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By applying a Bayesian model-to-data analysis, we estimate the temperature and momentum de-
pendence of the heavy quark diffusion coefficient in an improved Langevin framework. The posterior
range of the diffusion coefficient is obtained by performing a Markov chain Monte Carlo random walk
and calibrating on the experimental data of D-meson Raa and vz in three different collision systems
at RHIC and the LHC: AuAu collisions at 200 GeV, PbPb collisions at 2.76 and 5.02 TeV. The
spatial diffusion coefficient is found to be consistent with lattice QCD calculations and comparable
with other models’ estimation. We demonstrate the capability of our improved Langevin model to
simultaneously describe the Raa and v2 at both RHIC and the LHC energies, as well as the higher
order flow coefficient such as D-meson vs. We show that by applying a Bayesian analysis, we are
able to quantitatively and systematically study the heavy flavor dynamics in heavy-ion collisions.

I. INTRODUCTION

The theory of the strong interaction force — Quantum
Chromodynamics (QCD) — predicts that at sufficiently
high temperature and/or baryon density, nuclear matter
undergoes a phase transition from hadrons to a new state
of the deconfined quarks and gluons: the quark gluon
plasma (QGP) [1-3]. Over the past two decades, ultra-
relativistic heavy-ion collision experiments at the Rela-
tivistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC) have been searching and exploring this
new state of matter under extreme conditions. Com-
pelling discoveries, for instance the strong suppression of
hadrons at large transverse momenta (jet quenching), re-
veal the creation of the QGP medium at RHIC and the
LHC [4, 5]. The observed collective flow of low trans-
verse momentum hadrons [6, 7] has provided insight into
remarkable properties of the QGP such as the strongly in-
teracting, almost perfect fluid behavior with a very small
shear viscosity to entropy density ratio [8-10].

Since the QGP is not directly observable, the study
of its properties relies on the measurement of final state
observables, as well as theoretical modeling, and the com-
parison between those two. For example, the relativistic
viscous hydrodynamical model [11-15] — one of the most
successful models in heavy-ion physics — has been uti-
lized for the extraction of the temperature dependence
of the specific shear-viscosity through a model-to-data
comparison with elliptic and triangular flow data of soft
identified hadrons [16].
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In contrast to the soft medium properties, the trans-
port coefficients related to the medium interaction of
hard probes (jets and heavy quarks), such as ¢ and é, Dy,
are not yet understood on a similarly quantitative level.
This is in part due to the experimental difficulty in mea-
suring “rare processes”’, but also due to the complex-
ity of modeling the dynamics of these hard probes inter-
acting with the QGP medium. Nevertheless, significant
progress has been made in recent years: a number of
transport models in the market are now able to describe
a selection of heavy quark observables and perform quali-
tative estimates of the diffusion coefficient [17-30], which
in turn can be compared with lattice QCD calculations
of the same quantities [31-33]. In current studies of the
open heavy flavor diffusion coefficient, it is common that
the diffusion coefficient is directly or indirectly encoded
in the model and one can relate its physical properties
to one or multiple parameters. By comparing the heavy
quark observables (such as the nuclear modification fac-
tor Raa and elliptic flow vg) between the theoretical cal-
culation and the experimental data, these parameters can
be tuned until one finds a satisfactory fit. However, the
disadvantage of such an “eyeball” comparison is that it
gets exceedingly difficult to vary multiple parameters si-
multaneously or to compare with a larger selection of
experimental measurements, as all parameters are inter-
dependent and affect multiple observables at once.

A more rigorous and complete approach to optimizing
the model and determining the parameters would be to
perform a random walk in the parameter space and cal-
ibrate on the experimental data by applying a modern
Bayesian statistical analysis [34-37]. In such an analysis,
the computationally expensive physics model is first eval-
uated for a small number of points in parameter space.
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These calculations are used to train Gaussian Process em-
ulators that act as fast surrogates to interpolate between
these points and provide model predictions for arbitrary
values of the input parameters. The emulators thus act
as substitution of the full model in order to be able to
perform a Markov chain Monte Carlo exploration of the
complete parameter space. The results of such an analy-
sis are the posterior distributions of the parameters, i.e.
the probability distributions of the parameter values that
optimally describe the experimental data.

This type of model-to-data analysis using Bayesian
statistics has been applied with great success in the soft
sector of heavy-ion physics over the last few years, e.g.
for the extraction of the temperature dependence of the
specific shear and bulk viscosities of the QGP [16, 39],
as well as for constraining the equation of state of QCD
matter purely from experimental measurements [36, 40].
In this study, we shall extend this type of analysis to the
quantitative study of heavy flavor evolution in heavy-ion
collisions. Our goal is to provide a quantitative estimate
of the temperature and momentum dependence of the
heavy flavor diffusion coefficient. The paper is organized
as follows: in Sec. IT we will describe our physics model,
the improved Langevin framework which simulates the
full space-time evolution of heavy quarks inside a QGP
medium; in Sec. III the Bayesian analysis that we utilize
is introduced; the results of the calibration and the esti-
mation of the heavy quark diffusion coefficient are given
in Sec. IV; a summary and outlook can be found in the
final section.

II. MODELING HEAVY FLAVOR EVOLUTION
IN HEAVY-ION COLLISIONS

A. Full space-time evolution of heavy flavors and
the QGP medium

Our analysis utilizes the well-established framework
developed by the Duke QCD group to simulate the full
space-time evolution of heavy quarks in heavy-ion colli-
sions [22, 41]:

1. Initial production

Due to their large masses, heavy quarks are believed
to be primarily produced at the beginning of the colli-
sion via hard scattering. Therefore the initial momen-
tum distribution can be calculated using perturbative
QCD (pQCD). In this work, we adopt the fixed-order plus
next-to-leading log formula (FONLL) [42, 43] and EPS09
NLO nuclear PDF's [44] to calculate the heavy quark ini-
tial momentum distribution, from which we sample the
momenta of heavy quarks in our calculation (using Monte
Carlo methods).

