = 0,

c̄
[0]
2

mN

= O
(

1

Mlo

)
. (24)

Because of the vanishing of c
[0]
1 , eliminating dibaryon-1 via Eq. (2) generates a momentum-

independent contact interaction. Thus, at LO we obtain — except for our additional re-

quirement (23) — the MNN → ∞ version of the model considered in Ref. [29], where a

dibaryon (our dibaryon-2) is added to a series of nucleon contact interactions.

In order to relate ∆
[0]
1 (Λ), ∆

[0]
2 (Λ), and c

[0]
2 (Λ) — our three non-vanishing LO bare pa-

rameters — to observables, we impose on

F (z; Λ) ≡ Re

{[mN

4π
T [0](
√
z; Λ)

]−1}
(25)

three renormalization conditions,

F (0; Λ) = 0,
∂F (z; Λ)

∂z

∣∣∣∣
z=0

= −r0
2
, F−1(k20; Λ) = 0. (26)

The dependence of loops on positive powers of Λ is canceled by that of the bare couplings,

which is given in App. A. Equation (24) ensures that the non-vanishing renormalized

couplings,

∆̄
[0]
1 =

r0k
2
0

2
,

c̄
[0]
2

mN

= −r0
2
, (27)

are indeed consistent with Eq. (14). Apart from a residual cutoff dependence that can be

made arbitrarily small by increasing the cutoff, the amplitude can now be expressed in terms

2 NDA [7, 8] gives for a dibaryon-NN coupling g = O(4π/
√
mN ), which differs from our convention (3)

by a factor of
√

4π. Since it is the combination g2/∆ that enters the amplitude, ∆ is expected to be

O(Mhi/(4π)) = O (Mlo) instead of O(Mhi).
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of the renormalized couplings or, using Eq. (27), in terms of r0 and k0:[mN

4π
T [0](k; Λ)

]−1
= ik − r0

2

k2

1− k2/k20

(
1 +

2θ−1
r0Λ

k2

k20

)
+O

(
k4

Λ3

)
. (28)

Although the scales and the zero location are different, Eq. (28) is similar to the one [65]

for nd scattering at very low energies 3.

Many interesting consequences can be extracted from Eq. (28). For momenta below the

amplitude zero, our expression reduces to the unitarity-limit version of the ERE (11) but

with predictions for the higher ERE parameters, starting with the shape parameter

P
[0]
0 (Λ) =

2r0
k20

[
1 +

2θ−1
r0Λ

+O
(

k20
r0Λ3

)]
. (29)

Using the cutoff dependence to estimate the error under the assumption Mhi ∼ 500 MeV,

the LO prediction is P
[0]
0 k20/(2r0) = 1.0 ± 0.3. These high ERE parameters are difficult to

extract from data. A careful analysis in Ref. [74] obtains P0k
2
0/(2r0) = 1.1, which is well

within our expected truncation error. Yet, values obtained for P0 from the phenomenological

np potentials NijmII and Reid93 [70] are of the same order of magnitude as the value from

Ref. [74], but with a negative sign [81].

We conjecture that, in contrast to what happens in standard /πEFT, Eq. (28) also applies

at momenta around the amplitude zero, with terms which are O(Mlo) and corrections of

O(M2
lo/Mhi). Around the amplitude zero, the amplitude is perturbative [37, 61]. Indeed, a

simple Taylor expansion of Eq. (28) gives a perturbative expansion in the region |k−k0|<∼ k0,

i.e. an equation of the form (12) with LO predictions for the coefficients,

z
[0]
1 (Λ) =

2

r0k0

(
1− 2θ−1

r0Λ
+ · · ·

)
, (30)

z
[0]
2 (Λ) = − 2

r0k0

[
1 +

2i

r0k0

(
1− 4θ−1

r0Λ

)
+ · · ·

]
, (31)

where the “· · · ” account for O(M2
lo/Λ

2). Numerically, these coefficients are z
[0]
1 = 0.4± 0.1

and z
[0]
2 = −(0.4 ± 0.1) − i(0.2 ± 0.1), which are indeed of O(1). The former is in fact

3 Defining

A ≡ r0
2
k20 ≡ −R,

Eq. (28) may be rewritten as[mN

4π
T [0](k; Λ)

]−1

= A+
R

1− k2/k20
+ ik +O

(
k2

Λ

)
,

which is a form used in early work on nd scattering, such as Ref. [80].
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reasonably close to z1 ' 0.6 extracted from the phenomenological data. Note that we could

have imposed as a renormalization condition that z1 had a fixed value — the one that best

fits the empirical value — at any Λ, thus trading the information about energy dependence

carried by r0 for that contained in the derivative of the phase shift at its zero, see Eq. (13).

Equation (28) interpolates between the two regions, k � k0 where the amplitude is non-

perturbative and |k − k0| � k0 where it is perturbative. Compared to standard /πEFT, it

resums not only range corrections as in Ref. [64], but also corrections that give rise to the

pole at k = k0. Compared to the expansion around the amplitude zero [61], it resums the

terms that become large at low energies and give rise to a resonant state at zero energy.

The pole structure of the LO amplitude can be made explicit by rewriting Eq. (28) as[mN

4π
T [0](k; Λ)

]−1
=

(k − iκ[0]1 )(k − iκ[0]2 )(k − iκ[0]3 )

i(k20 − k2)
+O

(
k2

Λ

)
, (32)

with

κ
[0]
1 = 0, κ

[0]
2 =

r0k
2
0

4

(
1−

√
1− (4/(r0k0))

2

)
, κ

[0]
3 =

r0k
2
0

4

(
1 +

√
1− (4/(r0k0))

2

)
.

