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We study the propagation and diffusion of electric charge fluctuations in high

energy heavy ion collisions using the Cattaneo form for the dissipative part of the

electric current. As opposed to the ordinary diffusion equation this form limits the

speed at which charge can propagate. Including the noise term in the current, which

arises uniquely from the fluctuation-dissipation theorem, we calculate the balance

functions for charged hadrons in a simple 1+1 dimensional Bjorken hydrodynamical

model. Limiting the speed of propogation of charge fluctuations increases the height

and reduces the width of these balance functions when plotted versus rapidity. We

also estimate the numerical value of the associated diffusion time constant from

AdS/CFT theory.

I. INTRODUCTION

The main motivation for colliding large nuclei at high energies is to produce matter with

temperatures greater than 100 MeV that would have existed during the first microsecond

after the big bang. There are large and extensive experimental programs at the Relativistic

Heavy Ion Collider (RHIC) at Brookhaven National Laboratory on Long Island, New York

and at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. Thousands of

hadrons are produced in these collisions which makes the application of statistical mechanics

and hydrodynamics plausible, and in fact the standard model of these collisions incorporates

these both in principle and in practice. Of course one should expect significant fluctuations

in the observables and these can be put to good use to extract new physics. For example,

critical points are characterized by large fluctuations. This led to the suggestion to study

fluctuations in conserved quantities, such as electric charge, baryon number, and strangeness

on an event-by-event basis [1, 2]. Overviews, summaries, and recent progress can be followed

via the proceedings of the series of the so-called Quark Matter conferences, the most recent
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being [3–5].

In this paper we focus on fluctuations and correlations of the electric charge. Electric

charge is much easier to measure in high energy heavy ion collisions than baryon number

or strangeness. We assume that the net electric charge in the central rapidity region is

zero, which is a very good approximation for the top RHIC energies and at the LHC.

Since gradients in temperature, flow velocity, etc. are large it has been found necessary

to go to second order viscous fluid dynamics. Under certain conditions first order viscous

fluid dynamics can lead to super-luminal signal propagation, a theoretically unsatisfactory

possibility and in addition can lead to instabilities in numerical simulation of high energy

nuclear collisions. The ordinary diffusion equation has instantaneous signal propagation

and therefore should be replaced with an equation which respects relativity. The simplest

extension of the ordinary diffusion equation is usually attributed to Cattaneo [6] who actually

studied heat conduction. To our knowledge the first application of his equation to heavy

ion collisions was by Abdel Aziz and Gavin [7]. Neglecting noise, the electric charge current

which leads to the scalar Cattaneo equation is [8]

JµQ = nQu
µ + σQT∆µ(1 + τQu · ∂)−1

(µQ
T

)
. (1)

Here nQ is the electric charge density with associated charge chemical potential µQ. The

charge conductivity is represented by σQ and the temperature by T . The gradient orthogonal

to the flow velocity is

∆µ = ∂µ − uµ(u · ∂) . (2)

A new time constant τQ naturally appears (which could depend on T ). Note that this is

not a simple gradient expansion as the derivative appears in the denominator. The speed of

propagation of signals is given by v2
Q = DQ/τQ where DQ = σQχQ is the diffusion constant

and χQ is the electric charge susceptibility. For a given diffusion constant there is a minimum

value of τQ for which signals propagate slower than the speed of light. The ordinary diffusion

equation has τQ → 0.

The fluctuation-dissipation theorem tells us that along with the dissipation arising from

diffusion there are also fluctuations [9]. Thus on the right side of Eq. (1) there is added a

term Iµ whose average value is zero but which has a nonzero average 〈Iµ(x1)Iν(x2)〉 which

is uniquely determined by the theorem. The relativistic version was worked out in [10] for
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the case of ordinary diffusion. Defining hµν = uµuν − gµν it is

〈Iµ(x1)Iν(x2)〉 = 2σQTh
µνδ(x1 − x2) . (3)

This is white noise since the Fourier transform is independent of frequency and wavenumber.

Ordinary electric charge diffusion was applied to the balance functions, which measure two-

particle correlations in momentum space [11–14], in [15].

In this paper we extend the study of [15] to the Cattaneo equation with finite τQ. We

will, however, simplify a few of the calculations of Ref. [15] to focus on the essential physics

provided by a finite speed of propagation. Now the fluctuations are no longer a delta-function

in time. In the local rest frame [8]

〈I i(x1)Ij(x2)〉 =
σQT

τQ
δ(x1 − x2)e−|t1−t2|/τQδij . (4)

As τQ → 0 this clearly reproduces the white noise of the ordinary diffusion equation. As

in Ref. [15] we will use 1+1 dimensional boost invariant hydrodynamics to carry out the

calculations as far as possible analytically. Even then the analysis is more involved because

of the memory effects arising from the colored noise.

The outline of the article is as follows. In Sect. II we work out the relevant equations for

charge diffusion and fluctuations in boost invariant hydrodynamics. In Sect. III we solve the

resulting homogeneous equation and in Sect. IV the inhomogeneous equation. In Sect. V

we determine the correlation functions; in particular, we show how to deal with the colored

noise in the expanding system. In order to compare with experimental measurements it

is necessary to subtract out self-correlations among the fluid elements. This is a delicate

matter for colored noise and is done in Sect. VI. Section VII contains numerical results for

the correlation functions. Section VIII contains some straightforward, although not entirely

realistic, phenomenological analyses of experimental data. Section IX compares results from

the Cattaneo equation, and the next higher order Gurtin-Pipkin equation [8, 16], with results

obtained from AdS/CFT to estimate the values of the diffusion constant and relaxation time

scales. Conclusions are provided in Sect. X.

It should be acknowledged that there are other sources of fluctuations in heavy ion

collisions, such as initial state fluctuations, fluctuations induced by jets and other high

momentum-transfer processes, and fluctuations during hadronization in the final state.

These were surveyed in Ref. [10]. The ability of hydrodynamic fluctuations to sense a
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critical point at finite temperature and baryon chemical potential was studied in Ref. [17]

using the ordinary diffusion equation.

