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We present the first ab initio calculations of neutrinoless double beta decay matrix elements
in A = 6-12 nuclei using Variational Monte Carlo wave functions obtained from the Argonne
v18 two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana
neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton
number violation. Our results provide benchmarks to be used in testing many-body methods that
can be extended to the heavy nuclei of experimental interest. In light nuclei we have also studied
the impact of two-body short range correlations and the use of different forms for the transition
operators, such as those corresponding to different orders in chiral effective theory.

I. INTRODUCTION

Searches for neutrinoless double beta decay (0vj3p)
constitute the most sensitive laboratory probe of lepton
number violation (LNV). In Ov8 two neutrons in a nu-
cleus turn into two protons, with the emission of two elec-
trons and no neutrinos, violating L by two units. The ob-
servation of Ov(33 would demonstrate that neutrinos are
Majorana fermions [1], shed light on the mechanism of
neutrino mass generation, and give insight into leptogen-
esis scenarios for the generation of the matter-antimatter
asymmetry in the universe [2].

For certain even-even nuclei the single 8 decay is en-
ergetically forbidden. In many such nuclei, the Standard
Model allowed two-neutrino double beta decay has al-
ready been observed [3-8] (see Ref. [9] for older refer-
ences), and the search for the LNV neutrinoless mode is
being pursued by many collaborations worldwide. The
current experimental limits on the half-lives for the neu-
trinoless mode are quite impressive [10-17], at the level of
Ti/2 > 5.3x10%° y for "®Ge [17] and Ty /2 > 1.07x 10%° y
for 136Xe [10], with next generation ton-scale experiments
aiming at two orders of magnitude sensitivity improve-
ments.

The observation of Ovf33, while of great significance
by itself, would not immediately point to the under-
lying mechanism of lepton number violation. In fact,
next-generation experiments are sensitive to a variety of
mechanisms, which are most efficiently discussed in an
effective theory approach to new physics, in which LNV
arises from AL = 2 operators of odd dimension, starting
at dimension-five [18-21]. As discussed for example in
Ref. [22], if the scale of lepton number violation, ApNy is
in the range 1-100 TeV, short-distance effects encoded in
local operators of dimension seven and nine provide con-
tributions to OvfSf within reach of next generation ex-
periments. On the other hand, whenever ANy is much
higher than the TeV scale, the only low-energy manifes-
tation of this new physics is a Majorana mass for light
neutrinos, encoded in a single gauge-invariant dimension-

five operator [18], which induces Ovj3p through light
Majorana-neutrino exchange [23, 24].

To interpret positive or null Ov5f3 results in the con-
text of various LNV mechanisms it is essential to have
control over the relevant hadronic and nuclear matrix
elements. Current knowledge of these is somewhat un-
satisfactory [25], as various many-body approaches lead
to estimates that differ by a factor of two to three for
nuclei of experimental interest. This is true both for the
light Majorana-neutrino exchange mechanism, which has
received much attention in the literature, and for short-
distance sources of LNV encoded in dimension-seven and
-nine operators (see [22] and references therein).

In this paper we present the first ab initio calculations
of OvB38 nuclear matrix elements in light nuclei (A = 6-
12), using Variational Monte Carlo (VMC) wave func-
tions obtained from the Argonne v1s (AV18) [26] two-
body potential and Illinois-7 (IL7) [27] three-nucleon in-
teraction. We use the measured value of the axial cou-
pling constant g4 = 1.2723(23) [28]—also utilized in re-
cent ab initio quantum Monte Carlo calculations of single
beta decays in A = 6-10 nuclei [29] that explain the data
at the < 2% (~ 10%) level in A = 6-7 (A = 10) decays—
and compare with results for A = 48-136 nuclei [30, 31]
also based on the measured value of g4. We study the
matrix elements of light Majorana-neutrino exchange as
well as those arising from a large class of multi-TeV mech-
anisms of LNV. While the transitions studied here are
not directly relevant from an experimental point of view,
this study has several merits: (i) Because the ab initio
framework used here accurately explains, qualitatively
and quantitatively, the observed properties of light nu-
clei [32-34], our results provide an important benchmark
to test other many-body methods that can be extended
to the heavy nuclei of experimental interest. (ii) In this
framework we can study in a controlled way the impact
of various approximations inherent to some many-body
methods — such as neglecting two body correlations. (iii)
For a given LNV mechanism, we can explore the impact
of using different forms for the transition operators (“po-



tentials” ) mediating Ov35. (iv) In the same vein, we can
study the relative size of matrix elements corresponding
to different LNV mechanisms.

The paper is organized as follows. In Section II we
present the two-body transition operators (“potentials”)
that mediate Ovf53 from a large class of LNV mecha-
nisms. In Section III we describe the VMC method and
in Section IV we discuss our results. We present our con-
clusions in Section V and provide some details on the
potentials in coordinate space in Appendix A.

n P
< -
v e :<
4 ‘ I
I T
" v, b Vi
-
T
I
Van YN

FIG. 1. Diagrams illustrating the Ov3S potentials mediated
by neutrinos—V,, defined in Eq. (6)—and two-pion-exchange,
one-pion-exchange, and short-distance interactions—V;r,
Vzn, and Vyn defined in Egs. (12).

II. NUCLEAR OPERATORS FOR 0vgg
A. Matching quark operators to hadronic operators

Our starting point is a AL = 2 effective Lagrangian
Lar=2 at the hadronic scale E ~ A, ~ GeV written in
terms of leptons and quarks. This effective Lagrangian
originates from integrating out heavy new physics at the
scale Apnv and matching onto SU(3)ox.SU(2), xU(1)y-
invariant operators. After integrating out the heavy
SM fields at the electroweak scale, one obtains a set of
SU(3)c x U(1)gm-invariant operators that we incorpo-
rate into our effective Lagrangian. In this work, with the
purpose of benchmarking nuclear matrix elements, we in-
clude only the Majorana neutrino mass operator, which
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is dimension three after electroweak symmetry breaking,
and a subset of dimension-nine six-fermion operators that
mediate short-range contributions to Ov33:
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Here v = (vV2GFr)~Y? = 246 GeV, a, § are color in-
dices, and for later convenience we have extracted a factor
of V2, from the dimensionless Wilson coefficients CZ-(Q).
The dimension-three term in Eq. (1) originates from the
only SU(2)-invariant operator at dimension-five, while
the dimension-nine terms can arise from both dimension-
seven and -nine SU(2)-invariant operators.

In principle, the most general AL = 2 low-energy ef-
fective Lagrangian would include additional dimension-
six and -seven charged-current operators, which give rise
to long-range contributions to Ov53, not proportional to
mgp. However, as was shown in Ref. [22], the nuclear ma-
trix elements (NMEs) needed in this case are related to
NMEs that appear in light and heavy Majorana-neutrino
exchange, and thus do not require independent calcula-
tions. Furthermore, the effective Lagrangian in (2) repre-
sents a subset of the most general dimension-nine AL = 2
interactions. The complete basis of dimension-nine oper-
ators includes additional terms that can be obtained by
the interchange of L <» R on the quark and/or lepton-
fields in (2), as well as operators in which the quark and
electron structures are Lorentz vectors (e.g. éL'yNC’ég)
[35, 36]. However, as far as 0t — 0T transitions are
concerned, none of these additional operators lead to dif-
ferent hadronic realizations than those induced by the
operators in Eq. (2) [37]. As a result, the NMEs stud-
ied in the following capture the leading contributions to
OvBp from SU(2)-invariant operators of dimension-five
and -seven, as well as those from dimension-nine opera-
tors involving six fermions.

