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In this paper, we address the problem of the post-prior equivalence in the calculation of inclusive
breakup and transfer cross sections. For that, we employ the model proposed by Ichimura, Austern,
and Vincent [Phys. Rev. C 32, 431 (1985)], conveniently generalized to include the part of the
cross section corresponding the transfer to bound states. We pay particular attention to the case
in which the unobserved particle is left in a bound state of the residual nucleus, in which case
the theory prescribes the use of a complex potential, responsible for the spreading width of the
populated single-particle states. We see that the introduction of this complex potential gives rise to
an additional term in the prior cross section formula, not present in the usual case of real binding
potentials. The equivalence is numerically tested for the 58Ni(d,pX) reaction.

I. INTRODUCTION

The post-prior equivalence of the transition amplitude
for direct nuclear reactions involving different rearrange-
ment channels is a key result of nuclear reaction theory.
This result provides two formally equivalent ways of ex-
pressing the transition amplitude, depending on whether
the main interaction appearing in the transition operator
is that based on the initial or final internal Hamiltonians.
The result holds for the exact transition amplitude and,
in the case of transfer reactions, also for the DWBA limit.
In this latter case, the post and prior expressions are for-
mally identical, differing only in the transition operator.
This result has indeed been confirmed in practical cases.
In the case of inclusive breakup reactions of the form

a+A→ B∗+b, where a = b+x and B∗ is any A+x state,
the problem has deserved attention in the past. Several
groups proposed formulae for the calculation of inclusive
cross sections using either the post or prior DWBA repre-
sentations [1–4]. Ichimura, Austern and Vincent(IAV) [3]
showed that the post and prior equivalence holds also for
these inclusive processes but, in this case, it involves an
additional term, not present in the usual transfer process
between bound states. This terms arises from the non-
orthogonality between the initial (a+A) and final (b+B)
partitions. Although some authors (see e.g. Li, Udagawa
and Tamura [5]) regarded this term as nonphysical, in our
recent work [6] we showed in practical cases that the in-
clusion of this term is essential to preserve the post-prior
equivalence and to reproduce correctly the experimental
data.
The calculations of Ref. [6] were restricted to unbound

x + A states (i.e. Ex > 0, where Ex is the final relative
energy between x and A). However, the Ex < 0 case was
not considered. This region would correspond to bound
states of the residual B system and, hence, the process
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a+ A → B + b becomes a transfer reaction in the usual
sense. In some models, such as the DWBA, the scatter-
ing amplitude involves the overlap function between the
A and B systems, i.e. 〈A|B〉. Although these overlaps
should be in principle obtained from the many-body wave
functions of A and B, they are most commonly approx-
imated by single-particle wave functions calculated in a
mean-field potential, with the correct quantum numbers
and separation energy, and multiplied by a spectroscopic
amplitude. The latter accounts for the fragmentation of
single-particle strength due to beyond mean-field correla-
tions. If one is not interested in the population of specific
final states, but just in their sum, one may incorporate
the effect of this fragmentation by means of a complex po-
tential, whose imaginary part accounts for the spreading
width of the single-particle levels into these more com-
plicated configurations. This is the case of the dispersive
optical potential, first introduced by Mahaux and Sartor
[7] and recently pursued by several groups (see Ref. [8]
for a recent review). The use of this dispersive poten-
tials permits a natural extension of the inclusive breakup
models to negative energies [9, 10]. A recent work, using
the IAV model in prior form [11], has shown that this pro-
cedure leads to a smooth transition between the positive
and negative Ex values and hence between the breakup
and transfer regions. However, the relation between the
prior and post formulations for the case of transfer reac-
tions with complex binding potentials has not been estab-
lished to our knowledge. In particular, it remains to clar-
ify the importance of the non-orthogonality term in this
case. Indeed, for real potentials, these results should lead
to the well-known post-prior equivalence used in trans-
fer reactions, and the non-orthogonality term should not
contribute in this case.

Guided by these considerations, in this paper, we ad-
dress the post-prior equivalence for transfer reactions of
the form of a+A→ b+B∗ in presence of complex x+A
potentials. For that purpose, we revisit and generalize
the IAV model which allows us to describe the breakup
(Ex > 0) and transfer (Ex < 0) regions in the same foot-
ing. We will see that, in the extended version of the IAV
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model, the use of a complex UxA potential leads to dif-
ferent formulas for post and prior representations. As a
practical application of the derived formulas, we present
calculations for the 58Ni(d,pX) reaction at E = 80 MeV.
The paper is organized as follows. In Sec. II we sum-

marize the main formulas of the IAV model in post and
prior forms, and outline its relation with the prior form
UT model. We show how the IAV model can be naturally
extended to final bound states. In Sec. III, the formalism
is applied to the 58Ni(d,pX) reaction. Finally, in Sec. IV
we summarize the main results.

