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�e equation of state (EOS) of dense ma�er is an essential ingredient for numerical simulations of core-
collapse supernovae and neutron star mergers. �e properties of ma�er near and above nuclear saturation den-
sity are uncertain, which translates into uncertainties in astrophysical simulations and their multi-messenger
signatures. �erefore, a wide range of EOSs spanning the allowed range of nuclear interactions are necessary
for determining the sensitivity of these astrophysical phenomena and their signatures to variations in input mi-
crophysics. We present a new set of �nite temperature EOSs based on experimentally allowed Skyrme forces.
We employ a liquid drop model of nuclei to capture the non-uniform phase of nuclear ma�er at sub-saturation
density, which is blended into a nuclear statistical equilibrium EOS at lower densities. We also provide a new,
open-source code for calculating EOSs for arbitrary Skyrme parametrizations. We then study the e�ects of
di�erent Skyrme parametrizations on thermodynamical properties of dense astrophysical ma�er, the neutron
star mass-radius relationship, and the core collapse of 15 and 40 solar mass stars.

PACS numbers: 21.65.Mn,26.50.+x,26.60.Kp

I. INTRODUCTION

Core-collapse supernovae (CCSNe) and neutron star (NS)
mergers, the birth places of neutron stars and black holes
(BH), can only be understood in the light of the microphysics
that drives them. A clear picture of these astrophysical phe-
nomena is directly tied to our understanding of the properties
of ma�er and radiation at high energy densities. �erefore,
one of the essential microphysical ingredients in computa-
tional simulations of these phenoma is the equation of state
(EOS) of dense ma�er (e.g., [1, 2]).

An EOS for CCSNe and NS merger simulations must en-
compass a very large range in density, temperature, and
composition. �e temperatures encountered in these events
range from zero up to hundreds of MeV, densities from . 104

to 1015 g cm−3, and proton fractions y may be close to zero
or as high as 0.60. Over this wide parameter space, ma�er
may be in a gas, liquid, or solid phase, and in its ground state
or in a highly-excited state [1–3].

At low densities and temperatures, isospin symmetric mat-
ter with the same number of protons and neutrons clusters
into heavy nuclei. By making the system isospin asymmet-
ric, i.e., having an excess of neutrons with respect to protons
or vice-versa, nuclei become neutron or proton rich. If the
isospin asymmetry is large enough, nucleons drip out of nu-
clei to form a background gas. Keeping proton fraction and
density constant, heavy nuclei split into lighter ones as the
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temperature is increased. At very high temperatures all nu-
clei dissociate and only a gas of free nucleons immersed in
the electron and photon gas exists. If, instead, composition
and temperature are kept constant as density is increased,
nuclei become more and more packed. Just below nuclear
saturation density, a series of phase transitions in which nu-
cleons arrange themselves into complex shapes known as nu-
clear “pasta” occurs [4, 5]. At even higher densities, nucleons
form a free gas liquid state and the EOS sti�ens due to short
range nuclear repulsive forces. �e EOS may so�en at densi-
ties much higher than nuclear saturation density due to the
appearance of heavier leptons, hyperons, kaon condensates,
or a quark-gluon plasma [6–8]. We do not consider these
phases in the present work.

�e EOS is poorly constrained in regions of parameter
space relevant for CCSNe and NS mergers, as ma�er in these
sites is under extreme conditions that cannot be easily repro-
duced in laboratory experiments. Hence, any EOS built for
astrophysical applications depends on extrapolations based
on theoretical models of microscopic interactions as well as
astrophysical and experimental inputs. Ideally, these models
should be supported by available nuclear experimental data
[9, 10] and make predictions that ful�ll known astrophysical
[11–16] and theoretical constraints [17–19].

Broadly, there are two approaches for generating nuclear
interactions used in calculating the properties of dense mat-
ter. Phenomenological interactions employ reasonable forms
for the nuclear interaction and �t the force parameters to the
measured properties of nuclei and other constraints from lab-
oratory experiments [20–23] and astrophysical observations
of NSs [24]. Since they are constrained mainly by observa-
tions of nearly isospin-symmetric systems accessible in the
laboratory, extrapolating to the highly isospin-asymmetric
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ma�er encountered in NS mergers and CCSNe introduces
signi�cant uncertainties. More microscopic treatments, such
as chiral e�ective �eld theory, use interactions that obey
symmetries of QCD and �t the small number of free param-
eters in the interaction based on observed properties of the
nucleon-nucleon interaction [25]. �ese approaches are very
accurate at near nuclear saturation density and below and
should able to capture the properties of highly asymmetric
ma�er[26]., However, but di�cult to calculate higher-order
interactions become increasingly important with increasing
density [26] rendering the approach impractical well above
nuclear saturation density.

Another source of uncertainty, in addition to the uncer-
tainty in the form of the e�ective nuclear interaction, comes
from the many-body techniques used to predict the thermo-
dynamic properties of an ensemble of nucleons. For a given
e�ective nuclear interaction, the properties of a system of
nucleons can be calculated exactly using modern quantum
many-body techniques [27, 28], but such calculations are too
expensive to cover the wide range of conditions required for
an astrophysical EOS [28, 29]. Because of their relative sim-
plicity and their ability to capture the properties of nuclear
ma�er near saturation density, phenomenological interac-
tions combined with mean-�eld techniques are o�en applied
when calculating astrophysical EOSs [3, 24, 30]. For instance,
phenomenological Skyrme models assume a zero-range ef-
fective interaction that, in the mean �eld approximation1, re-
sults in a parametrized energy functional that can be �t to
measured properties of nuclei [31].

Non-uniform phases of ma�er prevail at low temperatures
and sub-saturation densities. In addition, there is a high-
density non-uniform phase near nuclear saturation density.
Non-uniform phases of ma�er appear at low temperatures
and sub-saturation densities, with a high-density phase near
nuclear saturation density and a low density nucleon gas
phase. �e treatment of these non-uniform phases is another
source of uncertainty in a high-density astrophysical EOS. A
number of di�erent approaches for treating the non-uniform
phases have been used in previous work (in addition to using
di�erent treatments of uniform nuclear ma�er). For a review,
see Oertel et al. [1] and references therein.

One o�en used approach is to treat the non-uniform nu-
clear ma�er using the single nucleus approximation (SNA)
[3, 30, 32–38]. �e SNA assumes that there is one representa-
tive nucleus (or, more generally, a high density structure such
as a pasta phase) and calculates its properties from equilib-
rium conditions within a spherical Wigner-Seitz cell, possibly
including surface, Coulomb, and translational energy correc-
tions using either a liquid drop or a �omas-Fermi model for
the surface corrections. At very low temperature this should
be a good approximation, but at intermediate temperatures
an ensemble of nuclei is likely to be present.