The leading low-energy realization of the effective La-
grangian (1) in terms of leptons, pions, and nucleons,
reads [36, 37]
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The low-energy constants (LECs) gsxs and ggyg are of

(

O(A2), while go7x1 and g57%, are of O(1). The coupling



constant of the AL = 2 four-nucleon operator, g5, is
O(1) in the Weinberg power counting [38, 39]. We fol-
low the notation of Ref. [37], in which gsxs, gexs, and
g27x1 (see also Ref. [40]) were estimated using SU(3)
chiral perturbation theory (xPT) relations and lattice-
QCD calculations of kaon matrix elements. At p =
3 GeV in the MS scheme one has ga7x1 = 0.37 % 0.08,
gsxs = —(3.1 £ 1.3) GeV?, giix = —(13 £4) GeV?,
Jexg = (3.2 £0.7) GeV?, gg‘xl’é = —(1.1 £ 0.3) GeVZ2.
For the new-physics operators that transform as 87, x 8p
or 67 x 6r, within the Weinberg power counting, only
the 77 interactions contribute at LO, and we neglect the
subleading pion-nucleon and nucleon-nucleon couplings
in Eq. (3). Instead, for the operator transforming as
271, X 1g, we include all three types of interactions as
they contribute to Ov38 at the same order.

B. The isotensor nuclear potentials

From the effective Lagrangian (3) one obtains the fol-
lowing AL = 2 effective hamiltonian for OvgS in terms
of electrons and nucleons:

Hap— =2G3 Vi enCef > V(a,b), (4)
a,b

with the isotensor potential given by

m?
V= mgp V +— (Cﬂ'ﬂ'vﬂ'ﬂ' + C‘ITNVTFN + CNN‘/NN ) (5>
In what follows we will give the two-body potentials in
momentum space, while providing their coordinate space
expressions in Appendix A.

1. Light Majorana neutrino exchange

The first term in Eq. (5) is generated by light
Majorana-neutrino exchange, depicted in the top-left
panel of Fig. 1, and at leading order is given by
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where @ = q/|q|, gv = 1, ga = 1.27, and the tensor
operator is given by Sop = — (30, - Qo -q— 0, - 0p) in
momentum space. Higher-order corrections to the single-
nucleon charged-currents can be taken into account by
including momentum-dependent form factors and contri-
butions proportional to the nucleon isovector magnetic
moment. These effects appear at N2LO in the chiral
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power counting, while two-body effects in the weak cur-
rents [41-43], which induce three-nucleon potentials, ap-
pear at N3LO. Here we parametrize the N?LO terms by
following Ref. [25] and re-expressing V, as

— 00 0y 0Gr(q%) — Sab v%(qz)}- (7)

The Fermi (F), Gamow-Teller (GT) and tensor (T) func-
tions can be expressed in terms of the nucleon isovector
vector, axial, induced pseudoscalar and tensor form fac-
tors as

vi(a?) = g (a*)/gv

vér(a®) = v& () + 057 (a%) + vir (@°) + vi (@)
v (a®) = v (@%) + or P (@) + opM(a), (8)
where for the GT and T terms we have
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and vt” (q?) = —vgr(a’), vr’(a?) = —vgr(a?), and

vpM(a?) = it ( “)/2.

As commonly done in the OvgS literature, we use a
dipole parameterization for the vector and axial form fac-
tors, and write

g\ —2
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ga\q gA A124 , gplq q2 +m72r )
where the vector and axial masses are Ay = 850 MeV
and A4 = 1040 MeV, and the anomalous nucleon isovec-
tor magnetic moment £ = 3.7. In the limit A4 v — oo,
Eq. (10) reduces to the leading order (LO) xPT expres-
sion. In what follows, we define the neutrino potentials
in momentum space as

wﬁm%=§¢&¢>7 (11)

with « € {F,GT,T} and B € {v,AA, AP,PP,MM},
and the functions v? given in Egs. (8) and (9). The
potential Vr 44 does not appear in the case of light
Majorana-neutrino exchange, but it is relevant in the
presence of right-handed charged-currents [22, 44, 45]

Additional non-factorizable contributions to V, arise
at the same order as form-factor corrections, as recently
shown in Ref. [46]. We explore the impact of these in
Section. IV D.



2. LNV from short-distance

The dimension-nine operators with couplings CZ-(Q) in-
duce the pion-range and short-range potentials V., Vn
and Vyy in Eq. (5) through the diagrams shown in Fig.
1:
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where we eliminated a GT-like contact interaction by use
of the Fierz relation, (pon) (pon) = —3 (pn) (pn). As for
the light Majorana-neutrino exchange potential V,, we
split the V., and V;x in Gamow-Teller and tensor com-
ponents (see Appendix A). The dimensionless effective

couplings are given by:

2
Crnm = _29# (Czig)g8><8 + Cég)gén;é - 059)96x6
i 5
— OV gri% + 3 el 927x1m3r) ; (13)
- 5
CaN = — 04 059) (927]\;1 5 927x1) ) (14)

9 - 5
CNN = —Cf ) (921\?:1 ~-9a <927I\i1 - 6927><1>> (15)

At leading order in chiral EFT, the potentials in Eq.
(12) do not include momentum dependent form fac-
tors. Note that, after absorbing the short-distance pieces
of the ¢,y and c,, contributions into Vyy, we have
Varar = —Var,pp and Varxn = —Var, ap/2 (see Ap-
pendix A). In our analysis, we will study the sensitiv-
ity to the large momentum region by multiplying V.,
V.~ and Vyn by a dipole form factor, for which we take

94(a®)/ g4

C. Matrix elements

To make contact with the standard Ov3 literature, it
is convenient to define the dimensionless matrix elements
between the initial and final nuclear states, |¥;) and | ¥ ),
as

MY = (U |0%F|W,) (16)
where the two-body F, GT, and T operators are given by
OFF = (47Ra) Y Vip(ran) i (17)

a,b
OGT’ﬁ = (47TRA) Z VGT’B(TQZ,) O, 0y 7';_7'bJr y (18)

a,b

OT’B = (47TRA) Z VT,B(rab) Sab 7’;'_7'17Jr s (19)

a,b
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where R4 = 1.2 AY/3 fm is the nuclear radius and now
B € {v,AA,AP,PP,MM,nm,7N,NN}. Note that the
operators defined above involve an unconstrained sum
over a # b. The potentials in momentum and coordinate
space are related by

3
Vo g(rap) = / (3733 eV 5(q). (20)

For completeness, we report explicit expressions for the
potentials in coordinate space in Appendix A.

IIT. VARIATIONAL MONTE CARLO METHOD

The evaluation of the matrix elements defined in
Eq. (16) is carried out using Variational Monte Carlo
(VMC) computational algorithms [32]. The VMC wave
function ¥(J™;T,T,)—where J™ and T are the spin-
parity and isospin of the state—is constructed from prod-
ucts of two- and three-body correlation operators acting
on an antisymmetric single-particle state of the appropri-
ate quantum numbers. The correlation operators are de-
signed to reflect the influence of the two- and three-body
nuclear interactions at short distances, while appropriate
boundary conditions are imposed at long range [47, 48].

