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Excited band structures recently observed in 156Dy are investigated using the microscopic triaxial projected
shell model (TPSM) approach and the quasiparticle random phase approximation (QRPA) based on the rotating
mean-field. It is demonstrated that new observed excited bands, tracking the ground-state band, are the γ-bands
based on the excited two-quasineutron configurations as conjuctured in the experimental work.

PACS numbers: 21.60.Cs, 23.20.Lv, 23.20.-g, 27.70.+q

I. INTRODUCTION

A major challenge in nuclear theory is to elucidate the rich
band structures observed in atomic nuclei [1]. The phenome-
nal progress achieved in the experimental techniques in recent
years has made it possible to probe the nuclear structure prop-
erties at the extremes of spin and isospin. In some heavier
nuclei, more than thirty band structures have been identified
and some of these bands extend up to angular-momentum of
sixty [2–5]. The band structures provide valuable informa-
tion on the dependence of nuclear properties on excitation en-
ergy and angular-momentum. For instance, it is known that
pairing correlations are reduced with angular-momentum due
to alignment of protons and neutrons in high-j intruder or-
bitals. The particles or quasiparticles in these high-j and low-
Ω orbitals have maximum projection along the rotational axis
and demand less collective rotation to generate the angular-
momentum. These quasiparticle configurations then become
energetically favored and cross the ground-state configuration
at a finite angular-momentum, depending on the region.

In a more recent experimental study [6], the high-spin band
structures in 156Dy have been populated. The most interesting
aspect of this investigation is the observation of the γ-band
based on the ground-state up to highest angular-momentum,
I=32 observed so far. The excited bands that decay to this
γ-band have been proposed to be the γ-bands based on the
two-quasiparticle configurations. This interesting proposition
of the γ-bands built on the quasiparticle excitations warrants
investigations using theoretical approaches.

The γ-band built on the ground-state or vacuum configu-
ration was introduced by Bohr and Mottelson [1], who inter-
preted these Kπ = 2+ bands as a dynamic quadrupole devia-
tion of the nuclear mean-field potential from the axial shape.
In the framework of the Unified Model, it is considered as
an intrinsic excitation which when combined with the ro-
tational D-function, restores the angular-momentum. Sev-
eral approaches have been developed to describe this intrin-
sic excitation in a microscopic way that include quasiparti-
cle phonon [7, 8], multi-phonon [9–12], dynamic deformation

[13], the quasiparticle random phase approximation (QRPA)
based on the rotating mean-field, which describes the γ-bands
based on high-spin yrast levels in a semi-classical way [14–
20].

Recently, the microscopic approach of the triaxial projected
shell model (TPSM) has been developed to describe the high-
spin band structures in transitional nuclei [21–26]. In this ap-
proach, the three-dimensional projection method is applied to
project out the good angular-momentum states from the triax-
ial intrinsic states. From the symmetry requirement, the pro-
jection from the self-conjugate vacuum state leads to even-K
states with K=0,2, 4,... The K=0, 2, 4 states represent the main
components of the ground-state, γ- , and γγ-bands at low spin.

The TPSM approach includes multi-quasiparticle excita-
tions and it is evident from the very construction of the basis
configurations that γ- bands can be also built on the quasi-
particle configurations. This interpretation is similar to the
tidal wave approach, which will be applied to the γ-vibration
for the first time in this paper. It describes the γ-vibration
as a travelling wave, which corresponds to uniform rotation
about the long-axis of the triaxial shape. Using the cranking
model, the properties of the γ-vibration are calculated in a mi-
croscopic way without introducing any new parameters.

The recent experimental study of 156Dy [6] provided evi-
dence for the existence of a γ-band based on the ground state
band up to very high spins and a second γ-band, which is
proposed to be built on the s-configuration, which contains
two rotational aligned i13/2 quasineutrons. The purpose of the
present work is to investigate the conjectured γ-bands, based
on the quasiparticle excitations, using the TPSM approach as
well as in the framework of the traditional approaches based
on the rotating mean-field.

As the band structures in 156Dy have been observed up to
spin, I=32, where four-quasiparticle configurations are ex-
pected to become important, four-neutron and four-proton
quasiparticle configurations have been included for the first
time in the TPSM basis. The manuscript is organized in the
following manner : Section II.A contains brief description of
TPSM approach. Details can be found in our earlier publi-
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cations [27, 29, 30]. The results obtained from the TPSM
calculations are presented and compared with the experimen-
tal data in section II.B. In section II.C, nature of γ-bands is
analysed. Section III.A discusses the structure of the positive
parity bands in the complementary framework of the conven-
tional cranked shell model and its relation to TPSM interpre-
tation. Section III.B reviews the application of the quasiparti-
cle random phase approximation to the γ-vibration in rotating
nuclei from the earlier work in the literature. Section III.C
contains the tidal wave study of the γ-vibration and discusses
its relation to the TPSM. Conclusions are presented in section
IV.