The initial distribution of heavy quarks in position
space is generated consistently with the initial condi-

tion for the event-by-event hydrodynamical evolution by
the parametric initial condition model TRENTo [45]. At
the soft medium thermalization time (79 = 0.6 fm/c),
TRENTo maps the entropy density s(z,y)|r, to the nu-
cleon thickness functions T4, T of the two projectiles by
asserting a generalized ansatz:
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where p is a free parameter in TRENTo . In this study, we
utilize the calibration of the soft matter properties per-
formed in [16] (Table IIT of the median value calibrated
on charged particle yields of [16]), including TRENTo
initial state parameters (except for p, which is chosen to
be 0), as well as other parameters related to soft medium
properties, therefore the generalized function can be sim-
plified as

s(2,9)|r=ry = V/TaTp. (2)

The heavy quark initial production is based on the bi-
nary collision scaling and is determined by the thickness
function Typ = TaTp. In this way, we are able to re-
late the heavy quark initial position to the soft medium
initial production.

2.  Heavy quark evolution inside a QGP medium

After their production, heavy quarks propagate
through the QGP medium. In the quasi-particle picture
of the QGP system, the space-time evolution of heavy
quarks can generally be described by the Boltzmann
equation. Since heavy quark masses are much larger than
the typical medium temperature (mg > T), their mo-
mentum change due to the scattering with light partons
in a thermally equilibrated medium is relatively small.
With this assumption, the Boltzmann equation can be
reduced to the Fokker-Planck equation, which is realized
stochastically by the Langevin equation (for a detailed
derivation, see Refs. [46, 47]). In this study, we use an
improved Langevin transport model to describe the dy-
namics of heavy quarks propagating in a QGP medium,
which includes not only the heavy quark collisional en-
ergy loss but also the radiative energy loss due to gluon
radiation [22]

% =—np(P)P+&+ fg- 3)
The first two terms on the right hand side of the equa-
tion are the drag and thermal random forces inherited
from the standard Langevin equation. They contribute
to the collisional energy loss from quasi-elastic scatter-
ing between heavy quarks and light partons, and are
generalized to the scattering between heavy quarks and
the background medium. With the requirement that the
heavy quark distribution eventually reaches equilibrium



in a thermal medium, a simplified form of the Einstein
relation np(p) = k/(2TE) is adopted, where k denotes
the heavy quark mean squared momentum change per
unit time, and is usually referred as momentum-space
diffusion coefficient. Here we assume that in a “mini-
mal model”, the heavy quark momentum variance in the
longitudinal direction equals that in the transverse di-
rection (even though the microscopic calculation of those
two quantities are different): x| = x1 = . The validity
of such an assumption needs to be investigated in a future
calculation. For this study we follow this assumption in
order to simplify our parameterization, and therefore the
heavy quark transport coefficient is defined as § = 2k,
which is the transverse momentum broadening.

Assuming Gaussian shaped white noise, the ther-
mal random force satisfies the relation (&;(¢)§;(t')) =
k0;70(t—1'), which indicates no correlation between ther-
mal forces at different times.

In order to describe the heavy quark dynamics in the
intermediate and high pr region, the effective model-
ing the radiative component of the heavy quark energy
loss becomes necessary. A third force f; = —dpy/dt
hence is introduced to account for the recoil force that
is experienced by the heavy quarks when they emit
bremsstrahlung gluons, with 7, being the emitted gluon
momentum. A higher twist calculation for the medium-
induced gluon radiation is adopted from [48, 49]:
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where z is the fractional energy carried by the emit-
ted gluon, &k, is the gluon transverse momentum, P(z)
is the splitting function and 7; is the gluon formation
time. We relate the gluon transport coefficient g, and
heavy quark transport coefficient ¢ via the color factors
Gg = Ca/Crq (Cp =3,C4 =4/3). Under this construc-
tion, the drag force, the thermal random force and the
recoil force are dependent on the heavy quark transport
coefficient ¢, which characterizes the interaction strength
between heavy quarks and the medium. In the litera-
ture, the spatial diffusion coefficient Dy = 472 /q is more
often used in the diffusion equation, and this will be the
physical property that we are trying to extract from our
analysis.

The evolution of the QGP medium is simulated by a
(24+1)-dimensional event-by-event viscous hydrodynami-
cal model VISHNEW [50-52], which has been updated
to include both the shear and bulk viscosities with the
shear-bulk coupling. The shear and bulk viscosities have
been parametrized as temperature dependent. In our
current study, the parameters related to properties of
the soft medium as well as the initial condition are cali-
brated through an independent Bayesian analysis of light
hadrons [16].

8. Hadronization

When the temperature of the QGP medium drops
below the critical temperature (7T, = 154 MeV), the
medium undergoes a transition from a deconfined fluid to
a confined hadron gas. The phenomenon of confinement
involves non-perturbative processes and is not well under-
stood. One often utilizes an instantaneous hadronization
model to convert the fluid medium into hadrons. On the
transition hypersurface, an ensemble of hadrons is gen-
erated by sampling the momentum distribution from the
Cooper-Frye formula [53, 54]:
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Heavy quarks hadronize into heavy mesons within a hy-
brid model of instantaneous recombination and fragmen-
tation. The momentum spectra of the meson produced
by recombination is determined by the Wigner func-
tion [22, 41]:
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where pg and pj; are the momentum of heavy quark and
light quark that constitute the heavy meson, £}V (pg, 7y)
is the Wigner function in terms of the overlap between
the two initial partons and the final meson. A simple
quantum harmonic oscillator is used to approximate the
wave-function. For heavy quarks that do not recombine
with light partons, a fragmentation process via PYTHIA
takes place. It is found that high momentum heavy
quarks tend to fragment while lower momentum heavy
quarks tend to recombine with the thermal light partons
and hadronize into hadrons [41].