The U(J™; T, T,) has embedded variational parameters
that are adjusted to minimize the expectation value

(VIH|T)

EV = 7<\IJ|\I/> > EO ) (21)

which is evaluated by Metropolis Monte Carlo integra-
tion [49]. In the equation above, Ej is the exact lowest
eigenvalue of the nuclear Hamiltonian H for the specified

quantum numbers. The many-body Hamiltonian is given
by

H:ZKi+ZUij+ Z Vijk (22)
i

1<j i<j<k

where K; is the non-relativistic kinetic energy of nu-
cleon i and v;; and Vjji are, respectively, the Argonne
vig (AV18) [26] two-body potential and the Illinois-7
(IL7) [27] three-nucleon interaction. The AV18+IL7
model reproduces the experimental binding energies,
charge radii, electroweak transitions and responses of
A = 3-12 systems in numerically exact calculations
based on Green’s function Monte Carlo (GFMC) meth-
ods [29, 32-34].

A good variational wave function, that serves as the
starting point of GFMC calculations, can be constructed
with

A A
‘\Ilv>=8H 1+U;; + Z Usiji ‘\IJ]> (23)
i<j ki,

The Jastrow wave function ¥ is fully antisymmetric,
translationally invariant, has the (J™;T,7,) quantum



numbers of the state of interest, and includes a product
over pairs of a central correlation function f(r;;) that
is small at short distances, peaks around 1 fm, and de-
cays exponentially at long range [50]. The U;; and Uy
are the two- and three-body correlation operators, and S
is a symmetrization operator. The two-body correlation
operators [32, 50] can be schematically written as

Uij = Z fp(Tij) OZ 5 (24)
p

where

ij :Ti'Tj70'i'0'j7 (Ti'Tj)(O'i'O'j), Sij7 SijTi'Tj s

(25)
are the main static operators that appear in the two-
nucleon potential and the fP are functions of the inter-
particle distance r;; generated by the solution of a set
of coupled differential equations containing the bare two-
nucleon potential with asymptotically-confined boundary
conditions [32]. In order to study how correlations in the
nuclear wave functions impact on the calculated matrix
elements, we perform a calculation in which we turn off
the “one-pion-exchange-like” correlation operators, i.e.,
(ti - Tj)(0o; - 0j) and S;;T; - T;. The effects such an
artificial change will be discussed in Sec. IV.

In principle, the variational wave function can be fur-
ther improved via an imaginary time propagation of the
Schrodinger equation. This procedure has the effect
of eliminating spurious contributions coming from ex-
cited states and it is implemented by the GFMC algo-
rithm [32]. However, Quantum Monte Carlo studies of
electroweak matrix elements in low-lying nuclear states
of A < 10 nuclei indicate that the GFMC propagation
improves the VMC results by < 3% [29, 51], an accuracy
that goes beyond the scope of the present investigation.

The results presented below for A < 10 nuclei use the
VMC wave functions that serve as starting trial functions
for the GFMC calculations summarized in Ref. [32]. We
emphasize that the A = 12 matrix elements are based on
the first quantum Monte Carlo wave function for '2Be.
For the A = 12 nuclei, we use new clusterized variational
wave functions that provide for alpha- and dineutron-like
clusters among the p-shell nucleons. As for the lighter nu-
clei, they are fully antisymmetric A-body wave functions,
translationally invariant, and include the same product
of two- and three-body operator correlations induced by
the nuclear Hamiltonian. However, for simplicity, only
the highest spatial symmetry states are used, i.e., [444]
in '2C and [4422] in '?Be, as specified in Young diagram
notation [52]. The construction of >C can be thought
of as coupling a core ®Be nucleus in one of its first three
states (0T, 27, or 47) with an additional p-shell alpha-
like cluster in respectively a 'Sy, 'Ds, or Gy state, to
give a total J™ = 0. Similarly, for ?Be, a core 8He nu-
cleus in one of its first two states (0T or 27) is coupled
with a 1Sg or ' Dy p-shell alpha-like cluster. In both cases
a small-basis diagonalization is made among these com-
ponents. These A = 12 calculations are computationally

demanding because of the size of the spin-isospin vec-
tors needed to represent the wave function: 4,096 x 132
for 12C and 4,096 x 275 for 1?Be, where we assume pure
T = 0 and T = 2 states, respectively. We emphasize that
this is the first quantum Monte Carlo wave function for
12Be.

In addition to presenting results on the matrix ele-
ments of Eq. (16), we study their associated transition
distributions in r-space, C*#(r), and g-space, C*#(q)
defined as

M*P = /drp""ﬁ(r) = /dr CP(r) = /dq C*(q) ,
(26)

where p®#(r) is the transition density associated with
the transition operator O%#(r).

Finally, following Ref. [53] we represent the delta-
functions entering the Vo7 aras and Vg yn potentials de-
fined in Egs. (A5) and (A7) with

e_(r/RS)z

S(mat) =~
(mat) = 5 g o7

(27)

where Rg is a short range cutoff. We tested the sensi-
tivity of the calculated matrix elements with respect to
variations of Rg € {0.6,1.0} fm. The matrix elements
were found to be stable at the few percent level.

We also analyzed the sensitivity of the GT-AA ma-
trix elements to variation in the regulator function F(r)
defined as

1
(/R 0BT R R 1 °

F(r)y=1- (28)

for values of Ry, € {0.6,0.8} fm. We found a variation
of < 17% in the calculated isospin-changing matrix el-
ements of A =8-12 decays, a somewhat large variation
which arises from a delicate cancellation in the associated
GT-AA transition densities (see Sec. IV for explanation).
A detailed study focused on the cutoff dependence is be-
yond the scope of this work, and in what follows we re-
port the matrix elements obtained without the regulator
function given above. It would indeed be interesting to
reanalyze these systems using different nuclear Hamil-
tonians. This would allow one to assess the sensitiv-
ity to short-distance dynamics and to associate a model
dependence uncertainty to the calculations. In particu-
lar, Quantum Monte Carlo calculations based on chiral
two- and three-body potentials are now feasible [53-55],
which opens up the possibility of systematically and con-
sistently studying the sensitivity to cutoff variations in
both the nuclear Hamiltonian and Ov58-decay potentials.
Work along these lines is in progress.

IV. RESULTS

Before proceeding to the discussion of the results, we
emphasize that we use the value of the axial coupling
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FIG. 2. VMC calculations of the transition densities as-

sociated with the F, GT, and T operators—y_,_,(7a7;"),
Yucv(@a - ouTd ), and 3, (SasTa 7)), respectively—
for the °He—°Be (left panel) and '°He—'"Be decays (right
panel).

constant g4 = 1.2723(23) [28]. In fact, recent GFMC
studies on single-beta decay in A < 10 nuclei based one
the AV18+IL7 model adopted here, indicate that the
“ga-problem”—that is the systematic over-prediction of
single-beta Gamow-Teller matrix elements in simplified
nuclear calculations—can be resolved by correlation ef-
fects in the nuclear wave functions [29]. These findings
are limited to studies of matrix elements at zero momen-
tum transfer, whereas the average momentum transfer
in OvBp-decay matrix elements is of the order of ~ 100
MeV [25]. It remains to be determined how the “ga-
problem” propagates at intermediate values of momen-
tum transfer, and whether the microscopic picture of
the nucleus based on the “unquenched” nucleonic weak
couplings successfully explains the data in this energy
regime. Progress in this direction would be facilitated by
the acquisition of neutrino-nucleus scattering data, which
are scarce at moderated values of momentum transfer.
In Tables I and II, we list the calculated OvS3-decay
matrix elements in °He, 8He, 1°Be, 9He, and ?Be tran-
sitions. We identify two classes of transitions, namely
transitions in which the total isospin of the initial and
final states remains unchanged, i.e., AT = |T; — Ty| = 0,
and those in which the total isospin changes by two units,
i.e., AT = 2. The former involves isobaric analog states,
which is never the case in nuclear transitions considered
for the actual experiments. It is nevertheless interesting
to study these systems with the goal of benchmarking
different nuclear models and/or computational methods.
Transition densities between isobaric analog states are
characterized by the lack of nodes: this can be appre-
ciated in the left panel of Fig. 2 where we show results
for the He—5Be decay as a representative of this class.
Once the VMC nuclear wave function for, e.g. %He, is
determined, then that of ®Be is obtained from it by swap-

