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Abstract

In this article, a mistake in the formulation of the Modified Fisher Model (MFM) derived in the

pioneering works of the Purdue group is addressed and corrected by reversing the sign of the mixing

entropy term in the original formulation. The errors in the results of the previous MFM-related

studies, such as isotopic yield distribution, isobaric yield ratios, isoscaling, m-scaling, self-consistent

determination of density, symmetry energy and temperature, and density and temperature deter-

mination related to the IMF Freezeout, are quantitatively analyzed. It is found that the errors

originating from the mistake in sign of the mixing entropy term are generally small and even have

no effect in some cases.

PACS numbers: 25.70.Pq
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I. Introduction

In 1967, M.E. Fisher proposed a droplet model of a second-order phase transition to

describe the power law behavior of the “fragment” mass distribution around the critical

point for a liquid-gas phase transition [1]. In early 1980’s, based on the Fisher Model (FM),

the Purdue group generated a novel classical droplet model, which was the so-called Modified

Fisher Model (MFM), and introduced it into nuclear physics [2–4]. Taking into account the

basic nuclear properties, such as the Coulomb force, pairing effect, proton-neutron two-

component mixture, the MFM is capable of describing the general features of the mass and

isotopic yields [2–4]. Recently, series of experimental and theoretical investigations based

on the MFM have been carried out to explore the symmetry energy of nuclear equation of

state and the critical behavior of the hot fragmenting matter [5–32].

However, the MFM formulation from the pioneering works of the Purdue group in

Refs. [2–4] contained a mistake which originated from the wrong sign in front of the mix-

ing entropy term and caused some errors. In this work, we address this mistake in their

formulation and quantitative analyses are given for the errors originating from the mistake

in typical MFM-related studies. This article is organized as follows. In Sec.II we briefly

describe the formulism of FM and MFM, and provide a corrected formulation of the MFM.

In Sec.III, the resultant changes in isotopic yield distribution, isobaric yield ratios, isoscal-

ing, m-scaling, self-consistent determination of density, symmetry energy and temperature,

and density and temperature determination related to the IMF Freezeout, are quantitatively

discussed. Finally, a summary is given in Sec.IV.

II. Formulism of FM and MFM

II.1 FM and MFM

In FM [1], for a single constituent system, a parent system with A + B particles under-

goes a phase transition into a gas phase containing B particles and a droplet containing A

particles. The free energy of the system in the initial and final phases can be written as

Finitial = µg(A+B)− TS, (1)

Ffinal = µlA+ µgB + 4πR2σ − T (S − τ lnA). (2)
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Here the Helmholtz free energy is used in this context. In Eqs. (1) and (2), µl and µg are,

respectively, the chemical potentials of the liquid and gas phases, and S is the total entropy

of the initial state. The third term in Eq. (2) is the surface contribution for a spherical

droplet with radius R (R = r0A
1/3) and surface tension parameter σ. Near the critical

point, σ can be expressed as a function of temperature as

σ(T, Tc) =





σ0(1 +

3T
2Tc

)(1− T
Tc
)3/2 (T < Tc),

0 (T ≥ Tc),
(3)

where Tc is the temperature at the critical point. The last term in Eq. (2) originates from

the entropy change of the system when the droplet is formed. The term τ lnA is the entropy

change caused by the liquefaction, introduced by Fisher [1], where τ is the critical exponent.

τ lnA with τ > 0 is subtracted from the total entropy, because when the liquefaction occurs,

the entropy of the system decreases.

The free energy of the droplet can be obtained as the difference between Eq. (1) and

Eq. (2) as

Fdroplet =Ffinal − Finitial

=(µl − µg)A+ 4πr20σA
2/3 + Tτ lnA.

(4)

In a canonical ensemble, free energy can be deduced as

−Fdroplet = T ln(Z), (5)

where Z is the partition function and it is proportional to the yield Y (A) of a given type of

droplets with A particles,

Y (A) ∝ Z = exp(−
Fdroplet

T
). (6)

Eq. (6) is the mathematical expression of Fisher model.