II. DIFFUSION IN BOOST INVARIANT HYDRODYNAMICS

In this section we will derive the relevant equations for charge diffusion and fluctuations

during the expansion of hot matter produced in very high energy heavy ion collisions. For

this purpose we will use the 1+1 dimensional boost-invariant (Bjorken) hydrodynamic model,

similar to what was done in Ref. [10]. In addition, we assume zero net charge and neglect

the effects of shear and bulk viscosity so that charge diffusion and fluctuations decouple

from the shear and bulk modes. Obviously this model is very simplified. Nevertheless, it

does provide guidance and intuition before one attempts to study the problem with much

more sophisticated and numerically intensive 3+1 dimensional viscous fluid dynamics.

The energy-momentum tensor in ideal fluid dynamics is

T µν = wuµuν − Pgµν . (5)

The shear and bulk viscosities are ignored to focus on the effects of electric conductivity. In

boost-invariant hydrodynamics one expresses the time and location along the beam direction

in terms of the proper time τ and space-time rapidity ξ as

t = τ cosh ξ

z = τ sinh ξ (6)

with the inverse relations

τ =
√
t2 − z2

ξ = tanh−1(z/t) . (7)

The flow velocity has the nonvanishing components

u0 = cosh ξ

u3 = sinh ξ . (8)

The electric charge current which arises from the Cattaneo equation is

JµQ = nQu
µ + σQT∆µ(1 + τQu · ∂)−1

(µQ
T

)
+ Iµ . (9)
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Here nQ is the electric charge density with associated charge chemical potential µQ. The

charge conductivity is represented by σQ and the temperature by T . The gradient orthogonal

to the flow velocity is given in Eq. (2). The Iµ is a fluctuation, as described in Ref. [10].

When the electric charge relaxation time constant τQ is zero this expression for the current

reduces to the usual one in lowest order viscous fluid dynamics. Note that when it is not

zero the current involves an infinite number of derivatives. Nevertheless it does represent the

Cattaneo equation in a uniform system, which has only first and second order derivatives

and which is causal. It is useful to note that in the Bjorken model used here

∆0 = = −sinh ξ

τ

∂

∂ξ

∆3 = = −cosh ξ

τ

∂

∂ξ
(10)

and

u · ∂ =
∂

∂τ
. (11)

The fluctuating contribution to the current has the structure

I0 = s(τ)f(ξ, τ) sinh ξ

I3 = s(τ)f(ξ, τ) cosh ξ (12)

where f(ξ, τ) is a random function whose average value is zero. (The entropy density is

factored out so that f is dimensionless.) Note that u · JQ = nQ gives the proper charge

density.

The smooth, background fluid equations lead to the simple equations of motion

ds

dτ
+
s

τ
= 0 (13)

and
dnQ
dτ

+
nQ
τ

= 0 , (14)

independent of the specific equation of state. The solutions are

s(τ) = siτi/τ (15)

and

nQ(τ) = nQiτi/τ , (16)
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where si and nQi are the entropy and charge densities at some initial time τi. Here we take

nQi = 0 so that the average charge density is zero at all subsequent proper times.

Although the average charge density and chemical potential are zero they do fluctuate.

Those fluctuations are related by δnQ = χQδµQ where χQ is the charge susceptibility. Here-

after we drop the subscript Q on δnQ for notational simplicity.

It is most convenient to use the Fourier transform

δn(ξ, τ) =

∫ ∞
∞

dk

2π
eikξδñ(k, τ) (17)

and similarly for other functions. Then charge conservation, ∂ · JQ = 0, can be expressed

most succinctly via the equation

∂2

∂τ 2
(τδñ) +

[
1

τQ
− ∂

∂τ
ln

(
χQTDQ

τ

)]
∂

∂τ
(τδñ) +

v2
Qk

2

τ 2
(τδñ)

= −iks

[
∂f̃

∂τ
+

(
1

τQ
− 1

τ
− ∂

∂τ
ln

(
χQTDQ

τ

))
f̃

]
. (18)

Here the diffusion constant DQ = σQ/χQ has been used. The speed of propagation of signals

in the Cattaneo equation is v2
Q = DQ/τQ [8]. The combination τδñ naturally appears because

of Eq. (14): when the diffusion constant and associated fluctuations in the current are set

to zero then δñ ∼ 1/τ where the constant of proportionality could be anything including

zero. In the limit τQ → 0 one recovers the usual diffusion equation

∂

∂τ
(τδñ) +

DQk
2

τ 2
(τδñ) = −iksf̃ (19)

which was studied in Ref. [15].

III. SOLUTION TO THE HOMOGENEOUS EQUATION

To find the solutions to Eq. (18) we will first find the solutions to the homogeneous

equation, which is in the form of a general confluent equation. We then construct the

solutions to the inhomogenous equation by using the method of variation of constants.

According to CFT calcuations, the electric charge diffusion constant should be determined

by DQT = 2π (see Sec. IX). Lattice calculations [18] show indications of that behavior at

large T ; however, in the range 150 < T < 350 MeV they show that DQT is increasing with

T in an approximately linear fashion. Also, there is no information about the temperature
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dependence of τQ. One should expect from CFT that τQT would also be constant. In the

absence of further information we will assume DQ and τQ are both constant within the

temperature range given above. This also implies that v2
Q is also a constant. Finally we

assume that χQT ∼ T 3 ∼ 1/τ . These assumptions are not at all critical to our study of

the essential physics, but it does allow for more analytical results and therefore insight and

intuition. Changing to the dimensionless variable x ≡ τ/τQ the homogenous equation for

ψ(x) ≡ τδñ becomes

ψ̈ +

(
1 +

2

x

)
ψ̇ +

v2
Qk

2

x2
ψ = 0 . (20)

The solutions to this equation are

ψ± = xλ±−1/2e−xM
(
λ+ 3

2
, 2λ+ 1, x

)
(21)

with λ± = ±
√

1
4
− v2

Qk
2 if v2

Qk
2 < 1

4
and λ± = ±i

√
v2
Qk

2 − 1
4

if v2
Qk

2 > 1
4
. The M(a, b, x) is

Kummer’s function and satisfies the differential equation

x
d2M

dx2
+ (b− x)

dM

dx
− aM = 0 . (22)

An integral representation is

M(a, b, x) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

dt extta−1(1− t)b−a−1 , (23)

which has the normalization M(a, b, 0) = 1. It is related to Whittaker’s function Mκ,λ(x),

which satisfies the differential equation

d2Mκ,λ

dx2
+

(
−1

4
+
κ

x
+

1
4
− λ2

x2

)
Mκ,λ = 0 , (24)

via

Mκ,λ(x) = x
1
2

+λe−x/2M
(
λ− κ+ 1

2
, 2λ+ 1, x

)
. (25)

When τQ = 0 the solution to the homogeneous equation is simply ψH = exp(DQk
2/τ).