(33)

In addition to the amplitude zero, T [0](k0; Λ) = 0, it is apparent that there are three simple

poles, T [0](iκ
[0]
j ;∞)→∞, the nature of which is linked to the sign of iResS[0](iκ

[0]
j ):

• The pole at k = 0 represents a resonant state at threshold, as it induces the vanishing

of cot δ(0). Such a pole can be reproduced even with a momentum-independent contact

potential, just as it is done at LO in standard /πEFT (1) in the unitarity limit. (Since

iResS[0](iκ
[0]
1 ) = 0, this state has a non-normalizable wavefunction.)

• The pole at k = iκ
[0]
2 , κ

[0]
2 ' 190 MeV, lies on the positive imaginary semiaxis. How-

ever, since iResS[0](iκ
[0]
2 ) < 0, the condition to produce a normalizable wavefunction

is not satisfied. The pole at k = iκ
[0]
2 cannot correspond to a bound state, whose

wavefunction has finite support in coordinate space. It is a redundant pole [82, 83].

• The pole at k = iκ
[0]
3 , κ

[0]
3 ' 600 MeV, lies deep on the positive imaginary semiaxis. It

represents a bound state because iResS[0](iκ
[0]
3 ) > 0. Since no such state exists exper-

imentally, it would set an upper bound on the regime of validity of this hypothetical

EFT, Mhi
<∼ κ

[0]
3 .

In Fig. 2, we plot the 1S0 phase shifts (21) from the LO amplitude (28) in comparison

with the Nijm93 results [63, 70]. As input, we use the empirical values of the effective range

13



and the position of the amplitude zero. We display the cutoff band for a generic regulator by

taking θ−1 = ±1 and varying Λ from around the breakdown scale (500 MeV) to infinity — as

the cutoff increases, our results converge, as evident in Eq. (28). This cutoff band provides

an estimate of the LO error, except at low momentum where there is an error that scales

with 1/|a| instead of k. The LO phase shifts are in good agreement with empirical values for

most of the low-energy momentum range, except at the very low momenta where the small

but non-vanishing virtual-state binding energy is noticeable. A plot of k cot δ shows that

differences at the amplitude level are indeed small. We plot phase shifts to better display

the region around the amplitude zero, which our PC is designed to capture. There, while

the phase shifts themselves are not too far off empirical values, the curvature is not well

reproduced. Nevertheless, the agreement is surprisingly good given the absence of explicit

pion fields. In the next section we examine how robust this agreement is.

B. Next-to-Leading Order

As pointed out in Ref. [26], the leading residual cutoff dependence of an amplitude,

together with the assumption of naturalness, gives an upper bound on the order of the next

correction to that amplitude. In standard /πEFT, for example, the LO amplitude has an

effective range r0 ∼ 1/Λ, indicating that there is an interaction at order no higher than

NLO [16, 17, 60, 61] which will produce a physical effective range r0 ∼ 1/M̃hi. The leading

residual cutoff dependence in Eq. (28) is proportional to k4 and of relative order O(Mlo/Λ).

Thus, the NLO interaction must give rise to a contribution

P
[1]
0 (Λ) ≡ P0 − P [0]

0 (Λ) = O
(

1

M2
loMhi

)
(34)

to the LO shape parameter (29). This correction requires a higher-derivative operator. Al-

though we could add a momentum-dependent contact operator, a simpler, energy-dependent

strategy will be implemented here: we allow for a non-vanishing c
[1]
1 .

In addition, since we are interpreting ℵ → M2
lo/Mhi, one combination of parameters

including ∆
[1]
2 enforces

1

a[1]
=

1

a
= O

(
M2

lo

Mhi

)
. (35)
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FIG. 2: np 1S0 phase shift δ (in degrees) versus laboratory energy Tlab = 2k2/mN (in MeV) for

/πEFT at LO in our new PC. The (black) solid line shows the analytical result (28) with Λ→∞,

while the (green) band around it represents the evolution of the cutoff from 500 MeV to infinity,

with θ−1 = ±1. The (black) squares are the Nijm93 results [63, 70].

We also introduce corrections in the other two parameters, c
[1]
2 and ∆

[1]
1 , in order to keep r0

and k0 unchanged. Since NLO interactions must all be suppressed by M−1
hi ,

∆̄
[1]
1 = O

(
M2

lo

Mhi

)
,

c̄
[1]
1

mN

= O
(

1

Mhi

)
, ∆̄

[1]
2 = O

(
M2

lo

Mhi

)
,

c̄
[1]
2

mN

= O
(

1

Mhi

)
. (36)

This scaling — together with what was learned at LO — is consistent with the imposition

of four renormalization conditions on

G(z; Λ) ≡ −Re

{[mN

4π
T [1](
√
z; Λ)

] [mN

4π
T [0](
√
z; Λ)

]−2}
, (37)

which ensure that a, r0, P0, and k0 are fully Λ independent at NLO:

G(0; Λ) =
1

a
,

∂G(z; Λ)

∂z

∣∣∣∣
z=0

= 0,
∂2G(z; Λ)

∂z2

∣∣∣∣
z=0

= −P
[1]
0 (Λ)

2
, G(k20; Λ) = 0. (38)
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The cutoff dependence of the bare parameters that guarantees Eq. (38) can be found in

App. A. With Eq. (36), the renormalized parameters

∆̄
[1]
1 = ∆̄

[1]
2 +

3k20
mN

c̄
[1]
1 ,

c̄
[1]
1

mN

= −r0
2

(
1− P0k

2
0

2r0

)
,

∆̄
[1]
2 =

1

a
+ r0k

2
0

(
1− P0k

2
0

2r0

)
,

c̄
[1]
2

mN

= −4

(
c̄
[1]
1

mN

+
∆̄

[1]
2

2k20

)
, (39)

give Eqs. (14) and (34). The NLO contribution to the amplitude, Eq. (18), then satisfies