In order to apply the Fisher model to a nuclear multi-fragmentation process, two con-

stituents (neutrons and protons) and the characteristics of nuclear force have to be taken

into account in the model. In the framework of MFM, from the analogy to Eq. (4), the free

energy of an isotopic fragment with mass number A and I = N − Z (N neutrons and Z

protons) is expressed as

F (I, A) = [−W (I, A)− µnN − µpZ]− T (−τ lnA+ Smix). (7)
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Inserting Eq. (7) into Eq. (6), the yield of an isotope with A and I = N − Z produced in a

multi-fragmentation reaction, can be written as

Y (I, A) =Y0 · A
−τ exp[

W (I, A) + µnN + µpZ

T
+ Smix]. (8)

In Eq. (8), the critical exponent τ is often taken as τ = 2.3 in our previous works [5–

14], according to Ref. [15]. W (I, A) is given, utilizing the generalized Weizsäcker-Bethe

semiclassical mass formula [33, 34], and can be approximated as

W (I, A) =avA− asA
2/3 − ac

Z(Z − 1)

A1/3

− asym
I2

A
− ap

δp
A1/2

,

δp =−
(−1)Z + (−1)N

2
,

(9)

where av, as, ac, asym and ap are coefficients for quantifying the contributions of volume,

surface, Coulomb, symmetry energy and pairing effects. µn (µp) is the neutron (proton)

chemical potential. Smix is the mixing entropy.

The MFM is formulated at a critical temperature where one can expect the nucleons

are in a gas phase in the initial stage and transit into a cluster-gas mixed phase. The

mixing entropy term provides a simple expression to describe the entropy change originating

from the component transition from a single-component system to a proton-neutron two-

component system for such a phase transition. One should note that in Eq. (8) the mixing

entropy term has a positive contribution to the total entropy, compared to τ lnA, since the

entropy always increases during the component transition. However, in the original work

of the Purdue group [2–4], this mixing entropy term has a negative contribution. In the

following section, the derivation of Smix is introduced and the mistake that the Purdue

group made by putting a wrong sign in front of Smix in the MFM formulation is addressed.

II.2 Mixing entropy

Following the FM and MFM scenario, the mixing entropy can be derived within a classical

approach. For a classical system, the total number of the micro-states, Ω is expressed as

Ω =
N0!∏
al!

∏
ωal
l , (10)
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where N0 is the particle number and al is the particle number at the l state, thatN0 = Σal. ωl

is the degeneracy of the l state. Going to a nuclear system and ignoring the spin, nucleons

only have two states, proton and neutron, defined as “n” state and “p” state here. The

degeneracies for both states are 1. Therefore for a fragment with Z protons (ap = Z) and

N neutrons (an = N), the total number of the micro-states becomes

Ω(N,Z) =
A!

N !Z!
. (11)

Thus the mixing entropy is simply calculated following Boltzmann’s entropic equation as

Smix(N,Z) = ln(Ω(N,Z)). After applying Stirling’s approximation for the factorial of a

large nucleon number, Smix(N,Z) is further reduced as

Smix(N,Z) = ln(A!)− ln(N ! · Z!)

=[A(lnA− 1) +
1

2
ln(2πA)]

− [N(lnN − 1) +
1

2
ln(2πN) + Z(lnZ − 1) +

1

2
ln(2πZ)]

≈A(lnA− 1)− [N(lnN − 1) + Z(lnZ − 1)]

=− [N ln(
N

A
) + Z ln(

Z

A
)].

(12)

It is well known that as adding one component (neutron or proton) to the other (proton or

neutron), the fractions of the two components are both less than one. Therefore, Smix(N,Z)

is always positively defined in this expression, suggesting an entropy increase due to the

neutron-proton mixing mathematically. This positive Smix(N,Z) expression has been widely

applied to both ideal solutions and ideal gases.

For comparison, the mixing entropy is also derived within a quantum approach. In the

quantum framework, for an ideal Fermi gas, the average number of fermions in a single-

particle state i is given by the Fermi-Dirac distribution as

fi =
1

e(ǫi−µ)/T + 1
, (13)

where T is the temperature, ǫi is the energy of the single-particle state i, and µ is the

chemical potential. The number of states between ǫ and ǫ+ dǫ is

D(ǫ)dǫ = g
2πV

h3
(2m0)

3/2ǫ1/2dǫ, (14)

where g is the degeneracy factor, V is the system volume and m0 is the mass of fermion.