IV. SOLUTION TO THE INHOMOGENEOUS EQUATION

The solution to the inhomogeneous equation is written in terms of a Green function as

τδñ(k, τ) = −
∫ τ

τ0

dτ ′s(τ ′)G̃(k; τ, τ ′)f̃(k, τ ′) . (26)
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Here τ0 is the starting time of the hydrodynamic expansion. The entropy density s(τ ′) is

explicitly factored out for later convenience; the origin of that can be traced to factoring it

out from the noise correlator. To find the Green function we use the method of variation of

constants. It is expressed as

G̃(k; τ, τ ′) = ik [a+(k, τ ′)ψ+(k, τ) + a−(k, τ ′)ψ−(k, τ)] . (27)

Using this form in Eq. (26) we substitute it into

d2

dτ 2
(τδñ) +

(
1

τQ
+

2

τ

)
d

dτ
(τδñ) +

v2
Qk

2

τ 2
(τδñ) = −iks

[
df̃

dτ
+

(
1

τQ
+

1

τ

)
f̃

]
. (28)

This is solved when

a+ψ̇+ + a−ψ̇− = 0

a+ψ+ + a−ψ− = 1 . (29)

Thus the Green function is

G̃(k; τ, τ ′) = ik

[
ψ+(τ)ψ̇−(τ ′)− ψ−(τ)ψ̇+(τ ′)

ψ+(τ ′)ψ̇−(τ ′)− ψ−(τ ′)ψ̇+(τ ′)

]
. (30)

When τQ = 0 the Green function is easily found to be

G̃(k; τ, τ ′) = ik exp

[
DQk

2

(
1

τ
− 1

τ ′

)]
. (31)

V. CORRELATION FUNCTIONS AND NOISE

Suppose we are interested in computing the correlator

〈τ1δñ(k1, τ1) τ2δñ(k2, τ2)〉 =

∫ τ1

τ0

dτ ′1s(τ
′
1)

∫ τ2

τ0

dτ ′2s(τ
′
2) G̃(k1; τ1, τ

′
1)G̃(k2; τ2, τ

′
2)

× 〈f̃(k1, τ
′
1)f̃(k2, τ

′
2)〉 . (32)

The correlator for the fluctuations is generally written as

〈f̃(k1, τ
′
1)f̃(k2, τ

′
2)〉 = 2πN (τ ′1, τ

′
2)δ(k1 + k2) . (33)

The function N (τ ′1, τ
′
2) depends on whether one implements noise from the ordinary diffusion

equation or from the Cattaneo equation. In either case one gets

〈τ1δñ(k1, τ1) τ2δñ(k2, τ2)〉 = 2πδ(k1 + k2)

∫ τ1

τ0

dτ ′1s(τ
′
1)

∫ τ2

τ0

dτ ′2s(τ
′
2)N (τ ′1, τ

′
2)

× G̃(k1; τ1, τ
′
1)G̃(−k1; τ2, τ

′
2) (34)
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in k-space and

〈τ1δn(ξ1, τ1) τ2δn(ξ2, τ2)〉 =

∫ τ1

τ0

dτ ′1s(τ
′
1)

∫ τ2

τ0

dτ ′2s(τ
′
2)N (τ ′1, τ

′
2)

×
∫

dk

2π
eik(ξ1−ξ2)G̃(k; τ1, τ

′
1)G̃(−k; τ2, τ

′
2) (35)

in ξ-space.

A. White Noise

For white noise, the current fluctuations have the form [10]

〈Iµ(x1)Iν(x2)〉 = 2σThµνδ4(x1 − x2) , (36)

where hµν = gµν − uµuν . This means that for the Bjorken hydrodynamics

〈f(x1)f(x2)〉 =
2σT

s2
δ4(x1 − x2) , (37)

by virtue of Eq. (12). After converting to Bjorken coordinates and Fourier-transforming in

ξ-space, this reads

〈f̃(τ1, k1)f̃(τ2, k2)〉 =
4πσ(τ1)T (τ1)

Aτ1s2(τ1)
δ(τ1 − τ2)δ(k1 + k2) , (38)

where A is the transverse area. This leads to

N (τ ′1, τ
′
2) =

2σ(τ ′1)T (τ ′1)

Aτ ′1s
2(τ ′1)

δ(τ ′1 − τ ′2) . (39)

B. Cattaneo Noise

The situation for colored Cattaneo noise is more complicated because it is nonlocal in

time. The f correlator satisfies the equation [19]

〈(1 + τQ∂/∂τ1)f̃(τ1, k1)(1 + τQ∂/∂τ2)f̃(τ2, k2)〉 = N(τ1)δ(τ1 − τ2)δ(k1 + k2) (40)

where

N(τ) =
4πσ(τ)T (τ)

Aτs2(τ)
. (41)

In frequency space

〈f̃(ω1, k1)f̃(ω2, k2)〉 =
δ(k1 + k2)Ñ(ω1 + ω2)

(1 + iτQω1)(1 + iτQω2)
. (42)
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Now suppose that for some observable X

X̃(k, τ) = −
∫ τ

τ0

dτ ′s(τ ′)G̃X(k; τ, τ ′)f̃(k, τ ′) . (43)

Then the correlation function for observables X and Y would be

〈X̃(k1, τ1)Ỹ (k2, τ2)〉 = δ(k1 + k2)

∫ τ1

τ0

dτ ′1s(τ
′
1)G̃X(k1; τ1, τ

′
1)

∫ τ2

τ0

dτ ′2s(τ
′
2)G̃Y (k2; τ2, τ

′
2)

×
∫ ∞
−∞

dω1

2π
eiω1τ ′1

∫ ∞
−∞

dω2

2π
eiω2τ ′2

Ñ(ω1 + ω2)

(1 + iτQω1)(1 + iτQω2)
. (44)

To evaluate the double integral over ω1 and ω2 we change variables to ω̄ = (ω1 + ω2)/2

and ∆ω = ω2 − ω1. Then the double integral over the ωi is

1

τ 2
Q

e−|τ
′
2−τ ′1|/τQ

∫ min(τ ′1,τ
′
2)

τ0

dτN(τ)e−2[min(τ ′1,τ
′
2)−τ ]/τQ . (45)

The integration over τ can be thought of as running over the history of the system, prior

to the earlier of τ1 and τ2, beginning at the initial time τ0. (It is assumed that N(τ)

vanishes for τ < τ0.) The exponential kernel in this integration is a direct consequence of

using Cattaneo-type diffusion, with states of the medium in the more recent past (nearer to

min(τ1, τ2)) being more heavily weighted than states in the more distant past.