II. TRIAXIAL PROJECTED SHELL MODEL APPROACH

A. Extension of the model

For even-even systems, the normal TPSM basis space is
comprised of projected 0-qp or qp-vacuum, 2-proton, 2-
neutron and 2-proton + 2-neutron quasiparticle configura-
tions. In the present investigation of the band structures in
156Dy, high-spin states have been observed up to I=32 and in
order to describe the states above I=20 accurately, it is impor-
tant to include also 4-neutron and 4-proton quasiparticle con-
figurations. In the present work, we have extended the TPSM
basis space to include these four-quaispraticle configuration
and the complete basis space employed in the present work is
given by
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where |Φ> is the vacuum state and the three-dimensional
angular-momentum projection operator [31] is given by

P̂I
MK =

2I +1
8π2

∫
dΩDI

MK(Ω) R̂(Ω) . (2)

In the above equation, R̂(Ω) is the rotational operator in terms
of Euler angles. The adopted projected basis space in Eq. 1 is
adequate enough to describe the high-spin states observed in
156Dy up to I=32. |Φ> in the TPSM approach is the triaxial
quasiparticle vacuum state and the angular-momentum projec-
tion operator in Eq. 2 not only projects out the good angular-
momentum, but also states having good K-values. This is
achieved by specifying a value for K in the rotational matrix,
”D”, in Eq. 2.

It is worthwhile to mention that basic strategy in TPSM is
similar to that used in the spherical shell model (SSM) ap-
proach except that now a deformed basis is employed rather
than the spherical one. The deformed potential in TPSM pro-
vides an optimum basis to perform the spectroscopic stud-
ies of deformed heavier nuclei that are presently beyond the

reach of the SSM approach. In the present work, the Wick’s
theorem is used to evaluate the matrix elements of rotated
many-quasiparticle states. This procedure becomes quite in-
volved for more than two-quasiparticles and for identical four-
quasiparticle states, considered in the present development,
the number of terms in Hamiltonian kernel run into thousands.
We are presently in the process of implementing the Pfaffian
technique in the TPSM approach to include the higher quasi-
particle states as has been recently done in the PSM approach
[32, 33].

The projected basis of Eq. 1 is then used to diagonalise the
shell model Hamiltonian. As in our earlier studies, we have
employed the pairing plus quadrupole-quadrupole Hamilto-
nian [31, 34–36]

Ĥ = Ĥ0−
1
2

χ ∑
µ

Q̂†
µ Q̂µ −GMP̂†P̂−GQ ∑

µ

P̂†
µ P̂µ . (3)

The QQ-force strength χ is adjusted such that the physical
quadrupole deformation ε is obtained as a result of the self-
consistent mean-field HFB calculation [31]. The monopole
pairing strength, GM , is of the standard form

GM = (G1∓G2
N−Z

A
)

1
A
(MeV), (4)

where −(+) is neutron (proton). In the present calculation,
we use G1 = 20.12 and G2 = 13.13, which approximately re-
produce the observed odd-even mass difference in this region.
This choice of GM is appropriate for the single-particle space
employed in the model, where three major shells are used for
each type of nucleon (N = 3,4,5 for protons and N = 4,5,6
for neutrons). The quadrupole pairing strength GQ is assumed
to be proportional to GM , the proportionality constant being
fixed as 0.16. These interaction strengths are consistent with
those used earlier for the same mass region [27, 28, 31].

B. COMPARISON WITH EXPERIMENT

TPSM calculations have been performed for 156Dy by con-
structing the quasiparticle basis space with deformation pa-
rameters of ε = 0.278 and ε ′ = 0.105, which correspond to
β = 0.29 and γ = 20.6◦ in the standard parametrization. The
axial deformation parameter has been adopted from the earlier
studies [37]. The nonaxial deformation parameter is chosen in
such a way that the band-head of the γ-band is reproduced.

The angular-momentum projected energies from 0-qp, 2-
qp, and 4-qp configurations, calculated with deformation pa-
rameters given above, are depicted in Fig. 1 for 156Dy. The
projection from 0-qp state results into K = 0,2,4, ..... with
no odd-values due to symmetry requirement for the vacuum
configuration and give rise to ground-, γ- and γγ−, .....bands.
The band-head of the γ-band is at an excitation energy of 0.98
MeV from the ground- state and the γγ-band lies at 2.13 MeV.