T [1](k; Λ)

T [0]2(k; Λ)
= −mN

4π

[
1

a
+

r0
2k20

k4

1− k2/k20

(
1− P0k

2
0

2r0
+

2θ−1
r0Λ

)
+O

(
k4

Λ3

)]
, (40)

which is indeed suppressed by one negative power of Mhi. If we resum T [1](k; Λ) while

neglecting N2LO corrections, then[mN

4π

(
T [0](k; Λ) + T [1](k; Λ)

)]−1
=

1

a
+ ik − r0

2
k2 − P0

4

k4

1− k2/k20
+O

(
k6

k20Λ3

)
. (41)

Now the ERE (11) is reproduced for k < k0 with the experimental scattering length and

shape parameter. Additionally, there are predictions for the higher ERE parameters which

are hard to test directly since they are difficult to extract from data. The zero at k0 remains

unchanged due to our choice of renormalization condition. Once expanded around k = k0,

the distorted amplitude (41) yields NLO coefficients such as

z
[1]
1 (Λ) = z

[0]
1 (∞)

(
1− P0k

2
0

2r0

)
+ · · · , (42)

z
[1]
2 (Λ) = z

[0]
2 (∞)

(
1− i r0k0

2

)−1 [
2

(
1− P0k

2
0

2r0

)
− i

ak0

]
+ · · · , (43)

where “· · · ” stands for O(M3
lo/Λ

3). NLO contributions are of relative O(Mlo/Mhi) with re-

spect to their LO predictions z
[0]
1 and z

[0]
2 , consistently with the residual cutoff dependence

displayed in Eqs. (30) and (31). Since z
[0]
1 (∞) underestimates the slope of the phenomenolog-

ical phase shifts around the amplitude zero, a better description of data requires z
[1]
1 (∞) > 0

and thus, according to Eqs. (29) and (42), P0 . P
[0]
0 (∞). The value given in Ref. [74] leads

to a small change |z[1]1,2(∞)/z
[0]
1,2(∞)| . 1/10, but unfortunately it is ∼ 10% larger than

P
[0]
0 (∞). Since Ref. [74] provides no error bars it is difficult to decide whether this is a real

problem. We can reproduce the phenomenological value for z1 with P
[1]
0 (∞) ' −0.6P

[0]
0 (∞),

which is still compatible with convergence but not so small a change with respect to LO. Of

course, not all the discrepancy between LO and phenomenology should come from NLO, but
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this might be indicative that something is missing. We will return to the shape parameter

in the next section.

NLO also shifts the LO position of the poles (33) of the S matrix. One can obtain these

shifts reliably by means of perturbative tools only for the two shallowest LO poles, finding

in the large-cutoff limit

κ
[1]
1 =

1

a
, κ

[1]
2 = −k

2
0 + κ

[0]2
2

k20 − κ
[0]2
2

[
1

a
+

1

2

r0κ
[0]4
2

k20 + κ
[0]2
2

(
1− P0k

2
0

2r0

)]
. (44)

We see that, as expected, |κ[1]1 | ∼ |κ
[1]
2 | = O(M2

lo/Mhi), as long as κ
[0]
2 = O(Mlo). As a

consequence:

• The shallowest pole is moved from threshold to k ' −8i MeV, and represents the

well-known virtual state. Its new location almost coincides with the physical one.

• The redundant pole is moved from k ' 190i MeV to k ' 215i MeV, when the value of

P0 given in Ref. [74] is used. This represents a shift of relative size ∼ 15% with respect

to LO. Roughly two thirds of this shift are due to the finiteness of the scattering length,

while the other third corresponds to the NLO correction to the shape parameter. If

we take the value of P0 that gives the slope of the phenomenological phase shifts at

k0, then the shape correction overcomes the scattering length and the pole moves to

k ' 155i MeV, still a modest shift.

The LO+NLO 1S0 phase shift can now be obtained from Eqs. (22) and (40), see Fig.

3. Now, in addition to the empirical values of r0 and k0, also the values of the scattering

length and the shape parameter from Ref. [74] are input. We show a band corresponding to

a variation of ±30% around the P0 value of Ref. [74] to account for its (unspecified) error.

Since the cutoff dependence of the NLO result (40) is very quickly convergent (∼ 1/Λ3), it

has been neglected in Fig. 3. The band thus does not reflect the uncertainty of the NLO

truncation, but of the input.

As expected, the physical value of a greatly improves the description of the phase shifts

at low energies (k . 50 MeV). However, at middle energies (k ∼ 100 MeV) this improve-

ment is much less clear. In particular, as anticipated above, only for a shape parameter

∼ 30% smaller than in Ref. [74] does δ[0+1](k;∞) get slightly closer to empirical values than

δ[0](k;∞) (see Fig. 2). Such a change is within the LO error and, overall, the reproduction
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FIG. 3: np 1S0 phase shift δ (in degrees) versus laboratory energy Tlab = 2k2/mN (in MeV) for

/πEFT at NLO in our new PC. The (black) line shows the analytical result (40) with Λ→∞ and

the value of the shape parameter from Ref. [74], while the (green) band around it represents a

±30% variation in this value. The (black) squares are the Nijm93 results [63, 70].

of the phase shifts is very good at NLO. Agreement could be further improved, particu-

larly around k0, by taking an even smaller value for the shape parameter — in particular,

the value that reproduces the phenomenological value for z1. However, even in that case

the curvature of the resulting phase shifts would remain different from empirical at middle

energies, which suggests that our expansion is lacking terms at either LO or NLO.

