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We develop a formalism for calculating the distribution of the axial quadrupole operator in the
laboratory frame within the rotationally invariant framework of the configuration-interaction shell
model. The calculation is carried out using a finite-temperature auxiliary-field quantum Monte
Carlo method. We apply this formalism to isotope chains of even-mass samarium and neodymium
nuclei, and show that the quadrupole distribution provides a model-independent signature of nuclear
deformation. Two technical advances are described that greatly facilitate the calculations. The
first is to exploit the rotational invariance of the underlying Hamiltonian to reduce the statistical
fluctuations in the Monte Carlo calculations. The second is to determine quadruple invariants
from the distribution of the axial quadrupole operator. This allows us to extract effective values
of the intrinsic quadrupole shape parameters without invoking an intrinsic frame or a mean-field
approximation.

PACS numbers: 21.60.Cs, 21.60.Ka, 21.10.Ma, 02.70.Ss

I. INTRODUCTION

Although the Hamiltonian of an atomic nucleus is rota-
tionally invariant, open-shell nuclei often exhibit features
that are qualitatively well-described by simple models in
which the nucleus is deformed rather than spherical. In
particular, well-deformed nuclei exhibit rotational bands
of energy levels consistent with the model of an axially
symmetric rigid rotor [1].

Deformation is typically introduced through a mean-
field approximation that breaks the rotational symmetry
of the underlying Hamiltonian. For instance, the axial
quadrupole operator Q̂20, which measures quadrupole de-
formation, acquires a nonzero expectation in the solution
to the Hartree-Fock (HF) or Hartree-Fock-Bogoliubov
(HFB) equations for deformed nuclei. However, the ex-

act expectation values of the quadrupole tensor Q̂2µ in

a thermal ensemble, 〈Q̂2µ〉 = Tr(e−βĤQ̂2µ)/Tr(e
−βĤ)

where β = 1/T is the inverse temperature, are always
zero for a nucleus described by a rotationally invariant
Hamiltonian [2]. Because atomic nuclei do exhibit sig-
natures of deformation, yet they are described by a ro-
tationally invariant Hamiltonian, it is of interest to be
able to extract information about nuclear deformation
within a framework that preserves rotational invariance
and without invoking a mean-field approximation.

In Ref. [3] we introduced a method to extract signa-
tures of nuclear deformation from auxiliary-field quan-
tum Monte Carlo (AFMC) simulations in the frame-
work of the spherical configuration-interaction (CI) shell
model. The method works by examining the finite-
temperature distributions of the axial quadrupole oper-
ator Q̂20 in the laboratory frame. Here we expand upon
the details of the method, describing the calculation of
this distribution and how to overcome an equilibration
and decorrelation problem for deformed nuclei. Our cur-
rent methodology was demonstrated in Ref. [3] for the

spherical nucleus 148Sm and the deformed nucleus 154Sm.
Here we extend the applications to isotope chains of even-
mass samarium and neodymium nuclei which exhibit a
crossover from spherical to deformed shapes.

We use quadrupole invariants [4, 5], defined in the
framework of the CI shell model, to extract information
on the effective intrinsic quadrupole deformation. This
aspect is independent of the method used to determine
the invariants. For nuclei lighter than the ones consid-
ered here, the CI shell model has also been successfully
employed. See Refs. [6, 7] for recent examples and for
other references cited therein. We note the AFMC has
been previously applied to calculate intrinsic shape dis-
tributions [8], but there an ad hoc prescription was used
for extracting shape information.

The outline of this paper is as follows. In Sec. II we re-
view briefly the finite-temperature AFMC method. In
Sec. III, we discuss the formalism for projecting onto
the axial quadrupole operator in order to calculate its
lab-frame finite-temperature distribution using AFMC.
Furthermore, we present an angle-averaging method to
help equilibrate this distribution and reduce the decor-
relation length in its sampling. In Sec. IV we apply the
method to the deformed nucleus 162Dy and to two iso-
tope chains of lanthanide nuclei in which we observe a
crossover from spherical to deformed behavior. We com-
pare our AFMC results with the finite-temperature HFB
mean-field approximation [9, 10]. In Sec. V, we discuss
low-order quadruple invariants and their relation to the
moments of the axial quadrupole operator in the labora-
tory frame. These invariants are used to extract effective
intrinsic quadrupole deformation parameters in the rota-
tionally invariant framework of the CI shell model, with-
out the use of a mean-field approximation. We conclude
with a summary and outlook in Sec. VI. Some of the tech-
nical details are discussed in the Appendices. Finally, the
data files containing the AFMC and HFB results pre-
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sented in this work are included in the Supplementary
Material depository of this article.

II. AUXILIARY-FIELD MONTE CARLO

METHOD

In this section we briefly review the AFMC method,
also known as shell model Monte Carlo (SMMC) in the
context of the nuclear shell model [11–13]. For a nucleus
at a finite temperature T , we consider its imaginary-time

propagator e−βĤ , which describes the Gibbs ensemble at
inverse temperature β = 1/T for a Hamiltonian Ĥ .1 The
AFMC method is based on the Hubbard-Stratonovich
transformation [14], in which the Gibbs propagator e−βĤ

is decomposed into a superposition of imaginary-time
evolution operators Ûσ of non-interacting nucleons

e−βĤ =

∫

D[σ] GσÛσ , (1)

where Gσ is a Gaussian weight and σ are auxiliary fields
that depend on imaginary time τ (0 ≤ τ ≤ β).