1 �e mean �eld approximation assumes that nucleons only interact with
other nucleons through the average �eld produced by all of the other nu-
cleons, removing the possibility of any correlations from the system.

A second approach is to use a nuclear statistical equilib-
rium (NSE)-like description of nuclei along with Coulomb
corrections and exclude the low density gas from regions in-
side the nuclei [24, 39–44]. �is gives a more reasonable dis-
tribution of nuclei at �nite temperature and the excluded vol-
ume approximation makes nuclei naturally dissappear just
below saturation density. However, such approaches can-
not easily incorporate the presence of nuclear pasta and may
have trouble including the exotic nuclei formed at very high
density. Additionally, a number of works have used a hybrid
approach where NSE is used at low density and the SNA is
used closer to nuclear saturation density [45–49].

Motivated by the need for a wide array of �nite-
temperature nuclear EOSs consistent with experimental and
observational constraints, we build an open-source code to
construct EOSs for wide range of Skyrme interactions avail-
able in the literature and use the code to generate EOS ta-
bles using broad range of Skyrme interactions. For the in-
homogeneous phase, we follow the open-source model of
La�imer & Swesty [3] (herea�er referred to as L&S; avail-
able at http://www.astro.sunysb.edu/dswesty/
lseos.html) at high density and transition to an NSE
model at low-density. We extend the L&S model to include
non-local isospin asymmetric terms, treat the size of heavy
nuclei consistently, and include an improved method to treat
nuclear surfaces. Rather than use a Gibbs construction to
go from inhomogeneous to homogeneous nuclear ma�er, we
simplify the treatment and choose either the uniform or non-
uniform phase based on which has a lower free energy, which
sets the phase transition to be �rst order. Additionally, the al-
gorithm used in the new EOS code converges across a much
wider range of temperature, density, composition space than
the original L&S code. At very high densities, we allow
for additional terms in the Skyrme parametrization that can
be used to sti�en the high-density EOS while leaving the
saturation-density EOS essentially unchanged. �is allows
one to use a speci�c Skyrme parametrization that agrees with
well determined nuclear ma�er constraints, but varies the
maximum NS mass.

We thoroughly test our new EOSs to ensure thermody-
namic consistency. Using the LS220 parametrization, we
�nd excellent agreement with the original work of L&S. We
present zero-temperature NS mass-radius relations for all
considered Skyrme parametrizations and demonstrate how
the new high-density adjustments translate to NS structure.
Finally, we employ the open-source general-relativistic GR1D
code [50–52] to carry out spherically-symmetric core col-
lapse and postbounce supernova simulations with our new
EOSs. We consider 15 solar-mass and 40 solar-mass presu-
pernova stars and follow the 40 solar-mass simulations to
black hole formation. Burrows & La�imer [53] argued that
thermodynamic quantities obtained in the SNA approxima-
tion di�er li�le from the general case. Our simulations con-
�rm this. �e small di�erences in the low-density treatment
between SNA and NSE translate to mild variations in the
inner core’s collapse time to core bounce and in the post-
bounce accretion rate. Our simulations show that the small
di�erences between SNA and NSE low-density treatments
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translate to mild variations in the inner core’s collapse time
to core bounce and in the postbounce accretion rate. �ere
is, however, li�le impact on the overall postbounce evolution
and black hole formation.

�e remainder of this paper is organized as follows. In Sec-
tions II and III we review, respectively, the formalism to ob-
tain the EOS in the SNA and the methodology to solve the
system of equations that minimize the free energy of nuclear
ma�er. We compare the results of our code to those of L&S in
Section IV. In the same section, we compare EOSs obtained
from di�erent Skyrme parametrizations, as well as nuclear
ma�er properties obtained for selected Skyrme parametriza-
tions. In Section V, we study properties of cold NSs ob-
tained for di�erent Skyrme parametrizations and the e�ects
to NS mass-radius curve obtained from adding extra sti�en-
ing terms to the EOS. We then brie�y study adiabatic com-
pression of nuclear ma�er in Section VI and spherical core
collapse of 15 and 40 solar mass stars in Section VII. Due to
its relevance for core collapse, in Section VII A, we discuss an
implementation of an NSE EOS and a method to transition
from the SNA EOS at high densities to NSE at low densities.
Finally, we conclude in Section VIII. In the appendices, we
provide details le� out in the main text, including the lepton
and photon contributions and details on our NSE treatment.
�e EOS source code and example EOS tables are available at
https://stellarcollapse.org/SROEOS.

�roughout this paper, we use the convention of mea-
suring temperature in MeV, se�ing the Boltzmann constant
kB = 1 unless otherwise explicitly mentioned. For thermo-
dynamic quantities, we use upper case le�ers when refering
to quantities per volume and lower case le�ers for speci�c
(per baryon or per mass) quantities. Furthermore, we de-
�ne the zero point of the speci�c internal energy based on
the free neutron rest mass mn, set the neutron and proton
masses mn and mp to their experimental values unless oth-
erwise noted, and explicitly include the neutron–proton mass
di�erence where necessary. Finally, we use the neutron mass
mn to convert from number density (fm−3) to rest-mass den-
sity (g cm−3).

II. SINGLE NUCLEUS APPROXIMATION FORMALISM

Here, we describe the formalism we use for determin-
ing a self-consistent EOS from a given Skyrme parametriza-
tion across a wide range of density n, temperature T and
proton fraction y. At high density, our model closely fol-
lows L&S [3], while at lower densities we employ an NSE
EOS, which we describe in Section VII A. We assume that
the medium contains neutrons, protons, alpha particles, elec-
trons, positrons, and photons. �e electrons, positrons, and
photons are treated as uniform free gases and charge neu-
trality is assumed, so that the number of electrons di�erence
between the number of electrons and positrons per baryon is
equal to the number of protons per baryon. Electron/positron
and photon contributions are discussed in detail in Appendix
A. In what follows, nucleonic ma�er refers to a bulk system
of protons and neutrons with uniform density. We use uni-

form ma�er to refer to free gas of a liquid of nucleons and
alpha particles, while we use non-uniform ma�er to describe
ma�er including heavy nuclei.