ping protons and neutrons. As a result, the initial and
final wave functions differ only in the third component
of the isospin, while their radial and spin dependence
is the same, implying a maximum overlap between the
two wave functions and the consequent lack of nodes
in the transition densities. In fact, evaluation of the
YachTa 7,7 operator in between these wave functions
gives one, i.e., the wave function normalization (this is
in case one neglects tiny contributions induced by the
isoscalar Coulomb term [56] which is different in the two
isobaric analog nuclei due to their different number of
protons). Similar considerations apply to the A = 10
transitions in this class. The ®He and ®Be* excited state
have the same spatial symmetry, predominantly a 'Sg-
[422], but with different T, component. In fact, they
both have an alpha-like core with S = T' = 0, whereas
the remaining two-nucleon pairs are two !Sg-(nn) dineu-
trons in ®He, and an equal mixture of two 'So-(np) T = 1
pairs, one 'Sg-(nn) dineutron and one 'Sy-(pp) diproton
in 8Be. Again, there is no change in the spatial symmetry
of the initial and final states.

AT = 2 transitions are especially interesting due to
their direct correspondence to the experimental cases.
As an example of this class, in the right panel of Fig. 2
we show the °He—1°Be transition densities associated
with the F, GT, and T operators, namely Z,Kb(TjT:'),
Yacp(Oa-opTi ), and Yo, (Sab i 7). Tespectively.
Here, the F and GT densities present nodes due to
the orthogonality between the dominant spatial symme-
tries of the initial [4222]=[a,(nn),(nn),(nn)] and final
[442]=[cv,r,(nn)] wave functions. Note that integrating
the F transition density (blue dots labeled with ‘F’ in
the figure) over dr gives zero, which follows from isospin-
conservation. Similarly, nodes are found in the F and GT
densities associated with the A = 8 and 12 transitions in
this class. In particular, the nodes are due to the orthog-
onality between the dominant spatial symmetries of the
initial [422]=[c,(nn),(nn)] ([4422]=[a,a,(nn),(nn)]) and
final [44]=[a,a] ([444]=[c,a,q]) states in the SHe—®Be
(12Be—12C) decay. In the remainder of this section we
will primarily focus our attention on AT = 2 transitions
in A =10 and 12, and just report the results obtained
for the A = 8 decay. In fact, ®Be presents a unique and
rich structure characterized by a strong two-a cluster in
both its ground state—that lies ~ 0.1 MeV above the
threshold for breakup into two a’s—and first two rota-
tional excited states of two « particles rotating about
each other [57, 58]. These features make this test case
less appealing for comparisons with decays relevant from
the experimental point of view.

A. Light Majorana neutrino exchange

In Table I, we report a breakdown of the tree-level
light Majorana-neutrino exchange potentials defined in
Egs. (7)—(9). The first three rows show the results for
transitions between isobaric analog states. In this case,
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FIG. 3. VMC calculations of the transition distributions
C*P(r) defined in Eq. (26) for the “He—%Be decay.

the absence of nodes implies that the F-v and GT-AA
contributions dominate the Ovgp-potentials. The GT-
AP and GT-PP components, which have pion-range,
steeply fall off for » 2 2 fm, and give, respectively, a
~ 20% and ~ 5% correction to the GT-v matrix ele-
ment. This can be appreciated from Fig. 3, which shows
that for 7 > 2 fm the total GT distribution C¢T* is very
well approximated by the AA component. The weak-
magnetic term GT-MM, which is a N2LO correction in
chiral EFT, is small, about 2%. Fig. 3 also shows that
the tensor matrix elements are negligible.

The results for the AT = 2 transitions are shown in
rows 4—6 of Table I. The most important feature of these
transitions is the presence of nodes, which causes the GT
and F densities, illustrated in the right panel of Fig. 2, to
change sign at about 2.5 fm. As a result, there is a large
cancellation for the F-v and GT-AA matrix elements,
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FIG. 4. VMC calculations of the transition distributions
C*P(r) defined in Eq. (26) for the *Be—"2C decay.

which causes these NMEs to be significantly smaller than
in the case of transitions involving isobaric analog states.
This is illustrated in the left panel of Fig. 4 for the
12Be—12C transition, where the region with r > 2.5 fm
reduces the GT-AA matrix element by 50%. The same
NMEs were compared in AT = 2 and AT = 0 transitions
of heavier systems, such as *®Ca—*®Ti, in Refs. [59, 60],
where a similar suppression of the NMEs in AT = 2
transitions was found. In contrast, the AP, PP and MM
components, which are pion- and short-range contribu-
tions, are much less affected by this cancellation, and
are therefore more important in the AT = 2 transitions.
Both of these effects can also be seen from Table I. For
example, in the '°He—19Be transition the AP, PP and
MM components are, respectively, 48%, 16% and 10% of
the GT-AA, and, while the GT-AA matrix element is 20
times smaller than in the SHe—%Be transition, the AP,
PP and MM matrix elements are only about a factor of
5 smaller. Table I also shows a partial cancellation be-
tween the GT-AP and GT-PP and GT-MM components,
which is a common feature of both AT =0 and AT =2
transitions. As a result we find that the GT-v matrix
element is always dominated by the GT-AA component.
In the case of transitions between isobaric analogues, the
GT-AA matrix element is 90% of the total GT-v contri-
bution, while in AT = 2 transitions, it is approximately
80%. A similar effect is observed in calculations of heav-
ier systems, such as 48Ca, *Ge, and *5Xe [30, 31, 61-63].
The T-MM contribution—a contact-like contribution—is
statistically zero in both AT = 0 and 2. This is a conse-
quence of the fact that the tensor operator S,; vanishes
in between nn-pairs in relative S-wave, which is the dom-
inant two-nucleon component at short distances.

The absolute size of the NMEs shows sizable variations
between different AT = 2 transitions. In particular, the
matrix elements increase by a factor of 2.5 between the
0He—19Be and ?Be—!2C transitions. This can be ap-
preciated from Fig. 5, where we show the GT-r and
F-v transition distributions in momentum space. While
the shape of the distributions is very similar in the two
transitions, the peak is significantly larger in 1?Be—12C.
This effect may be due, at least partially, to a large differ-
ence in the spatial extent of the relevant wave functions.
The '°He system is only a resonance, unstable against
breakup into ®He+42n by about 1 MeV. Here we have
employed a pseudo-bound (with an exponentially falling
density at long range) VMC wave function that is quite
diffuse, with a proton (neutron) rms radius of 1.95 (3.66)
fm. The 'Be, ?Be, and '2C nuclei are all bound sys-
tems, with VMC wave functions that have proton (neu-
tron) rms radii of 2.32 (2.50) fm, 2.43 (2.99) fm, and 2.48
(2.48) fm, respectively. GFMC calculations change these
radii by less than 5%. Thus, for the A = 10 decay, two
neutrons with an rms radius of 3.66 fm must be converted
to two protons at an rms radius of 2.32 fm, indicating a
small spatial overlap between the initial and final wave
functions and consequently relatively small matrix ele-
ments. In comparison, the A = 12 decay only requires



TABLE I. VMC calculations of the dimensionless matrix elements, defined in Eq. (16), relevant for light Majorana-neutrino
exchange. The first (second) three rows show the results for the AT = 0 (AT = 2) transitions (see text for explanation). For
comparison, the bottom five rows show the results of Refs. [30] and [31] for the heavy nuclei **Ca, "®Ge, and '**Xe. VMC

statistical errors (not reported in the table) are < 2%.