C. Resummation and Higher Orders

The choice of identifying the fine-tuning scale ℵ with M2
lo/Mhi led to a finite scattering
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length only at NLO. This assignment is motivated by the numerical values estimated for

these scales. Alternative choices are possible, leading to slightly different amplitudes at

various orders. When plotting phase shifts, these differences are amplified. For example,

taking ℵ as Mlo leads to a renormalization condition where 1/a is non-zero already at LO.

In this case our running and renormalized parameters given above all change by 1/a terms.

The amplitude itself (or equivalently its pole positions) changes only slightly, but in terms

of phase shifts there appears to be a large improvement.

Given our previous identification of ℵ with M2
lo/Mhi, the alternative procedure just de-

scribed amounts to a resummation of higher-order corrections. Because a bare parameter

(∆2(Λ)) exists already at LO to ensure proper renormalization, this resummation can be

done without harm. However, because some NLO contributions are shifted to LO, we see less

improvement when going from LO to NLO. Provided that one has a PC that converges, this

is just one of many ways in which we can make results at one order closer to phenomenology

while remaining within the error of that order.

Regardless of such resummation, corrections at higher orders are expected to improve

the situation further. The cutoff dependence of Eq. (41) suggests that there are no new

interactions at next order, N2LO, which would solely consist of one iteration of the NLO

potential. However, the fact that our pionless phase shifts look too low in the middle

range represents a significant, systematic lack of attraction between nucleons at k ∼ mπ.

This could be a reminder to include pions explicitly. We now consider our expansion with

additional pion exchange.

III. PIONFUL THEORY

We now modify the theory developed in the previous section to include pion exchange.

This is done under the assumption that the pion mass, the characteristic inverse strength

of OPE, and the magnitude of the relevant momenta have similar sizes, not being enhanced

or suppressed by powers of the hard scale:

mπ ∼MNN ∼ Q = O (Mlo) . (45)

Such an assumption has been standard in χEFT since its beginnings [4, 5]. In the NN

sector, it underlies the (non-perturbative) LO character of the OPE interaction, as well
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as the suppression of multiple pion exchanges by powers of (Mlo/MQCD)2. Here, the fact

that numerically MNN ' 290 MeV suggests that the zero of the 1S0 amplitude at k0 '

340 MeV might be considered a low-energy scale as well. Note that certain spin-triplet

channels — particularly 3S1 and 3P0 — also display amplitude zeros at comparable momenta.

In these channels the presence of the tensor force is sufficient to ensure a qualitatively

correct description of the phase shifts already at LO in a power counting consistent with RG

invariance [10, 24, 25]. This is in contrast with 1S0 [26], where the amplitude zero appears

only for low momentum cutoff values on the order of Mlo [22].

The Coulomb interaction between protons — the dominant electromagnetic effect —

contributes an expansion in αmN/Mlo ∼ ℵ/Mlo, where α ' 1/137 is the fine-structure

constant. As we took ℵ = O(M2
lo/Mhi), we should account for the Coulomb interaction at

NLO. (Other isospin-breaking effects, such as the nucleon mass splitting, are to be accounted

for perturbatively, too.) Within the /πEFT framework, the (subleading) Coulomb effects were

included in an expansion around the unitarity limit (without consideration of the amplitude

zero) in Ref. [66]. Since we anticipate no new features here, in this first approach we

neglect isospin breaking. We also ignore the explicit dependence on quark mass, because

the expansion is already quite complicated at a fixed value of m2
π.

Pions are introduced in the usual way, by demanding that the most general effective

Lagrangian transforms under chiral symmetry as does the QCD Lagrangian written in terms

of quarks and gluons. (For reviews and references, see Refs. [1–3].) In the particular case

of one dibaryon field, this was done in Ref. [29]. The extension to the two dibaryons of the

previous section is straightforward. If ~π is the pion isotriplet, the effective Lagrangian reads

L(2φ)
χ =

1

2

(
∂µ~π · ∂µ~π −m2

π~π
2
)

+N †
[
i∂0 +

∇2

2mN

− gA
2fπ

~τ · (σ ·∇~π)

]
N

+
∑
j=1,2

{
~φ †j ·

[
∆j + cj

(
i∂0 +

∇2

4mN

)]
~φj −

√
4π

mN

(
~φ †j ·NT ~P1S0

N + H.c.
)}

+ · · · ,

(46)

in the same notation as Eq. (4). The omitted terms, which include chiral partners of the

terms shown explicitly, are not needed up to NLO.

Inspired by the pionless theory, we use for the pionful case the same dibaryon arrangement

of short-range potentials as in Sec. II. Adding the long-range, spin-singlet projection of
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OPE, the LO potential is

mN

4π
V [0](p′,p, k; Λ) = − m2

π

MNN

1

(p′ − p)2 +m2
π

+
1

∆
[0]
1 (Λ)

+
1

∆
[0]
2 (Λ) + c

[0]
2 (Λ) k2/mN

≡ mN

4π

(
V

[0]
L (p′,p) + V

[0]
S (k; Λ)

)
, (47)

where p (p′) is the relative incoming (outgoing) momentum and the inverse OPE strength

is defined as [16, 17]

MNN ≡
16πf 2

π

g2AmN

≈ 290 MeV. (48)

The momentum-independent, contact piece of OPE has been absorbed in the short-range

potential V
[0]
S through the redefinition(

1/∆
[0]
1 (Λ) + 1/MNN

)−1
→ ∆

[0]
1 (Λ). (49)