The thermal expectation value of an observable Ô is
then given by

〈Ô〉 = Tr (Ôe−βĤ)

Tr (e−βĤ)
=

∫

D[σ]Gσ〈Ô〉σTr Ûσ
∫

D[σ]GσTr Ûσ

, (2)

where 〈Ô〉σ ≡ Tr (ÔÛσ)/Tr Ûσ is the expectation value of

Ô for non-interacting particles in external auxiliary fields
σ(τ).
Grand-canonical traces can be evaluated by reducing

them to quantities in the single-particle space. For ex-
ample, the grand-canonical partition function for a given
configuration of the fields σ is

Tr Ûσ = det(1+Uσ) , (3)

whereUσ is the matrix representation of Ûσ in the single-
particle space.
The Monte Carlo sampling of the fields σ is carried out

using the positive-definite weight function

Wσ ≡ Gσ|Tr Ûσ| . (4)

We define the W -weighted average of a quantity Xσ that
depends on the auxiliary-field configuration σ by

〈Xσ〉W ≡
∫

D[σ]WσXσΦσ
∫

D[σ]WσΦσ
, (5)

where

Φσ ≡ Tr Uσ/|Tr Uσ| (6)

1 We will use the circumflex to denote operators in the many-

particle Fock space.

is the Monte Carlo sign function. With this definition,
the thermal expectation of an observable Ô can be writ-
ten as

〈Ô〉 =
〈

Tr(ÔÛσ)/TrÛσ

〉

W
. (7)

We can also carry out projections on conserved one-
body observables, such as particle number [15, 16] and
total angular momentum [17]. In particular, the canon-

ical partition TrAÛσ for fixed particle number A can be
calculated by the discrete Fourier transform

TrAUσ =
e−βµA

Ns

Ns
∑

m=1

e−iχmA det
(

1+ eiχmeβµUσ

)

,(8)

where Ns is the number of single-particle orbitals, χm =
2πm/Ns (m = 1, . . . , Ns) are quadrature points and µ is
a chemical potential introduced to stabilize the numerical
evaluation of the Fourier sum.
In practice, we always work in the canonical ensemble

and calculate the expectation values of observables at
fixed proton and neutron numbers, i.e., A = (Z,N). We
then replace the traces in Eqs. (2,4-7) by canonical traces,
i.e., Tr → TrA.

III. PROJECTION ON THE AXIAL

QUADRUPOLE OPERATOR Q̂20 IN THE

LABORATORY FRAME

A. Projection formalism

The probability distribution of the axial quadrupole
operator Q̂20 =

∑

i

(

2z2i − x2i − y2i
)

at inverse tempera-
ture β is defined by

P (q) = Tr[δ(Q̂20 − q)e−βĤ ]/Tre−βĤ , (9)

where q ≡ q20 and δ(Q̂20−q) projects onto the eigenspace
corresponding to eigenvalue q of Q̂20. Using the notation
of (5), the distribution P (q) is then given by

P (q) =

〈

Tr
[

δ(Q̂20 − q)Ûσ

]

TrÛσ

〉

W

. (10)

Expanding the distribution (9) in terms of the many-

particle eigenstates |qn〉 and |em〉 of Q̂20 and Ĥ , respec-
tively, we find

P (q) =
∑

n

δ(q − qn)
∑

m

〈qn|em〉2e−βem . (11)

P (q) represents the probability of measuring eigenvalue

q of Q̂20 in the finite-temperature Gibbs ensemble. Since
the quadrupole operator Q̂20 does not commute with
the Hamiltonian, there does not exist a basis of simul-
taneous eigenstates of Q̂20 and Ĥ, unlike for projections
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onto conserved one-body observables. Nevertheless, the
quadrupole distribution in a thermal ensemble is well-
defined and is given by Eq. (11).
The expression (11) is impractical for realistic calcula-

tions, since the sums over n,m range over bases of many-
particle states. However, the distribution P (q) can be
calculated using the Fourier representation of the δ func-
tion

δ(Q̂20 − q) =
1

2π

∫ ∞

−∞
dϕ e−iϕq eiϕQ̂20 . (12)

Up to now, we have treated q as a continuous variable.
Since the AFMC works in a finite model space, Q̂20 has a
discrete and finite spectrum. However, for heavy nuclei,
the many-body eigenvalues of Q̂20 are sufficiently closely
spaced to allow q to be approximated as continuous.
For a given Ûσ, the projection is carried out using a dis-

cretized version of the Fourier decomposition in Eq. (12).
We take an interval [−qmax, qmax] and divide it into
2M + 1 equal intervals of length ∆q = 2qmax/(2M + 1).
We define qm = m∆q, where m = −M, . . . ,M , and ap-
proximate the quadrupole-projected trace in (10) by

Tr
[

δ(Q̂20 − qm)Ûσ

]

≈ 1

2qmax

M
∑

k=−M

e−iϕkqmTr(eiϕkQ̂20 Ûσ) ,

(13)
where ϕk = πk/qmax (k = −M, . . . ,M).

Since Q̂20 is a one-body operator and Ûσ is a one-body
propagator, the grand-canonical many-particle trace on
the r.h.s. of Eq. (13) reduces to a determinant in the
single-particle space

Tr
(

eiϕkQ̂20 Ûσ

)

= det
(

1 + eiϕkQ20Uσ

)

, (14)

where Q20 and Uσ are the matrices representing, respec-
tively, Q̂20 and Ûσ, in the single-particle space. Projec-
tions are also carried on the proton and neutron number
operators to fix the Z and N of the ensemble.