�e possible presence of heavy nuclei or pasta-like phases
at high density is treated via the single nucleus approxima-
tion (SNA), which is essentially a two-phase construction in-
cluding surface e�ects. In this construction, each heavy nu-
cleus occupies a volume VN inside a Wigner-Seitz cell of vol-
ume Vcell. We de�ne the volume fraction occupied by heavy
nuclei as u = VN/Vcell. In the interior of the heavy nucleus,
nucleonic ma�er is assumed to have a constant density (ni)
and proton fraction (yi), and have thermodynamic properties
determined from a Skyrme interaction in the mean �eld ap-
proximation. In each cell, nuclei are surrounded by a free gas
liquid of nucleons and alpha particles that occupy a volume
Vcell − VN . �e alpha particles have density nα and are as-
sumed to be hard spheres of volume vα = 24 fm−3 [35] that
exclude nucleons, so that they occupy a fraction nαvα of the
exterior volume. �is leaves a fraction of the total cell vol-
ume uo = (1−u)(1−nαvα) for the exterior nucleons. �ey
have a density no and a proton fraction yo in this volume. �e
nucleons in the exterior portion of the cell are treated using
the same Skyrme interaction as the material inside the nu-
cleus. With these de�nitions, we can write the total baryon
and proton number densities as

n = uni + (1− u)[4nα + no(1− nαvα)] , (1a)
ny = uniyi + (1− u)[2nα + noyo(1− nαvα)] . (1b)

When u → 0, uniform ma�er consisting of neutrons, pro-
tons, and alpha particles is recovered. All of the material is
assumed to be in thermal equilibrium and it is therefore char-
acterized by a single temperature T .

�e Helmholtz free energy of the system, from which all
other thermodynamical quantities may be derived, is the sum
of free-energies of the individual components, that is,

F = Fo + Fα + Fh + Fe + Fγ , (2)

where Fo, Fα, Fh, Fe, and Fγ are, respectively, the free-
energy densities of the nucleon gas outside the heavy nu-
clei, alpha particles, nucleons clustered into heavy nuclei,
electrons and positrons, and photons. �e free energies of
the leptons and photons are simply those of arbitrarily de-
generate and relativistic free gases (see Appendix A for de-
tails). �e alpha particles are treated as a free Boltzmann gas
present only in the exterior volume, so that their contribution
to the free energy is given by

Fα = (1− u)nα(µα −Bα − T ) , (3)

where Bα is the alpha particle binding energy2. �e alpha

2 Unless otherwise noted, we set the binding energy of the alpha particles
to the experimentally measured value, Bα = 30.887MeV. �is follows
the discussion of Horowitz and Schwenk [54] that noticed that L&S set
particle energies with respect to the neutron vacuum mass, but did not
include the neutron-proton mass di�erence in their calculations for the
alpha particle binding energy.
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particle chemical potential is

µα = T ln

(
nα

8nQ

)
, (4)

where nQ = (mnT/2π~2)3/2. �e exterior nucleon contri-
bution to the free energy is

Fo = uonofB(no, yo, T ) , (5)

where fB is the speci�c free energy of a bulk nucleon gas (nu-
cleonic ma�er), which is assumed to come from a particular
model for the properties of bulk nuclear ma�er. In this work,
we assume that bulk nuclear ma�er is described by Skyrme
interactions in the mean �eld approximation as is discussed
in the Section II A.

�e free energy density of the heavy nuclei is further de-
composed as

Fh = Fi + FS + FC + FT , (6)

where Fi, FS , FC , and FT are, respectively, the free energy
densities due to the assumed interior bulk nucleon gas, sur-
face e�ects, Coulomb forces, and bulk translational motion of
the heavy nuclei. �e free energy density of bulk nucleons in-
side nuclei is Fi = uinifi, where fi ≡ fB(ni, yi, T ) and ui is
the total heavy nuclei volume. Ignoring the surface volume,
ui = 1− uo. If the surface, Coulomb, and translational con-
tributions to the free energy are neglected, we would arrive
at a Gibbs two phase construction. �ese �nite size contribu-
tions are important for recovering a semi-realistic description
of nuclei and the pasta phases and we describe the models we
use for them below in Sections II B – II D a�er discussing bulk
nuclear ma�er in the next Section II A.

A. Bulk nuclear matter

Assuming a Skyrme type interaction in the mean �eld ap-
proximation, the internal energy density EB of nucleonic
ma�er with density n, proton fraction y, and temperature
T can be wri�en in the form3

EB(n, y, T ) =
~2τn
2m∗n

+
~2τp
2m∗p

+ (a+ 4by(1− y))n2

+
∑
i

(ci + 4diy(1− y))n1+δi − yn∆ ,

(7)

where a, b, ci, di, and δi are parameters of the Skyrme force
and τt (t ∈ {n, p}) are the kinetic energy densities of neu-
trons and protons. We include in Equation (7) a summation

3 In principle, contributions of spin-orbit and Coulomb interaction terms
should also be included in the equation for the internal energy EB . How-
ever, since they constitute only a small portion of the total energy, we
neglect them.

over index i in the fourth term as introduced by Agrawal et
al. [55]. �e �rst two right-hand side terms represent the
non-relativistic kinetic energy density of neutrons n and pro-
tons p, respectively. �e term proportional to n2 represents
two-body nucleon interactions while the terms proportional
to n1+δi approximate the e�ects of many-body or density
dependent interactions. �e last right-hand size term in-
cludes the mass di�erence between neutrons and protons
∆ = mn − mp, since we measure all energies relative to
the free neutron rest mass mn. �e kinetic energy terms de-
pend on the density-dependent e�ective nucleon masses m∗t
given by

~2

2m∗t
=

~2

2mt
+ α1nt + α2n−t . (8)

Here, mt is the vacuum nucleon mass and −t denotes the
opposite isospin of t. �e quantities α1 and α2 are also pa-
rameters of the model. Additional terms that mix the neutron
and proton densities in Equation (8), as used by Chamel et al.
[56], are omi�ed here.

�e temperature dependence of the nuclear force is implic-
itly included in the τt term,

τt =
1

2π2

(
2m∗tT
~2

) 5
2

F3/2(ηt) , (9)

where the Fermi integral Fk(η) is given by

Fk(η) =

∫ ∞
0

ukdu

1 + exp(u− η)
. (10)

�e Fermi integral is a function of the degeneracy parameter

ηt =
µt − Vt
T

. (11)

Here, µt is the nucleon chemical potential and Vt is the
single-particle potential,

Vt ≡
δEB
δnt

∣∣∣∣
τt,τ−t,n−t

. (12)

�e degeneracy parameter ηt can be obtained from the nu-
cleon density and temperature by inverting the relation

nt =
1

2π2

(
2m∗tT
~2

) 3
2

F1/2(ηt) . (13)

We obtain the Fermi integrals and their inverses using the
routines provided by Fukushima [57, 58]. �ese proved to be
fast, accurate and thermodynamically consistent.