4. Hadronic re-scattering

After hadronization, the system continues expanding
as an interacting hadron gas. Subsequent interactions be-
tween heavy mesons and light hadrons (e.g scattering and
decay) after hadronization are modeled with UrQMD,
which solves the Boltzmann equation for all the particles
in the system [55, 56]. UrQMD continues to evolve the
system until the hadron gas is so dilute that all interac-
tions have ceased and the system reaches its kinematic
freeze-out. The particle information is then collected to
calculate the final state observables that can be compared
with experimental data.

In our study of D mesons, the two main observables
are: the nuclear modification factor Raa, which quan-
tifies the heavy quark in-medium energy loss and is ob-
tained by taking the ratio of the heavy meson pr spec-
tra measured in nucleus-nucleus collisions and the refer-
ence spectra in proton-proton collisions, scaled by the bi-
nary collision number; the harmonic flow coefficients v,,,



which are the n*® order coefficients in the azimuthal an-
gle Fourier expansion of the emitted hadron spectra. In
our calculation, the second order harmonic elliptic flow
vy is calculated via both: the event-plane method [58]
and the two-particle cumulant method [59], while the
triangle flow is calculated via the two-particle cumulant
method [59].

B. Parameterization of the diffusion coefficient

One of the goal of the heavy-ion community for the
next few years is to quantitatively determine the heavy
quark diffusion coefficient at sufficiently high precision.
Since the diffusion coefficient is not a quantity that can
be directly measured, its determination requires an inter-
play between both experiment and theory, meaning the
values of the parameters which encode the heavy quark
diffusion coefficient are obtained from a comparison be-
tween experimental measurement and the corresponding
theoretical calculations.

At high temperature and large momentum, the dif-
fusion coefficient can be calculated using perturbative
QCD [60, 61]: The simplest possible diagram for heavy
quarks interacting with light partons is given by two
2 — 2 elastic scattering processes (Qq¢ — Qgq, Qg —
Qg), where the heavy quark transport coefficient equals
to [62]:

(Pq - PQ)?)- (7)

where pg(pg/) is the in-(out-)going momentum of the
heavy quark. (X) is defined as:
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where 7, (7,) is the in-(out-)going momentum of the light
parton (light quark or gluon), and Mjs_,34 are the scat-
tering matrices between heavy quarks and light partons.
The leading-order pQCD calculation of diffusion coeffi-
cient with respect to temperature and heavy quark mo-
mentum is plotted in Fig. 1.

It has been found in previous comparisons to data that
the perturbative calculations are not sufficient to explain
the experimental findings such as the single non-photonic
electron suppression stemming from decay of the heavy
flavor mesons (“single electron puzzle”) [63], or fail to
to simultaneously describe both the heavy quark nu-
clear modification factor Raa and elliptic flow ve (“heavy
quark Raa and vy puzzle”) [64]. Moreover, it has been
argued that the convergence of the perturbative terms is
rather poor [25, 65]. In order to compensate for non-
perturbative effects, one may introduce a K-factor to
scale the scattering cross section by an ad-hoc param-
eter, which will be adjusted until the model is able to
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FIG. 1. (Color online) A leading order pQCD calculation
of ¢ with respect to temperature and momentum. For the
calculation of ¢, a fixed coupling as = 0.3 is used, and a
Debye screening mass according to m% = 4wa T2, All s, u,t
channel contributions for Q¢ — Qq, Qg — Qg are included.

describe the experimental data. In this study, we use a
more generalized parametrization of the diffusion coef-
ficient, which combines a linear temperature dependent
component and a pQCD component:

D27nT(T,p) = S (Dg2rT)lmear

1+ ( p)?
( 2 ) (D ot T)pQCD
2
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The linear component (D 27T)11¢% = o (1+B(T/T.—
1)), which accounts for non-perturbative effects, is the
diffusion coefficient in the p = 0 GeV/c limit and can be
compared to lattice QCD calculation of the spatial dif-
fusion coefficient at zero momentum. The pQCD com-
ponent is the contribution from perturbative processes,
and is related to ¢°RCP, which has been calculated above,
by (Ds27T)PRCP = 87/(¢/T?). Tt should be noted that
the standard spatial diffusion coefficient Dy is defined at
the zero momentum p = 0 GeV/c limit. However, in
this work we use the notation D, to refer to the diffusion
coefficient in the full momentum range.

The parameter o represents the spatial diffusion co-
efficient at zero momentum near T, parameter 3 is the
slope of D27T(p = 0) above T.. The linear shape of
the parametrization is inspired by the approximately lin-
ear temperature dependence of the specific shear viscos-
ity [38], as we assume an underlying relationship between
the transport properties of the QGP medium [66]. The
parameter 7y controls the ratio between the linear com-
ponent and the pQCD component. For p < 1/42 the lin-
ear component dominates while for p > 1/4% the pQCD
component is dominant. A small value of 7y indicates non-
perturbative processes affect the heavy quark dynamics
into the very high momentum region, and a large value of
~ indicates a quick conversion to the pQCD dominated
region. To better illustrate the dependence of the spatial
diffusion coefficient on ~, we plot D27T as a function
of temperature (at fixed momentum) and momentum (at
fixed temperature) for different values of v in Fig. 2. As
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FIG. 2. (Color online) An example of the spatial diffu-
sion coefficient parametrization. The linear component uses
(D2rT)ime = o . (1 4+ B(T/T. — 1)) with (a, 8) = (1.9,1.6)
and is plotted as black dots. The dashed black line is the
pQCD component, while the rainbow lines represent the dif-
fusion coefficient Eqn.(9) with parameter v varying from 0 to
1 while the color change from violet to red.

shown in Fig. 2, the value of v changes from 0 to 1 while
the color changes from violet to red in the reverse rain-
bow color scheme. For a large value of v (red) the com-
bined diffusion coefficient quickly converges to the pQCD
calculation, while for a small value of 7 (violet) the dif-
fusion coeflicient still follows the linear contribution even
for large momenta.