In what follows we will specialize to the case where N(τ) is a constant. Then

N (τ ′1, τ
′
2) =

2σ(τf )Tf
Aτfs2(τf )

1

2τQ

[
e−|τ

′
1−τ ′2|/τQ − e−(τ ′1+τ ′2−2τ0)/τQ

]
. (46)

In the limit τQ → 0 this obviously reduces to Eq. (39), as it should.

VI. SELF-CORRELATIONS

It is interesting to ask what happens with the ordinary diffusion equation where τQ = 0.

In that case, using Eq. (31) one can easily perform the integration over τ ′ first, leaving the

integration over k to last. The result is

〈δn(ξ1, τf ) δn(ξ2, τf )〉 =
χQ(τf )Tf
Aτf

[
δ(ξ1 − ξ2)− 1√

πw2
e−(ξ1−ξ2)2/w2

]
(47)

with w2 = 8DQ(τ−1
0 − τ−1

f ). Note that δ(ξ1 − ξ2)/Aτ in Bjorken hydrodynamics is the

equivalent of δ(x1 − x2) for a static system. In Refs. [13, 15] it was argued that this delta

function contribution should be subtracted as it corresponds to a correlation between a
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particle (or fluid cell) with itself. An alternative route to extract the δ-function in ξ1 − ξ2

in pure diffusion is to perform the τ ′ integration by parts, as was done in Ref. [15]. Due to

the complexity of the Cattaneo case this is the route that we will use now.

In rapidity space, the density-density correlator is given by Eq. (35). By construction,

the Green’s function G̃(k; τ, τ ′) satisfies the equation

∂2

∂τ 2
G̃(k; τ, τ ′) +

(
1

τQ
+

2

τ

)
∂

∂τ
G̃(k; τ, τ ′) +

v2
Qk

2

τ 2
G̃(k; τ, τ ′) = 0 .

It is useful to note that this same Green’s function satisfies a similar differential equation in

its second proper time index τ ′:

∂2

∂τ ′2
G̃(k; τ, τ ′)− 1

τQ

∂

∂τ ′
G̃(k; τ, τ ′) +

v2
Qk

2

τ ′2
G̃(k; τ, τ ′) = 0 , (48)

as may be readily checked by direct substitution of Eq. (30) into Eq. (48). If we substitute

Eq. (30) explicitly into Eq. (35) we obtain

〈δn(ξ1, τf ) δn(ξ2, τf )〉 =
1

τ 2
f

∫ τf

τ0

dτ ′1s(τ
′
1)

∫ τf

τ0

dτ ′2s(τ
′
2)N (τ ′1, τ

′
2)

×
∫

dk

2π
eik(ξ1−ξ2)G̃(k; τf , τ

′
1)G̃(−k; τf , τ

′
2)

=
1

τ 2
f

∫ τf

τ0

dτ ′1s(τ
′
1)

∫ τf

τ0

dτ ′2s(τ
′
2)N (τ ′1, τ

′
2)eik(ξ1−ξ2)

× k2

[
ψ+(k, τf )ψ̇−(k, τ ′1)− ψ−(k, τf )ψ̇+(k, τ ′1)

ψ+(k, τ ′1)ψ̇−(k, τ ′1)− ψ−(k, τ ′1)ψ̇+(k, τ ′1)

]

×

[
ψ+(−k, τf )ψ̇−(−k, τ ′2)− ψ−(−k, τf )ψ̇+(−k, τ ′2)

ψ+(−k, τ ′2)ψ̇−(−k, τ ′2)− ψ−(−k, τ ′2)ψ̇+(−k, τ ′2)

]
. (49)

We can eliminate the factor of k2 by making use of Eq. (48). On account of Eq. (29)

ȧ+(k, τ)ψ+(k, τ) + ȧ−(k, τ)ψ−(k, τ) = 0 . (50)

This fact allows us to write Eq. (49) in the somewhat simpler form

〈δn(ξ1, τf ) δn(ξ2, τf )〉 =
1

τ 2
f

∫ τf

τ0

dτ ′1s(τ
′
1)

∫ τf

τ0

dτ ′2s(τ
′
2)N (τ ′1, τ

′
2)

∫
dk

2π
eik(ξ1−ξ2)

× τ ′21

v2
Q

(
1

τQ

∂

∂τ ′1
− ∂2

∂τ ′21

)
[ψ+(k, τf )a+(k, τ ′1) + ψ−(k, τf )a−(k, τ ′1)]

× [ψ+(−k, τf )a+(−k, τ ′2) + ψ−(−k, τf )a−(−k, τ ′2)] . (51)
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Focusing on the integral over τ ′1, we integrate by parts. The term involving the first derivative

of τ ′1 becomes

1

τQ

∫ τf

τ0

dτ ′1s(τ
′
1)N (τ ′1, τ

′
2)τ ′21

∂

∂τ ′1
[ψ+(k, τf )a+(k, τ ′1) + ψ−(k, τf )a−(k, τ ′1)]

=
τ 2
f

τQ
s(τf )N (τf , τ

′
2)− τ 2

0

τQ
s(τ0)N (τ0, τ

′
2) [ψ+(k, τf )a+(k, τ0) + ψ−(k, τf )a−(k, τ0)]

− 1

τQ

∫ τf

τ0

dτ ′1
∂

∂τ ′1

[
s(τ ′1)N (τ ′1, τ

′
2)τ ′21

]
[ψ+(k, τf )a+(k, τ ′1) + ψ−(k, τf )a−(k, τ ′1)] . (52)

Notice that the term evaluated at τ ′1 = τf , is independent of k due to Eq. (29). This is

therefore a term contributing to self-correlations.

Similar manipulations apply to the term containing the second derivative in Eq. (51).