II. THEORETICAL FRAMEWORK

In this section, we briefly summarize the IAV model, in
its post and prior forms, and highlight its connection with
the UT model. Further details can be found in Ref. [3]
as well as in our previous works [6, 12, 13]. We write the
process under study as

a(= b + x) +A→ b+B∗, (1)

where the projectile a, composed of b+x, collides with the
target A, emitting the ejectile b and leaving the residual
system B∗ (= x + A) in any possible final state com-
patible with energy and momentum conservation. This
includes x + A states with both positive and negative
relative energies.
The IAV model, as well as the UT model, treats the

particle b as a spectator, meaning that its interaction
with the target nucleus is described with an optical po-
tential UbA.
Using the post-form IAV model in DWBA, the inclu-

sive breakup differential cross section, as a function of
the detected angle and energy of the fragment b, is given
by
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where va is the velocity of the incoming particle a,
Vpost ≡ Vbx+UbA−UbB is the post-form transition oper-
ator, ρb(Eb) = kbµb/[(2π)

3
~
2] (with µb the reduced mass

of b + B and kb their relative wave number), |φa〉 and

|φ0A〉 are the projectile and target ground states, χ
(+)
a

and χ
(−)
b are distorted waves describing the a − A and

b − B relative motion by the optical potentials UaA and

UbB, respectively, and Ψ
c,(−)
xA is any possible state of the

x+A many body system, with c = 0 denoting the x and
A ground states. Thus, the c = 0 term in Eq. (2) cor-
responds to the processes in which the target remains in
the ground state after the breakup, usually called elastic

breakup (EBU), whereas the terms c 6= 0 correspond to
the so-called non-elastic breakup (NEB) contributions.

The theory of IAV allows to perform the sum in a for-
mal way, making use of the Feshbach projection formal-
ism and the optical model reduction, and leading to the
following closed form for the NEB differential cross sec-
tion:
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where Wx is the imaginary part of the optical potential
Ux, which describes x+A elastic scattering. ψpost

x (~rx) is
a projected x-channel wave function which describes the

x−A relative motion for a given outgoing momentum ~kb
of the b particle, and obtained after projection onto the
A ground state using the Feshbach formalism. It verifies
the equation

|ψpost
x 〉 = Gx|ρ〉post, (4)

where Gx = 1/(Ex − Hx + iǫ), with Hx = Tx + Ux,

Ex = E − Eb and 〈~rx|ρpost〉 = (χ
(−)
b ~rx|Vpost|φaχ

(+)
a 〉.

Udagawa and Tamura [4] proposed a very similar formula
for the same problem, but making use of the prior-form
representation. The prior-form x−channel wave function
reads

|ψprior
x 〉 = Gx|ρ〉prior, (5)

where 〈~rx|ρprior〉 = (χ
(−)
b ~rx|Vprior|φaχ

(+)
a 〉. Using this

channel wave function, UT proposed the following prior-
form inclusive breakup formula
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which is analogous to the IAV formula, Eq. (3) .
Despite their formal analogy, the UT and IAV expres-

sions give rise to different predictions for NEB cross sec-
tion. This discrepancy led to a long-standing dispute
between these two groups. The problem has been also re-
examined recently [12, 14]. These works have concluded
that the UT formula is incomplete, and must be sup-
plemented with additional terms, as we show below. The
comparison of the IAV and UT models with experimental
data supports this interpretation [12–17]
In general, the NEB will contain also contributions

coming from the population of states below the breakup
threshold of the x + A system (Ex < 0). One would
like to have a common framework to describe transfer to
both continuum as well as bound states. For that pur-
pose, Udagawa and co-workers [9] proposed to extend
the complex potential to negative energies. Then, the
bound states of the system are simulated by the eigen-
states in this complex potential, whose imaginary part is
associated with the spreading width of the single-particle
states. The latter accounts for the fragmentation of these
states into more complicated configurations due to the
residual interactions. The method has been recently re-
examined by Potel et al. [11, 14], who have provided an
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efficient implementation of this idea. The key point is the
realization that the Green function Gx(rx, r

′
x) in Eqs. (4)

and (5) can be expressed for both Ex > 0 and Ex < 0
cases. Proceeding in this way, the application of Eq. (3)
to positive and negative energies is formally analogous.
The post-prior equivalence for transfer reactions with

real binding potentials is well known in the literature
[18, 19]. However, the post-prior equivalence with com-
plex binding potentials has never been investigated to
our knowledge.