III. PARAMETER CALIBRATION

In this section we summarize the workflow of the
Bayesian analysis that allows us to determine the high
likelihood parameter ranges of (a, 8,7) that govern the
diffusion coefficient. More details on the Bayesian anal-
ysis can be found in [16, 36, 38, 40].

We first evaluate the improved Langevin model for a
limited number of parameter values that are selected us-
ing a Latin hypercube algorithm, and calculate the heavy
quark observables as outputs from the model for these
values. The mapping from inputs to outputs can then be
used to train a set of Gaussian process emulators, which
act as fast surrogate model of our Langevin model and are
able to predict the output for any arbitrary input point
in the parameter space. A Markov chain Monte Carlo
(MCMC) random walk through the parameter space is
then performed in order to calibrate the model param-

eters on the experimental data. After the MCMC equi-
librates, we obtain the posterior distributions of the in-
put parameters, and thus the posterior estimate of the
parametrized diffusion coefficient.

A. Training data preparation

Over the last few years, significant progress has been
made related to the measurement of heavy flavor observ-
ables, such as yields and/or flow cumulants of heavy fla-
vor mesons, single electrons from heavy flavor hadron
semi-leptonic decays, heavy flavor tagged jets, quarko-
nium yields, spectra and elliptic flow etc. However, those
data sets differ greatly regarding the statistical and sys-
tematic uncertainties and it is therefore not feasible to
combine all of them for our current analysis. For this
study, we only focus on the D-meson Ra s and vg, which
are very sensitive to the interaction mechanics between
heavy quarks and the medium. These have been mea-
sured in three different systems at RHIC and the LHC:
AuAnu collisions at \/syny = 200 GeV, PbPb collisions at
VSN = 2.76 TeV, and PbPb collisions at /syy = 5.02
TeV. Table I summarizes the measurements and kine-
matic/centrality cuts of the observables that have been
used.

To illustrate the degree to which the model’s calcu-
lation are affected by the particular form of the tem-
perature and momentum dependence of the diffusion
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FIG. 3. (Color online) 60 design points X generated by the
Latin hypercube algorithm, projected in the («, ) dimen-
sions. The flat histograms on the edge show an uniform prior
distribution of the parameters.



TABLE I. D-meson variables to be compared between model calculation and experimental measurements

Experiment variables kinematic cut centrality ref

AuAu@200 GeV  Raa(pr) 6 pr bins from 2 — 8 GeV/c, |y| < 1 0-10 STAR [68]
v2(EP)(pr) 8 pr bins from 1 — 7 GeV/c,|y| < 1 0-80 STAR [69]
v2(EP)(pr) 8 pr bins from 1 — 7 GeV/c,|y| < 1 10-40

PbPb@2.76 TeV  Raa(npart) 6 centrality bins, 5 < pr < 8 GeV/c, |y| < 0.5  0-10, 10-20,..., 40-50, 50-80 ALICE [70]
Raa(npart) 6 centrality bins, 8 < pr < 16 GeV/c, |y| < 0.5  0-10, 10-20,..., 40-50, 50-80
v2(EP)(pr) 6 pr bins from 2 — 16 GeV/c, |y| < 0.8 30-50 ALICE [72]

PbPb@5.02 TeV Raa(pr) 10 pr bins from 3 — 36 GeV/c, |y| < 0.5 30-50 ALICE [71]
v2{2}H(pT) 11 pr bins from 1 — 40 GeV/c, |y| < 1 10-30 CMS [73]
v2{2}(p1) 8 pr bins from 1 — 40 GeV/c, |y| < 1 30-50
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FIG. 4. (Color online) Proton-proton reference spectrum cal-

culated by FONLL+PYTHIA, used as the reference spectra
in order to calculate D-meson Raa. The experimental results
denoted total D-meson are the sum of D°,D* and D** data
from ALICE collaboration.

coefficient, we first sample 60 design points (X =
(%1, ,%60)7,%; = (o, 8,7)T) in the parameter space
(the tilde symbol &, ¢ represents the training datasets,
whose outputs are calculated from the physical model, it
is used to distinguish the predicted datasets, which are
later obtained from emulators and labeled with the star
symbol z,,y.). Those design points are semi-randomly
sampled in the 3-dimensional parameter space using a
Latin hypercube algorithm, which aims at spreading the
samples evenly across all possible values [67], and there-
fore, a small amount of samples O(10p) is sufficient to
train the Gaussian process emulators to interpolate the
p-dimensional parameter space. The parameter space is
deliberately chosen to be wide enough in order to cover
the full range of likely values, and is listed in Tab. II.
Figure 3 visualizes the uniform distribution the initial
design points, projected in the (a, 8) plane.

For each collision system at each collision energy, we
generate 5000 minimum bias hydro events and for each
hydro event, heavy quarks are oversampled to reduce the

TABLE II. Prior range and description for the parameters
that determines the diffusion coefficients

Parameter Description Range
Q@ D 27T at Tc 0.1-7.0
Jé] slope of (Ds27T) " above T, 0-5.0
~ ratio between D'nea* and DPRCD 0.0-0.6

theoretical statistical uncertainty at each design points.
The heavy meson observables are then calculated as the
following: the events are first binned into different cen-
trality classes according to the final state charged hadron
multiplicity N, at mid-rapidity. The D-meson selec-
tion is based on the corresponding experimental kine-
matic cuts. In order to calculate the nuclear modifica-
tion factor Raa, a proton-proton collision reference is
needed. It is calculated using a heavy quark FONLL dis-
tribution followed by a fragmentation process performed
by PYTHIA, and the D-meson yields in the proton-
proton reference are compared with experimental data
in Fig. 4. For the calculation of D-meson elliptic flow,
we try to match the experimental methods as far as pos-
sible, therefore for the AuAu collision and PbPb collision
at 2.76 TeV, an event-plane (approximated by the initial
participant-plane) method is used, while for the PbPb
collision at 5.02 TeV, the two-particle cumulant method
is used, though little difference has been noticed for the
two different methods [69, 71]. In total there are 69 ex-
perimental data points to calibrate against.