For this term integration by parts yields

−
∫ τf

τ0

dτ ′1s(τ
′
1)N (τ ′1, τ

′
2)τ ′21

∂2

∂τ ′21

[ψ+(k, τf )a+(k, τ ′1) + ψ−(k, τf )a−(k, τ ′1)]

= s(τ0)N (τ0, τ
′
2)τ 2

0 [ψ+(k, τf )ȧ+(k, τ0) + ψ−(k, τf )ȧ−(k, τ0)]

+

∫ τf

τ0

dτ ′1
∂

∂τ ′1

[
s(τ ′1)N (τ ′1, τ

′
2)τ ′21

] ∂

∂τ ′1
[ψ+(k, τf )a+(k, τ ′1) + ψ−(k, τf )a−(k, τ ′1)] . (53)

The term which is evaluated at τ ′1 = τf vanishes on account of Eq. (50). Hence there are no

k-independent terms that arise from the second time derivative.

The above analysis shows that the self-correlation of a fluid element may be identified as

〈δn(ξ1, τf ) δn(ξ2, τf )〉self =
s(τf )

DQ

∫ τf

τ0

dτ ′2s(τ
′
2)N (τ ′1, τ

′
2)

∫
dk

2π
eik(ξ1−ξ2)

× [ψ+(−k, τf )a+(−k, τ ′2) + ψ−(−k, τf )a−(−k, τ ′2)] . (54)

Using the fact that s(τ ′2) = s(τf )τf/τ
′
2, the explicit expression for N from Eq. (46), and

recognizing that the term in the square bracket above is just G̃(k; τf , τ
′
2)/ik, we have

〈δn(ξ1, τf ) δn(ξ2, τf )〉self =
χQ(τf )Tf
Aτf

τf
τQ

∫ τf

τ0

dτ ′2
τ ′2

[
e−(τf−τ ′2)/τQ − e−(τf+τ ′2−2τ0)/τQ

]
×
∫

dk

2π
eik(ξ1−ξ2) G̃(k; τf , τ

′
2)

ik
. (55)

This is the term that ought to be subtracted from the full correlator 〈δn(ξ1, τf ) δn(ξ2, τf )〉

to eliminate the self-correlations. In general it cannot be simplified any further due to the

complicated nature of the Green function. However, it can be calculated in several limits.

When τQ → 0 the only contribution comes from the upper limit of the integration over

τ ′2. Recall that G̃(k; τf , τf ) = ik. Writing τ ′2 = τf − ε, and letting the upper limit of ε go to
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infinity (because (τf − τ0)/τQ →∞), we find

〈δn(ξ1, τf ) δn(ξ2, τf )〉self =
χQ(τf )Tf
Aτf

δ(ξ1 − ξ2) (56)

which is exactly the pure diffusion result found above.

For small but nonzero values of τQ one can use the Green function from Eq. (31). Then

a simple calculation gives

〈δn(ξ1, τf ) δn(ξ2, τf )〉self =
χQ(τf )Tf
Aτf

vQτf
2DQ

exp

(
−vQτf
DQ

|ξ1 − ξ2|
)
. (57)

This illustrates the smearing of the Dirac δ-function. Taking the limit vQ →∞, equivalently

τQ → 0, one recovers the pure diffusion result.

VII. NUMERICAL RESULTS FOR DENSITY-DENSITY CORRELATION

FUNCTIONS

Before discussing physical observables such as the charge balance functions, let us develop

some intuition for how colored noise affects the evolution and development of the collision

system. This is most conveniently done by studying the evolution of the density-density

correlation functions 〈δnδn〉. In this section we present some numerical results for these

density-density correlation functions, showing how they evolve from small v2
Q to large v2

Q

and eventually to the normal diffusion limit. These results will be used in the next section

to compute the balance functions for various hadrons. For the sake of definiteness we

choose τ0 = 0.5 fm/c, T0 = 350 MeV, and Tf = 150 MeV, which imply that τf = 6.352

fm/c assuming that the entropy density s ∝ T 3. We also use D = 0.162 fm, which is an

average over the temperature interval from 150 to 350 MeV taken from Ref. [18]. Unless

otherwise noted, we consider only correlation functions for which the self-correlations have

been subtracted out by the procedure discussed in the preceding section.

We first consider how the self-correlations change with v2
Q (or, equivalently, τQ). Figure

1 shows the self-correlation at the final time τf for several values of v2
Q according to Eq.

(55). For large values it is well represented by the exponential form of Eq. (57) with height

proportional to vQ and width inversely proportional to it. As vQ becomes smaller the height

decreases and the width increases. In essence the self-correlation is reduced due to the

memory effect of having a finite value of τQ.
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FIG. 1: (Color online) The density-density self-correlation function versus ∆ξ for various values of

v2
Q evaluated at the final time τf . For large v2

Q it approaches the exponential form of Eq. (57) and

eventually a Dirac δ-function.

The panels in Fig. 2 show the time evolution of the density-density correlation function

in k−space for illustrative values of v2
Q. The first point to note is that after building up

very quickly (we are assuming throughout that there are no initial state correlations or

fluctuations) they decrease in time due to the expansion and cooling of the system. The

second point to notice is that for large values of v2
Q the correlations are essentially Gaussian.

This can easily be seen in the limit of white noise for ordinary diffusion. For typical values

of k, say |k| < 5−10, the correlations are also Gaussian, but for larger values the correlation

becomes negative. At very large values of k >∼ 100, the correlations approach constant

negative values whose magnitudes decrease with increasing τ .

By performing an inverse Fourier transform from k to ∆ξ we can study how these same

correlation functions evolve with time in coordinate space. We depict this in Fig. 3 at a

proper time of τ = 0.793 fm (corresponding to 5% of the system’s total lifetime τf − τ0

= 5.852 fm/c); in the top panel for v2
Q = 1/3, and in the bottom panel for several values

of v2
Q. One observes two sets of sharp discontinuities in the dependence of 〈δn(∆ξ)δn(0)〉

on ∆ξ, both of which reflect the propagation of disturbances through the system with a

finite speed. For fixed τ and vQ, the discontinuities occur at fixed intervals of |∆ξ| = ξs
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FIG. 2: (Color online) Time evolution of the density-density correlation function (with self-

correlations subtracted) versus k. Top panel: v2
Q = 1/3. Middle panel: v2

Q = 1. Bottom panel:

ordinary diffusion with v2
Q → ∞. The different curves in each panel correspond to elapsed times

of 5, 10, 15, 25 and 100% of the system’s lifetime τf − τ0 = 5.852 fm/c, starting at the top and

working down at k = 0.
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and |∆ξ| = 2ξs, where ξs ≡ vQ ln(τ/τ0) represents the total distance in space-time rapidity

that a disturbance propagates in a time τ − τ0. The bottom panel clearly shows that

disturbances in systems with larger vQ can travel farther than disturbances in systems with

smaller vQ. Note that only the regular part of the subtracted correlation function is plotted.