The density ρ, total particle number N0 and total energy U of the free Fermi gas are given
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by

ρ = g
2π

h3
(2m0T )

3/2

∫ ∞

0

x1/2dx

ex−µ/T + 1
, (15)

N0 = g
2πV

h3
(2m0T )

3/2

∫ ∞

0

x1/2dx

ex−µ/T + 1
, (16)

U = g
2πV

h3
(2m0T )

3/2T

∫ ∞

0

x3/2dx

ex−µ/T + 1
. (17)

Then the entropy per particle of the free Fermi gas is given as

S

N0
=

U − F

N0T

=
U + PV − µN0

N0T

=
5
3
U − µN0

N0T

=
5

3

∫∞

0
x3/2dx

ex−µ/T+1∫∞

0
x1/2dx

ex−µ/T+1

−
µ

T
, (18)

where F = µN0 − PV is the free energy. P = 2
3
∂U
∂V

is the pressure of the fermion system.

S/N0 is a function of temperature and density through the chemical potential µ.

Assuming the emitted fragment to be an ideal Fermi gas system with a fixed density of

neutrons and protons (ρ = ρn+ρp), we have m = ρn−ρp
ρ

, where ρn, ρp and ρ are the neutron,

proton and total nucleon densities, respectively. Therefore, the mixing entropy per nucleon

of the fermion system is

Smix

N0
(ρn, ρp) = [

ρn
ρ

S

N
(ρn) +

ρp
ρ

S

Z
(ρp)]−

S

N0
(ρ)

= [
1 +m

2

S

N
(ρn) +

1−m

2

S

Z
(ρp)]−

S

N0
(ρ). (19)

In Eq. (19), the chemical potentials for neutrons and protons are, respectively, defined as

µn and µp, and determined by solving Eq. (15) for a given temperature and density of the

system. Inserting Eq. (18) into Eq. (19), one can obtain the numerical values of the mixing

entropy of the nuclear system for a given density and temperature.

Fig. 1 shows the calculated values of Smix per nucleon within both the classical (Eq. (12))

and quantum (Eq. (19)) approaches as a function of m. The quantum Smix(ρn, ρp) per

nucleon is calculated for T = 1, 3, 5, 7 and 30 MeV at a given density ρ = ρ0/6 and the results

are shown by different symbols in the figure. The solid line corresponds to Smix(N,Z) per
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FIG. 1: (Color online) Mixing entropy per nucleon as a function of m. The quantum results from Eq. (19)

are shown by different symbols for T = 1 MeV (dots), 3 MeV (solid squares), 5 MeV (solid triangles), 7

MeV (solid inverted triangles) and 30 MeV (open circles) at density ρ = ρ0/6. The solid line corresponds

to the mixing entropy per nucleon calculated using the classical formula, Eq. (12).

nucleon calculated using the classical approach, where m is calculated as m = N−Z
A

= ρn−ρp
ρ

.

As T increases, the quantum result gradually approaches the classical one, and both results

become consistent with each other at the classical limit, high temperature and low density.

Along with FM, the MFM was originally formulated at the classical limit near the critical

point [2–4] and used to describe the critical properties of the hot nuclear matter created in

nuclear collisions in a wide energy region under a coarse approximation, i.e., first based on

the MFM, the Purdue group studied the power law behavior of the experimentally measured

inclusive fragment mass distributions, which is a natural result of the MFM model at the

critical point, from the reactions of proton on Xe and Kr at 80 to 350 GeV/c [2–4]. The

power law behavior has also been demonstrated from the heavy ion reactions around the

Fermi energy in some of our previous works in more details [6, 15]. In our present MFM

formulation, the classical mixing entropy is therefore adopted for consistency.

Therefore, following this classical scenario and inserting Eq. (12) into (8), our present
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formulation of MFM is written as

Y (I, A) =Y0 · A
−τ exp[

W (I, A) + µnN + µpZ

T

−N ln(
N

A
)− Z ln(

Z

A
)].

(20)

Comparing Eq. (20) and the formulation of the Purdue group, one should note that our

present formulation of the MFM is identical to that of the Purdue group in Refs. [2–4],

except for the opposite sign of the mixing entropy term. Clearly, the negative expression

of Smix(N,Z) in their formulation is wrong, since it goes against the nature of the mixing

entropy increase as a single-component system transforms into a two-component (proton-

neutron) system. The errors of the results related to the MFM studies originating from this

mistake in the sign of Smix(N,Z) are quantitatively discussed in the following section. They

include isotopic yield distribution, isobaric yield ratios, isoscaling, m-scaling, self-consistent

determination of density, symmetry energy and temperature, and density and temperature

determination related to the IMF Freezeout.