Figure 5 compares the 60 sets of model calculation with
the experimental data (black dots with errorbars). We
can see that the model’s outputs span a wide range in
observable space as the input parameters have been ran-
domly distributed in the parameter space. These input
Xnxp and output Y, ., matrices (where n = 60 is the
number of input parameter points, p = 3 is the dimension
of input parameters, m = 69 is the dimension of output
at each of the input point) will then be used to train the
Gaussian process emulators.
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FIG. 5. (Color online) Improved Langevin model calculation of D-meson observables, compared to experimental data spanning
the full range of the explored parameter space (i.e. the “prior”). Each frame contains 60 lines, corresponding to the 60 design
points of the analysis. From top to bottom: (top) AuAu collisions at 200 GeV: D-meson Raa(pr) in the 0-10% centrality bin
and vz (pr) in the 0-80%, 10-40% centrality bins; (middle) PbPb collisions at 2.76 TeV: D-meson Raa as function of centrality
at high momentum range 5 < pr < 8 GeV/c and 8 < pt < 16 GeV/c, vz as function of pr in 30-50% centrality bin; (bottom)
PbPb collisions at 5.02 TeV: D-meson Raa(pr) in 30-50% centrality bin and v2(pr) in 30-50% and 10-30% centrality bins.
Experimental data are measured by STAR [68, 69], ALCIE [70-72] and CMS [73].

B. Gaussian process emulator

In order to calibrate our parameters, a random walk
throughout parameter space will be performed, where

each step is accepted or rejected according to the rela-
tive likelihood. Taking a random walk throughout the 3-
dimensional parameter space requires @(1000) steps and
the number increases exponentially if we try to include



more parameters. At each step one needs to generate a
sample of events and calculate the model’s output for the
observables in order to evaluate the likelihood and take
action for the next step. Given the amount of compu-
tational time required to evaluate the likelihood at one
point in parameter space, such a method is not feasible.
To overcome this difficulty, a set of emulators is used to
function as a fast surrogate model that can predict the
physical model’s output at any arbitrary point in the pa-
rameter space. In this study, we construct the Gaussian
process (GP) emulator, which is an mapping from a n-
dimensional input space to a normal distributed output.
It not only interpolates and predicts the model output
after being trained, but also provides the uncertainties
of its prediction. More details of the GP emulator can
be found in Ref. [74]. Here we will briefly summarize the
basic idea of GP emulator.

Consider a physical model (e.g. our improved Langevin
framework), whose output of a physical process is deter-
mined by a set of input parameters y = f(x). We sup-
pose that the physical model has been evaluated at n
input points in the p-dimensional parameter space, (the
input parameter matrix X = (X1,...,%n)T). At each in-
put point, the model has one output y; = f(x;), yields
to an n-dimensional output vector y:

11 .- Tip Y1
=>y=|..]. (10)
Tni - Tnp Yn

X =

The output y can be viewed as a conditioned Gaussian
process which is a collection of normal distributions:

¥y =GP(X) ~ N(u(X), K¢ x)- (11)
where 1(X) is the mean vector of each input, and

- o(X1,Xn)
Kz x = S : - (12)

o(xXp,X1) -+ 0(Xp,Xp)

U(X17 Xl)

is the covariance matrix. It is constructed by the covari-
ance function o(x,x’) and characterizes the correlation
between different inputs.

In order to predict the model output y, at any other in-
put x, (the star symbol are used to represent the datasets
whose outputs are predicted from the emulators), one can
write the joint multivariate normal distribution:

(5) ~2 (i) (5 &3 19)
K., K, ¢ and K,  have the same form as Eqn. (12)

but with different x. The distribution of a predictive
output y, can be solved by:

ys ~ N(p, K) (14)
p=plx) + K, g K3 (5 — n(X)) (15)
K=K.,— K*XK;(}XKX*. (16)
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FIG. 6. (Color online) Cumulative variance explained by the

first m’ principal components. The first few PCs are able to
explain most of the total variance

With the knowledge of a training dataset containing a set
of inputs (X) and outputs (7), and the covariance matrix
(K), one is able to solve the equations and calculate the
distribution for any other input x..

The inference of the Gaussian process is determined by
the covariance function o(x,x’). Variance choice can be
made for the covariance function, based on our knowledge
and assumption of the input parameters. In this study we
use a popular squared-exponential function with a noise
term:

m

Tp — ! 2
o(x,x') = oG exp [— Z %
k=1 k

+ 020k x. (17)

The squared-exponential covariance function implies our
intuition that the inputs in the parameter space that are
close to each other are highly correlated, whilst those
far away are uncorrelated, the correlation strength be-
tween pairs of inputs is controlled by the hyperparameter
(0g, k). With this covariance function, the Gaussian pro-
cess is very smooth as the covariance is infinitely differen-
tiable. In this study, the hyperparameters (og, i, 0,,) are
determined in a manner of “best fit parameters” which
maximizes the parameter likelihood function[75].

C. Principle component analysis

A Gaussian process is essentially a mapping from an
input vector to a scalar output. The output from our
Langevin mode is an m-dimensional vector (m = 69):

i1 .- Tip B Yir - Yim
=Y =
Tnl - Tpp Yni -+ Ynm

X = . (18)

One can construct a GP emulator for each of the ob-
servables. However, as the elements in the output are
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FIG. 7.  (Color online) Validation of the Gaussian emula-
tors for PbPb collisions at 2.76 TeV. Each point represents
the emulator’s predicted value with respect to the model cal-
culated (true) value. (left:) prediction for high momentum
D-meson Raa at different centrality bins; (right:) prediction
for D-meson vz at 30-50%.

highly correlated, it is useful to reduce a high dimen-
sional and correlated output to a lower dimensional and
orthogonal principal components (PCs), which are the
linear combinations of the output observables and that
provide information on the most important components
of the dataset. ~

In practice, the training output Y is standardized (by
subtracting the mean and divided by the standard devi-
ation for each observable), and decomposed via the sin-
gular value decomposition (SVD):

T
anSnXTLVn)(n'

(19)

men =

The columns of U(V7T) are the left(right)-singular vec-
tor of Y, which are sets of orthogonal eigenvectors of
YYT(YTY). The output matrix Y can then be trans-
formed into principal component space:

Z=nYV.