The negative constant correlations at very large k mentioned above contribute a δ-function

at ∆ξ = 0; this contribution is removed by subtracting the large k behavior before doing

the Fourier transform. Of course it will be included when calculating the balance functions

in the next section. The large k behavior for the Green function is calculated anaytically in

the appendix.

The reason that there are two sets of discontinuities is illustrated schematically in Fig.

4. The upper part shows a fluctuation which had occurred at the midpoint between ξ1 and

ξ2. Those two points will be correlated if their separation is no more than 2ξs. The lower

part shows a fluctuation which orginated at ξ1 and traveled a distance ξs, just reaching the

point ξ2. The reverse can also happen. If a fluctuation occurs at a point to the left of ξ1 or

to the right of ξ2 it could not affect both points at the time τ .

The formalism we presented in the preceding sections therefore incorporates a finite speed

of propagation into the standard theory of hydrodynamical fluctuations, and this is clearly

born out by a careful analysis of the density-density correlation functions and their time

evolution in our simplified model of heavy-ion collisions. In the next section, we will relate

these correlation functions to the charge balance functions and show that the effects of

colored noise have important consequences for these physical observables.

VIII. BALANCE FUNCTIONS

In this section we calculate the charge balance functions which have been studied exten-

sively elsewhere [15, 20]. We study these quantities in the context of heavy-ion collisions at

top RHIC and LHC energies, so that we are justified in taking µQ = 0 on average. Since

we focus exclusively on fluctuations of the number density δn, we need to study how these

fluctuations are mapped by the Cooper-Frye formula [21] onto the final-state fluctuations

which are quantified by the charge balance functions. This procedure has already been

done for our hydrodynamical model in other studies [10, 15, 17], so we only quote the most

important results here.
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The distribution of particles along the freeze-out surface Σf is given by Ref. [21]

E
dN

d3p
= d

∫
Σf

d3σµ
(2π)3

pµf(x,p) , (58)

where d is the degeneracy of the particle species under consideration. We take the distribu-

tion function

f(x,p) = e−(u·p−µ)/T (59)

to be the Boltzmann distribution function, where µ is the chemical potential for that particle,
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FIG. 3: (Color online) The regular part of the density-density correlator in ξ space after 5% of the

total expansion time of τf − τ0 = 5.852 fm/c has elapsed. The smooth broad curve corresponds to

ordinary diffusion with white noise.
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FIG. 4: (Color online) Schematic depiction of fluctuations and their horizons.

the four-velocity of the fluid cell is

uµ = (cosh ξ, 0, 0, sinh ξ) , (60)

and the energy flux through an infinitesimal freeze-out fluid cell is given by

d3σµ p
µ = τf dξ d

2x⊥m⊥ cosh(y − ξ) . (61)

The variable y represents the particle rapidity

pµ = (m⊥ cosh y,p⊥,m⊥ sinh y) , (62)

where

m⊥ =
√
m2 + p2

⊥ (63)

is the transverse mass. The number of particles per unit rapidity is then

dN

dy
=
dAτf
(2π)3

∫
dξ cosh(y − ξ)

∫
d2p⊥m⊥ exp {− [m⊥ cosh(y − ξ)− µ] /Tf} , (64)

where the integration over x⊥ gives the transverse area of the collision A. If we neglect

fluctuations by setting δµ = 0, we get the average of dN/dy as〈dN
dy

〉
=
dAτf
(2π)2

∫ ∞
−∞

dξ cosh(y − ξ)
∫
dp⊥p⊥m⊥ exp {−m⊥ cosh(y − ξ)/Tf} . (65)

In order to perform the integration over p⊥ we use the following formula:∫
dp⊥p⊥m⊥e−cm⊥ =

1

c3
e−cm[2 + 2cm+ (cm)2] ≡ 1

c3
Γ(3, cm) . (66)
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At the freeze-out time we obtain

dN

dy
=
dAτfT

3
f

4π2

∫ ∞
−∞

dx

cosh2 x
Γ

(
3,
m

Tf
coshx

)
. (67)

Now we consider fluctuations of dN/dy and eventually its two-point correlation. To do

so, we expand the exponential term in (64) to first order in fluctuations of δµ around the

freeze out value of µf = 0:

µ = δµ(τf , ξ) . (68)

The Boltzmann factor becomes

exp {−[(cosh(y − ξ)m⊥ − µ)/Tf ]} → exp {−[m⊥ cosh(y − ξ)/Tf ]}
{

1 +
δµ(ξ)

Tf

}
,

where the fluctuations are understood to be evaluated at τf . The fluctuation in the number

of particles per unit rapidity is then

δ

(
dN

dy

)
=
dAτf
(2π)3

∫
dξ cosh(y − ξ)

∫
d2p⊥m⊥ exp {−m⊥ cosh(y − ξ)/Tf}

{
δµ(ξ)

Tf

}
.

To express this in terms of δn we use the fact that

δµ =
δn

χQ
, (69)

where χQ = ∂2P (T, µ)/∂µ2|µ=0 is the charge susceptibility discussed above. By rewriting

the equation of state used in Ref. [17] in terms of the electric charge chemical potential µQ,

we can write χQ explicitly as χQ = 2
3
T 2 when including up, down and strange quarks.

We now perform the integration over p⊥ with the help of Eq. (66). The fluctuation of

dN/dy reads

δ

(
dN

dy

)
=
dAτfT

2
f

4π2

∫
dξ δn Fn(y − ξ) . (70)

Here we have introduced the function

Fn(x) ≡ 1

χQ cosh2 x
Γ

(
3,
m

Tf
coshx

)
. (71)

Finally, we construct the rapidity correlator:〈
δ

(
dN

dy1

)
δ

(
dN

dy2

)〉
=

(
dAτfT

2
f

4π2

)2 ∫
dξ1

∫
dξ2Fn(y1 − ξ1)Fn(y2 − ξ2)Cnn(ξ1 − ξ2; τf ) ,

where

Cnn(ξ1 − ξ2; τf ) = 〈δn(ξ1; τf )δn(ξ2; τf )〉self − 〈δn(ξ1; τf )δn(ξ2; τf )〉 . (72)
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Note that the self-correlation has been subtracted in the formula for Cnn.