The relation between the post and prior formulae was
first established by IAV [3].
To relate the post and prior inclusive breakup cross

sections, we note that

Vpost = Vprior + (Vbx + Tbx + UaA + TaA)

− (UxA + TxA + UbB + TbB). (7)

We consider a definite final state of the x−A system,
denoted |φn〉 and evaluate the difference

〈φn|ψ
post
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The first term in parenthesis can be replaced by E

when acting on |χ
(+)
a φa〉. The second parenthesis, acting

on 〈φnχ
(−)
b | gives also the total energy E, provided Hx

is Hermitian (i.e. Ux real). In that case, we have
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which corresponds to the well-known post-prior equiva-
lence for transfer reactions.
However, when Ux is complex we can not perform the

last step. Instead, we may rewrite (8) as

|ψpost
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The function |ψNO
x 〉 = (χ

(−)
b |χ

(+)
a φa〉 is the so-called non-

orthogonality (NO) overlap, also referred to in the liter-
ature as Hussein-McVoy term. Upon replacement of this
relation into Eq. (3) we finally get
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where the first term is the UT prior-form formula of the
NEB cross section, Eq. (6),
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is the non-orthogonality term and
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is the interference term.
Equation (11) shows that the IAV post-form formula

and UT prior-form formula are not equivalent. The lat-
ter needs to be supplemented with two additional terms,
which stem from the non-orthogonality of the initial and

final states. Recent calculations comparing these expres-
sions with experimental data support the interpretation
of IAV [6, 12].
We also note that the relations (10) and (11) hold for

both Ex < 0 and Ex > 0 cases. That is, even in the trans-
fer to bound states the prior form expression requires the
inclusion of the non-orthogonality term. Only when the
x − A potential is real the contribution of these terms
vanish in the DWBA expression. It is one of the pur-
poses of this work to assess the validity of (11) in actual
calculations for complex Ux.
It is enlightening to consider the simple case in which

Wx is taken as a constant. In this case, if one inserts
the Green’s operator into Eq. (3), the double differential
cross section for transferring particle x to bound states
in post-form results
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tity,
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1 Note that the expression of the identity operator used here does

not not hold in general for general non-Hermitian potentials, but

it remains valid in the case of constant W, as assumed here.
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It should be noted that the single-differential cross sec-
tion given by Eq. (17) is nothing but the DWBA cross
section of transfer cross sections. Equation (16) shows
that, for constant Wx, the energy distribution of the
double differential cross section follows a Breit-Wigner
(Lorentzian) shape for the bound states En < 0, and
Γn represents the spreading width of the single-particle
levels generated by the Vx potential.
Notice that, in the limit caseW → 0, ωn → δ(Ex−En)

and hence d2σ/dEdΩ|post is zero everywhere except at
the pole energies Ex = En.
Finally, we note that a similar result to that of

Eqs. (15) and (16) can be obtained also for a non-constant
imaginary potential, provided Wx ≪ Vx [14]. In this
case, perturbation theory leads to a equation formally
analogous to Eqs. (15)-(16), with Γn = 〈φn|Wx|φn〉, with
the φn functions corresponding to the eigenstates of the
Hamiltonian Tx + Vx.

III. CALCULATIONS

We consider the reaction 58Ni(d,pX) at Elab
d =

80 MeV. This reaction was also considered in our pre-
vious work [12], where we compared with the inclusive
breakup data from Ref. [20] using the original IAV model
and considering only the Ex > 0 region for the n-58Ni
residual system. Here, we extend these calculations to
negative energies (Ex < 0), studying the effect of the
imaginary part of the Ux potential, and comparing the
post and prior results.
In the present calculations, we consider for the n − p