(T7) — (T%) F GT T
v AA AP PP MM v AP PP MM v | AA
SHe(1)—"Be(1) -1.502 [ 4.114 -0.692 0.164 0.103 3.688 [ -0.032 0.010 -0.004 -0.025 [ -0.099
$He(2)—5Be*(2) -3.310 | 3.132 -0.548 0.134 0.082 2.798 | -0.009 0.000 0.000 -0.009 | -0.060
10Be(1)—'0C(1) -1.898 | 4.326 -0.834 0.216 0.139 3.848 | -0.097 0.032 -0.012 -0.078 | -0.255
¥He(2)—"Be(0) -0.097 [ 0.152 -0.117 0.042 0.030 0.108 [ -0.026 0.010 -0.004 -0.021 [ -0.058
10He(3)—=1"Be(1) -0.078 | 0.196 -0.094 0.032 0.020 0.156 | -0.032 0.012 -0.004 -0.026 | -0.074
12Be(2)—12C(0) -0.192 | 0.500 -0.240 0.084 0.056 0.400 | -0.066 0.024 -0.010 -0.052 | -0.142
BCa —™Ti 30] [ -0.25 [ 1.08 -0.38 0.13 0.10 0.93 [ -0.08 0.03 -0.01 -0.06 -
Ge —"0Se [30] | -0.59 | 3.15 -0.94 030 022 273 |-001 000 0.00 -0.01 -
[31] | -1.74 | 5.48 -2.02 0.66 050 4.62 | -0.35 0.10 -0.04 -0.29 -
136Xe —»13Ba [30] | -0.54 | 245 -0.79 025 0.19 2.10 | 0.01 -0.01 0.00  0.00 —
[31] | -0.89 | 3.17 -1.19 039 031 267 | -0.28 0.09 -0.03 -0.22 -

a shift from 2.99 fm to 2.48 fm, which leads to a signifi-
cantly larger spatial overlap, and larger matrix elements.
This last transition in A = 12 is possibly the test case
that is most like Ov33 decays in nuclei of experimental
interest.

To the best of our knowledge, the first microscopic cal-
culations of transition distributions in A = 8 and 10 nu-
clei have been reported in Ref. [64] within the No-core
shell model framework. In that reference, the authors
were interested in testing the validity of the Lee-Suzuki
mappings and related techniques to construct effective
two-body operators, rather than having results based on
realistic wave functions. It is nevertheless interesting to
compare the two calculations. We find that our NMEs
based on VMC wave functions are smaller by a factor of
~ 40% with respect to those reported in Ref. [64]. We
think that this discrepancy is due to the capability of the
VMC wave functions of capturing the diffuseness of the
8He and °He systems. This makes the overlaps with the
final 8Be and “Be smaller with respect to those obtained
in the No-core shell model which instead utilize the same
oscillator well for both the initial and final states.

As a comparison, in the last five rows of Table I we
show the shell model [30, 61, 65] and proton-neutron
quasiparticle random-phase approximation [31] for 48Ca,
"6Ge and '35Xe. Results form other many-body methods
differ by a factor of 2-3 [25]. Although the absolute sizes
of these NMEs are larger by a factor of a few than those
of the AT = 2 transitions calculated here, the relative
factors between the different NMEs seem to agree fairly
well (see also Table III), indicating that the relative size
of long- and short-distant physics is independent of the
particular nuclear systems considered.

It is interesting to note that the R4 normalization
factor introduced in Egs. (17)—(19) can induce some
misjudgment when comparing results from different nu-
clei. In fact, if we multiply the NMEs by 1/R4 (with
Rs = 2.40 fm, Rjo = 2.58 fm, and Ry = 2.75 fm) we

find a remarkably good agreement between short- and
pion-range potentials evaluated in A = 12 and A = 48
with R4s = 4.36 fm (and, to a lesser extent, A = 76 and
A =136 with R7¢ = 5.08 fm and Ry36 = 6.17 fm) decays.
This could be due to the fact that short-range operators
depend on the nuclear density which is roughly the same
in all nuclei.

The last column of Table I reports our results for the
matrix element T-AA, which does not contribute in the
case of light Majorana-neutrino exchange, but it is rel-
evant in the presence of right-handed charged-currents
[22, 44, 45]. This matrix element is not often computed
in the literature, and in Ref. [22] bounds on the right-

handed operator C\(,?{ were obtained setting My 44 = 0.
If we naively assume that the ratio between the GT-AA
and T-A A matrix elements is the same in heavy and light
nuclei, a T-AA matrix element of the size reported in Ta-
ble I would affect the bounds on C'\(,Gr){ at the 20% level.

The results discussed in this section, summarized
in Table I, deal mostly with NMEs involved in light
Majorana-neutrino exchange. However, as noted in Ref.
[22], linear combinations of the same NMEs determine
additional long-range contributions to Ov 53 mediated by
dimension-six and -seven LNV semileptonic operators,
that are not proportional to mgg.

B. LNV from short-distance

We now discuss the neutrino potentials induced by
dimension-nine operators, which do not involve neutrino
exchange, but are pion- or short-range. Our results are
summarized in Table II, where the first and middle three
rows give the AT = 0 and AT = 2 transitions, respec-
tively. For comparison, the bottom three rows give the
results of Ref. [30] for the corresponding NMEs in heavier
systems.

By power counting, with the definitions in Eqs. (7)—(9)



TABLE II. VMC results for the dimensionless matrix elements, defined in Eq. (16

), relevant for the contributions of the

dimension-nine operators in Eq. (2). For comparison, we also show the total matrix elements for the light Majorana neutrino
mechanism. The first (second) three rows show the results for the AT = 0 (AT = 2) transitions (see text for explanation). For
comparison, the bottom three rows show the results of [30] for the heavy nuclei **Ca, "®Ce, and '**Xe. VMC statistical errors
(not reported in the table) are < 2%.

(T3) — (I7) F GT T
v NN v s TN NN v e TN
®He(1)—°Be(1) |-1.502 -0.586 | 3.688 -0.160 0.354 1.740 [ -0.025 -0.009 -0.040
5He(2)—Be*(2) | -3.310 -0.532 | 2.798 -0.128 0.276 1.414 | -0.009 0.000 0.015
0Be(1)—10C( -1.898 -0.876 | 3.848 -0.218 0.432 2.588 | -0.078 -0.032 -0.148
8He(2)—%Be(0) [-0.097 -0.198 [ 0.108 -0.044 0.058 0.596 | -0.021 -0.010 -0.053
19He(3)—='°Be(1) | -0.078 -0.134 | 0.156 -0.032 0.046 0.402 | -0.026 -0.012 -0.057
12Be(2)—'2C(0) | -0.192 -0.370 | 0.400 -0.084 0.120 1.106 | -0.052 -0.022 -0.122
BCa —™Ti -0.25 -0.64 | 093 -0.12 0.18 2.11 [-0.060 -0.026 -0.153
"Ge —7Se -0.59 -1.46 | 273 -0.31 049 4.87 |-0.010 0.00 -0.026
136Xe »1%Ba | -0.54 -1.28 | 2.1 -0.26 0.42 425 |-0.010 0.00 0.026

TABLE III. The Table shows the same matrix elements as Table II, relevant for dimension-nine contributions, now normalized
to the GT-AA (GT-mN) matrix element in the left (right) panel. For comparison, the results of [30, 31] for **Ca, "®Ge and

136X e are shown.