The appropriate expression for the charge balance function is

B(∆y) ≡
〈
δ

(
dN

dy1

)
δ

(
dN

dy2

)〉〈dN
dy

〉−1

. (73)

=
dAτfTf

4π2

C(∆y)

Q (m/Tf )
. (74)

Here

C(∆y) =
1

τ 2
f

∫
dk eik∆yF̃n(k)F̃n(−k)

∫ τf

τ0

dτ ′1s(τ
′
1)

∫ τf

τ0

dτ ′2s(τ
′
2)N (τ ′1, τ

′
2)

×
[
G̃(k; τf , τ

′
1)G̃(−k; τf , τ

′
2)
∣∣∣
self
− G̃(k; τf , τ

′
1)G̃(−k; τf , τ

′
2)
]

(75)

and

Q (m/Tf ) ≡
∫ ∞
−∞

dx

cosh2 x
Γ

(
3,
m

Tf
coshx

)
. (76)

The balance functions are shown for pions, protons, and kaons in Fig. 5 for various

choices of v2
Q. We see that the balance functions are systematically enhanced at ∆y = 0

and are narrower for smaller versus larger values of v2
Q. These are natural consequences of

the increasing efficiency with which fluctuations are propagated through the system as v2
Q is

increased. Moreover, as v2
Q is increased we find that the correlations tend to the case of white

noise, as to be expected. We also note that the balance function widths tend to decrease with

increasing mass of the particle species. This is a consequence of thermal smearing, which

is somewhat less pronounced for heavier particles, and leads to slightly narrower balance

functions as a result.
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from the case of white noise in the ordinary diffusion equation.
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IX. COMPARISON OF GURTIN-PIPKIN EQUATION WITH ADS/CFT:

ESTIMATION OF PARAMETERS

The anti-de Sitter space/conformal field theory (AdS/CFT) correspondence is often used

as a guide to the values of transport coefficients in the strongly coupled sector of QCD. The

best known of these is the suggestion that the ratio of the shear viscosity to entropy density

η/s has a universal lower bound of 1/4π [22]. A good overview is provided in Ref. [23].

In this section we make a tentative estimation of the parameters appearing in relativistic

causal diffusion.

Reference [24] studied the correlator of R-charge currents in N = 4 Super Yang-Mills

theory. They found a pole in the current-current correlation function corresponding to a

pure diffusion mode under the assumption of small frequency ω and wave-number k. It is

ω = −iDk2 + · · · (77)

with D = 1/2πT . Reference [25] studied the analytic structure of the correlator when k = 0

but the magnitude of ω is arbitrary. They found additionally a pair of complex poles located

at

ω(k = 0) = (±n− in) 2πT , n = 1, 2, 3, ... (78)

Thus the correlator has one pure diffusion mode and a tower of a pair of complex modes.

This Kaluza-Klein tower is characterstic of AdS/CFT excitations.

Matching all of these with a conserved current cannot be done using a differential equation

with a finite number of derivatives. Here we only try to match the lowest energy modes. This

implies an equation involving third order derivatives to give three poles: one pure diffusive

and a pair of complex poles. The Cattaneo equation has only second derivatives, so we go

to the Gurtin-Pipkin equation which has third derivatives [8, 16].

Going to third order in derivatives results in an equation first applied to the problem of

heat conduction by Gurtin and Pipkin [16]. It is[
∂

∂t
−D∇2 + τ1

∂2

∂t2
+ τ 2

2

∂3

∂t3
− τ ′3D

∂

∂t
∇2

]
n = 0 . (79)

This equation is hyperbolic. The cubic equation following from this in frequency and wave-

number is

τ 2
2ω

3 + iτ1ω
2 − (1 + τ ′3Dk

2)ω − iDk2 = 0 . (80)



23

High frequency waves travel with speed v =
√
τ ′3D/τ

2
2 . It follows from the current

Jµ = nuµ + σT∆µ 1 + τ4(u · ∂)

1 + τ1(u · ∂) + τ 2
2 (u · ∂)2 + τ3D∆2

(µ
T

)
(81)

where the differential operator in the denominator is to be understood as its Taylor series

expansion. Note that there are four time constants in the current as τ ′3 = τ3 +τ4. Obviously,

setting τ2 = τ3 = τ4 = 0 results in the Cattaneo equation, and further setting τ1 = 0 results

in the ordinary diffusion equation.

When k = 0 the pair of complex poles from Eq. (80) are

ω± = ± 1

τ2

√
1−

(
τ1

2τ2

)2

− i τ1

2τ 2
2

(82)

In order to reproduce 78 with n = 1 requires that τ1 = 1/2πT and τ2 = τ1/
√

2. Reference

[25] calculated the dispersion relation for these poles numerically. At large k the real parts

are ω = k + · · · so that v =
√
τ ′3D/τ

2
2 = 1. Hence we infer that τ ′3 = 1/4πT .

It is not our goal here to make a detailed comparison of the poles and residues arising in

AdS/CFT and the Gurtin-Pipkin equation. We just note that the correction to the diffusive

mode at the next order in k from AdS/CFT is [24]

ω = −iDk2

(
1 +

ln 2 k2

(2πT )2

)
+ · · · . (83)

We can determine the order k4 term from Eq. (80) to be

ω = −iDk2
(
1 + (τ1 − τ ′3)Dk2

)
= −iDk2

(
1 +

(1− 1
2
)k2

(2πT )2

)
. (84)

This gives a coefficient of 1/2 versus ln 2 in the k4 term which is close but not identical.

However, it is amusing to note the expansion ln 2 = 1 − 1
2

+ 1
3
− · · ·. It may be that the

AdS/CFT result includes contributions from the Kaluza-Klein tower of excitations and that

the Gurtin-Pipkin equation only captures the first two terms. But that is only speculation.

The Cattaneo current does not keep the higher order derivatives appearing in the Gurtin-

Pipkin current. The inference is that τQ = τ1 = 1/2πT and v2
Q = DQ/τQ = 1 which are

effectively consistent with the AdS/CFT results.