In Equations (7) and (8), a, b, ci, di, δi, α1, and α2 are pa-
rameters of the model that are chosen to reproduce observ-
ables of in�nite nuclear ma�er, an idealized system of many
nucleons interacting only through nuclear forces. �ese pa-
rameters are directly related to the more o�en used Skyrme
parameters xj and tj (j ∈ {0, 1, 2}), t3i and σi through [9, 59]
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a =
t0
4

(1− x0) , (14a)

b =
t0
8

(2x0 + 1) , (14b)

ci =
t3i
24

(1− x3i) , (14c)

di =
t3i
48

(2x3i + 1) , (14d)

δi = σi + 1 , (14e)

α1 =
1

8
[t1(1− x1) + 3t2(1 + x2)] , (14f)

α2 =
1

8
[t1(2 + x1) + t2(2 + x2)] . (14g)

For most Skyrme parametrizations, t3i, x3i, and σi are only
non-zero for a single value of i, which we set to i = 1. Even
limiting i to a single value i = 1, we note that if we compare
Equation (7) with Equation (2.8) of L&S, we have an extra
term, the one proportional to the parameter d1. �is term is
necessary to obtain the correct EOS whenever x31 6= −1/2.
�is is the case for almost every Skyrme parametrization
found in the literature, albeit not for that of L&S.

L&S obtain the parameters of the bulk internal energy den-
sity (Equation 7) from experimentally determined values for
symmetric ma�er at saturation density n0, the binding en-
ergyE0, the incompressibilityK0, and the symmetry energy
at saturation J . We implement three di�erent methods to
determine the parameters of Equation 7:

1. Following L&S, input experimental values for n0, E0,
K0, and J , which are then used to determine a, b, c and
δ. For consistency with L&S, this assumes d = 0 and
α1 = α2 = 0.

2. Direct input of the parameters a, b, ci, di, δi, α1, and
α2.

3. Input Skyrme parameters xj and tj (j ∈ {0, 1, 2, 3i}),
and σi, which are used to determine a, b, ci, di, δi, α1,
and α2 as shown in Equations (14).

�e last method has advantages over the �rst two. First,
specifying only a few known nuclear experimental values
to obtain the Skyrme coe�cients (as in L&S) is unlikely to
correctly predict other well determined physical constraints.
Also, direct input of the parameters a, b, ci, di, δi, α1, and
α2 does not uniquely de�ne the surface properties of nu-
clear ma�er for a Skyrme parametrization, speci�cally the
parameters λ, q, and α discussed in Section II B. On the other
hand, input of the Skyrme parameters xj , tj , and σi makes it
straightforward to determine the surface properties of �nite
nuclei and to calculate nuclear ma�er properties that can be
directly compared with experiments. Finally, most studies on
Skyrme parametrizations in the literature explicitly give xj ,
tj , and σi.

For completeness, we give the expressions for the bulk spe-
ci�c entropy sB , bulk speci�c free energy fB , and bulk pres-

sure PB [3, 60]:

sB =
1

n

∑
t

(
5~2τt
6m∗tT

− ntηt
)
, (15)

fB = EB/n− TsB , (16)

PB =
∑
t

ntµt − nfB . (17)

B. Nuclear surface

For a given density n, proton fraction y, and temperature
T , nuclear ma�er may be uniform or phase separate into
dense and dilute phases that are in thermal equilibrium. If the
la�er is the case, there will be some energy stored in the sur-
face between the two phases. L&S parametrize the nuclear
surface free-energy density FS in terms of a surface shape
function s(u), a generalized nuclear size r, and the surface
tension per unit area σ(yi, T ), which is a function of the pro-
ton fraction yi in the dense phase and temperature T . �e
surface free energy density is wri�en as [3, 38]

FS =
3s(u)

r
σ(yi, T ) . (18)

Both the generalized nuclear size r and the surface shape
function s(u) depend on the geometry of the heavy nuclei
formed. While at low densities nuclei are spherical, as den-
sity increases and approaches nuclear saturation density, nu-
clei may assume shapes such as cylinders (think of pasta),
slabs, cylindrical holes, and bubbles (think of Swiss cheese)
[4, 5], as well as more exotic shapes [61–63]. In this picture,
the generalized nuclear size r represents the radius of spher-
ical nuclei or bubbles, the radius of cylinders or cylindrical
holes, or the thickness of slabs. It is unclear what r should
be for more exotic shapes. Following L&S, we do not con-
sider speci�c geometries for the heavy nuclei and simply de-
termine r by solving the nuclear virial theorem, see Equation
(30) and the discussion in Section II C. �e surface shape func-
tion s(u), meanwhile, is chosen as an interpolating function
that reproduces the low and high density limits for the shape
of nuclei, which are, respectively, spheres (limu→0 s(u) = u)
and bubbles (limu→1 s(u) = 1 − u). �e simplest choice for
this function is s(u) = u(1−u), which is what L&S use4 and
we adopt here.

Following the prescription of [35, 38], the surface tension
per unit area, σ(yi, T ), is ��ed by

σ(yi, T ) = σsh (yi, T )
2 · 2λ + q

y−λi + q + (1− yi)−λ
, (19)

where σs ≡ σ(0.5, 0). �e function h(yi, T ) contains the

4 Note that this choice is not obvious in L&S’s paper. It is, however, what is
implemented in their source code.



6

temperature dependence in the form

h (yi, T ) =

{
[1− (T/Tc(yi))

2]p , if T ≤ Tc(yi) ;

0 , otherwise .
(20)

In Equations (19) and (20), λ, q, and p are parameters to be
determined (see below), while Tc(yi) is the critical tempera-
ture for which the dense and the dilute phases coexist. �e
dense phase is assumed to have density ni and proton frac-
tion yi while the dilute phase has density no ≤ ni and proton
fraction yo.