(T;) — (Ty) F GT F GT
v NN AA v am =wN NN| mm ©N
8He(2)—®Be(0) -0.63 -1.37| 1 0.71 -0.28 0.38 3.38]-0.76 1
10 He(3)—=1Be(1) -0.39 -0.71| 1 0.79 -0.16 0.23 2.86|-0.68 1
12Be(2)—=12C(0) -0.38 -0.77| 1 0.80 -0.17 0.24 3.08/-0.70 1
BCa —*Ti  [30]]-0.23 -0.60| 1 0.86 -0.11 0.17 3.55[-0.68 1
Ge —"%Se  [30]]-0.19 -0.46| 1 0.87 -0.10 0.15 2.97]-0.63 1
[31]]-0.32 -0.63| 1 0.84 -0.12 0.19 3.34|-0.66 1
136Xe —»1%Ba  [30][-0.22 -0.52[ 1 0.86 -0.10 0.17 3.06[-0.59 1
[31]]-0.28 -0.48| 1 0.84 -0.11 0.16 3.03|-0.68 1

and (12), one would expect all the NMEs in Table II to
be of similar size. In the case of the AT = 0 transitions,
however, the lack of nodes is responsible for the domi-
nance of the GT-v and F-v NMEs over the other matrix
elements listed in Table II. The GT-7m and GT-7 N con-
tributions are, respectively, only ~ 5% and ~ 10% of the
GT-v matrix element. As these NMEs are proportional
to GT-PP and GT-AP matrix elements, this is what we
would expect from the results in Table I. In Figs. 3 and 4
we can see how the transition distributions associated
with the pion-exchange operators 7w and wN start to
die off at ~ 1 fm, which is expected since the range of
these operators is approximately set by 1/m, ~ 1.4 fm.
We also note that T-like operators are highly suppressed,
as can be seen from the figures as well as from Table II.
As discussed in the previous session, this is a consequence
of the fact that the tensor operator S,; vanishes in be-
tween nn-pairs in relative S-wave, which is the dominant
two-nucleon component at short distances.

For the AT = 2 class, we show in Fig. 4 the calculated
distributions of the ?Be—!2C transition. Due to the
characteristic node in the GT transition densities and
the ensuing cancellation, the GT-rw (GT-7mN) matrix
element of this class is found to be as large as ~ 30%

(~ 40%) of the GT-v contribution (see Table II). This is
(numerically) consistent with the results for the GT-PP
and GT-AP matrix elements of Table I. One can again
see that the GT-mm and GT-wN distributions start to
fall off around 1.1 fm, and that the T-like operators are
highly suppressed for the AT = 2 transitions as well.
From comparing the last six rows of Table II one can see
that the absolute sizes of the matrix elements calculated
here are smaller by a factor of a few than those calcu-
lated for heavier systems. In Table III we show the F
and GT matrix elements normalized to the GT-AA and
GT-wN components, including, for heavy system, results
obtained with two many-body methods, the shell-model
[30] and the quasiparticle random phase approximation
[31]. From the left panel we see that, in a given method,
the relative importance of long-, pion- and short-range
potentials is fairly constant, and the hierarchy of matrix
elements is the same for heavy and light nuclei. For pion-
and short-distance matrix elements, we observe an even
better agreement. As illustrated in the right panel, af-
ter normalizing to GT-wN, the normalized short-range
matrix elements of light and heavy nuclei, and of heavy
nuclei computed with different methods, are consistent
at the 20% level or better.
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FIG. 5. The GT-v, F-v, GT-mw, and GT-mN distributions
in momentum space for the 1°He—'"Be and ?Be—'2C de-
cays. Solid and dashed lines are obtained, respectively, with
and without the inclusion of the momentum dependence in
nucleonic form factors. See text for explanation.

Finally, to obtain the short-range matrix elements GT-
NN and F-NN we used the regularization of the delta
function potential in Eq. (27). If we instead regulate the
divergence by using a dipole form factor, either gy (q?)
or ga(q?), the NMEs vary by no more than a few per-
cent. The relation GT-NN= —3 F-NN is very accurately
satisfied by the matrix elements in Tab. II.

C. Sensitivity to form factors and correlations

We now turn our attention to the sensitivity of the ma-
trix elements to variations in the nucleonic form factors
as well as variations in the nuclear wave functions’ corre-
lations. To this end we study in more detail the AT = 2
transition '9He—'Be and report our results in Table IV.
The findings discussed in this section in relation to the
A = 10 decay apply to the other AT = 2 transitions
considered in the present work as well.

The neutrino potentials in Egs. (7)—(9) include the
vector and axial form factors gy (q?) and ga(q?), whose
momentum dependence is an N2LO correction in chiral
EFT. To study the impact of these form factors, we re-
peated the calculation of the NMEs setting gy (q?) =
1 and ga(q?) = ga. We report the results for the
10He—10Be transition in the second row of Table IV. For
the F-v and GT-v matrix elements the effect of turning
off the axial and vector form factors is mild, resulting
in at most a 10% increase. For the T-AP and the T-PP
components, this effect appears to be larger, ~ 20%-30%.
In AT = 2 transitions the variation is magnified by the
cancellations that affect the F and GT-AA matrix ele-
ments. For comparison, in AT = 0 transitions the effect
of turning off the momentum dependence of gy _a(q?) is
less than 5%.
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FIG. 6. The left (right) panel shows the GT-AA distribution
in r-space (g-space) for the 10He—1%Be transition, with and
without “one-pion-exchange-like” correlations in the nuclear
wave functions. See text for explanation.

For the weak-magnetic contributions GT-MM, some
care has to be taken when removing the form factors.
As evident from Egs. (A5) and (A6), in the absence of
gV(qz), both Vor mar and Vp aras are singular at » — 0.
To compute the GT-MM matrix element in the second
line of Table IV we used the regularization of the delta
function in Eq. (27), with R = 0.6 fm. Varying R be-
tween 0.6 and 0.8 fm does not have an appreciable effect
on the result. The good agreement for the values of GT-
MM in the first and second line of Table IV indicates that
the result does not strongly depend on the way the region
of large g2 is regulated. For the T-MM matrix element,
the second line of Table IV is obtained by naively using
the potential Vi arar(r) in Eq. (A6). Here the divergence
at 7 = 0 does not spoil the evaluation of the associated
matrix element. Again this is due to the fact that the
tensor operator T (Sg) gives zero on pairs in relative
S-wave. In fact, the 777, is selecting out valence (nn)
pairs in the initial state. These are largely in a 1.S; rela-
tive state, with some 3Py components which are however
zero at short-range due to an angular momentum barrier.

While in Table IV we only report results for the impact
of form factors on the light neutrino-exchange potentials,
the same features are shared by matrix elements of the
V.r and V,n potentials, as they are proportional to to
the AP and PP components in IV. The same holds for
the Viyn potential, which is analogous to GT-MM. In
particular, changing the regularization of the delta func-
tion potential from Eq. (27) to a dipole form factor, ei-
ther gy (q?) or ga(q?) has little effect on the F-NN and
GT-NN matrix elements.

The impact of the axial and vector form factors on
the 1"He—19Be and 2Be—'°C transitions is illustrated
in Fig. 5. The solid and dashed lines denote the distri-
butions C(q) defined in Eq. (26), with and without the
dipole form factors for gy a(q?). We see that the dipole



form factors start to have an effect at around ¢ ~ 200
MeV, and cut off the distributions for ¢ 2 500 MeV. The
effect is similar for the F-v and GT-v, which are mostly
long-distance, and the pion-range GT-m7m and GT-7 N
matrix elements, which are induced by heavy LNV new
physics.