X. CONCLUSIONS

In this paper we used a form of the electric current in matter that propagates signals at

finite speed and includes a noise term following from the fluctuation-dissipation theorem.
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This may be referred to as the Cattaneo current as it follows from his approach to heat con-

duction. As is well known, the usual diffusion equation propagates signals instantaneously,

and this causes problems when modeling high energy heavy ion collisions. Our goal was to

understand the underlying physics in a simple well defined problem, namely, the 1+1 di-

mensional Bjorken hydrodynamical model. Any more realistic numerical modeling of heavy

ion collisions must be able to reproduce the semi-analytical results obtained here. Apart

from the diffusion constant DQ there also appears a characteristic time scale τQ. Propaga-

tion of signals less than the speed of light requires that τQ > DQ as v2
Q = DQ/τQ, whereas

ordinary diffusion corresponds to τQ → 0. Our numerical study assumed that both DQ and

τQ were temperature independent; however, that assumption may be relaxed at the expense

of somewhat more involved solutions of the differential equation (18). The solutions would

still involve Kummer and Whittaker functions but with more complicated arguments.

We then used these results to compute the balance functions for electrically charged

hadrons in the central rapidity region in very high energy nuclear collisions. As one would

expect intuitively, limiting the speed of propagation of fluctuations leads to a narrowing of

the balance functions and a corresponding increase in their height at small rapidity sep-

aration. However, the magnitude of these effects are somewhat reduced by the thermal

smearing of hadrons emitted from the fluid elements.

In this study, we have neglected the contributions from resonance decays to the measured

particle spectra used in constructing the balance functions. Resonance decay effects, how-

ever, are particularly important for π+ balance functions, and would likely tend to broaden

the balance functions further than the purely thermal calculations presented here would

suggest. We defer further discussion of the effects of resonance decays to a subsequent

study.

As part of the analysis we subtracted the self-correlations from the same or nearby fluid

elements in order to be consistent with how experimental measurements are done. As long

as τQ is very small compared to the lifetime of the system τf − τ0 this is a fairly well defined

procedure. If it is not, then we are challenged to separate out self-correlations and how this

relates to observable quantities.

Clearly there is much work to be done. One step to include the analogous baryon current

into 3+1 dimensional fluid models of heavy ion collisions has been reported in Ref. [26].

Incorporation of noise was not included there and remains a notable challenge. Fortunately



25

data is available from experiments at both RHIC [27] and LHC [28].
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Appendix A: Large k Limit

To extract the singularities we shall perform a Laurent expansion of the homogenous

solutions for large values of K ≡ vQk. We assume that asymptotically the solution can be

written as

ψ+ = x−1/2 e−x/2 eiK lnx

[
1 +

∞∑
n=1

ingn(x)

Kn

]
(A1)

and substitute this into the homogeneous equation 20. (The factor of in is inserted because

it will turn out that the gn are real.) To order 1 we find that

ġ1 = −x
8
− 1

2
− 1

8x

g1 = −x
2

16
− x

2
− 1

8
lnx+ c1 (A2)
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where c1 is a constant. For n ≥ 1

ġn+1 =
x

2
g̈n +

1

2
ġn −

(
x

8
+

1

2
+

1

8x

)
gn . (A3)

These equations can be solved to any desired order. Note, however, that a constant of

integration cn will appear at each order. They are associated with the logarithms that

follow solely from the expansion of

xλ+ = exp(iK
√

1− 1/4K2 lnx)

for large K. All cn should be chosen to be zero to agree with the known asymptotics of the

Whittaker function. For example, the next term is

g2 =
x4

512
+
x3

32
+
x2

16
− x

4
+

x2

128
lnx+

x

16
lnx+

1

128
ln2 x . (A4)

Alternatively, one may use the representation

ψ+ = x−1/2 e−x/2 eiK
√

1−1/4K2 lnx

[
1 +

∞∑
n=1

inpn(x)

Kn

]
. (A5)

This separates the log contributions which come solely from the exponential. The pn are

determined by

∞∑
n=1

in

Kn

[
p̈n +

1

x

(
1 + 2iK

√
1− 1/4K2

)
ṗn −

(
1

x
+

1

4

)
pn

]
=

1

x
+

1

4
. (A6)

The first few terms are

p1 = −x
2

16
− x

2

p2 =
x4

512
+
x3

32
+
x2

16
− x

4
(A7)

subject to the condition that pn(0) = 0.

Now let us return to the asymptotics of the Green function. Define

Φ(x) ≡ 1 +
∞∑
n=1

ingn(x)

Kn
. (A8)

Note that ψ+ = ψ and ψ− = ψ∗ when K2 > 1/4. Then the numerator of 30 is

ψ(x)ψ̇∗(x′)− ψ∗(x)ψ̇(x′) = (xx′)−1/2e−(x+x′)/2

×
{

eiK ln(x/x′)Φ(x)

[(
−iK
x′
− 1

2x′
− 1

2

)
Φ∗(x′) + Φ̇∗(x′)

]
− e−iK ln(x/x′)Φ∗(x)

[(
iK

x′
− 1

2x′
− 1

2

)
Φ(x′) + Φ̇(x′)

]}
. (A9)
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When x = x′ this simplifies to

ψ(x′)ψ̇∗(x′)− ψ∗(x′)ψ̇(x′) = −2i

x′
e−x

′
[
K

x′
(
Φ2
R + Φ2

I

)
+ ΦRΦ̇I − ΦIΦ̇R

]
, (A10)

where ΦR and ΦI are the real and imaginary parts of Φ evaluated at x′. This means that

G̃ has the form Ke±iK ln(x/x′) times a power series in 1/Kn starting with n = 0. When

computing an equal-time correlator τ1 = τ2 = τf as in equations 34 or 35 there will be delta

functions and their first and second derivatives plus step functions.

After some lengthy calculation we find the Green function to be

G̃(k;x, x′) = ik

(
x′

x

)1/2

e−(x−x′)/2
{

cos(vQkL) +
sin(vQkL)

vQk
B1(x, x′)

−cos(vQkL)

v2
Qk

2
B2(x, x′) +O(1/k3)

}
(A11)

with

B1(x, x′) = g1(x′)− g1(x) + 1
2
x′ + 1

2

B2(x, x′) = 1
2

[g1(x′)− g1(x)] [2g1(x′) + x′ + 1]− [g2(x′)− g2(x)] (A12)

and we have defined L ≡ ln(x/x′). Note that G̃(k;x, x) = ik order by order in the series

expansion.
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