To obtain the parameters λ, q, and p and a functional form
for Tc(yi), we follow [35, 38, 59] and study the two phase
equilibrium of bulk nucleonic ma�er. For a given proton frac-
tion y, there exists a critical temperature Tc and a critical
density nc in which both the dense and dilute phases have
the same density ni = no and same proton fraction yi = yo
(cf. Figures (2.3) and (2.4) of [38]). �e quantities nc and Tc
are obtained by simultaneously solving [38]

∂PB
∂n

∣∣∣∣
T

= 0 and
∂2PB
∂n2

∣∣∣∣
T

= 0 , (21)

for proton fractions y ≤ 0.50. Here, PB is the bulk pres-
sure given by Equation (17). Because we ignore Coulomb
contributions to the surface tension, the formalism presented
in this Section is almost symmetric under a y → 1 − y
transformation. �e symmetry is only slightly broken by the
small di�erence ∆ in the neutron and proton rest masses,
mn = mp + ∆, which we ignore here when considering
y > 0.5. Once the critical temperature Tc has been deter-
mined for a range of proton fractions y, we �t it using the
function

Tc(y) = Tc0
[
ac + bcδ(y)2 + ccδ(y)4 + dcδ(y)6

]
, (22)

where Tc0 ≡ Tc(y = 0.5) is the critical temperature for sym-
metric nuclear ma�er and δ(y) = 1 − 2y is the neutron ex-
cess.

A�er determining Tc(y), we compute the properties of
semi-in�nite nucleonic ma�er, that is, ma�er for which the
density varies along one direction (the z axis) and is constant
in the remaining two. Ignoring Coulomb e�ects, we assume
that in the limits z → ±∞ ma�er saturates at densities ni
and no and proton fractions yi and yo. �ese two phases are
in equilibrium if their pressures as well as their neutron and
proton chemical potentials are the same, i.e.,

Pi = Po , µni = µno , and µpi = µpo . (23)

Equations (23) are solved simultaneously with

yi =
npi

nni + npi
(24)

to obtain the neutron and proton densities of the high and
low density phases nni, npi, nno, and npo, respectively.

Once the neutron and proton densities of the two coexist-
ing phases have been calculated, we determine the surface
shape that minimizes σ(yi, T ). Since we assume the system

to be homogeneous across two dimensions, the surface ten-
sion per unit area is given by [59, 64]

σ(yi, T ) =

∫ +∞

−∞

[
FB(z) + ES(z) + Po

− µnonn(z)− µponp(z)
]
dz . (25)

Here, Po, µno, and µpo or, alternatively, Pi, µni, and µpi
are solutions to Equations (23). Meanwhile, FB(z) =
n(z)fB(n(z), y(z), T ) is the bulk free energy density across
the z axis, while ES(z) is the spatially-varying contribu-
tion to the energy density of a Skyrme-like Hamiltonian (see
Equations 1–4 of Steiner et al. [59]). It has the form [35, 59, 64]

ES(z) =
1

2

[
qnn (∇nn)

2
+ qnp∇nn ·∇np

+ qpn∇np ·∇nn + qpp (∇np)
2

]
, (26)

where nt ≡ nt(z) (t ∈ {n, p}). �e parameters qtt′ are re-
lated to the Skyrme coe�cients by

qnn = qpp =
3

16
[t1(1− x1)− t2(1 + x2)] , (27a)

qnp = qpn =
1

16
[3t1(2 + x1)− t2(2 + x2)] . (27b)

As Steiner et al. point out [59], for Skyrme-type forces, the
qtt′ are constants and the relations qnn = qpp and qnp = qpn
are always true. In the general case, however, qtt′ may be
density dependent and qnn may be di�erent from qpp, though
qnp = qpn is still expected to hold.

To minimize Equation (25), we assume that the neutron
and proton densities have a Woods-Saxon form, i.e.,

nt(z) = nto +
nti − nto

1 + exp ((z − zt)/at)
, (28)

where zn and an (zp and ap) are, respectively, the neutron
(proton) half-density radius and its di�useness [65]. �is
form has the expected limits limz→−∞ nt(z) = nti and
limz→+∞ nt(z) = nto. Following References [35, 59, 64],
we set the proton half-density radius zp at z = 0 and min-
imize the surface tension per unit area with respect to the
three other variables zn, an, and ap. �is allows us to tab-
ulate values of the surface tension per unit area σ(yi, T ) as
a function of the proton fraction yi of the dense phase and
the temperature T of the semi-in�nite system. �is is used
to determine the parameters α and q in Equation (19) and p
in Equation (20) performing a least squares �t.

It is worth mentioning that the surface free energy density
should, in general, include a contribution from the neutron
skin σ → σ+ µnνn, where νn is the neutron excess [38, 64].
However, we follow L&S, and neglect this term. In future
work, this term should be included since its e�ects are im-
portant for very neutron rich ma�er [38].
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C. Coulomb energy

Following L&S, we approximate the Coulomb free energy
density using the static Wigner-Seitz approximation,

FC =
4παC

5
(yinir)

2c(u) . (29)

Here αC is the �ne structure constant, yi is the proton frac-
tion inside heavy nuclei, ni the nuclear density also inside
heavy nuclei, r is the generalized nuclear size, and c(u) is
the Coulomb shape function, discussed below.

In this model, only the surface and Coulomb energy densi-
ties depend on the generalized nuclear size r. �us, minimiz-
ing the total energy density with respect to the nuclear size r
implies that FS = 2FC , known as the nuclear virial theorem.
With this, the generalized nuclear size becomes

r =
9σ

2β

[
s(u)

c(u)

]1/3
, (30)

where

β = 9
[παC

15

]1/3
(yiniσ)

2/3
, (31)

and σ ≡ σ(yi, T ) is the surface tension per unit area dis-
cussed in Section II B. Using the results of this section, the
surface and Coulomb energy densities may be combined in
the form

FS + FC = β
[
c(u)s(u)2

]1/3 ≡ βD(u) . (32)

�is de�nesD(u) in terms of the surface and Coulomb shape
functions, s(u) and c(u), respectively.

As is the case for the surface shape function s(u) discussed
in Section II B, the function c(u) is also chosen to reproduce
known physical limits [3, 38, 64]. At low densities, nuclei
are spherical and the generalized nuclear size r is the nu-
clear radius. Considering the nuclei to occupy a small vol-
ume fraction of the Wigner-Seitz cell, u ' 0, the Coulomb
shape function is given by limu→0 c(u) = uD(u), where
D(u) = 1− 3

2u
1/3 + 1

2u [32]. Just below nuclear saturation
density, u ' 1 and nuclei turn “inside out” and low-density
spherical bubbles form inside an otherwise dense nucleonic
phase. Here, the generalized nuclear size r is the bubble ra-
dius and limu→1 c(u) = (1−u)D(1−u) [32]. Between these
two limits ma�er may be more stable assuming non-spherical
shapes, such as cylindrical and planar geometries [4, 5]. Us-
ing the results of Ravenhall et al. [4] for the structures that
minimize the energy density of nucleonic ma�er with non-
spherical geometries at zero temperatures, L&S showed that
the function D(u) is well approximated by

D(u) = u(1− u)
(1− u)D(u)1/3 + uD(1− u)1/3

u2 + (1− u)2 + 0.6u2(1− u)2
, (33)

again with D(u) = 1− 3
2u

1/3 + 1
2u. For simplicity, we make

the same choice in our implementation.