interaction the simple Gaussian form of Ref. [21]. The
deuteron and proton distorted waves are generated with
the same optical potentials used in Ref. [12]. The
neutron-58Ni potential is extrapolated to negative en-
ergies by simply fixing its real and imaginary parts to
their values at En = 1 MeV for En ≤ 1 MeV, that is,
Ux(Ex < 1 MeV) = Ux(Ex = 1 MeV). The bin proce-
dure is used to average the distorted wave χb over small
momentum intervals to evaluate the post-form formula.
Although this is not required for the prior-form formula,
the same averaging procedure is adopted in that case for
consistency with the post-form results.
In Fig. 1(a) we present the post and prior calculations

for the angle-integrated differential cross section of the
outgoing protons as a function of their center-of-mass
energy. The black thick solid line is the post-form cal-
culation obtained with the IAV post-form model and the
red thin solid line is the UT prior-form calculation. It is
seen that there is a significant difference between these
two calculations, for both En < 0 and En > 0 regions.
When adding the NO (dotted line) and IN (dot-dashed)
terms to the UT result, one obtains an excellent agree-
ment with the IAV-post result both at positive and neg-
ative neutron energies. This demonstrates, for the first
time to our knowledge, the post-prior equivalence of the
transfer cross section leading to bound states, in presence
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FIG. 1. (Color online) (a) Angle-integrated proton energy
spectra 58Ni(d,pX) at Ed = 80 MeV. The thick solid line is
the post-form calculation (IAV model). The thin solid, dotted
and dot-dashed lines are the UT, NO, IN terms contributing
to the prior-form cross section and the dashed line is their
sum. The vertical line indicates the threshold (En = 0) en-
ergy. (b) Same as panel (a), but with the imaginary part of
the n-58Ni reduced by a factor of 10. See text for details.

of complex binding potentials. This result has implica-
tions if, for example, a dispersive optical model potential
is to be used to describe the bound states of the residual
B system [17].

The fact that the difference between the IAV and UT
results at negative neutron energies originates from the
use of a complex neutron potential is illustrated in panel
(b), where the imaginary part of this potential is reduced
by a factor of 10. As expected, for En > 0 this leads
to a reduction of the NEB cross section [c.f. Eq. (3)].
For En < 0 the much weaker absorption leads to an al-
most perfect agreement between the IAV and UT formu-
las, which is the usual post-prior equivalence for transfer
reactions. We note also that, for this weak-absorption
case, the differential cross sections displays marked peaks
at the position of the bound states and resonances of
the neutron-58Ni potential. In particular, a very narrow
ℓ = 4 resonance is found near the neutron threshold.
Therefore, the role of the imaginary part is to increase
NEB cross section, but also to smear the contribution of
the bound states and resonances. This is also apparent
from Eq. (14) which, in the case of constantWx, predicts
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a Lorentzian shape with a width given by Γ = Wx. To
conclude this section, we notice that, even in the limit of
small Wx, the IAV and UT results differ for En > 0. In
this case, the addition of the NO and IN terms is essen-
tial to restore the post-prior equivalence, as shown in our
previous work [6].

IV. SUMMARY AND CONCLUSIONS

In summary, we have addressed the problem of the
post-prior equivalence in the calculation of inclusive
transfer reactions of the form A(a, b)B, were B is any
bound state of the x+A system. For that, we have con-
sidered the post-form inclusive breakup model proposed
by Ichimura, Austern and Vincent (IAV) [1–3], conve-
niently extended to negative (bound states) of the x+A
system. We have also considered the prior-form model of
Udagawa and Tamura (UT) [4].
We have shown that the equivalence between the post-

form (IAV) and prior-form (UT) expressions holds only
for real x − A potentials. For complex interaction, the
non-orthogonality (NO) term is indispensable. Once this
term is included, the post-prior equivalence is restored.
To assess this equivalence at a numerical level, we have

performed calculations for the 58Ni(d,pX) reaction at 80
MeV. We find that, when a complex potential is used
for the x − A system, the IAV and UT results signif-

icantly disagree, both for the unbound (Ex > 0) and
bound (Ex < 0) regions. Inclusion of the NO term gives
an excellent agreement between the post and prior cross
sections. We have also verified that, as the imaginary
part of Ux is reduced, the UT result approaches the IAV
one, thus recovering the well-known post-prior equiva-
lence of the DWBA formula.

We believe that the present results are relevant because
they extend a fundamental property of the transition am-
plitude, namely, the post-prior equivalence, to the case
of non-Hermitian binding potentials. In particular, the
results will be useful in the context of the exclusive or
inclusive transfer reactions with dispersive optical poten-
tials, currently under development.
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