S is the diagonal matrix whose diagonal elements
A (i=1,-- ,n) are the squared roots of the eigenvalues of
YTY. The eigenvalues \; are proportional to the vari-
ance that contributed the i-th PC, and are sorted into
descending order. The cumulative variance explained by
the first m/-th PCs (m’ < m) then equals to:

Z?ll Ai
YA
As shown in fig. 6, the first few PCs are sufficient to
explain most of the variance of the model outputs. In
this study, we use 8 PCs and for each PC a GP emulator
is constructed, which is a significant reduction from the
original 69 GPs that mapped directly onto the number
of data points in the calibration dataset.

Once the principal component z has been determined,
we obtain the outputs in the physical observable space
by the inverse transformation:

1

= —zV.
N

(20)

CV(m') = (21)

(22)

In order to test the emulators’ ability to predict the
models’ output, we generate another 15 sets of test in-
puts and perform the full Langevin model calculation at
each of these test inputs. Meanwhile the trained GP em-
ulators also predict the output for each of these input
parameters. Figure 7 compares the prediction from the
emulators to the calculation from the improved Langevin
model for PbPb collisions at 2.76 TeV. For each test in-
put point, 18 observation of Raa and vy are calculated
at different centralities and pt bins. The black lines are
the y = x reference, and each dot represent the emula-
tors’ prediction with respect to the models’ calculation.
As visualized in Fig. 7 the GP emulators in general work
very well. We should note that the emulators provide the
uncertainty for each prediction, therefore the errorbars
shown in the figure correctly capture the uncertainties
underlying in the emulation.

D. MCMC calibration

According to Bayes theorem, the probability for the
true parameter x given the experimental data y.,, and
observed (X' , }7) is proportional to the likelihood of the
parameter x and its prior distribution:

P(x|X,Y,Yexp) X P(X,Y, Yexp|x) P(x). (23)
where P(x|X,Y, Vexp) s the posterior distribution of pa-
rameters x given the observation of ()~( Y, Yexp), Which
is our main results from this analysis; P(X,Y, Yexp|X) is
the likelihood of observing (X,Y, Yexp) given the param-
eter x, and P(x) is the prior distribution of parameter
X.

Our goal here is to find the posterior probability dis-
tribution of the parameters P(x|X,Y, yexp) which would
optimally reproduce the experimental data using our im-
proved Langevin model. In order to determine the pos-
terior distribution we perform a MCMC random walk in
parameter space following the Metropolis-Hasting algo-
rithm [76]. During the random walk, each step is ac-
cepted or rejected according to the relative likelihood.
Assuming a Gaussian structure for the uncertainties, the
log likelihood function has the following form as a func-
tion of the output y:

L 1 -
log P(X7Y=yexp|x) = _é(y - Ye)cp)TE l(y - Yexp)

1
~3 log |X] — %log?ﬂ'.
(24)

Y. is the covariance matrix which accounts for all quan-
tifiable uncertainties. There are various contributions to
these uncertainties, such as the emulator prediction un-
certainty, the experimental statistic and systematic un-
certainties, and the physical model statistic and system-
atic uncertainties. Identifying all these uncertainties can
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FIG. 8. (Color online) Emulator predictions for 200 random input parameters sampled from the posterior distributions. This
figure is similar to Fig.5 but with the input parameters chosen from the posterior distribution, and the outputs are predictions

from the GP emulators.

be very difficult, especially for systematic uncertainties
which in general may have correlations among each other.
For the current analysis we only consider experimental

statistical and uncorrelated systematic uncertainties:
E = diag(osztat) + diag(as2ys) + dlag(UéP) (25)

where oo i the experimental statistical error, ogys is
the experimental systematic error (uncorrelated) for each

observable, ogp is the theoretical uncertainty from Gaus-
sian process emulator predictions. At the current stage,
all the uncertainties are assumed to be uncorrelated for
the purpose of simplicity as well as maximizing the over-
all constraint.



green: PbPbh@2.76 TeV
blue: PbPb@5.02 TeV

FIG. 9.

(Color online) Posterior distributions of the diffu-
sion coefficient parameters (o, 8,7) for each individual col-
lision system. The diagonal plots are the histogram of the
MCMC samples with other parameters integrated out. The
off-diagonal plots display the joint distributions between pairs
of parameters. The three different colors refer to the three dif-
ferent analyses that calibrate on three different sets of data.

IV. RESULTS
A. Posterior distributions

To evaluate the success of the calibration, 200 points
in parameter space are randomly chosen from the equili-
brated MCMC trace and evaluated by the Gaussian emu-
lators. Figure 8 visualizes the corresponding observables
and compares it with the experimental data. The presen-
tation is similar to Fig. 5 but with calibrated parameters.
For each plot, two posterior outputs are presented, each
one corresponding to an independent Bayesian analysis
but calibrated on different experimental datasets. The
red lines correspond to the Bayesian analysis calibrated
on all the output observables listed in Tab. I, whereas
the yellow, green and blue lines correspond to calibra-
tions on data of a single beam energy. We find that after
calibration, our improved Langevin approach is capable
of describing the experimental data reasonably well. The
biggest deviations are found for a few Raa points at very
peripheral centrality and low pr: peripheral collisions are
not well described by our hydrodynamical background.
Also, the modeling of hadronization in the low pr region
is challenging due to significant non-perturbative effects.

The main results of a Bayesian analysis are the pos-
terior probability distributions of the input parameters
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FIG. 10. (Color online) Posterior distributions of the diffu-
sion coefficient parameters (o, 3,~) for the analysis combining
all three collision systems. The red color refers to the result
that combines only the LHC energies: PbPb collisions at 2.76
and 5.02 TeV; the magenta color refers to the analysis com-
bining all three energies at RHIC and LHC.