III. Results and Discussions

III.1 Isotopic yield distribution

After the formulation of the MFM, the Purdue group firstly applied it to reproduce the

fragment isotopic yields [2–4]. Fig. 2 shows the isotopic yield of all available fragments

in p + Xe system at the incident momentum between 80 and 350 GeV/c (dots) and their

corresponding fitting results (triangles). In their fitting, av is fixed as 14.1 MeV without

assuming a volume heat contribution of 8 MeV to the volume free energy and τ is fixed as

2.64 [2–4]. Other parameters, as, ac, asym, ap, µp, µn and T (1/β), are set free. The fitting

is preformed among the 60 isotopic yields with 12 ≤ A ≤ 31. Also note that the Coulomb

term and paring term of Eq. (9) are generated as ac(Z
2/A1/3) and ap(δp/A

0.75) in their

formulation, respectively. Following the same approach, we refit the data using the present

MFM formulation with a positive mixing entropy term, according to Eq. (20). Our results

are shown by squares in Fig. 2. As shown in the figure, the experimental isotopic yield

distributions are well reproduced with both formulations by adjusting the parameters. The

resultant parameters are summarized in TABLE I. The present parameter values optimized
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FIG. 2: (Color online) Isotopic yields as a function of I. Dots: isotopic yield of all available measured

fragments in p+Xe system at the incident momentum between 80 and 350 GeV/c. Triangles: fitting results

from the original MFM formulation of the Purdue group. Squares: fitting results from the corrected MFM

formulation, Eq. (20).

from the corrected formulation (third column) are more or less comparable to those presented

in Refs. [2–4] (second column), except for the surface and pairing coefficients, as and ap,

that is, the present as and ap values are closed to those of the cold nuclear nuclei. Rather

large values of as and ap are inconsistent with the fact that at a critical temperature the

surface energy and the pairing correlation should become negligible. This indicates that the

experimentally measured isotopic yields reflect the nuclear natures at the final stage, rather

than at the critical point, due to the secondary decay process [5, 10, 11, 14].

III.2 Isobaric yield ratios

In Ref. [5], isobaric yield ratios were utilized to study the asym, ac, ∆µ (∆µ = µn − µp)

and ap values, relative to temperature, in the MFM framework for the first time. Based on

the MFM formulation, R(I + 2, I, A), the isobaric yield ratio between isobars differing by 2
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TABLE I: Values for the parameters in the fits to the isotopic yields using the original and present

MFM formulas and values of the normal nuclei taken from Refs. [2–4].

Purdue Pres. Normal nuclei

τ 2.64 2.64

av (MeV) 14.1 14.1 14.1

as (MeV) 5.35 12.12 13.0

ac (MeV) 0.489 0.510 0.595

asym (MeV) 22.60 19.13 19.00

ap (MeV) 5.92 10.45 33.5

µp (MeV) -11.32 -14.34

µn (MeV) -7.59 -10.46

T (MeV) 3.28 3.56

units of I, i.e., I + 2 and I, is defined as

R(I + 2, I, A) = Y (I + 2, A)/Y (I, A)

= exp{[∆µ +W (I + 2, A)−W (I, A)]/T +∆}. (21)

Taking the logarithm of R(I + 2, I, A), one can obtain

ln[R(I + 2, I, A)] = [∆µ+W (I + 2, A)−W (I, A)]/T +∆, (22)

where ∆ is the mixing entropy difference between isobars with I + 2 and I. Following the

corrected formulation of the MFM (Eq. (20)), ∆ in the corrected present formula, ∆Pres., is

written as

∆Pres = − [
A + I + 2

2
ln(

A + I + 2

2A
) +

A− I − 2

2
ln(

A− I − 2

2A
)]

+ [
A + I

2
ln(

A+ I

2A
) +

A− I

2
ln(

A− I

2A
)]. (23)

For the original MFM formulation, ∆Orig is expressed as ∆Orig = −∆Pres. Thus the error

occurring from the mistake in the sign of the mixing entropy term, ∆Err, is given as the

difference between ∆Orig and ∆Pres,

∆Err = ∆Orig −∆Pres = −2∆Pres. (24)
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FIG. 3: (Color online) Numerical values of ∆Err calculated using Eq. (24) as a function of A with I = −5 ∼ 4

from the bottom to the top.