B. Angle averaging and thermalization

The thermalization and decorrelation of moments of
Q̂20 are very slow for deformed nuclei when using the
pure Metropolis sampling. To overcome this problem,
we augment the Metropolis-generated configurations by
rotating them through a properly chosen set of NΩ ro-
tation angles Ωi. In practice, it is easier to rotate the
matrix Uσ. We make the replacement

〈eiϕQ̂20〉σ → 1

NΩ

NΩ
∑

j=1

〈eiϕQ̂20 〉σ,Ωj
, (15)

where

〈X̂〉σ,Ω =
Tr
[

X̂
(

R̂(Ω)ÛσR̂
†(Ω)

)]

Tr
[

R̂(Ω)ÛσR̂†(Ω)
] , (16)

and where R̂(Ω) is the rotation operator for angle Ω. (We

also note that the denominator in (16) is equal to Tr Ûσ

due to the cyclic property of the trace.)
In the following we discuss methods for choosing these

angles. The main observation is that quadrupole invari-
ants such as Q̂ · Q̂ thermalize faster than moments of
Q̂20. For a rotationally invariant system, the low mo-
ments of Q̂20 are proportional to the expectation values
of quadrupole invariants (see Eqs. (31-33) below). In
AFMC, these relations hold only on average, i.e., only
after averaging over all auxiliary-field configurations. If
we can choose a set of rotation angles Ωi such the angle-
averaged moment of Q̂20 is equal to the corresponding
invariant (as operators), then the relations (31-33) will
hold sample-by-sample. We will show that this leads to
a faster thermalization and decorrelation of the corre-
sponding moment of Q̂20.

1. Six-angle averaging

Here, we find a set of six angles for which the angle-
averaged Q̂2

20 is proportional to the second-order invari-

ant Q̂ · Q̂.
The second moment of Q̂20 is related to the second-

order quadrupole invariant 〈Q̂ · Q̂〉 by 〈Q̂2
20〉 = 〈Q̂ · Q̂〉/5.

We would like to find a set of angles Ωi such that

∑

i

R̂(Ωi)Q̂
2
20R̂

†(Ωi) ∝ Q̂ · Q̂ . (17)

To determine an appropriate set of angles, we rotate
each factor of Q̂20 to obtain

∑

i

R̂(Ωi)Q̂
2
20R̂

†(Ωi)

=
∑

µ,µ′

(

∑

i

D
(2)
µ0 (Ωi)D

(2)
µ′0(Ωi)

)

Q̂2µQ̂2µ′ , (18)

where D(2)(Ω) is the corresponding Wigner matrix for a
rotation angle Ω. The required condition is thus

∑

i

D
(2)
µ0 (Ωi)D

(2)
µ′0(Ωi) ∝ (−)µδµ,−µ′ . (19)

To find the appropriate angles for which (19) holds, note

that D
(2)
µ0 (ϕ, θ, ψ) =

√

4π
5 Y

∗
2µ(θ, ϕ) ∝ Pµ

2 (cos θ)e
−iµϕ.

The Kronecker delta δµ,−µ′ can be obtained by summing

over five angles ϕk = 2πk
5 , k = 0, 1, . . . , 4 using the iden-

tity
∑4

k=0 e
−2πik(µ+µ′)/5 = 5δµ,−µ′ . Then

4
∑

k=0

D
(2)
µ0 (θ, ϕk)D

(2)
µ′0(θ, ϕk) = 5δµ,−µ′Pµ

2 (cos θ)P
−µ
2 (cos θ)

(20)
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FIG. 1. Equilibration (panels (a-c)) and autocorrelation function (panels (d-f)) of the invariant 〈Q̂ · Q̂〉 and of the quadrupole

moments 〈Q̂2
20〉 and 〈Q̂3

20〉 for 154Sm using several levels of angle-averaging: no averaging (red circles), six angles (green
triangles), and 21 angles (blue inverted triangles). The horizontal axis shows the number of Monte Carlo sweeps (each sweep

is one update of all auxiliary fields). In the top panels (a) and (d), the points overlap since 〈Q̂ · Q̂〉 is rotationally invariant

sample-by-sample, so the angle-averaging has no effect. In panel (f) the no-averaging results have 〈Q̂3
20〉 ∼ 1010 and are above

the range of the y-axis. Rotating by a sufficient number of angles to restore rotational invariance for Q̂2
20 and Q̂3

20 makes their
Monte Carlo sampling behavior become very similar to that of 〈Q̂ · Q̂〉.

for any θ. Choosing a particular angle θ1 by cos2 θ1 =
1/5, we have

5Pµ
2 (cos θ1)P

−µ
2 (cos θ1) =











1/5, µ = 0

−6/5, µ = ±1

6/5, µ = ±2

. (21)

Adding the angle θ = 0, ϕ = 0 at which D
(2)
µ0 (0, 0) = δµ,0,

we obtain

5
∑

i=0

D
(2)
µ0 (Ωi)D

(2)
µ′0(Ωi) =

6

5
(−)µδµ,−µ′ , (22)

where Ω0 = (0, 0) and Ωi = (θ1, ϕi−1) for i = 1, . . . , 5.
In Appendix A, we discuss a general method to deter-

mine a set of angles such that the angle-averaged mo-
ments of Q̂20 are proportional to the quadrupole invari-
ants of the same order up to the n-th order. For n = 2
and n = 3, this leads to a set of 10 and 21 angles, re-
spectively. When averaging over the specific set of 21
angles, both the second and cubic moments of Q̂20 are
proportional to the second- and third-order quadrupole
invariants, respectively, sample-by-sample.
We demonstrate the thermalization of moments of Q̂20

for 154Sm in the left column Fig. 1, in which we show in
panel (b) the second moment 〈Q̂2