D. Translational energy

Assuming that the heavy nuclei form a non-degenerate
and non-relativistic Boltzmann gas with no internal degrees
of freedom that is free to move within a Wigner-Seitz cell, we
have [38]

FT =
u(1− u)ni

Ā
h(yi, T ) (µT − T ) , (34)

where

µT = T log

(
u(1− u)ni
nQĀ5/2

)
(35)

is the chemical potential of heavy nuclei with nQ =

(mnT/2π~2)3/2. Here

Ā =
4πnir

3

3
(36)

is the mass number of the representative heavy nucleus. One
di�erence between our treatment and L&S is that they choose
to set a �xed value for Ā = 60 in the translational energy
calculation. We, on the other hand, compute the value of the
heavy nucleus mass number Ā and the translational energy
FT self-consistently. In order to guarantee that the transla-
tional free energyFT also vanishes at the critical temperature
Tc(yi), as is the case for the surface tension, we set FT to be
proportional to the function h(yi, T ) [35] (see Equation 20).

Also, note that the heavy nuclei of course have internal
degrees of freedom. �ese are accounted for in Fi (see Sec-
tion II A).

III. SOLVING THE EOS

�e model free energy described in Section II depends
upon the variables u, r, ni, yi, nno, npo, nα, andT . In thermo-
dynamic equilibrium, the system will assume a state in which
the free energy is minimized with respect to these variables,
subject to the constraints of �xed baryon density, proton frac-
tion, and temperature.

Our procedure is to search for extrema in the free energy
surface, which is done by se�ing the derivatives of the free
energy to zero and using standard root �nding algorithms
to �nd solutions to the resulting system of equations. First,
we reduce the number of variables by using Equations (1) to
express nno and npo in terms of the other variables and auto-
matically obey baryon number and charge conservation. We
then carry out minimization with respect to �ve independent
variables: r, ni, yi, u, and nα. Minimization with respect to
r results in the constraint given by Equation (30). Se�ing the
derivative of F with respect to nα equal to zero gives

µα = 2(µno + µpo) +Bα − Povα , (37)

which is just a condition for alpha particles in chemical equi-
librium with the exterior protons and neutrons with an ex-
cluded volume correction. �e derivatives with respect to the
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interior densities and the volume fraction give the constraints

A1 = Pi −B1 − Po − Pα = 0 , (38a)
A2 = µni −B2 − µno = 0 , (38b)
A3 = µpi −B3 − µpo = 0 . (38c)

In Equations (38), we use the quantities

B1 =
∂F̂

∂u
− ni
u

F̂

∂ni
, (39a)

B2 =
1

u

[
yi
ni

∂F̂

∂yi
− ∂F̂

∂ni

]
, (39b)

B3 = − 1

u

[
1− yi
ni

∂F̂

∂yi
+
∂F̂

∂ni

]
, (39c)

where F̂ = FS+FC+FT . �e derivatives ofFS , FC , andFT
with respect to the variables u, ni, and yi are readily obtained
from Equations (18), (29), and (34), respectively. �is system
of equations can then be solved to �nd the equilibrium values
of the independent variables for �xed n, y, and T . �ese, in
turn, can be used to calculate the pressure, entropy, and other
thermodynamic quanties required by simulation codes.

We solve this system of non-linear equations by �rst us-
ing Equations (30) and (37) to explicitly �nd nα and r.
We then search for solutions to the three remaining con-
tstraint equations using the independent variables ζ =
[log10(u), log10(nno), log10(npo)] and the root �nding rou-
tines provided by [66]. Solving the system of equations re-
quires initial guesses for the independent variables ζ . O�en,
an initial choice of ζ may not result in convergence of the
root �nding algorithm. �erefore, we perform an extensive
search of possible initial guesses when the root �nding al-
gorithm fails, which allows us to gain convergence over a
wider range of thermodynamic conditions than the original
implementation of L&S. Since we are building tables, rather
than using the EOS code directly in simulations, the increased
computational expense is not burdensome.

In some regions of parameter space, uniform ma�er has a
lower free energy than the non-uniform phase and is there-
fore the favored state. In uniform ma�er, u = 0 and the free
energy has to be minimized with respect to nno, npo, and nα,
since the portion of the free energy that depends on r, ni,
and yi is multiplied by u. �erefore, the properties of uni-
form ma�er can be found by solving Equation (37) subject to
the neutron and proton number conservation constraints.

A signi�cant di�erence between our EOS and that of L&S
is our treatment of the transition between uniform and non-
uniform ma�ter. L&S assume a continuous transition be-
tween uniform and non-uniform ma�er that is obtained us-
ing a Maxwell construction. In this picture, two phases with
densities nh and nl, where nh > nl, are in thermal and chem-
ical equilibrium with each other. �e uniform higher density
phase occupies a volume fraction v = (n− nl)/(nh − nl) of
the system, while the non-uniform lower density phase occu-
pies a volume fraction (1−v). Hence, the free energy density

in the boundary between both phases is

F (n, nl, nh, y, T ) = vFh(nh, y, T ) + (1− v)Fl(nl, y, T ) ,
(40)

and the equilibrium conditions used to obtain nh and nl are

∂F

∂nl

∣∣∣∣
nh,n,y,T

=
∂F

∂nh

∣∣∣∣
nl,n,y,T

= 0 . (41)

Instead of using the L&S procedure, we determine what
type of solutions may exist (uniform, non-uniform, or both)
and solve the necessary system of equations. If only one of
the systems has a physical solution then that is assumed to
be the most stable con�guration of nuclear ma�er. If both
systems have solutions we choose the one with the lowest
free energy as the favorable solution. �is assumes that the
transition from uniform to non-uniform ma�er is �rst order
and, therefore, there is no coexistent phase as assumed by
L&S and no need for a Maxwell construction.

We note that there are rare cases where non-uniform mat-
ter has lower free energy density than uniform ma�er, but
we still set the la�er as the favorable con�guration. We make
this choice whenever the adiabatic index

Γ =
d logP

d log n

∣∣∣∣
s

(42)

of non-uniform ma�er is negative, implying an unphysical
imaginary speed of sound. �is occurs rarely and typically at
intermediate proton fraction y ∼ 0.20 to 0.35, high density
n ∼ 0.08 to 0.11 fm−3, and low temperatures T . 0.5 MeV.
In these cases, uniform and non-uniform ma�er have very
similar free-energy densities and, therefore, we do not ex-
pect that choosing the phase with slightly higher free energy
density will a�ect the EOS signi�cantly.