The numerical values of ∆Err are calculated as a function of A with I = −5 ∼ 4 using

Eq. (24) and the results are shown in Fig. 3. As seen in the figure, the error decreases

rapidly as A increases, and the errors for the isobars with N closer to Z are smaller. For

the mirror isobars (black dotted-dashed line), the errors fully cancel out.

In our recent work [7], the ratio of symmetry energy relative to temperature, asym/T , was

extracted from the cold isotopic yields of 140 MeV/nucleon 40,48Ca+9Be and 58,64Ni+9Be

from the experiments performed by Mocko et al. at the National Superconducting Cyclotron

Laboratory (NSCL) at Michigan State University (MSU) [35] using the equation,

asym
T

=
A

4(I + 1)
{[∆µ+ 2ac(Z − 1)/A1/3]/T

− ln[R(I + 2, I, A)] + ∆}.

(25)

According to Eq. (25), the percentage error contribution to the final, ∆(asym/T ), can be

defined as

∆(asym/T ) =
A

4(I + 1)
·
|∆Err|

asym/T
· 100%. (26)

Taking the 64Ni+9Be system used in Ref. [7] as an example, ∆(asym/T ) is calculated for all

available isotopic yields. The resultant ∆(asym/T ) values are plotted as a function of A in
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FIG. 4: (Color online) Numerical values of ∆(asym/T ) calculated using Eq. (26) as a function of A with

I = 1 ∼ 9.

Fig. 4. In the figure, ∆(asym/T ) exhibits a similar behavior to that of ∆Err shown in Fig. 3,

and rather small errors, ∼ 3% − 15%, are found in this analysis. Similarly, the analyses of

the symmetry energy and pairing energy relative to temperature, the temperature of the

cold fragment, neutron skin effects and critical behavior of the multi-fragmentation have also

been performed using the isobaric yield ratio observables [5, 6, 21–32]. In Refs. [5, 6, 21–

32], intermediate and heavy mass isobars were generally utilized. Similar magnitudes of the

errors are also found for these works. Therefore, we conclude that the conclusions of these

works remain valid with small changes in the extracted quantitative values.

III.3 Isoscaling and m-scaling

In Ref. [9], asym/T was experimentally extracted as a function of the fragment atomic

number using isoscaling parameters. From the MFM formulation, R12, the yield ratio for

the same isotope from two similar reaction systems with different N/Z ratios, is written,

R21(N,Z) = C · exp(αN + βZ). (27)
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This relation is well known as the isoscaling relation [36]. The isoscaling parameters, α =

(µ2
n − µ1

n)/T and β = (µ2
p − µ1

p)/T , are the differences of the neutron or proton chemical

potentials between the systems 2 and 1, divided by the temperature. C is a constant.

According to Eq. (27), the error in the MFM formulation does not contribute in the isoscaling

parameters, since the mixing entropy cancels out in R12. In the same work, the variance of

the isotope distributions was also utilized to extract asym/T . However, the method used is

based on an approximation of the MFM formulation proposed by Ono et al. [37], in which

the mixing entropy does not appear. Thus, the results and conclusions in the work are not

affected.

In Refs. [8, 15–20], A. Bonasera et al. proposed a Landau free-energy approach for

describing the free energy in the exponent of Eq. (8) within the Landau O(m6) theory,

where m = (Nf −Zf )/Af is the order parameter, a consequence of (one of) the symmetries

of the nuclear Hamiltonian. Within this framework, isoscaling depends mainly on this order

parameter through the “external (conjugate) field” H . The external field is just given

by the difference in chemical potentials of the neutrons and protons of the two sources.

To distinguish from previously employed isoscaling analysis, this approach is dubbed: m-

scaling. For m-scaling, the mixing entropy is absent from the free energy of Eq. (8), so that

the mistake in the original MFM formulation does not affect the analyses in these papers.

Therefore, the results and conclusions related to m-scaling are fully valid.