The long-range part of OPE is the Yukawa potential represented by V
[0]
L . Integrating out

dibaryon-1 we obtain the potential considered previously in Ref. [29]. Since two-pion ex-

change (TPE) enters only at N2LO and higher [18, 19], at NLO the interaction is entirely

short-ranged,

mN

4π
V [1](k; Λ) = − ∆

[1]
1 (Λ) + c

[1]
1 (Λ) k2/mN

∆
[0]2
1 (Λ)

− ∆
[1]
2 (Λ) + c

[1]
2 (Λ) k2/mN(

∆
[0]
2 (Λ) + c

[0]
2 (Λ) k2/mN

)2 . (50)

In the limit ∆
[0]
2 → ∞ the potential is an energy-dependent version of the momentum-

dependent LO+NLO interaction of Ref. [26], while the interaction of Ref. [54] emerges in

the limit ∆
[0]
1 →∞.

Because OPE cannot be iterated analytically to all orders, we can no longer show explic-

itly that the amplitude has a zero at LO or that the amplitude is RG invariant. However,

these two important features of the pionless theory are expected to be retained by the pio-

nful theory on the basis that the strength of OPE is known to be numerically moderate in

spin-singlet channels and that V
[0]
L is non-singular. Moreover, we continue to use the scalings

(24) and (36). Below we confirm through numerical calculations that the EFT obeying such

a PC indeed has an amplitude zero and preserves RG invariance.
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A. Leading Order

The off-shell LO amplitude is found from the LO potential (47) by solving the LS equation

T [0](p′,p, k; Λ) = V [0](p′,p, k; Λ)−mN

∫
d3q

(2π)3
fR(q/Λ)

q2 − k2 − iε
V [0](p′, q, k; Λ)T [0](q,p, k; Λ),

(51)

with fR(q/Λ) a non-local regulator function (6). Defining the Yukawa amplitude,

T
[0]
L (p′,p, k; Λ) = V

[0]
L (p′,p)−mN

∫
d3q

(2π)3
fR(q/Λ)

q2 − k2 − iε
V

[0]
L (p′, q)T

[0]
L (q,p, k; Λ), (52)

the Yukawa-dressing of the incoming/outgoing NN states,

χ
[0]
L (p, k; Λ) = 1−mN

∫
d3q

(2π)3
fR(q/Λ)

q2 − k2 − iε
T

[0]
L (p, q, k; Λ), (53)

and the resummation of NN bubbles with iterated OPE in the middle,

I [0]L (k; Λ) = 4π

∫
d3q

(2π)3
fR(q/Λ)

q2 − k2 − iε
χ
[0]
L (q, k; Λ), (54)

Eq. (51) can be rewritten as [9]

[mN

4π

(
T [0](p′,p, k; Λ)− T [0]

L (p′,p, k; Λ)
)]−1

=

[
mNV

[0]
S (k; Λ)/(4π)

]−1
+ I [0]L (k; Λ)

χ
[0]
L (p′, k; Λ) χ

[0]
L (p, k; Λ)

. (55)

This is the generalization of Eq. (8) for LO in the presence of pions. Because V
[0]
L is regular,

the cutoff dependence of the integrals T
[0]
L and χ

[0]
L is only residual, i.e. suppressed by powers

of Λ. In contrast, just as the I0 in Eq. (8), I [0]L has a linear cutoff dependence due to the

singularity of V
[0]
S . Additionally, it exhibits a logarithmic dependence ∼ (m2

π/MNN) ln Λ [9]

arising from the interference between V
[0]
L and V

[0]
S . This cutoff dependence is at the root of

one of the shortcomings of NDA in the NN system.

Compared to Refs. [9, 26, 54], our V
[0]
S has a different k dependence. As in the previous

section, two dibaryon parameters are needed to describe the zero of the amplitude and its

energy dependence near threshold, while the third parameter ensures the fine tuning that

leads to a large scattering length. These three parameters are sufficient for renormalization,

leaving behind only residual cutoff dependence. Our LO amplitude is analogous to that of

Ref. [37], which results from the unitarization of an expansion around the amplitude zero.

Taking the sharp-cutoff function fR(x) = θ(1 − x), we solve numerically the S-wave

projection of Eq. (51), as done in, e.g., Refs. [26, 49]. In order to determine the values
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of the three bare parameters at a given cutoff, three cutoff-independent conditions on the

amplitude are needed. We choose them to be the same as in the previous section, i.e.

• unitarity limit, 1/a[0] = 0;

• physical effective range, r0 = 2.7 fm;

• physical amplitude zero, k0 = 340.4 MeV.

The values of ∆
[0]
1 (Λ), ∆

[0]
2 (Λ), and c

[0]
2 (Λ) in our numerical calculations must be very well

tuned in order to reproduce the required values of 1/a[0], r0, and k0 within a given accuracy.

The need for such a tuning becomes more and more noticeable as Λ is increased [49]. But

the resulting phase shift changes dramatically depending on whether 1/a[0] is very small and

negative (for a shallow virtual state) or very small and positive (as it would correspond to a

bound state close to threshold). Thus, in order to facilitate the numerical solution of the LS

equation, we kept the scattering length large and negative, a[0] = −600 fm. The difference

with the unitarity limit cannot be seen in the results presented below.

The LO pionful phase shift is obtained from the on-shell, S-wave-projected T matrix in

the usual way (21). The result, presented in Fig. 4, shows little cutoff dependence, even

though the cutoff parameter is varied from 600 MeV to 2 GeV. It is likely that a more

realistic estimate of the systematic error coming from the EFT truncation is obtained via

the variation of the input inverse scattering length between its physical value and zero.