Fig. 1 illustrates how the non-rotating quasiparticle ba-
sis states of the TPSM become entangled with increasing
angular-momentum. The ground-state band is crossed by the
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FIG. 1. (Color online) TPSM projected energies, before band mixing, of positive parity states for 156Dy. Bands are labelled by (K, qp
numbers) so that the labels (0,0), (2,0), (4,0), (1,2n), (3,2n), (1,2p), (3,2p), (0,2n2p) (2,2n2p) and (4,2n2p) correspond to ground, γ , 2γ , two
neutron-aligned state, γ-band on this two neutron-aligned state, two proton-aligned state, γ-band on this two proton-aligned state, two-neutron
plus two-proton aligned state, γ− and γγ− band built on this four-quasiparticle state. The excited K=0 resulting from projection of two-
quasineutrons and two-quasiprotons are denoted by (0,2n) and (0,2p), respectively. Some bands, having large signature splitting, are separated
into even-spin (labelled as α = 0) and odd-spin states (labelled as α = 1). The first crossing at I=14 is due to (1,2n) aligned configuration that
forms the s-band configuration. The second and third crossings at about I=24 and 28 are due to the aligning 4n configurations with K=2 and 4,
respectively. The inset depicts the four-quasiparticle crossings with the ground-state band.

signature, α = 0 branch of (1,2n) band, which is a two-
quasineutron aligned configuration having K=1, at I=14. Fur-
ther, the α = 0 component of the two-quasiproton aligned
band, (1,2p), with K=1 also crosses the ground-state band at
I=18. There are also crossings in the excited configuration, for
instance, the γ-band built on the two-quasineutron configura-
tion (3,2n) having K=3, crosses the normal γ-band at I=17. As
a matter of fact, the lowest odd-spin states in the spin range,
I=17-25 originate from this configuration. For spin above
I=26, it is noted that four-quasiparticle states (2,2n2p) become
yrast. In Fig. 1, the lowest projected K=0 bands, resulting
from two-neutron and two-proton quasiparticle structures, are
also plotted. These two bands are almost degenerate for low-

spin states with band-heads at about 2 MeV excitation energy.
For high-spin states however the K=0 two-quasineutron state
becomes favoured.

The projected bands from four-neutron and four-proton
quasiparticle configurations are also plotted in Fig. 1 and the
band structures obtained from these states lie at a higher exci-
tation energy compared to two-neutron+two-proton quasipar-
ticle bands. As is evident from the figure, these configurations
remain higher in energy. However, it is noted that the α = 0
component of four-neutron quasiparticle state, having K=2,
crosses the ground-state band at I=24. The projected band
from the K=4 component of the four-neutron state also crosses
the ground-state at a higher spin value. On the other hand, the
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FIG. 2. (Color online) Comparison of the measured positive parity energy levels of 156Dy nucleus [6] and the results of TPSM calculations.

α = 1 branch of this configuration and also the four-proton
quasiparticle band structures lie at higher excitation energies
and don’t cross the ground-state band up to the highest studied
spin value.

In the next stage of the TPSM study, the lowest projected
states, shown in Fig. 1, and many more (∼ 130 for each
angular-momentum) are employed to diagonalize the shell
model Hamiltonian, Eq. 3. The energies obtained after diago-
nalization are compared with the measured data in Figs. 2 and
3. The bands are labelled as in the experimental work [6]. The
association between the calculated and experimental bands is
discussed below. In Fig. 2, we provide the exact energies that
can be used for further investigations. Fig. 3 demonstrate that
the TPSM calculations describe well the structure of the yrast
region. However, the calculated spectrum is too much spread
out in energy. As discussed in Sec. III.A, this is probably a
consequence of the deformation and the pair gaps being kept
constant.

To have a closer comparison between theory and experi-
ment, the excitation energies are subtracted by the rotor con-
tribution and the resulting energies are displayed in Fig. 3
(bottom panels of e and f). It is evident from the two fig-

ures that TPSM reproduces the experimental data quite rea-
sonably with the exception for the excited 0+ band referred
to as the SV band. The band-head of the experimentally ob-
served band is at 0.7 MeV excitation and the predicted neutron
excited 0+ is at about 1.9 MeV. Theoretically, it is expected to
lie at about 2 MeV which is equal to the excitation energy of
the two-quasiparticle states as is evident from Fig. 2. There
are some extra correlations, not included in the present work,
that bring it down to 0.7 MeV and clearly it is of considerable
interest to investigate this problem in detail. It may be of vi-
brational type, pairing isomer, or a shape coexisting structure.
The TPSM does not include corrections of this type.