IV. THE EQUATIONS OF STATE

�e model and approach described in the previous sections
can be used to compute thermodynamically consistent EOSs
for a wide range of Skyrme parametrizations. �ere are over
200 Skyrme parametrizations in the literature. We focus on
eight parametrizations that are able to reproduce most or all
known experimental nuclear ma�er constraints according to
Dutra et al. [9]. Since it has seen such wide use, we are also
including the L&S EOS withK0 = 220 MeV although it does
not ful�ll many current nuclear physics constraints.

Speci�cially, we consider the following parametriza-
tions (and provide EOS tables at https://
stellarcollapse.org/SROEOS): NRAPR [59],
SLy4 [73], SkT1 [71], SKRA [70], LNS [69], SQMC700 [74],
Skxs20 [72], KDE0v1 [68], and L&S with K0 = 220 MeV
(LS220 herea�er). Note that SLy4 does not ful�ll one out
of the eleven experimental constraints studied by Dutra et
al.: its isospin incompressibility (Equation 52) is slightly
below the experimentally allowed range. We include it since
its zero-temperature variant has seen use in NS merger
simulations (e.g., [75, 76]).

https://stellarcollapse.org/SROEOS
https://stellarcollapse.org/SROEOS
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TABLE I: Parameters of the considered Skyrme interactions with the exception of L&S, for which there are multiple ways to set t1, t2, x1,
and x2 to achieve α1 = α2 = 0 in Equations (14f) and (14g). Here, t0 is in MeV fm3, t1 and t2 are in MeV fm5, t31 is in MeV fm3+3σ1 ,
and x0, x1, x2, x31, and σ1 are dimensionless. See References [9, 31, 67] for general discussions of these parameters.

Parametrization t0 t1 t2 t31 x0 x1 x2 x31 σ1

KDE0v1 [68] −2553.08 411.69 −419.87 14063.61 0.6483 −0.3472 −0.9268 0.9475 0.1673
LNS [69] −2484.97 266.735 −337.135 14588.2 0.06277 0.65845 −0.95382 −0.03413 0.16667
NRAPR [59] −2719.70 417.64 −66.687 15042.0 0.16154 −0.047986 0.02717 0.13611 0.14416
SKRA [70] −2895.4 405.5 −89.1 16660.0 0.08 0.0 0.2 0.0 0.1422
SkT1 [71] −1794.0 298.0 −298.0 12812.0 0.154 −0.5 −0.5 0.089 0.33333
Skxs20 [72] −2885.24 302.73 −323.42 18237.49 0.13746 −0.25548 −0.60744 0.05428 0.16667
SLy4 [73] −2488.91 486.82 −546.39 13777.0 0.834 −0.344 −1.0 1.354 0.16667
SQMC700 [74] −2429.10 370.97 −96.67 13773.42 0.10 0.0 0.0 0.0 0.16667

TABLE II: Properties of nuclear ma�er calculated for the considered Skyrme interactions. n0 (in fm−3) is the saturation density of symmetric
nuclear ma�er (SNM) and ε0 (in MeV baryon−1) is the binding energy of SNM at n0. Given in MeV baryon−1 are the incompressibility
K0, the skewness K′, the symmetry energy parameters J , L, Ksym, and Qsym, and the volume part of the isospin incompressibility Kτ,v .
M∗n/mn is the dimensionless ratio of the neutron e�ective mass to the neutron rest mass in SNM at n0 and ∆M∗ (in MeV) is the proton–
neutron e�ective mass di�erence in SNM at n0. Also given in MeV is the critical temperature Tc for two-phase coexistence. Small deviations
between the LS220 results listed here and the original results of L&S are due to di�erences in the employed proton masses, the inclusion of
the neutron proton mass di�erence (see the discussion in Section IV A) and from calculating the symmetry energy expansion parameters
explicitly from the derivatives of εB and not from the di�erence in εB between SNM and pure neutron ma�er.

Parametrization n0 ε0 K0 K′ J L Ksym Qsym Kτ,ν M∗n/mn ∆M∗ Tc
LS220 [3] 0.1549 −16.64 219.85 410.80 28.61 73.81 −24.04 96.17 −328.97 1.000 1.2933 16.80
KDE0v1 [68] 0.1646 −16.88 227.53 384.83 34.58 54.70 −127.12 484.44 −362.79 0.744 0.7166 14.85
LNS [69] 0.1746 −15.96 210.76 382.50 33.43 61.45 −127.35 302.52 −384.45 0.826 0.8821 14.92
NRAPR [59] 0.1606 −16.50 225.64 362.51 32.78 59.64 −123.32 311.60 −385.32 0.694 0.6224 14.39
SKRA [70] 0.1594 −16.43 216.97 378.73 31.32 53.04 −139.28 310.83 −364.92 0.748 0.7243 14.35
SkT1 [71] 0.1610 −16.63 236.14 383.49 32.02 56.18 −134.83 318.99 −380.68 1.000 1.2933 17.05
Skxs20 [72] 0.1617 −16.46 201.94 425.53 35.50 67.06 −122.31 328.52 −383.37 0.964 1.2015 15.37
SLy4 [73] 0.1595 −16.62 229.90 363.07 32.00 45.96 −119.70 521.48 −322.84 0.695 0.6241 14.52
SQMC700 [74] 0.1704 −16.14 219.59 367.98 33.40 59.14 −140.23 312.66 −395.42 0.755 0.7385 14.72

We summarize the Skyrme parameters ti, xi, and σ in Ta-
ble I for the considered parametrizations. Note, however, that
we exclude the L&S parametrization since there are multiple
ways to set t1, t2, x1 and x2 that reproduce α1 = α2 = 0, see
Equations (14f) and (14g). Furthermore, it is not straightfor-
ward to chose a combination of these four parameters that
also reproduces the �t parameters for the surface tension per
unit area σ(y, T ) used by L&S, see Equation (19) and Table
III.