III.4 Density, temperature and symmetry energy determination

In Ref. [13], based on the original formulation of the MFM [2–4], a self-consistent approach

was developed to extract the density, temperature and symmetry energy for the nuclear

fragmentation and applied to the reconstructed hot isotope yields from 64Zn+112 Sn at 40

MeV/nucleon, utilizing the simulations of the anti-symmetrized molecular dynamics (AMD)

of Ono et al [39, 40]. The basic steps of the self-consistent procedure are briefly summarized

as follows:

1. Optimize ∆µ/T0 and ac/T0 values from mirror isobars.

2. Optimize ãv/T0, as/T0 and ap/T0 values from N = Z isotopes, where ãv = av+
1
2
(µn−

µp).
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3. Using parameters determined in step (1) and step (2), asym/T0 values are extracted

from all available isotopes. Comparing the extracted asym/T0 values to those of the

AMD simulations with different Gogny interactions with three density dependent sym-

metry energy terms, the density of the fragmenting source is extracted. Using this den-

sity, the experimental value of the symmetry energy coefficient, asym, is determined.

The temperature is then extracted following the relation, T0 = asym/(asym/T0).

Iteration of Steps.(1)-(3) is performed to take into account the difference of the apparent

temperature T and the physical temperature T0 in these steps [12]. Typically the iteration

is repeated two to three times to get a reasonably flat distribution of T0 as a function of

the fragment mass. More detailed descriptions of the self-consistent approach can be found

in Refs. [12, 13]. Note that in Ref. [10], Eq. (25) was applied to extract the asym/T values

instead of Steps.(2)-(3). As mentioned in Sec.III.1, the asym/T errors caused by the mistake

in the original Purdue formulation partially cancel each other and become small. A detailed

error evaluation and the newly extracted values of the density, temperature and symmetry

energy in Ref. [10] are given in an erratum [38].

Here, the density, temperature and symmetry energy values are re-calculated based on

the corrected formulation of the MFM using Steps.(1)-(3). In Tables II and III, the newly

extracted values of the parameters, ãv/T0, as/T0, ac/T0, ap/T0 and ∆µ/T0, and symmetry

energy and ρ/ρ0, from both experimental data and AMD simulated events are summarized,

respectively, for the first iteration round (k = 0) and the final iteration round (k = 0.0022).

In this analysis, the effect caused by the mistake is absorbed mostly in Step.(2), when

ãv/T0, as/T0 and ap/T0 values are optimized as free parameters using the MFM formulation.

In Tables II, the newly obtained as/T0 and ap/T0 values are close to 0. This is reasonable,

since the reconstructed isotopic yields can reflect the characteristic nature around the critical

point. The density, temperature and symmetry energy values from the present and original

formulations of the MFM are compared in Table IV. As presented in the table, the errors

originating from the sign of the mixing entropy are rather small, i.e., 16.1% for the density

and even smaller for the other deduced quantities.

In order to further investigate the effect of the mistake, the asym values from the corrected

and original MFM formulations are compared together with other available published data

in Fig. 5. At 0.1 <
∼ ρ/ρ0 ≤ 1.0, the existing data points are consistent with each other

within the errors and distribute along a line systematically, which is optimized within the
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TABLE II: Extracted a/T0 and ∆µ/T0 for the first round (k=0) and the final round (k=0.0022)

using the self-consistent approach based on the corrected formulation of the MFM.

ãv/T0 as/T0 ac/T0 ap/T0 ∆µ/T0

k=0

g0 −0.239 0.000 0.182 0.582 0.604

g0AS −0.282 0.000 0.164 0.691 0.480

g0ASS −0.319 0.000 0.145 1.121 0.432

Exp. −0.305 0.001 0.144 0.111 0.626

k=0.0022

g0 -0.236 0.000 0.167 0.526 0.626

g0AS -0.277 0.000 0.150 0.630 0.505

g0ASS -0.308 0.000 0.133 1.046 0.451

Exp. -0.304 0.004 0.126 0.093 0.676

mean-field theory

asym(ρ/ρ0) = 31.5 · (ρ/ρ0)
0.69. (28)

The present and original values are both along the same curve. This observation indicates

that the errors caused by the mistake are of a order of 10%, but they do not change the

basic conclusions extracted.

III.5 Density and temperature determination related to IMF Freezeout

In Ref. [14], for the central collision events of 40Ca +40Ca, generated by the AMD model

in the intermediate energies of 35 to 300 MeV/nucleon, the density and temperature of a

fragmenting source were extracted using the self-consistent method with the original MFM.