(a, B8,7). The posterior distributions are given in Fig. 9
and 10, where the results of 5 independent Bayesian anal-
yses are presented as histograms. Each analysis follows
the same procedure described in the previous few sections
but calibrates on different sets of experimental data, and
is shown using different colors. For examples, in Fig. 9
the blue histograms represent the distributions calibrated
on the 5.02 TeV PbPb collision data, the green ones rep-
resent the calibration on the 2.76 TeV PbPb data, and
the yellows ones represent the calibration on the 200 GeV
AuAu data. In Fig. 10 the magenta histogram corre-
sponds to the analysis using the data from two collision
energies at the LHC simultaneously, while the red ones
denote the analysis using all the observable across three
different systems and listed in Tab. I. In each figure, the
histograms along the diagonal are the marginal posterior
probability distributions of each parameter («, 3,7), with
all the other parameters integrated out. The off-diagonal
contour plots are the joint distributions which show the
correlations among pairs of the parameters.

Figure 9 and 10 indicate that parameter a is well
constrained, peaking around (1.5 ~ 2.0) for all analy-
ses. This parameter determines the diffusion coefficient
D227T at 0 momentum near T.. The slope parameter
[ is poorly contrained, although a negative correlation
between o and [ is observed. Parameter -y controls the
ratio between the linear component and the pQCD com-
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FIG. 11. (Color online) Posterior results of the spatial diffusion coefficient from the Bayesian analysis calibrated on the
combined dataset from three different systems at RHIC and the LHC.(top) the spatial diffusion coefficient Ds27T as a function
of temperature at fixed momentum (p = 0 GeV/c, p = 10 GeV/c and p = 50 GeV/c); (bottom) the spatial diffusion coefficient
D,27T as a function of momentum at fixed temperature (7' = 154 MeV, T' = 350 MeV, T' = 550 MeV). The grey area refers to
the prior range before calibration, while the red region refers to the posterior range after calibrating on experimental data. The
black dashed line refers to the diffusion coefficient from a leading order pQCD calculation, the red lines are the parametrized

diffusion coefficient using the median value of the posterior parameter distributions.

ponent. As shown in Fig. 9, the distribution for v ex-
tracted from AuAu collisions at 200 GeV favors a slightly
smaller value than that from the LHC energies, indicat-
ing a stronger contribution from the linear component
and a slower convergent to the pQCD results in AuAu
collision. For the combined analysis of the LHC ener-
gies and all three energies, v peaks around (0.25 ~ 0.3).
We conclude that for momenta range between (10 — 20)
GeV/c, the linear component and pQCD component of
the diffusion coefficient are comparable to each other and
that the pQCD contribution to the diffusion coefficient
will only dominate at momenta above 20 GeV. The mo-
mentum range is approximated using 1/42, as v%p = 1
is the momentum region where linear and pQCD compo-
nent contributes equally.

The width of the posterior distributions is affected by
the uncertainty we have applied in the analysis. The
smaller the uncertainty, the stronger the constraint, and
therefore a narrower width of the posterior distributions.

This may explain why among the three different colli-
sion systems, the posterior distributions from 5.02 TeV
PbPb collisions generally show a smaller width and the
combined calibration is mostly driven by the higher pre-
cision data from PbPb 5.02 TeV collisions. Higher preci-
sion experimental data and a better understanding of the
theoretical uncertainties will yield a significantly better
constraint on the parameters.

B. Heavy Quark Diffusion Coefficient

Having established the posterior distribution of the pa-
rameters a, 5 and v we can now utilize the parametriza-
tion of the spatial diffusion coefficient Eqn. (9), to ex-
tract the posterior range of this quantity. Figure 11 dis-
plays the estimate of the spatial diffusion coefficient, as
a function of temperature and momentum respectively.
The gray area represents the prior range before the cali-
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(Color online) Comparison of the heavy quark diffusion coefficients across multiple approaches available in the

literature. (left) spatial diffusion coefficient at zero momentum D277 (p = 0). (right) momentum diffusion coefficient G/

at p =10 GeV.

bration, while the red area is the posterior estimate ex-
tracted from the combined analysis with 90% credibility.
Here we use the result of the combined analysis that cal-
ibrates on all the three systems. We note, however, the
posterior ranges of D271 do not differ much between
different analysis, even though the posterior distributions
of the parameters (o, ,7) show some deviation. The
dashed black lines represent the diffusion coefficient cal-
culated in leading order pQCD. The solid red lines depict
the diffusion coefficient using the median value of the pa-
rameters from the posterior distributions.

On the upper panel of Fig. 11, the diffusion coefficient
is plotted as function of temperature for 3 different val-
ues of the heavy quark momentum (p = 0 GeV/c, p =15
GeV/c and p = 50 GeV/c): for p = 0 GeV/c, the diffu-
sion coefficient is solely determined by the linear compo-
nent, with the Ds2nT(p = 0) ~ 1 — 3 around T, (which
is the range of parameter « for 5-95% percentiles). The
temperature dependence of D27T is not far remote from
a simple linear relationship with positive slope. In ad-
dition, we notice that the 90% credibility range suffers
the least uncertainties in a temperature range around
T ~ 200—250 MeV, which we argue, is approximately the
average temperature that heavy quarks experience dur-
ing their propagation path. At higher temperature, the
posterior range of the spatial diffusion coefficient broad-
ens. A likely reason for this trend is due to the short
amount of time the bulk matter retains this high tem-
perature at the beginning of the system’s evolution. As
the system expands quickly, it rapidly cools, leaving only
a short period of time for the heavy quarks to interact
with the medium at that temperature, and therefore less

information can be obtained at high temperatures.