The correspondence between the theoretical and the ex-
perimental band structures plotted in Figs. 2 and 3 is made
through the wavefunction analysis as discussed in the fol-
lowing. For some bands, it was possible to identify a few
lower angular-momentum states, not observed in the experi-
mental data, through this wavefunction analysis. The domi-
nant components of the wavefunctions of the band structures
are depicted in Fig. 4. The ground-state band, shown in the
top panel of this figure, has up to I=14 the largest compo-
nent of (0,0) which is the K=0 projected state from the tri-
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axial vacuum configuration. It is also evident that the two-
quasiproton component, (1,2p), is building up with spin and
becomes dominant in the spin region, I=18-22. For I=24 and
beyond, four-quasiparticle components are becoming impor-
tant, in particular, the K=2 four-neutron configuration. There-
fore, this band is not really the ground-state band as it has
dominant two-quasiparticle and four-quasiparticle configura-
tion for I=18 and beyond. The wavefunction of the s-band,
shown in the second panel of Fig. 4, has the largest compo-
nent from the aligned two-quasineutron state, (1,2n), up to
I=24 and beyond this spin value the four-quasiparticle config-
urations dominate.

The largest component in the wavefunction of the even-spin

γ-band, shown in the third panel of Fig. 4, up to I=14 is (2,0)
which is the K=2 projected state from the 0-qp configuration.
It is also noted that the component (3,2p), which is the γ-
band built on the two-proton aligned band, is quite large in
spin regime, I=14-18 and above I=18 the s-band configura-
tion, (1,2n), becomes dominant. For the odd-spin γ-band, the
composition of the wavefunction is similar to the even-spin
branch. The bands 17 and 20, shown in the 5th and 6th pan-
els of Fig. 4, have interesting structures with dominant com-
ponent from (3,2n), which is the γ-band based on the two-
quasineutron configuration.

From the above analysis, the emerging picture for the band
structures labelled as 17 and 20 is quite similar to what has



6

0

0.2

0.4

0

0.2

0.4

(0,4n)

(2,4n)

(4,4n)

(0,4p)

(2,4p)

(4,4p)

0

0.2

0.4

(1,2p)

(3,2p)

(0,2n2p)

(2,2n2p)

(4,2n2p)

0

0.2

0.4

0.6

0.8

(0,0)

(2,0)

(4,0)

(1,2n)

(3,2n)

0

0.2

0.4

0.6

0.8

1

(0,2n)

(2,2n)

(0,2p)

(2,2p)

0 4 8 12 16 20 24 28 32

0

0.2

0.4

Eg

Es

Egae

Egao

E20

| a
  
  
 |

iK
2

E17

Spin (h)

FIG. 4. (Color online) Probability of various projected K-
configurations in the wavefunctions of the band structures after di-
agonalization are plotted for the 156Dy nucleus.

been proposed in the experimental work [6]. The component
(3,2n), which is γ-band built on the two-neutron aligned con-
figuration, is quite dominant in the wavefunctions of the band
structures labelled as Band 17 and Band 20. These bands are
built on the same intrinsic quasiparticle as that of the s-band of
the second panel in Fig. 4, except that these are projected with
K=3. It is also evident from Fig. 4 that these are not purely
γ-bands built on the two-quasineutron configuration as these
also have significant contributions from other configurations.
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FIG. 5. (Color online) Calculated B(E2) transition probabilities for
the ground-state band and the s-band using the TPSM approach. The
experimental values have been taken from Refs. [38–40].
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FIG. 6. (Color online) Ratios of the B(E2) values for out-of band
to in-band transitions RE2 = B(E2;out)/B(E2; in) for the γ decays
from the γ-band to the ground-state band and for the γ decays from
bands 17 and 20 to the s-band

This is related to the inter-band mixing, in particular, for high-
spin states and also due to non-orthogonality of the projected
states.

Further, it is interesting to note from Fig. 4 that the Even
and Odd γ-bands initially have the dominant component (2,0)
as expected, however, for intermediate spin-values, the con-
figuration (3,2p) becomes important, which is similar to the
ground state band. This has to be the case, otherwise the γ-
band would not track the ground state band. This configu-
ration is the γ-band built on the two-quasiproton configura-
tion. The ground-state band is crossed by the normal two-
quasiproton configuration and we infer from Fig. 4 that for
the γ-band, it is γ-band based on two-quasiproton state that
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FIG. 7. (Color online) Comparison of observed and TPSM calculated
staggering parameter Eq. (5) for the γ-band in 156Dy.

crosses.
The experimental interpretation of the band structures as

γ-bands built on the ground-state and two-quasiparticle con-
figurations is based on the transition probabilities between the
bands. The transition probabilities have been calculated in the
TPSM approach with the effective charges of 1.5e for protons
and 0.5e for neutrons. The B(E2) values for the transition be-
tween the ground-state and the s-bands are depicted in Fig. 5
along with the known experimental values. Two dips in the
B(E2) curve for the ground-state band is due to the cross-
ing of the two-proton and four-neutron aligned configurations
at spin, I=18h̄ and 24h̄, respectively. A small drop in the
B(E2) transitions of the s-band at I=14h̄ is due to mixing of
(2,2n) and ground-state bands. Further, as in the experimental
work, we have also evaluated the ratios RE2 of the out-of-band
B(E2;out) to the in-band B(E2; in) strengths, where the out-
of-band transitions connect the γ− band with the ground-state
band and bands 17 and 20 with the s-band. [It needs to be
added that B(M1) transition probabilities, shown in Table I,
are an order of magnitude smaller than B(E2) transitions and
hence evaluation of branching ratios with B(E2) values only
is justified.] As depicted in Fig. 6, the RE2 values for all the
bands are of same order of magnitude, supporting the interpre-
tation that band 17 and 20 are the γ-bands built on the s-band
configuration. The TPSM reproduces fairly well the experi-
mental values.