20〉 and in panel (c) the

third moment 〈Q̂3
20〉 of Q̂20 as a function of the sweep

number in the Monte Carlo random walk. We compare
the no-angle averaging (red circles) with the 6-angle av-
eraging (green triangles) and 21-angle averaging (blue in-
verted triangles). Panel (a) shows the direct calculation

of the second-order quadrupole invariant 〈Q̂ · Q̂〉, which
has no equilibration or decorrelation problem. One can
see that 〈Q̂2

20〉 for 6 and 21 angles, and 〈Q̂3
20〉 for 21 an-

gles, show smaller fluctuations and more rapid and obvi-
ous thermalization, very similar to the behavior of 〈Q̂·Q̂〉.
In the right column (panels (d-f)) of Fig. 1, we show the

autocorrelation function (ACF) of the same observables
and for similar levels of angle-averaging. The observ-
able 〈Q̂2

20〉 decorrelates faster in the six-angle averaging
(as compared with the no-angle averaging results), while

〈Q̂3
20〉 decorrelates fastest in the 21-angle averaging. We

see that the improvement in thermalization is closely re-
lated to a shorter decorrelation length.
The thermalization of the second and third moments

of Q̂20 is important for the calculation of a distribution
P (q) that is independent of the choice of the initial seed
for pseudorandom number generation. In Fig. 2 we show
the quadrupole distribution for 154Sm using different lev-
els of angle-averaging, based on ∼ 5000 Monte Carlo
samples. In the AFMC calculations, it is necessary to
discretize the imaginary time and we use a time step of
∆β = 1/32 MeV

−1
here and in all the results presented

in this work. The distribution obtained with no angle
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FIG. 2. Distribution P (q) vs. q of 154Sm at a low temperature
for several levels of angle-averaging: no averaging (red sym-
bols), six angles (green symbols), and 21 angles (blue sym-
bols). The results from 6-angle and 21-angle averaging are
hardly distinguishable. However, the third moment is sensi-
tive to this small difference, as shown in Fig. 1(c).

averaging (red line) is not thermalized, while the distri-
bution with the six-angle average (blue line) is very close
to the one obtained with 21-angle average (green line).
In the applications presented in this work, we have used
21-angle averaging to make sure the calculated distribu-
tions P (q) and moments of Q̂20 are thermalized and have
a short decorrelation length.

IV. APPLICATION TO LANTHANIDES

Here we present results for rare-earth nuclei. We con-
sider the deformed nucleus 162Dy as well as the two iso-
tope chains of even-even nuclei 144−152Nd and 148−154Sm.

We compare some of the AFMC results with a mean-
field approximation, the finite-temperature HFB approx-
imation [9, 10], using the same model space and in-
teraction as for our AFMC calculations. In the zero-
temperature HFB, there is a phase transition from a
spherical to a deformed shape as we increase the number
of neutrons within each of these two isotope chains. In
the finite-temperature HFB, an isotope which has a de-
formed HFB ground state undergoes a phase transition
to a spherical shape at a certain critical temperature.

A. CI shell model space and interaction

The single-particle orbitals and energies are taken as
eigenfunctions of a spherical Woods-Saxon potential plus
a spin-orbit interaction. For protons we take the com-
plete 50-82 shell plus the 1f7/2 orbital, and for neutrons
the 82 − 126 shell plus the 0h11/2 and 1g9/2 orbitals.
The interaction includes a monopole pairing interaction
and multipole-multipole interactions with quadrupole,
octupole and hexadecupole components. The interaction
parameters are given in Refs. [18, 19].
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FIG. 3. Distributions P (q) vs. q for 162Dy (a) at high temper-
ature, (b) near the HFB shape transition temperature, and
(c) at low temperature. The low-temperature distribution is
qualitatively similar to the rigid rotor ground-state distribu-
tion (solid line) with an intrinsic quadrupole moment q0 taken

to be the ground-state HFB value of 〈Q̂20〉.

B. Distributions P (q)

1. A deformed nucleus

In Fig. 3 we show the distributions P (q) for 162Dy at
high temperature, near the HFB shape transition tem-
perature, and at low temperature. Since our model space
is restricted to valence shells, we scale q here and in
other figures by a factor of 2 to account for effects of
the core. One expects the nucleus to resemble a rigid
rotor at low temperatures. For a rigid rotor with an in-
trinsic quadrupole moment of q0 > 0 (corresponding to
a prolate shape), this ground-state distribution is [3]

Pg.s.(q) =

{
(√

3q0
√

1 + 2 q
q0

)−1

for − q0
2 ≤ q ≤ q0

0 otherwise
.(23)

We determine q0 from the HFB value of 〈Q̂20〉 at T = 0.
The rigid-rotor distribution shown in Fig. 3(c) is qual-
itatively similar to the low-temperature distribution for
162Dy.
The lab-frame moments of the rigid-rotor distribution

(23) are calculated in Appendix B.

2. A spherical nucleus

In Fig. 4 we illustrate the case of a spherical nucleus,
144Nd. Here the quadrupole distribution is close to Gaus-
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FIG. 4. Distributions P (q) vs. q for 144Nd (a) at high tem-
perature, (b) at an intermediate temperature, and (c) at low
temperature. The low-temperature distributions show a slight
staggering effect and skew but are very close to Gaussian.

sian at all temperatures, although it develops a slight
skew at low temperatures.
We conclude that the distribution of the axial

quadrupole operator in the laboratory frame is a model-
independent signature of deformation.