In the third row of Table IV, we report results ob-
tained by regulating the matrix elements with the F(r)
function defined in Eq. (28) with Ry = 0.7 fm. We stud-
ied the sensitivity of our results with respect to variation
of Ry, € {0.6,0.8} fm and found that the most affected
matrix elements are those characterized by the presence
of the node. For example, by comparing the second and
the third rows in the table we can see that GT-v and
F-v undergo a ~ 18% and ~ 13% variation, respectively,
whereas T-v is essentially unaffected by the regulator
function. This is because the T-like operators are already
zero at short-distances.

Finally, in the forth row of Table IV we report re-
sults obtained by artificially turning off the “one-pion-
exchange-like” correlation operators in the nuclear wave
functions as discussed in Sec. III. Turning the correla-
tions off has a dramatic effect on the tensor matrix ele-
ments, which become statistically equal to zero. The GT-
v and F-v magnitudes increase by ~ 10% with respect to
the correlated results given in the first row of the table.
The effect of the “one-pion-exchange-like” correlations is
represented in Fig. 6, where the blue triangles (solid line)
in the left (right) panel represent the r-space (g-space)
GT-AA transition distribution obtained by turning off
the correlations to be compared with the red dots (solid
line) obtained with the correlated wave function.

In closing this section, we reiterate that OvS3 matrix
elements involve on average values of momentum transfer
q of the order of hundreds of MeVs. This can be seen, for
example, in Fig. 5 where the momentum distributions !
in both the A = 10 and 12 decays peak at ~ 200 MeV.

D. Light neutrino exchange beyond leading order

Beyond leading order, several new contributions to
light Majorana-neutrino exchange arise. At N2LO in the
Weinberg counting, these consist of corrections to the
single-nucleon currents as well as contributions to a gen-
uine two-body potential that cannot be absorbed by the
one-body weak currents [46]. In addition, at N3LO there
are two-body effects in the weak currents (see Refs. [41-
43]), which lead to three-nucleon potentials that we will
not consider further here. Instead, the N?LO two-body

1 We point out that with our definition of GT-AA potential given
in Eq. (11), the associated g-space transition distribution does
not go to zero at ¢ = 0 (see Figs. 5 and 6). The different behavior
at ¢ = 0 that is found in the literature [66] is due to the different
definition of GT-AA potential, which in the latter case includes
the so-called closure energy [25].
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potentials are induced by loop diagrams involving the
neutrino, as well as counterterms that appear at the same
order. The corrections to the one-body currents are often
included in the Ov3g literature through the form factors
in Eq. (10), while the two-body contributions have so far
not been implemented in nuclear calculations. Here we
investigate the impact of this second type of corrections,
which appears at the same order as the effect of the form
factors discussed in Section IV C.

The N2LO correction to the neutrino-exchange poten-
tial of Eq. (6) was derived in Ref. [46] and can be written
as

2
Voo =17 (V(“ P v L veh) pvied i Zx - )
us
(29)

where Vé‘{}b) (V(a b)) arises from loops with two insertions
of the vector (axial) current, Vs ib generated by loops in-

volving ultrasoft neutrinos, and VC :b) captures the coun-
terterm contributions. The latter term involves three
counterterms which absorb the renormalization scale (u)
dependence of divergent loop diagrams. We write these
pieces as follows 2

a,b ) T a,b
v = (69V +3Lﬂ) ViR
+(1-g3)L )VC('C;’wa

3 a,
+ (91]/\”\/ + g(l —g3)°L ) VC(‘Tb])VN , (30)

+ (g7N

where L, are the coun-
terterms.

It should be noted that the potential in Eq. (29) does
not capture the complete N2LO correction. Firstly, the
loops involving ultrasoft neutrinos (captured by Vi) are
divergent and induce the dependence on the renormal-
ization scale pys in Eq. (29). This py.s dependence is
canceled by ultrasoft contributions to the Ovf3S5 ampli-
tude. However, the calculation of these contributions
requires knowledge of the intermediate states [46] and
is beyond the scope of the current work. Secondly, al-
though ¢J™ can be estimated through a connection to
electromagnetic corrections to 77 interactions [67], lead-
ing to [46] g7 (u = m,) = —7.6, the counterterms g7~
and gV are currently unknown. Without these miss-
ing pieces we do not have full control over the complete
N2LO correction. Nevertheless, a rough estimate of the
size of the counterterm and the ultrasoft contributions
can be obtained by varying the renormalization scales,
w and s, respectively, such that the logarithms change

=In& L5 and g] ,g,’jN, and g,J/VN

2 With these definitions, Vvv,aa and Vs correspond to Vyy, a4
and Va4 of Ref. [46] with L. = 0, while Vo includes Ver as
well as the L, pieces of Viyy, 44. We neglected the contribution
of the contact interaction, C, everywhere.



12

TABLE IV. VMC calculations of the dimensionless matrix elements relevant for light Majorana-neutrino exchange, defined
in Egs. (A2)—(A4), for the '°He—'"Be transition. The first row repeats the results of Table I, which include both the form
factors and correlations. The results reported in the second row neglect the momentum dependence in the axial, vector and
pseudoscalar nucleonic form factors. Results in the third row are obtained including the regulator given in Eq. (28). Results
in the forth row are obtained turning off the “one-pion-exchange-like” correlations in the nuclear wave functions (see text for
explanation). VMC statistical errors (not reported in the table) are < 2%.

(T7) — (T%) F GT T
v AA AP PP MM v AP PP MM v
e (3)—""Be(1) | -0.078 [ 0.196 -0.094 0.032 0.020 0.156 | -0.032 0.012 -0.004 -0.026
no form factors -0.088 | 0.218 -0.098 0.034 0.020 0.172 | -0.042 0.016 -0.006 -0.032
F(r), R = 0.7 fm | -0.076 | 0.180 -0.086 0.028 0.013 0.141 | -0.041 0.015 -0.006 -0.033
no correlations -0.086 | 0.222 -0.106 0.036 0.022 0.172 | -0.004 0.002 0.000 -0.004

by O(1) (this corresponds to Naive Dimensional Analysis
(NDA)).

With the above caveats in mind, we find in the case of
the 19He—'"Be transition

My _3  Maa 2
=71-1 =-79-1
M, 71107 M, 791075
MCT T -3 MCT TN -3
e U T | 2oL 381
M, oty 8107
Mcr, NN o My -2
——— " —=14-10 — =-24-10 31
L . SCH

where M, denotes the matrix element of the potential in
Eq. (7), M, = —Mp,, + g4 (Mgr,, + Mr,,) which can be
read from Table I. For the '“He—!Be transition, one
has M, ~ 0.29. It should be noted that the potential in
Eq. (29) has a divergence for ¢ — 0o (or r — 0), making
it rather sensitive to the way short-distance scales are
regulated. Here we naively regulated this divergence by
multiplying all terms by ¢%(q?)/g%.

The sizes of the different pieces in Eq. (31) vary from
the sub-percent level to O(10%) of the LO matrix ele-
ment, M, which is consistent with the expected size of
N2LO corrections. As a result, some of the larger terms
in Eq. (31) are of the same order of magnitude as the
effects of including the form factors. NDA estimates of
the counterterms do not alter this conclusion. However,
one should note that the NDA scaling of gV is far from
obvious in the context of chiral EFT. As discussed in
Ref. [46], further work to determine the scaling of g
and its possible enhancement is needed.