The wavefunction of Band 12 for spin states of I=16, 18
and 20 are dominated by two-proton aligned configuration,
(1,2p), and above I=24 the wavefunction has predominant
contribution from four-quasiparticle states. Clearly, g-factor
measurements are needed to probe the intrinsic structures of
these band structures.

To examine further the quasiparticle structures of the ob-
served band structures, we have analyzed the alignments of
the bands as a function of the rotational frequency and the
results are presented in Fig. 3 (top panels, a and b). The ob-
served ground-state band has a gradual increase in the align-
ment at a rotational frequency of h̄ω = 0.3 MeV. This in-

TABLE I. Calculated M1 (µ2
N) units from Egao→Eg and E20→Es

of 156Dy nucleus.
Spin (Iπ ) Egao→Eg E20→Es

3+ 0.013
5+ 0.011
7+ 0.010
9+ 0.008
11+ 0.003
13+ 0.002 0.124
15+ 0.004 0.122
17+ 0.006 0.071
19+ 0.008 0.029
21+ 0.002 0.017
23+ 0.003 0.009
25+ 0.005 0.005
27+ 0.003 0.007
29+ 0.004 0.001
31+ 0.001 0.002

crease is also noted in the TPSM calculated alignment, al-
though it is slower than in the experimental data. This increase
can be traced to the alignment of four-neutrons having K=2.
This configuration crosses the ground-state band at I=24 and
becomes the dominant component in the ground-state band
above this spin value as is evident from Fig. 4. Both even-
and odd-spin members of the γ-band also show an increase in
the aligned angular-momentum, which is due to the increasing
contribution of (1,2n) component in these band structures.

C. Nature of the γ-bands

Analyzing the collective Bohr-Hamiltonian results, it has
been suggested that signature splitting of the γ-band is sensi-
tive to the nature of γ deformation (see e.g the review [41]).
The observed pattern is : harmonic γ-vibration about axial
shape - both signatures degenerate; γ-independent potential
- even spin below odd spin; rigid triaxial potential - odd spin
below even spin. To quantify the tendency, the following stag-
gering parameter has been introduced :

S(I) =
E(I)− (E(I−1)+E(I +1))/2

E(2+1 )
, (5)

which measures the energy of state I relative to the average
energy of the two neighbours. Fig. 7 compares the TPSM re-
sults with experiment for the γ-band on top of the ground state
band. The staggering S(I) is quite small at low spin, which is
expected for a well established axial shape. Above I=10 the
staggering increases with the even-spin states below the odd
ones. The TPSM calculations reproduce observed staggering
pattern, as well as the RE2 = B(E2;out)/B(E2; in) values, as
shown in Fig. 6 and, therefore, account for the nature of the
γ-deformation of 156Dy nucleus. The even-spin lower, which
is a signature for γ-softness, appears to be in conflict with
the assumption of the TPSM of a fixed γ-deformation, which
suggests that the criterion based on the Bohr Hamiltonian does
not apply for I >10 as the TSPM ratios RE2 are consistent with
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experiment. Within the TPSM framework, the staggering pat-
tern can be related to the following : for low-even spin states
the major components are (2,0) and (2,2p). The two-neutron
aligned configuration, (1,2n), becomes important above I=10
as is evident from Fig. 4, showing the wave function prob-
abilities. For the even-spin members of the γ-band, the low-
energy even-spin states (1,2n) (α = 0) (cf. Fig. 1) have a large
probability. For the odd-spin members of the γ-band the high-
energy odd-spin states (1,2n) (α = 1) (cf. Fig. 1) have a large
probability.

Bands 17 and 20 are assigned to the even- and odd-spin
members of the γ-band on top of the s-configuration because
the basis states (3,2n) α = 0,1 are dominant, where both sig-
natures have nearly the same energy (cf. Fig. 1). As for
the γ-band on top of the ground state band, both signatures
contain a large (1,2n) component of the respective signature,
which energetically prefers the even-spin members.

As seen in Fig. 4, the γ-bands are distributed over multi-
ple basis states. As we shall discuss in the next section, the
QRPA treatment of the γ-vibration based on the s-band in-
dicates substantial fragmentation as well. Another reason is
the change of the quasiparticle structure caused by rotation.
Since the TPSM uses the quasiparticle configurations in the
non-rotational potential as a basis, it describes the modifica-
tion of the quasiparticle structure in the rotating potential by
mixing the non-rotating configurations.