We will come back to such an estimate later, when we resum finite-a effects. In any case,

comparing with Fig. 2 we confirm that pions help us achieve a better description of phase

shifts between threshold and the amplitude zero.

From the results in Fig. 4 we can obtain numerical predictions for parameters appearing

in the ERE and in the expansion around the amplitude zero. As an example, we extract the

LO shape parameter P
[0]
0 (Λ) using our low-energy results and the unitarity-limit version of

the ERE (11) truncated at the level of the shape parameter. Results are shown in Fig. 5.

For Λ large enough, we find

P
[0]
0 (Λ) ≈ P

[0]
0 (∞)

(
1 +

QP

Λ

)
, (56)

with P
[0]
0 (∞) ≈ −1.0 fm3 and QP ∼ 100 MeV. Unlike the result for the shape parameter

given in Ref. [74], P
[0]
0 (∞) is negative, being reasonably close to P0 = −1.9 fm3 — the value
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FIG. 4: np 1S0 phase shift δ (in degrees) versus laboratory energy Tlab = 2k2/mN (in MeV) for

χEFT at LO in our new PC. The narrow (green) band represents the evolution of the sharp cutoff

from 600 MeV to 2 GeV. The (black) squares are the Nijm93 results [63, 70].

extracted in Ref. [81] from the NijmII fit [70]. The large change in the prediction for P
[0]
0 (∞)

compared to the corresponding pionless result (29) is confirmation of the importance of pions

at LO.

B. Next-to-Leading Order

As before, we can infer the short-range contributions at NLO from the residual cutoff

dependence of the amplitude. Figure 5 shows that the cutoff dependence of P
[0]
0 (Λ) is

proportional to 1/Λ, with QP = O(Mlo) as expected. Just as in the pionless case, this

behavior implies that at least one extra short-range parameter needs to be included at
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FIG. 5: np 1S0 shape parameter P
[0]
0 (Λ) (in fm3) versus inverse cutoff 1/Λ (in GeV−1) for χEFT

at LO in our new PC. The straight line represents a linear fit to the numerical values.

NLO. This is represented by the NLO potential V [1], Eq. (50).

Treating V [1] in distorted-wave perturbation theory, we obtain a separable NLO ampli-

tude,

T [1](p′,p, k; Λ) = χ[0](p′, k; Λ)V [1](k; Λ)χ[0](p, k; Λ), (57)

where

χ[0](p, k; Λ) = 1−mN

∫
d3q

(2π)3
fR(q/Λ)

q2 − k2 − iε
T [0](p, q, k; Λ), (58)

is defined in terms of the full LO amplitude in analogy with Eq. (53) for the long-range LO

amplitude. As in the pionless case, we obtain the pionful LO+NLO phase shift from Eq.

(22).

The dibaryon parameters are fixed in virtue of four cutoff-independent conditions, which

we choose to be the values of the Nijm93 phase shifts [63] at four different momenta:

• δ[0+1](20.0 MeV; Λ) = 61.1◦;
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• δ[0+1](40.5 MeV; Λ) = 64.5◦;

• δ[0+1](237.4 MeV; Λ) = 21.7◦;

• δ[0+1](340.4 MeV; Λ) = 0◦.

The LO+NLO phase shifts are shown in Fig. 6. The narrow band when the cutoff is

varied from 600 MeV to 2 GeV confirms that, as in Fig. 4, very quick cutoff convergence takes

place. The LO+NLO prediction almost lies on the Nijm93 curve, which means that now the

description of the empirical phase shifts throughout the whole elastic range 0 . k .
√
mNmπ

is much better than at LO. Indeed, the improvement is clear not only in the very-low

momentum regime (which had been expected considering that now we relaxed the unitarity-

limit condition), but — more importantly from the χEFT point of view — also for momenta

k ∼ mπ. Comparison with the pionless result at NLO (Fig. 3) confirms that adding OPE

significantly improves predictions in this momentum range.

C. Resummation and Higher Orders

So far we took the binding momentum of the 1S0 virtual state as an NLO parameter,

since it is only about 6% of the pion mass and thus tiny on the scale of pion physics. We

were guided by the PC presented in Sec. II, whose consistency could be demonstrated

analytically. Despite the systematic improvement and good description of data at NLO,

one might be distressed by the unusual appearance of our LO phase shift (Fig. 4) at low

momentum. Within potential models — whether purely phenomenological or based on

Weinberg’s prescription — it is traditional to attempt to describe all regions below some

arbitrary momentum on the same footing.

As emphasized earlier, plotting phase shifts is misleading when it comes to errors in the

amplitude, which is the observable the PC is designed for. A plot of k cot δ shows that only a

small amount of physics is missed at LO even at low energies. Our strategy is a consequence

of the fact that the PC assumes momenta Q ∼Mlo, and it is in principle only in this region

that we expect systematic improvement order by order. The higher the momentum, the

smaller the relative improvement with order, till we reach Mhi and the EFT stops working.

In the other direction, that of smaller momenta, the χEFT PC may no longer capture the
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FIG. 6: np 1S0 phase shift δ (in degrees) versus laboratory energy Tlab = 2k2/mN (in MeV) for

χEFT at NLO in our new PC. The narrow (green) band represents the evolution of the cutoff from

600 MeV to 2 GeV. The (black) squares are the Nijm93 results [63, 70].

relative importance of interactions properly. A simple example is pion-nucleon scattering in

Chiral Perturbation Theory, where sufficiently close to threshold the LO P -wave interaction

(stemming from the axial-vector coupling in Eq. (46)) is smaller than NLO corrections to

the S wave. Therefore the region of momenta much below the pion mass is not where one

wants to judge the convergence of χEFT.