3. Crossover from spherical to deformed nuclei

In Figs. 5 and 6 we show the distributions P (q) for
isotope chains of samarium and neodymium nuclei at sev-
eral temperatures. The low-temperature (T = 0.1 MeV)
distributions display a crossover as a function of neutron
number from spherical behavior in 148Sm and 144Nd to
deformed behavior in 154Sm and 152Nd.
The nuclei that are deformed at low temperatures un-

dergo a crossover to a spherical shape with increasing
temperature. This transition from deformed to spheri-
cal shape is well-known in the HF and HFB mean-field
theories where it is seen as a sharp phase transition [20–
22]. Here we see it as a gradual change. The distributions
P (q) are still skewed above the mean-field transition tem-
perature, indicating the persistence of deformation effects
to high temperatures.

C. 〈Q̂ · Q̂〉 vs. temperature

We now compare in more detail the AFMC results to
those of the finite-temperature HFB approximation. The
HFB solution is described by temperature-dependent

one-body density matrix (ρβ)i,j = 〈a†jai〉 and pairing ten-

sor (κβ)i,j = 〈ajai〉. The second-order invariant 〈Q̂ · Q̂〉
is derived in HFB using Wick’s theorem, resulting in

〈Q̂ · Q̂〉 = q20 +
∑

µ

(−)µtr [Q2µ (1− ρβ)Q2−µ ρβ]

+
∑

µ

(−)µtr
[

Q2µ κβ Q
T
2−µ κ

∗
β

]

.(24)

Here q0 ≡ tr(Q20ρβ) is the intrinsic axial quadrupole
moment.
In Figs. 7 and 8 we compare AFMC (blue solid cir-

cles) and HFB (solid lines) results for 〈Q̂ · Q̂〉 for the
same isotope chains of samarium and neodymium nuclei.
The HFB results show a sharp phase transition between
spherical and deformed shapes as a function of tempera-
ture, while the AFMC shows a smooth crossover, as re-
marked earlier. For the deformed nuclei, 〈Q̂·Q̂〉 is similar
for the two methods at low temperature.

V. QUADRUPOLE INVARIANTS AND

MOMENTS OF Q̂20

While the axial quadrupole distribution in the labo-
ratory frame exhibits a model-independent signature of
deformation, the physical quantity of interest is the in-
trinsic deformation. The intrinsic quadrupole deforma-
tion parameters are usually extracted in the framework
of a mean-field approximation, and the challenge is to
extract them in the rotationally invariant framework of
the CI shell model. Combinations of the quadrupole op-
erators Q̂2µ that are invariant under rotations, known
as quadrupole invariants [4, 5], have the same values in
both the laboratory frame and the intrinsic frame, and
thus can provide information on the effective values of
the intrinsic deformation parameters without resorting
to a mean-field approximation.
We define the low-order quadrupole invariants below

and show that they are related to moments of Q̂20 of the
same order in the following subsection VB.

A. Quadrupole invariants

The quadrupole invariants can be classified by their
order. The lowest-order invariant is quadratic

Q̂ · Q̂ =
∑

µ

(−)µQ̂2µQ̂2−µ . (25)

The third-order invariant is given by

(Q̂ × Q̂) · Q̂=
√
5
∑

µ1,µ2,µ3

(

2 2 2
µ1 µ2 µ3

)

Q̂2µ1Q̂2µ2Q̂2µ3 .

(26)
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FIG. 5. Distributions P (q) vs. q for an isotope chain of even-mass samarium nuclei at high temperature (top row, panels
(a-d)), intermediate temperatures (middle row, panels (e-h)), and at low temperature (bottom row, panels (i-l)). In panels
(f-h) the deformed nuclei (150Sm, 152Sm, 154Sm) are shown near their HFB shape transition temperatures. The solid lines are
the rigid-rotor distributions (23) with the ground-state HFB values of the intrinsic quadrupole moment q0.
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FIG. 6. As in Fig. 5 but for an isotope chain of even-mass neodymium nuclei. In panels (h-j) the deformed nuclei (148Nd,
150Nd, 152Nd) are shown near their HFB shape transition temperatures.

There are three different ways to construct a fourth-
order invariant. Under certain conditions, the fourth-
order invariants are all proportional to (Q̂ · Q̂)2

(Q̂ × Q̂)(J) · (Q̂× Q̂)(J) =











1
5 (Q̂ · Q̂)2, J = 0
2
7 (Q̂ · Q̂)2, J = 2
18
35 (Q̂ · Q̂)2, J = 4

, (27)

which will be derived below. Similarly, the fifth-order

invariant is also unique and we define it to be (Q̂·Q̂)((Q̂×
Q̂) · Q̂).
To derive Eq. (27), we will assume that the quadrupole

operators Q̂2µ commute among themselves. This holds
for the quadrupole operators in coordinate space but not
in the truncated CI shell model space. We believe the
effect of their noncommutation is small and so we will
ignore this in the following. Working in a basis of simul-
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FIG. 8. 〈Q̂ · Q̂〉 for Nd isotopes. Symbols and lines are as in Fig. 7.

taneous eigenstates of Q̂2µ with eigenvalues q2µ, we then
rotate to an intrinsic frame, in which we will denote the
quadrupole components by q̃2µ. This frame is defined by
the conditions

q̃21 = q̃2−1 = 0, q̃22 = q̃2−2 = real . (28)

To calculate the fourth-order invariants, we expand

(q̃× q̃)(J) · (q̃× q̃)(J) =
∑

µ

(−)µ(q̃× q̃)(J)µ (q̃× q̃)
(J)
−µ (29)

as well as (q̃ × q̃)
(J)
µ =

∑

m(2m 2µ −m|J µ)q̃2mq̃2µ−m.
Only terms with even µ contribute to the sum in this
frame. Evaluating the Clebsch-Gordan coefficients and
simplifying, one obtains

(q̃× q̃)(J) · (q̃ × q̃)(J) =











1
5 (q̃

2
20 + 2q̃222)

2, J = 0
2
7 (q̃

2
20 + 2q̃222)

2, J = 2
18
35 (q̃

2
20 + 2q̃222)

2, J = 4.