V. CONCLUSION

The nuclear ab initio approach aims at describing the
widest range of nuclear properties in terms of interactions
occurring between nucleons inside the nucleus. In this
microscopic picture, nucleons interact with each other via
two- and three-body interactions, and with external elec-
troweak probes via couplings to individual nucleons and
to nucleon-pairs. Albeit limited to light nuclei (A < 12),
Quantum Monte Carlo calculations based on the AV18
two-body and IL7 three-body interactions successfully

explain available experimental data in a broad energy
range, from the keV regime relevant to astrophysics stud-
ies to the GeV regime where short-range correlations be-
come predominant [32-34]. These studies yield a rather
complex picture of the nucleus with many-body correla-
tions in both the nuclear wave functions and electroweak
currents playing an important role in reaching agreement
with the data.

In this work, we used the ab initio approach supported
by the computationally accurate Quantum Monte Carlo
methods to study OvfSf matrix elements in A = 6-12
nuclei. While these systems are not relevant from the
experimental point of view, they are nevertheless inter-
esting and provide us with an extremely useful set of
test cases. In fact, the Ov 30 rate depends on matrix ele-
ments that are not experimentally accessible and need
to be estimated theoretically. At present, the calcu-
lated nuclear matrix elements of experimental interest
(A > 48) have large theoretical uncertainties which com-
plicate the interpretation of any future Ov 3 observation
or lack thereof. The uncertainties on the calculated ma-
trix elements are primarily attributable to the fact that
for larger nuclear systems, in order for the calculations to
be computationally feasible, one has to (drastically) ap-
proximate the ab initio framework, by, e.g., leaving out
correlations and/or truncate the model space.

It is in this context that this study on Ov3S in light
nuclei finds its relevance. For a start, we provided a set
of VMC calculations that can be used for benchmark-
ing purposes. We have presented results for the nuclear
matrix elements relevant for the light Majorana-neutrino
exchange mechanism (Table I) as well as for TeV-scale
mechanisms of lepton-number violation (Table IT), and
we have studied their relative size (see Table III).

Our results for the AT = 2 transitions show the fol-
lowing features: (i) The matrix elements for A = 10,12
are between an order of magnitude and a factor of
two smaller compared to shell model results for systems
with A = 48,76,136. The bulk of this difference can
be attributed to the normalization factor R4 entering
Egs. (17)—(19). (ii) The difference in the A = 10 and
A = 12 matrix elements is correlated with the height
of the peaks in their associated transition densities (see
Fig. 5) and it is due to the different spatial overlaps be-



tween an initial diffuse neutron distribution and a final
compact proton distribution in the case of the A = 10
transition, and between two compact initial neutron and
final proton distributions in the A = 12 transition. (iii)
As illustrated in Table III, the ratios of different matrix
elements to the dominant Gamow-Teller one (GT-AA)
are, in a given method, roughly independent of A. We
find that for A = 10,12, the ratios agree at the 5% level,
while for A = 48,76,136 they agree at the 15% level or
better, and are consistent with the A = 10,12 results
at the 30% level. However, if we normalize the GT-like
matrix elements by a short-range contribution, e.g., GT-
7N, then the normalized short-range matrix elements are
consistent at the ~ 20% level or better in all the consid-
ered nuclear transitions.

Our results will help the community assess the ade-
quacy of the various methods used to estimate Ov53 ma-
trix elements, and identify the key dynamical features
that need to be retained in more approximate many-
body computational methods. This is especially relevant
for benchmarking those methods that can be extended
to the heavier systems of experimental interest. In this
spirit, we have studied the effect of artificially turning off
correlations in the VMC nuclear wave functions, finding
a ~ 10% increase in the calculated nuclear matrix ele-
ments for the light Majorana neutrino exchange mech-
anism. This corresponds to having to “quench” g4 by
~ 0.95 to accommodate for correlation effects. On the
other hand, shell model calculations of single-beta de-
cays [68] indicate that the required “quenching” of g
in, e.g., the '°C weak transition, is ~ 0.83. These find-
ings may indicate that the g4 “quenching” required in
calculations based on more approximated nuclear mod-
els (for A > 12 nuclei) is larger in single beta decay than
in neutrinoless double beta decays.

Within the VMC approach, we have also explored the
impact of using different forms for the transition opera-
tors mediating Ov 33 — another potential source of uncer-
tainty in the matrix elements of physical interest. In par-
ticular, for the light Majorana-neutrino exchange mech-
anism, following the chiral EFT approach of Ref. [46]
we have estimated the impact of N2LO corrections (in
the Weinberg power counting) on the °He—1%Be transi-
tion. The “factorizable” N2LO effects captured by nu-
cleon form factors impact the matrix elements at the
10% level (see Table IV). The non-factorizable genuinely
two-body effects are discussed in Section IVD. While
we do not have yet full control over the N2LO ampli-
tude (counterterms and ultrasoft contributions are not
yet known), our results suggest that the non-factorizable
effects may lead to O(10%) corrections, consistently with
the expectations of the chiral power counting. Countert-
erms of the size implied by naive dimensional analysis
would not change this conclusion. One should keep in
mind, however, that the NDA scaling of the four-nucleon
coupling gV¥ cannot be taken for granted [46], and fur-
ther work to check the consistency of Weinberg power
counting for Ov33 and to determine the scaling of gVV
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is needed. In a similar vein, future work should focus
on a more consistent chiral EFT approach, in which the
nuclear wave functions are determined from a chiral po-
tential. In addition, it would be interesting to examine
the three-body potentials induced by chiral EFT two-
body axial currents [69, 70]. Work along these lines is in
progress.
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Appendix A: Neutrino potentials in coordinate space

Neglecting the momentum dependence of the axial and
vector form factors, the potentials in coordinate space
read

V, = mﬁT;rT;' (1 x 1 Vi (z)

—ga0a- o, Vir(z) — 9% Sa VTV(Z)> ;
Var = =17 (00 04 Varan(2) + Sab Vrxe(2))
Van = —ma7i 5 (00 00 Varan(z) + Sa Vi an(2))

VNN =Ma 77 Ve nn(2) | (A1)
where Sy (F) =30, T oy T — 0,0, and we have intro-
duced z = rm,, with r indicating the distance between
particles a and b. The light Majorana neutrino exchange

potentials V£, VA, and V are

1
VF,V(Z) - R7 (A2)
Ver,v(2) = Var,aa(z) + Var,ap(z)
+ Var,pp(2) + Var,mm (2) (A3)

VT’V(Z) = VT,AP(Z) + VT’pP(Z) + VT’]\/[M(Z) 7(A4)



where the GT functions are given by

1 e~
\% = — Vi = —
GT,AA(z) Az ) GT,AP(Z) 61z )
e *(z—2)
V. -7
ar.pp(2) 24m2
(14 k1)2m2
Varmm(z) = W(S(B)(mﬂr) . (A5)
The tensor functions are
_ 1 2 —z 2
Vr.ap(z) = 1S 2- 3¢ (B+3z+27)) ,
e (1+2)
Vr.pp(2) = 241z
(1+r1)2mZ 3
= s . A
Vi a (2) 12¢3m%,  4nz3 (A6)
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The pion- and short-range potentials induced by
dimension-nine AL = 2 operators are

Ver - (2) = =Var,pp Vi an(2) = =Vppp
1 e *(3+ 32+ 2?%)
Voran(z) = _§VGT,AP Vran(z) = 19728

Vi vy = Var.an = 6% (mqr).
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