III. ROTATING MEAN-FIELD INTERPRETATION

A. Cranked Shell Model

Fig. 2 displays the experimental energies and Fig. 3 the
experimental aligned angular-momenta and routhians for the
positive parity bands. The simplest-possible interpretation is
the Cranked Shell Model (CSM) [42], which associates the
bands with quasiparticle configurations in a potential rotating
with frequency h̄ω about one of its principal axes. Fig. 8 de-
picts a calculation using the axial Nilsson potential combined
with the monopole pair field as described in ref. [42]. The de-
formation parameters are ε = 0.26 and γ = 0, which are close
to the equilibrium deformation found by means of the Cranked
Nilsson-Strutinsky method for the relevant spin range [4]. The
pair gaps are ∆p = 1.0 MeV and ∆n = 0.9 MeV. The ground
state band is represented by the vacuum denoted by 0. Below
h̄ω= 0.15 MeV, it corresponds to all negative-energy quasipar-
ticle routhians occupied. Above it corresponds to the adiabatic
continuation of this configuration. The other configurations
are denoted by the occupied routhians labelled by the letters
(the reflected-through-0 routhians are unoccupied).

Figs. 9 and 10 show the lowest positive parity bands la-
belled by their quasiparticle configurations. Comparing the
CSM calculation with the experiment shown in Fig. 2 and
3, one notices that the crossing between the g- band (con-
figuration 0) and the s-bands (AB) is qualitatively described.
The CSM crossing frequency of h̄ω = 0.23 MeV underesti-
mates the experimental value of h̄ω = 0.28 MeV, which is
a well known deficiency of the CSM. The aligned angular-

FIG. 8. Quasiparticle routhians for 156Dy.

momenta are of right magnitude. The distance between the
two bands after their crossing is overestimated (about 1 MeV
in experiment vs. about 2 MeV in the calculation). We at-
tribute this to the assumption of a fixed deformation and fixed
pairing gaps. The Cranked Nilsson-Strutinsky calculations
of Ref. [4], which assume no pairing and optimize the de-
formation for each configuration, obtain a more compressed
spectrum, close to experiment. The CSM gives two even-spin
(ABEF and ABef) and one odd-spin (AC) bands between the
s- and the g-bands, where Ref. [6] suggests the experimen-
tal location of the two signatures of the γ-band on top of the
s-band. The close neighborhood may cause fragmentation of
the collective strength among these two-quasiparticle (relative
to AB) excitations.

B. Quasiparticle Random Phase Approximation

Quasiparticle Random Phase Approximation is the stan-
dard extension of the mean-field approximation to describe
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FIG. 9. Energies of the lowest positive parity bands in 156Dy cal-
culated by means of the cranking model. The bands are labeled by
the occupied quasiparticles in Fig. 8. Eg is the γ-band calculated by
means of the tidal wave approach. Even-spin states are connected by
straight lines odd-spin states by dashed lines.

collective excitations. In order to describe the γ-vibrations
in rotational nuclei, the authors of Refs. [14–20] applied
QRPA to the rotating mean-field and the pairing + quadrupole
quadrupole model Hamiltonian, Eq. 3, below with GQ = 0.
Since the rotating mean-field conserves signature, the QRPA
leads to two independent sets of equations, one for even and
the other one for odd spins.

Fig. 11 shows the QRPA results of Refs. [18–20]. The au-
thors used the self-consistency requirement for a harmonic os-
cillator potential and volume conservation introduced by Bohr
and Mottelson [1] to determine the quadrupole deformation
and to fix the coupling constant χ . The calculations reproduce
very well the experimental energies of the odd-spin branch of
the γ-band on top of the g- band. The calculated branching ra-
tios RE2 = B(E2, I→ I−1 : out)/B(E2, I→ I−2 : in)∼ 0.02
between the transitions out-of and within the γ-band account
for the measured ratios [6] (see Fig. 6). Above the crossing
between the g- and s- bands (g-band stands for the ground
state band and s-band for the two-quasiparticle aligned band),
the QRPA solutions are based on the s-band, which is yrast.
The three lowest odd-spin solutions are found close together.
This suggests that the collective vibrational strength may be
fragmented over these states instead of being concentrated
in one individual state. The authors quote only the ratio
B(E2, I → I − 1 : out)/B(E2, I → I − 2 : in) ∼ 0.04 for the
lowest band. The value is consistent with the widely scat-
tered experimental ratios of band 20 (see Fig. 6), who’s
excitation energy with respect to the s-band of about 0.75
MeV is somewhat larger than the QRPA value of about 0.60
MeV. The lowest three even-spin QRPA solutions are close
together as well, which may lead to fragmentation. The low-
est solution lies about 0.2 MeV above yrast, which is sub-
stantially lower than the position of band 17, the experimen-
tal candidate for the even-spin γ-band. The calculated ratio
B(E2, I → I− 2 : out)/B(E2, I → I− 2 : in) ∼ 0.01 is to be