(30)

Since (q̃220 + 2q̃222) = q̃ · q̃ = q · q in this frame, we obtain
Eq. (27).

B. Relations of the quadrupole invariants to

moments of Q̂20

When the invariant is unique at a given order, its ex-
pectation value can be computed directly from the corre-
sponding lab-frame moment of Q̂20, defined by 〈Q̂n

20〉 =

∫

qnP (q)dq. For a rotationally invariant system, the ex-

pectations 〈Q̂n
20〉 for n = 2, 3, 4 are related to the invari-

ants by [3]

〈Q̂ · Q̂〉 = 5〈Q̂2
20〉 , (31)

〈(Q̂× Q̂)(2) · Q̂〉 = −5

√

7

2
〈Q̂3

20〉 , (32)

〈(Q̂ · Q̂)2〉 = 35

3
〈Q̂4

20〉 , (33)

〈(Q̂ · Q̂)((Q̂ × Q̂) · Q̂)〉 = −11

2

√

7

2
〈Q̂5

20〉 . (34)

We now derive Eqs. (31-33). For Eq. (31), note that 〈Q̂ ·
Q̂〉 =

∑

µ(−)µ〈Q̂2µQ̂2−µ〉 =
∑

µ〈Q̂
†
2µQ̂2µ〉, since Q̂†

2µ =

(−)µQ̂2−µ (i.e., Q̂2µ is an hermitian operator). But for a

rotationally invariant system, 〈T̂ (J)
M T̂

(J′)†
M ′ 〉 ∝ δJ,J′ δM,M ′

and is independent ofM for any spherical tensor operator
T̂ (J). This leads to relation (31).
For the third moment, write

〈Q̂3
20〉 =

∑

J

(2 0 2 0|J 0)〈(Q̂× Q̂)
(J)
0 Q̂20〉 (35)

=
∑

J,K

(2 0 2 0|J 0)(J 0 2 0|K 0)〈(Q̂×Q̂)(J)×Q̂)(K)
0 〉.

(36)

Due to rotational invariance only the K = 0 term con-
tributes, which also fixes J = 2. Using (2 0 2 0|2 0) =
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−
√

2/7 and (2 0 2 0|0 0) = 1/
√
5, we obtain Eq. (32).

The fourth moment of Q̂20 can be calculated in a sim-
ilar manner by writing

〈Q̂4
20〉 =

∑

J,J′,K

(2 0 2 0|J 0)(2 0 2 0|J ′ 0)(J 0 J ′ 0|K 0)

× 〈[(Q̂ × Q̂)(J) × (Q̂× Q̂)(J
′)]

(K)
0 〉 . (37)

Again only K = 0 contributes to the sum, requiring J =
J ′. Also (2 0 2 0|J 0) 6= 0 only for J = 0, 2, 4. Noting

that (T̂ (J) × T̂ (J))
(0)
0 = (−)J(T̂ (J) · T̂ (J))/

√
2J + 1 and

(J 0 J 0|0 0) = (−)J/
√
2J + 1, we obtain

〈Q̂4
20〉 =

∑

J

(2 0 2 0|J 0)2

2J + 1
〈(Q̂×Q̂)(J) ·(Q̂×Q̂)(J)〉 . (38)

Expressing the fourth-order invariants 〈(Q̂ × Q̂)(J) ·
(Q̂ × Q̂)(J)〉 in terms of (Q̂ · Q̂)2 using Eq. (27), we find
the result in Eq. (33).
Relation (34) for the fifth-order invariant can be de-

rived in a similar manner.

C. Effective deformation parameters

We now use the quadrupole invariants to define ef-
fective deformation parameters which can be calculated
from quantities known only in the lab frame. We define
quadrupole deformation parameters α2µ using a liquid
drop model for which [23]

q2µ =
3√
5π
r20A

5/3α2µ . (39)

The quadrupole deformation parameters in the intrin-
sic frame α̃2µ can be parametrized by the intrinsic param-
eters β, γ of the collective Bohr Hamiltonian (see Sec. 6B-
1a of Ref. [1])

α̃20 = β cos γ ; α̃22 = α̃2−2 =
1√
2
β sin γ . (40)

We can write the quadrupole invariants in terms of
α̃20 and α̃22 and then express them in terms of β, γ.
The three lowest-order invariants are then given by
β2, β3 cos(3γ) and β4.
The second- and third-order invariants can be used to

define effective values of the intrinsic shape parameters
β, γ

β =

√
5π

3r20A
5/3

〈Q̂ · Q̂〉1/2 ; cos 3γ = −
√

7

2

〈(Q̂ × Q̂) · Q̂〉
〈Q̂ · Q̂〉3/2

.