However, it might be of practical interest to improve the description near threshold

already at LO. As in /πEFT, we can choose to reproduce the empirical value of a phase shift

in the very low-momentum region — thus accounting for non-vanishing 1/a already at LO

— without doing damage to renormalization. As is the case with any other choice of data

to fit, the difference with respect to what we have done earlier in this section is of NLO: we

are just resumming some higher-order contributions into LO.
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As an example, in Fig. 7 we show LO and LO+NLO results with an alternative fitting

protocol. In the renormalization conditions at LO we replace the unitarity limit of our

original fit with the physical scattering length, that is, we impose the following cutoff-

independent conditions:

• a = −23.7 fm;

• r0 = 2.7 fm;

• k0 = 340.4 MeV.

Likewise, at NLO we substitute the lowest Nijm93 phase shift of our earlier fit with the

physical scattering length:

• a = −23.7 fm;

• δ[0+1](40.5 MeV) = 64.5◦;

• δ[0+1](237.4 MeV) = 21.7◦;

• δ[0+1](340.4 MeV) = 0◦.

As before we vary the cutoff from 600 MeV to 2 GeV, but the Λ convergence of the phase

shifts is so quick that the cutoff bands cannot be resolved in our plot. The improved

description of the very low-energy region at LO compared to that seen in Fig. 4, which is

entirely due to the resummation of the finite scattering length, is evident. The predicted

LO+NLO phase shifts virtually lie on the the Nijm93 curve, and this fit is even more

phenomenologically successful than the original LO+NLO shown in Fig. 6. The relatively

small improvement over the alternative LO curve is consequence of the resummation of

higher-order contributions into LO. The small difference between alternative and original

LO+NLO curves attests to the fine-tuning of the 1S0 channel, i.e. to the smallness of 1/a

effects.

The 1S0 phase shifts resulting from the PC proposed by Long and Yang for the singlet

waves [26] have also been plotted, at both LO and NLO, in Fig. 7. As mentioned before, the

LO of such an arrangement — which, just like the LO of Weinberg’s PC, consists of OPE

supplemented by a short-range, momentum-independent term obtained through inputting

the physical scattering length — manifestly fails in qualitatively reproducing the Nijm93
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FIG. 7: np 1S0 phase shift δ (in degrees) versus laboratory energy Tlab = 2k2/mN (in MeV) for

χEFT at LO and NLO in our new PC from an alternative fitting protocol. The (green) light and

(red) dark narrow bands represent, respectively, LO and LO+NLO under a cutoff variation from

600 MeV to 2 GeV. The LO and LO+NLO phase shifts from Ref. [26] have also been displayed; the

upper (violet) LO band and the lower (cyan) LO+NLO band come from the same cutoff evolution

as before. The (black) squares are the Nijm93 results [63, 70].

phase shift already at laboratory energies Tlab & 20 MeV, i.e. center-of-mass momenta

k & 100 MeV; in particular, the LO phase shift does not cross zero at any finite energy

(when Λ & Mhi [22]). In contrast, we see that, once the NLO interaction prescribed by

Ref. [26] — the NLO correction to the LO counterterm, plus a two-derivative contact term

determined by the empirical effective range — is added at first order in distorted-wave

perturbation theory, the resulting phase shift turns out to have a zero at Tlab ∼ 150 MeV,

i.e. k ∼ 250 MeV or about 25% below its physical location k0. Comparing the phase shifts

at LO and NLO of Ref. [26] with the ones resulting from our new proposal, we confirm that,
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at the price of the inclusion of k0 as an LO input and the promotion of r0(P0) as a (N)LO

input, the convergence of the new results is greatly improved.

Given the importance of OPE, one expects potentially large changes in the position of

the poles of T [0] in χEFT with respect to the /πEFT result (33). Yet, the virtual state near

threshold (at k ' i/a) is guaranteed by construction, since

mN

4π
T [0](k; Λ)

k→0'
(

1

a
+ ik

)−1
. (59)

Using the technique described in Ref. [49], one may obtain numerically the positions of the

other two poles. The redundant pole seems to become deeper and deeper when the cutoff Λ

is increased. This is consistent with the point of view that the redundant pole accounts in

/πEFT for the neglected left-hand cut due to OPE. In contrast, the binding energy of the deep

bound state oscillates with Λ, but we always find it to be & 200 MeV, which corresponds to

a binding momentum & 450 MeV. This is, again, an estimate for the breakdown scale Mhi.

One might worry that the LO+NLO result shown in Fig. 7 is so good that higher orders

could destroy agreement with the empirical phase shifts and undermine the consistency of our

EFT expansion. At N2LO and N3LO there are several contributions to account for: TPE

and the associated N2LO counterterms [18, 19] in first-order distorted-wave perturbation

theory, as well as NLO interactions in second- and third-order distorted-wave perturbation

theory. At these higher orders it might be convenient to use the perturbation techniques of

Ref. [84] or to devise further resummation of NLO interactions.

To investigate the potential effects of higher-order corrections we have performed an in-

complete N2LO calculation where the long-range component of the N2LO TPE potential

was included in first-order distorted-wave perturbation theory, following the analogous cal-

culation in Ref. [26]. Since the short-range component of this potential can be absorbed in

Eq. (50), there are no new short-range parameters and we impose the same four renormal-

ization conditions as in NLO. We have repeated the extraction of the phase shifts and found

a negligible effect on the final result, so that this incomplete N2LO phase shift is at least

as good as the one plotted in Fig. 7. This indicates that in the 1S0 channel the effects of

the N2LO TPE potential can be compensated by a change in the strengths of our LO and

NLO short-range interactions. Of course, this is not a full calculation of the amplitude up

to N2LO, but since the change from LO to LO+NLO is small, we might expect the iteration

of NLO interactions to also produce small effects. We intend to pursue full higher-order
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calculations in the future.