On the lower panel of Fig. 11 we explore the momen-
tum dependence of the diffusion coefficient for three dif-
ferent temperatures (T = 150 MeV, T' = 350 MeV and
T = 550 MeV). As the heavy quark momentum increases,
the uncertainties of the posterior range decrease. At high
momentum, the diffusion coefficient reflects that of the
pQCD calculation, which is obtained from 2 — 2 pro-
cess. The only freedom left in the parameterization is

% ,which varies only little for high mo-
menta. In the low momentum region, the parameterized
diffusion coefficient shows completely different behavior
from the pQCD calculation, which can be only the result
of the non-negligible contribution from non-perturbative
effects, which are clearly needed in order to obtained a
realistic description of the heavy quarks at low and in-
termediate momentum.

the prefactor

In Fig. 12 we compare our estimate of the diffusion co-
efficient with the coefficient used or calculated by a num-
ber of other models in the market [23, 27-30, 77] as well
as with lattice QCD calculations [31, 32]. The left frame
shows the temperature dependence of the spatial diffu-
sion coeflicient at 0 momentum D277 (p = 0). Our anal-
ysis is consistent with lattice QCD calculations within the
uncertainties currently inherent in lattice QCD calcula-
tions. Although the diffusion coefficients used in different
models are rather different, they all have a minimum near
T. with a value range of D27 T(p=0)=1-171.

On the right frame, we compare our charm quark
transport coefficient § at p = 10 GeV /¢ with the results
from the LBT model and the JET collaboration [30, 77].
The transport coefficient ¢ is roughly comparable with
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FIG. 13. (Color online)D-meson vs predicted by the improved Langevin model at AuAu collisions at 200 GeV and PbPb
collisions at 5.02 TeV, compared to experimental data measured by STAR [79] and CMS [73]. The input parameters (o, 3,7)
were set to the median value of the posterior distribution for the AuAu at 200 GeV dataset (AuAu200 median), PbPb at 5.02
TeV dataset (PbPb5020 median), the combined LHC energy dataset (LHC-median), and the combined data set for all three

systems (all-median).

those two. A detailed investigation on the causes of
the differences in predicted or calculated transport co-
efficients by the different approaches is of great inter-
est, but beyond the scope of this work. We should note
that in order to make a valid apple-to-apple compari-
son among different models, especially for those trans-
port approaches that depend on the surrounding matter,
it would be essential for the heavy quarks to propagate
in the same QGP medium evolution, which is not the
case for this particular comparison. For example, the
PHSD group [23] explores a non-equilibrium microscopic
description of the bulk evolution, the Catania group [27]
describes the medium by solving a relativistic Boltzmann
equation for light partons, while the others use a hydro-
dynamic description. Additionally the properties of the
medium and the choice for the equation of state will af-
fect the extraction of the diffusion coefficients as well.

C. Model validation: triangular flow

The robustness and quality of our description of in-
medium heavy-quark dynamics and our extraction of the
heavy quark diffusion coefficient can be tested by making
predictions of observables that have not been part of the
calibration. Here, we focus on measurements of higher or-
der flow cumulants for D mesons, in particular v, which
has been predicted as further valuable HQ observables
in [78]. First measurements of the D meson vz have re-
cently become available by the CMS and STAR collabo-
rations [73, 79]. We calculate the D-meson vz in PbPb
collisions at 5.02 TeV using the median values of «,
and v as determined by our calibration and compare our
results to experimental measurements in Fig. 13. Each
frame contains three results from the improved Langevin
model calculation stemming from our different calibra-
tions: utilizing the 200 GeV AuAu data, utilizing the
5.02 TeV PbPb data, utilizing both LHC data sets, and
utilizing the combined datasets from all three collision
energies and systems. As we have mentioned before, the



posterior diffusion coefficients using the median values
do not differ much from each other in the different analy-
ses. The robustness of the analysis has been confirmed in
Fig. 13, where we show that the D-meson v3 in AuAu col-
lisions and in all three measured centrality bins in PbPb
collisions as predicted by our calibration agrees very well
with the data, irrespective of the dataset used to deter-
mine the diffusion coefficient.

V. CONCLUSION

In summary, we have applied state-of-the-art Bayesian
methodology to systematically extract the heavy quark
diffusion coeflicient from a model-to-data analysis of our
improved Langevin model for the in-medium heavy quark
evolution. By calibrating to the experimental data of D-
meson Raa and vg measured in AuAu collisions at 200
GeV, PbPb collisions at 2.76 TeV and 5.02 TeV, we are
able to extract a posterior range of the diffusion coeffi-
cient. Our analysis is compatible with lattice QCD cal-
culations within uncertainties that are inherent in the
lattice calculations. With the extracted parameters, our
improved Langevin model has been shown to be able to
reproduce the experimental data of Raa and vy at both
RHIC and the LHC simultaneously, and is able to de-
scribe well observables that are not included in the cali-
bration, such as D-meson vs.

Our parametrization of the spatial diffusion coefficients
combines a linear temperature dependent component —
accounting for a non-perturbative contribution — and
a pQCD component — calculated from a leading order
pQCD approach with a fixed coupling of oy = 0.3. It
smoothly interpolates between the linear component and
the pQCD component, and converges to the pQCD calcu-
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lation in the large momentum limit. The spatial diffusion
coefficient at zero momentum D 27T (p = 0) varies be-
tween 1-3 near T, and exhibits a positive slope for its
temperature dependence above T.. Even at momenta in
the range of 10 — 20 GeV /¢, the non-perturbative contri-
bution can not be ignored.

In future work, we shall improve our treatment of the
different sources of uncertainty, both theoretical and ex-
perimental, that can affect the outcome of our analysis.
In addition, we plan to improve our physics model by
taking the pre-equilibrium evolution of the heavy quarks
explicitly into account [80] and to apply the model-to-
data framework to different dynamical models of heavy
quark in-medium evolution, for example a comparison
between Langevin and Boltzmann dynamics. Moreover,
this study serves as the first application of a Bayesian
model-to-data analysis to the heavy flavor dynamics in
heavy-ion collisions and we intend to expand its applica-
tion to the study of other rare probes as well.
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