(41)
We can also define an effective fluctuation ∆β in β from

(∆β/β)
2
=
[

〈(Q̂ · Q̂)2〉 − 〈Q̂ · Q̂〉2
]1/2

/〈Q̂ · Q̂〉 . (42)

AFMC HFB/5DCH

Nucleus β ∆β/β γ (degrees) β ∆β/β γ (degrees)
144Nd 0.106 0.755 25.0 0.118 0.29 28.
146Nd 0.126 0.744 22.0 0.167 0.26 25.
148Nd 0.160 0.671 17.1 0.218 0.23 20.
150Nd 0.194 0.583 15.0 0.280 0.22 14.
152Nd 0.223 0.531 14.9 0.329 0.16 10.
148Sm 0.133 0.737 22.5 0.169 0.27 25.
150Sm 0.173 0.627 16.2 0.229 0.25 20.
152Sm 0.206 0.559 13.9 0.306 0.21 13.
154Sm 0.230 0.520 13.7 0.342 0.15 10.

TABLE I. Effective deformation parameters β, γ and rela-
tive fluctuation ∆β/β for the even-mass nuclei 144−152Nd and
148−154Sm computed from the AFMC. Statistical errors are
approximately ±2 in the last digit displayed. We used the
21-angle averaging AFMC results at T = 0.1 MeV. The last
three columns on the right-hand-side show the corresponding
quantities calculated in an HFB model extended to include
some fluctuations about the HFB ground state [24].

Table VC shows the effective values of β and γ calcu-
lated for the two isotope chains of even-mass samarium
and neodymium nuclei using Eqs. (41) and (42). Within
each isotope chain, the effective values of β increase with
neutron number as the nucleus becomes more deformed.
The nuclei within each isotope chain also become more
rigid as indicated by the decrease of ∆β/β. The respec-
tive values of the effective γ decrease, being closer to
triaxiality for the spherical nuclei and closer to axiality
for the deformed nuclei.
The table also shows the corresponding quantities cal-

culated in a model based on self-consistent mean field
theory but including fluctuations in the deformation pa-
rameters [24]. The trends are all the same as in the
AFMC results, and the triaxiality parameters agree fairly
well for these two very different theories. The β param-
eters are systematically smaller in the AFMC. The ta-
ble also shows that the fluctuation ∆β/β is significantly
smaller in the HFB/5DCH than in the AFMC. This is
also to be expected. The degree of freedoms that can
fluctuate in the HFB/5DCH are very limited, while all
the nucleonic degrees of freedom in the valence shells can
participate in the AFMC fluctuations.

VI. SUMMARY AND OUTLOOK

While mean-field models of heavy nuclei are useful for
a qualitative understanding of deformation, they break
the rotational invariance of the underlying Hamiltonian
and exhibit a nonphysical sharp shape transition as a
function of temperature. We have described a method,
based on Eqs. (10) and (11), to extract signatures of de-
formation in a framework that preserves rotational invari-
ance. Qualitatively and at low temperatures, the mean-
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field characterization of deformed nuclei is supported by
the new method. However, contrary to the mean-field
approximation, the new method produces smooth shape
transitions as a function of temperature.

In the mean-field context, deformation is associated
with an intrinsic frame. In the rotationally invariant
framework, there is no well-defined intrinsic frame, since
〈Q̂2µ〉 = 0. However, Q̂20 can have a nontrivial distribu-
tion in the lab frame, which as we have seen can provide
a model-independent signature of deformation.

The quadrupole invariants have the same values in the
lab frame and in the intrinsic frame. These values can
in turn be expressed in terms of moments of the axial
quadrupole in the lab frame, and this enables us to ob-
tain information about the effective intrinsic deformation
parameters in the rotationally invariant framework of the
CI shell model, without resorting to a mean-field approx-
imation. We have computed from AFMC these effective
quadrupole shape parameters β, γ for the isotope chains
of even-mass 148−154Sm and 144−152Nd nuclei.

For deformed nuclei, we have seen that the AFMC ex-
pectation 〈Q̂ · Q̂〉 is quite close to the HFB value at low
temperature.

Nuclear deformation plays a key role in fission pro-
cesses, where the level density as a function of deforma-
tion is a crucial input to models. Since the quadrupole
projection method in the lab frame allows us to extract
information about the intrinsic shape through the use of
quadrupole invariants, we will show in subsequent work
that it can be used to calculate the level density as a
function of excitation energy and intrinsic deformation
parameters β, γ.
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APPENDIX A: GENERAL SOLUTION FOR

ROTATION ANGLES

In Sec. III B 1 we derived a set of six angles which re-
store rotational invariance up to the second-order mo-
ment of Q̂20. Here we determine the angles that restore
invariance up to the n-th order moment of Q̂20. (Note the
six-angle solution is a special case; the general solution
given here yields a set of ten angles for n = 2.)

To begin, we express Q̂n
20 as a sum over quadrupole

invariants by successive coupling of angular momenta 2
(the rank of Q̂)

Q̂2
20 =

∑

J

(2 0 2 0|J 0)(Q̂ × Q̂)
(J)
0 , (43a)

Q̂3
20 =

∑

J12,J

(2 0 2 0|J12 0)(J12 0 2 0|J 0)

× [(Q̂× Q̂)(J12) × Q̂]
(J)
0 , (43b)

...