The extracted density and temperature values are, respectively, ρ/ρ0 ∼ 0.65 to 0.7 and T0 ∼

5.9 to 6.5 MeV. Here the density and temperature values are re-calculated using the corrected

formulation of the MFM, and the results are summarized in TABLE V, together with those

obtained in Ref. [14]. Errors, ∼ 12 − 17% for density and ∼ 4 − 13% for temperature, are

evaluated in the table. In spite of the errors originating from the sign of the mixing entropy,
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TABLE III: Extracted ρ/ρ0 and symmetry energy from the first round (k=0) and the final round

(k=0.0022) using the self-consistent approach based on the corrected formulation of the MFM.

k int Rsym ρ/ρ0 asym (MeV)

k=0

g0 24.2±0.4

g0/g0AS 1.234±0.025 0.529±0.048

g0AS 19.0±1.3

g0/g0ASS 1.545±0.034 0.568±0.021

g0ASS 15.8±0.7

g0/Exp. 1.162±0.025 0.562±0.015

Exp. 20.8±0.6

k=0.0022

g0 24.1±0.4

g0/g0AS 1.237±0.026 0.524±0.049

g0AS 18.9±1.3

g0/g0ASS 1.553±0.035 0.564±0.020

g0ASS 15.6±0.7

g0/Exp. 1.161±0.025 0.558±0.015

Exp. 20.8±0.6

TABLE IV: Comparison of density, temperature, and symmetry energy from the corrected and

original formulations of the MFM.

Pres. Orig. Diff.

ρ/ρ0 0.56 ± 0.02 0.65 ± 0.02 16.1%

T0 5.2 ± 0.6 MeV 5.0 ± 0.4 MeV 3.8%

asym 20.8 ± 0.6 MeV 23.1 ± 0.6 MeV 11.1%

density and temperature show rather constant values as a function of the incident energy,

indicating that there is a “freezeout” volume for the IMF production in the intermediate

heavy-ion reactions, which is commonly used in the statistical multi-fragmentation model
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FIG. 5: (Color online) Comparisons between the present and original results together with available pub-

lished results. The line is from the fitting of the available data using Eq. (28). Data are taken from Khoa

2005: [41], Kowalski 2007: [42], Wada 2012: [43], Roca-Maza 2013: [44], Shetty 2004: [45], Shetty 2007: [46],

Trippa 2008: [47], Tsang 2009: [48].

as the basic assumption. Thus, the conclusion drawn in Ref. [14] is still valid.

IV. Summary

In this article, the formulation of the Modified Fisher Model is examined. A mistake

in the formulation of the MFM derived in the pioneering works of the Purdue group in

Refs. [2–4] is addressed. A corrected formulation of the MFM is presented by reversing the

sign of the mixing entropy term in the original formulation. The errors from the mistake in

the results of the previous MFM-related studies, such as isotopic yield distribution, isobaric
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TABLE V: Density and temperature extracted using the self-consistent method for the central

collision events of 40Ca +40Ca in the incident energies from 35 to 300 MeV/nucleon.

Energy (MeV/nucleon) ρPres./ρ0 ρOrig./ρ0 Diff. TPres. (MeV) TOrig. (MeV) Diff.

35 0.59 ± 0.02 0.67 ± 0.02 11.9% 6.3 ± 0.3 5.6± 0.2 12.5%

50 0.56 ± 0.02 0.64 ± 0.02 12.5% 6.6 ± 0.3 5.9± 0.3 11.9%

80 0.54 ± 0.02 0.65 ± 0.02 16.9% 6.7 ± 0.3 6.2± 0.2 8.1%

100 0.59 ± 0.02 0.69 ± 0.02 14.5% 6.8 ± 0.3 6.5± 0.3 4.6%

140 0.57 ± 0.02 0.67 ± 0.02 14.9% 6.9 ± 0.3 6.4± 0.3 7.8%

300 0.58 ± 0.02 0.68 ± 0.02 14.7% 7.1 ± 0.3 6.5± 0.3 9.2%

yield ratios, isoscaling, m-scaling, self-consistent determination of density, symmetry energy

and temperature, and density and temperature determination related to the IMF Freezeout,

are quantitatively evaluated. It is found that the errors originating from the mistake in sign

of the mixing entropy term are generally small and even have no effect in some cases. The

results and conclusions in the original papers are generally valid.
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