IV. CONCLUSIONS AND OUTLOOK

Despite its simplicity from the computational perspective, the two-nucleon 1S0 channel

has proven remarkably resistant to a systematic expansion. In this work we have developed

a rearrangement of Chiral EFT in this channel based on specific assumptions about the

scaling of effective-range parameters and the amplitude zero with a single low-energy scale

Mlo ∼ 100 MeV. Through the introduction of two dibaryon fields, we were able to reproduce

empirical phase shifts very well already at NLO — that is, including interactions of up to

relative O(Mlo/Mhi) — from threshold to beyond the zero of the amplitude at k0 ' 340 MeV.

The existence of a deep bound state at LO indicates that the expansion in powers of Mlo/Mhi

breaks down at a scale Mhi ∼ 500 MeV.

The new power counting is particularly transparent when pions are decoupled by an

artificial decrease of their interaction strength, in which case a version of Pionless EFT is

produced. Even in this case LO and NLO fits to empirical phase shifts look reasonable,

although the lack of pion exchange is noticeable in the form of the energy dependence.

The apparent convergence of our LO and NLO results towards the empirical phase shifts

suggests that our PC might be the basis for a new chiral expansion in this channel. Our new

expansion relies only on the identification of the NN amplitude zero as a low-energy scale,

where the leading order of our EFT is expected to provide a qualitatively correct description

of observables. Certainly there are other NN channels, such as 3S1 and 3P0, whose phase

shifts cross zero at some point. However, the fact that both 3S1 and 3P0 channels are well

described already at LO in a power counting consistent with renormalization invariance

[10, 22–25, 27] suggests that the exact location of these zeros, unlike the one in 1S0, can be

reached by small, perturbative corrections. We have not investigated the consequences of

adding multiple dimer fields in these waves. From our perspective, the 1S0 channel is unique

in having both a relatively low-energy zero and a fine-tuned S-matrix pole.

Before a claim of convergence in the 1S0 channel can be made, however, one or two

higher orders should be calculated, where additional long-range interactions appear in the

form of multi-pion exchange. Indications already exist [22, 26, 54] that two-pion exchange
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and its counterterms, which enter first at N2LO, are amenable to perturbation theory in this

channel. However, it is yet to be checked whether their contributions are small enough not

to destroy the excellent agreement obtained at NLO. This calculation is demanding because

it requires treating the NLO interaction beyond first order in distorted-wave perturbation

theory. An incomplete N2LO calculation which omits these demanding terms suggests that

higher orders might provide only very small corrections. We intend to consider also isospin-

breaking corrections in the future, along the line of what was done in Ref. [66] for Pionless

EFT with unitarity at LO.

If this approach succeeds, then it raises new questions. For instance, can we find an

equivalent momentum-dependent approach, which would be better suited to three-body

calculations and beyond? If the answer is positive, then the idea of imposing the 1S0 zero

at leading order should be tested — together with consistent interactions in other channels

which are order-by-order renormalizable — in future calculations of, e.g., few-body reactions

or nuclear structure. Another important element that would demand an answer is the role of

the quark masses in the power counting we propose here. We have worked at physical pion

mass, but it remains to be seen how this new proposal can be implemented for arbitrary mπ

in a renormalization-consistent manner. We intend to address these issues in future work.
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Appendix A: Running of the pionless counterterms

We collect in this appendix the explicit cutoff dependence of the dibaryon couplings.

These bare parameters ensure that the renormalization conditions in absence of long-range

interactions, given by Eqs. (26) and (38) at LO and NLO respectively, are fulfilled.

The bare parameters are given at LO by

∆
[0]
1 (Λ) = ∆̄

[0]
1 − θ1Λ + · · · , (A1)

c
[0]
1 (Λ)

mN

= 0, (A2)

∆
[0]
2 (Λ) =

2θ1
r30k

2
0

[
θ1 (r0Λ)2 −

(
r20k

2
0

2
+ 2θ1θ−1

)
r0Λ + 4θ1θ

2
−1 + · · ·

]
, (A3)

c
[0]
2 (Λ)

mN

=
c̄
[0]
2

mN

− 2θ1
r30k

4
0

[
θ1 (r0Λ)2 −

(
r20k

2
0 + 2θ1θ−1

)
r0Λ + 4θ1θ

2
−1 + · · ·

]
, (A4)

and at NLO by

∆
[1]
1 (Λ) = ∆̄

[1]
1 + · · · , (A5)

c
[1]
1 (Λ)

mN

=
c̄
[1]
1

mN

+ · · · , (A6)

∆
[1]
2 (Λ) = ∆̄

[1]
2 −

θ1
r40
P

[1]
0 (Λ)

[
θ1 (r0Λ)2 +

(
r20k

2
0 − 4θ1θ−1

)
r0Λ− 2θ−1

(
r20k

2
0 − 6θ1θ−1

) ]
− 4θ1
ar20k

2
0

(r0Λ− 2θ−1) + · · · , (A7)

c
[1]
2 (Λ)

mN

=
c̄
[1]
2

mN

+
1

k20

(
∆̄

[1]
2 −∆

[1]
2 (Λ)

)
+ · · · (A8)

The “renormalized” couplings (∆̄
[0]
1 , . . . , c̄

[1]
2 ) are defined in the main text (see Eqs. (27) and

(39)), and the ellipsis account for terms that become arbitrarily small for an arbitrarily large

cutoff.
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