FIG. 10. Upper panel: Angular-momentum expectation values cal-
culated by means of the cranking model relative to the reference.
Lower panel: Routhians relative to the reference. Reference as in
Fig. 3.

compared with the experimental ratio ∼ 0.2.
The QRPA approach becomes unreliable in the vicinity of

the crossing of the g- and s- bands. The reason is that g- and
s- configurations have different deformations (0 axial and AB
triaxial). The cranking model produces a mixing between the
configurations, which makes the even-spin QRPA energy ap-
proaching zero, which is an artifact. The mixing falsifies the
energies of the lowest QRPA even-spin solution already away
from the crossing. In contrast to experiment, the even-spin
solution (not shown) was found below the odd-spin sequence.
The low energy of the even-spin QRPA solutions on top of
the s- configuration may be an artifact as well. The authors of
Refs. [14–17] avoided these problems by removing the mix-
ing between the g- and s- configurations. For the studied nu-
cleus 164Er both the even-spin and odd-spin QRPA solutions
are stable in the crossing region.

As seen in Fig. 11, The QRPA calculations [20] reproduce
the experimental energies of the SV band very well. The struc-
ture of the QRPA solution is not analyzed in detail. By con-
struction, it has to be a combination of a β -type and a pairing
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FIG. 11. Routhians of the lowest positive parity bands in 156Dy cal-
culated by means of the QRPA extension of the rotating mean-field
derived from the pairing + quadrupole quadrupole model Hamilto-
nian. Even-spin states are connected by straight lines odd-spin states
by dashed lines. Green line depicts the QRPA results for the β band,
i.e., the band based on the 0+2 state. Figure has been prepared using
the results of Refs. [18–20]. Reference energy is as in Fig. 3.

vibration.

C. Tidal Wave Approach

The tidal wave concept has been developed to describe
the yrast sequence of near-spherical and transitional nuclei
[43, 44]. It can be directly applied to the γ-degree of free-
dom. The γ-vibration carries 2h̄ of angular-momentum along
the symmetry axis. Classically, the sequence n = 1, 2, 3,
... of aligned γ phonons is represented by a wave travel-
ling around the symmetry axis 3 with the angular velocity
h̄ωγ = Eγ/2 carrying the angular-momentum J3 = Kh̄ = 2nh̄.
In the co-rotating frame, the wave is represented by a constant
γ-deformation, which increases ∝

√
n. For a travelling wave

the angular-momentum and energy increase by increasing the
amplitude while the rotational frequency stays constant. For
a triaxial rotor the states above the yrast sequence are also
generated by adding quanta of angular-momentum along the
axis with the smallest moment of inertia. The difference to
the tidal wave is that the angular-momentum and energy in-
crease by increasing the rotational frequency while the defor-
mation stays constant. Obviously, the concept also comprises
the intermediate cases of an anharmonic γ-vibration and a soft
triaxial rotor.

It is important to realize that it is not possible to distin-
guish between a triaxial rotor and a harmonic γ-vibration, as
long as one considers only the first excited (K=2) band. In
both cases an angular-momentum of J3 = 2h̄ is generated by
a γ-deformed shape rotating about the 3-axis. To differenti-
ate one has to take the next (K=4) band into consideration.
The K-dependence of ωγ is indicated by the level distance,
h̄ωγ = (Eγ(K)−Eγ(K−2))/2. In the case of a vibration, the

FIG. 12. Energy of the J3 = 0 and J3 = 2h̄ calculated by the shell
correction version of the cranking model.

level distance is the same and so is the frequency ωγ for K = 2
and K = 4 bands. To view it as a rotation, ωγ = K/J im-
plies J (K = 4) = 2J (K = 2). Because J ∝ γ , one must
have deformation parameter γ(K = 4) =

√
2γ(K = 2), which

means Eγ(K = 4) = 2Eγ(K = 2). In the case of the rigid tri-
axial rotor, γ(K = 4) = γ(K = 2) and with a fixed moment
of inertia J , the energy Eγ = K2/2J , which means that
ωγ(K = 4) = 2ωγ(K = 2) implying Eγ(K = 4) = 4Eγ(K = 2).
This explains why the TPSM approach [27] which operates
with a fixed γ deformation describes the first excitations of
γ vibrational type in 156Dy, which has an axial shape at the
moderate spins of interest in this communication.