Q̂n
20 =

∑

α

Cα Q̂
(J)
α,M=0 , (43c)

where α = (J12, J(12)3, . . .) labels the intermediate angu-

lar momenta and Q̂
(J)
α,M = [[(Q̂ × Q̂)(J12) × Q̂](J(12)3) ×

· · · ×̂Q̂]
(J)
M . In Eq. (43) J takes on only even values

J = 0, 2, . . . , 2n because of selection rules.
Applying a rotation to Q̂n

20 we obtain

R̂(Ω)Q̂n
20R̂

†(Ω) =
∑

M

D
(J)
M,0(Ω)

∑

α

Cα Q̂
(J)
α,M . (44)

The general condition in order to zero out the terms for
2 ≤ J ≤ 2n by averaging over rotations R̂(Ωi) (such that
only the scalar J = 0 term survives) is then

NΩ
∑

i=1

D
(J)
M,0(Ωi) = 0, J = 2, 4, . . . , 2n, −J ≤M ≤ J . (45)

Averaging over these angles will then effectively re-
store rotational invariance sample-by-sample for the ob-
servables 〈Q̂20〉, 〈Q̂2

20〉, . . . , 〈Q̂n
20〉, and also reduce fluctu-

ations in the distribution P (q).
To find the angles, note that

D
(J)
M,0(φ, θ, ψ) =

√

4π

2J + 1
YM∗
J (θ, φ)

=

√

(J −M)!

(J +M)!
P−M
J (cos θ)e−iMφ . (46)

Since J ≤ 2n, we can project ontoM = 0 using a Fourier
sum with angles ϕk = 2πk/(2n+ 1), k = 0, 1, . . . , 2n:

2n
∑

k=0

e−iMϕk = (2n+ 1)δM,0, −2n ≤M ≤ 2n . (47)

Then

2n
∑

k=0

D
(J)
M (ϕk, θ) = (2n+ 1)δM,0PJ (cos θ) . (48)

We now need to find angles θl such that
∑

l PJ(cos θl) =
0. Or, defining ul ≡ cos θl,

∑

l

PJ (ul) = 0, J = 2, 4, . . . , 2n , (49)
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which is a set of n independent equations and can be
satisfied by a set of n angles θl, l = 1, 2, . . . , n.
To solve, we express the even-powered monomials u2m

in terms of PJ(u),

u2m =
∑

J=0,2,...,2m

C
(m)
J PJ (u) , (50)

C
(m)
J ≡ (2J + 1)(2m)!

2(2m−J)/2((2m− J)/2)!(J + 2m+ 1)!!
, (51)

for m = 0, 1, . . . , n. Then using (49)

n
∑

l=1

u2ml = C
(m)
J=0

∑

l

P0(ul) = n/(2m+ 1) . (52)

So an equivalent set of equations to solve is

1

n

n
∑

l=1

u2ml =
1

2m+ 1
, m = 1, 2, . . . , n . (53)

The set of n(2n+ 1) angles (θl, ϕk) then satisfy

1

n(2n+ 1)

n
∑

l=1

2n
∑

k=0

D
(J)
M0(θl, φk) = δM,0δJ,0 (54)

for J = 0, 2, . . . , 2n and −2n ≤M ≤ 2n.

1. 10-angle solution for n = 2

Setting n = 2 in the general solution gives a set
of 10 angles, different from the 6 angles discussed in
Sec. III B 1. The azimuthal angles are

ϕk = 2πk/5, k = 0, 1, . . . , 4 , (55)

and the angles θl are determined by the equations

u21 + u22 = 2/3 (56)

u41 + u42 = 2/5 . (57)

with solution

cos2 θ1 = (1 + 2/
√
5)/3 (58)

cos2 θ2 = (1− 2/
√
5)/3 . (59)

2. 21-angle solution for n = 3

For n = 3, the azimuthal angles are

ϕk = 2πk/7, k = 0, 1, . . . , 6 , (60)

and the θl are determined by the equations

u21 + u22 + u23 = 1 (61)

u41 + u42 + u43 = 3/5 (62)

u61 + u62 + u63 = 3/7 , (63)

with solution

cos2 θ1 = 0.750384 . . . (64)

cos2 θ2 = 0.178522 . . . (65)

cos2 θ3 = 0.0710944 . . . . (66)

This gives a set of 21 angles that is sufficient to thermalize
the distribution of Q̂20, as shown in Fig. 2.

APPENDIX B: LAB-FRAME QUADRUPOLE

MOMENTS FOR THE RIGID ROTOR

The moments of the rigid-rotor distribution (23) can be
calculated in terms of q0 from a simple recursion relation.
To calculate the moments 〈qn〉, we derive a recursion
formula as follows. Measuring q in units of q0, i.e., x =
q/q0, we use integration by parts to find

∫

dx
xn√
1 + 2x

= xn
√
1 + 2x− n

∫

dxxn−1
√
2x+ 1

= xn
√
1 + 2x− n

∫

dxxn−1 2x+ 1√
2x+ 1

or

(2n+ 1)

∫

dx
xn√
1 + 2x

= xn
√
1 + 2x− n

∫

dx
xn−1

√
2x+ 1

.

(67)
Taking the limits between −1/2 and 1, the n-th moment

〈xn〉 = 1√
3

∫ 1

−1/2
dx xn

√
1+2x

satisfies the recursion relation

〈xn〉 = 1

2n+ 1

(

1− n〈xn−1〉
)

. (68)

Starting with 〈q0〉 = 1 (normalization), we can use
Eq. (68) to calculate the first few moments

〈q〉 = 0 ; 〈q2〉 = 1

5
q20 ; 〈q3〉 = 2

35
q30 ; 〈q4〉 = 3

35
q40 ; . . . .

(69)
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Kicińska-Habior, F. Nowacki, H. Näıdja et al., Phys. Rev.
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