For the first time, we apply the Tidal Wave concept to
the γ vibration in a quantitative way. The travelling wave is
described by cranking the triaxial potential about the long-
axis with the frequency ωγ . The total angular-momentum
J3(ωγ ,γ) = 〈0| j3|0〉 and the total routhian E ′(ωγ ,γ) are cal-
culated by means of the shell correction version of the crank-
ing model as described in Ref. [45]. The total energy E(J3 =
2,γ) = E ′(ωγ ,γ)+ωγ J3(ωγ ,γ) is minimized with respect to
γ , where ωγ is fixed by requiring J3(ωγ ,γ) = 2h̄.

The calculation is carried out for the vacuum configuration
|0,ωγ〉, which corresponds to all negative energy quasiparti-
cle routhians occupied. Like for rotation about the short-axes
1, 2 shown in Fig. 8, the continuation of the configuration
to frequencies h̄ωγ > 0.3 MeV leads into the region where
the negative- and positive-energy quasiparticle encounter. The
cranking model generates an unphysical mixing of the 0 con-
figuration with high-j configurations (AB for example). In or-
der to remove the mixing, the low-frequency routhians are ex-
trapolated using fourth-oder polynomials, which corresponds
to third-order perturbation theory with respect to ωγ . The Har-
ris parametrization :

J3 = ωγJ0 +ω
3
γ J1, E ′ = E0−

ωγ

2
J0−

ω4
γ

4
J1 , (6)

is fitted to the cranking values in the range 0 ≤ h̄ωγ ≤ 0.1
MeV. The extrapolation very well reproduces the cranking
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calculations up to the region where the mixing with the high-j
configurations sets in.

Fig. 12 shows that the energy with J3 = 0 is minimal for
γ = 0, which indicates that the γ-band has the character of a
tidal wave. For J3 = 2h̄ the minimum lies at γ = 22.5◦, which
is the amplitude of the wave travelling about the symmetry
axis. The energy of the minimum Eγ = 0.97 MeV is some-
what larger than the experimental energy of the γ-band head
of E(2+2 ) = 0.890 MeV. The energy 2h̄ωγ =0.91 MeV corre-
sponding to angular velocity of the wave at the minimum of
ωγ = 0.456MeV/h̄, remarkably well reproduces the experi-
mental 2+2 energy. Up to spin I=10 the coupling of the γ-band
to other bands is relatively weak. Accordingly, the band-head
energy is added to the g-band in Fig. 9. Using the semi-
classical expression given in Ref. [45], the cranking calcu-
lations provide the B(E2,ω)TAC values. A rough estimate of
the reduced transition probability B(E2,2+2 → 0+1 ) is given by
the semi-classical expression for J3 = 1h̄, because the latter is
proportional to J3. The calculated ratio

B(E2,2+2 → 0+1 )
B(E2,2+1 → 0+1 )

=
B(E2,ω3(J3 = 1h̄)TAC

B(E2,ω1(J1 = 2h̄)TAC
(7)

of 0.043 is close to the experimental ratio of 0.048 [46]. .
The tidal wave approach reproduces the properties of γ-

band head remarkably well without introducing any new pa-
rameters. This approach becomes equivalent to the QRPA ap-
proach when the two approaches are applied to the pairing +
quadrupole quadrupole Hamiltonian and the linear extrapola-
tion is used for J3(ω3) instead of the third order Harris expres-
sion. The TPSM, also describes the γ-excitations by assum-
ing a constant γ-deformation. Instead of the semi-classical
cranking model it generates the travelling wave by means of
quantal angular-momentum projection. The γ-deformation is
considered as a parameter that is adjusted to reproduce the ex-
citation energy of the γ-band on top of the ground state band.

The value of γ = 20.6◦ is close to 22.5◦ calculated by the tidal
wave approach. As discussed above this does not mean that
156Dy has a rigid triaxial shape. As long as only the first ex-
cited γ-band is of interest there is no way to decide whether
the triaxiality is static or dynamic. The wavelength of the first
excitation is too large to resolve details of the potential in the
γ-degree of freedom that separate a harmonic travelling wave
from a rigid rotor.

IV. CONCLUSIONS

The recently observed band structures in 156Dy have been
interpreted in the framework of the TPSM approach and
QRPA based on the rotating mean-field. The γ-band built
on the ground state band is well reproduced by the TPSM, in
particular, the staggering pattern above I = 10, which within
the collective model indicates the even-I-low pattern, corre-
sponding to the γ-softness limit. The TPSM analysis strongly
supports the interpretation proposed in the experimental work
that two excited bands are the γ-bands based on the neu-
tron s-band. This is the first detailed confirmation of γ-bands
based on the rotational aligned two-quasineutron configura-
tions, which have been suggested in the framework of QRPA.
It would be quite interesting to apply the recently developed
state-of-the-art approaches [47–50] to investigate the γ-bands
built on the quasiparticle excitations.
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