For completeness, we list the zero-temperature properties
of uniform nuclear ma�er for all parametrizations in Table II.
�e included properties of symmetric nuclear ma�er (SNM)
are the nuclear saturation density n0, de�ned by

P = n2
∂εB(n, y)

∂n

∣∣∣∣
n=n0,y=1/2

= 0 , (43)

the binding energy of SNM

ε0 = εB(n0, y = 1/2) , (44)

the e�ective mass of nucleons at saturation density for SNM,
M∗t = m∗t (n0, y = 1/2), the incompressibility

K0 = 9n20(∂2εB/∂n
2)|n=n0,y=1/2 , (45)

and the skewness

K ′ = −27n30(∂3εB/∂n
3)|n=n0,y=1/2 . (46)

Here, εB = EB/n is the speci�c energy per baryon of uni-
form ma�er. �ese quantities de�ne the expansion of the spe-
ci�c energy of SNM around saturation density,

εB(n, y = 1/2) = ε0 +
1

2
K0x

2 − 1

6
K ′x3 +O(x4) , (47)

where x = (n−n0)/3n0 and, as in Equation (7), ∆ = mn−
mp.

�e speci�c energy per baryon of asymmetric nuclear mat-
ter may be expanded around its value for symmetric ma�er,

εB(n, y) = εB(n, y = 1/2) + S(n)δ(y)2 +O(δ(y)4) , (48)

where δ(y) = 1 − 2y is the isospin asymmetry and S(n) is
the density-dependent symmetry energy, which is de�ned as

S(n) =
1

8

∂2εB(n, y)

∂y2

∣∣∣∣
n,y=1/2

. (49)

Sometimes the symmetry energy is de�ned as S(n) =
εB(n, 0)− εB(n, 1/2). �e two de�nitions agree up to their
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FIG. 1: (Color online) Density dependence of the symmetry energy
S(n) for all considered Skyrme parametrizations. �e thick curves
show S(n) for uniform nuclear ma�er (neutrons and protons only)
obtained from Equation (49) with εB(n, y) = EB(n, y)/n given
by Equation (7). �e thin curves correspond to S(n) for the full
high-density EOS at zero temperature, allowing for non-uniform
and uniform nuclear ma�er. At densities below the transition to uni-
form ma�er, S(n) is obtained from Equation (49) with εB(n, y) re-
placed by F/nwith F from Equation (2). Note that the high density
(n � n0) behavior of S(n) is highly uncertain. �e high-density
shape ofS(n) for the Skyrme parametrizations shown here is a mere
artifact of the expansion about n0 and is not necessarily physical.
At low density, the binding energy of nearly symmetric nuclei in-
creases the value of the symmetry energy for non-uniform ma�er.

quadratic terms. We plot S(n) for the considered Skyrme
parametrizations in Figure 1. We show curves for both
uniform ma�er obtained from Equation (49) with εB(n, y)
given by Equation (7), and for non-uniform ma�er, i.e., ac-
counting for the clustering of nucleons into heavy nuclei,
which occurs for densities n . 0.10 fm−3. For zero-
temperature, non-uniform symmetric ma�er, the only non-
negligible density-dependent contribution comes from the
term Fi = uinifB(n, y), which to �rst order is approxi-
mated by the binding energy of symmetric nuclear ma�er
n0fB(n0, 1/2). At high densities, n & 3n0, nuclear physics
observables are poorly constrained and the behavior of S(n),
obtained as an expansion about n0, is highly uncertain.

Expanding S(n) as a function of x, one obtains

S(n) = J + Lx+
1

2
Ksymx

2 +
1

6
Qsymx

3 +O(x4) , (50)

where

J = S(n0) , (51a)
L = 3n0(∂S/∂n)|n=n0

, (51b)
Ksym = 9n20(∂2S/∂n2)|n=n0

, (51c)
Qsym = 27n30(∂3S/∂n3)|n=n0

. (51d)

�ese expansion parameters are listed in Table II. We note
that the symmetry energy parameters J and L for all of the

Skyrme parametrizations, except for LS220, are consistent
with recently conjectured unitary gas constraints [17].

We also show in Table II the volume part of the isospin
incompressibility Kτ,v (e.g., [9]), given by

Kτ,v =

(
Ksym − 6L− Q0

K0
L

)
, (52)

the e�ective mass of neutrons in SNM M∗n , the neutron pro-
ton e�ective mass di�erence in SNM, ∆M∗ = M∗n − M∗p ,
and the critical temperature T0 discussed in Section II B. Note
that most parametrizations have Tc ' 15 MeV, the excep-
tions being the SkT1 and LS220 parametrizations that have
slightly higher critical temperatures, Tc ' 17 MeV, which
is due to their high e�ective masses. For completeness, we
provide the coe�cients obtained for the critical temperature
expansion (Equation 22) in Appendix C.

In Table III, we list the parameters σs, q, λ, and p that deter-
mine the surface tension per unit area, and which we obtain
as described in Section II B. We also provide the values of the
surface symmetry energy parameter SS and the surface level
density parameter AS given by

SS = −A
1/3

8

(
∂2fS(y, T )

∂y2

)∣∣∣∣
y=1/2,T=0

, (53a)

AS = −A
1/3

2

(
∂2fS(y, T )

∂T 2

)∣∣∣∣
y=1/2,T=0

, (53b)

where fS is calculated for a spherical nucleus with mass
number A and density n0, i.e.,

fS(y, T ) =
4πr2Nσ(y, T )

A
, (54)

with rN = (3/4πn0A)1/3. Compared with the LS220
parametrization, all other Skyrme parametrizations have a
much higher surface symmetry energy parameter SS , lower
values for the parameters q and p, and a higher value for λ.
In Reference [38], Lim and La�imer argue that the exponent
λ is expected to be between 2 and 4. �is result agrees with
our results, though we �nd the range of λ to be smaller for all
considered parametrizations, namely 3 . λ . 3.5. Finally,
there are signi�cant di�erences between the surface proper-
ties we derive here for the SLy4 and those provided by Lim
and La�imer [38]. �e di�erences reside in Lim and La�imer
having an extra parameter that accounts for the surface ten-
sion of the neutron skin of nuclei, σ → σ+µnνn, as discussed
in Section II B.

A. Comparison with L&S results

Using the same L&S Skyrme parametrization which pre-
dicts a nuclear incompressibility K0 = 220 MeV, we com-
pare the results from our code, labeled here as LS220†,
with the results of the original L&S implementation avail-
able at http://www.astro.sunysb.edu/dswesty/

http://www.astro.sunysb.edu/dswesty/lseos.html
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FIG. 2: (Color online) Comparison with L&S . We show the ratio of nuclear pressure for a range of proton fractions obtained with our LS220†
implementation and with the original L&S implementation LS220∗. �e solid black curve deliniates where the heavy-nuclei number fraction
Xi = uni/n changes from zero to a non-zero value. Below and to the le� of the curve, ma�er is non-uniform, while above and to the right
of the line it is uniform. �e dashed line shows where the nuclear pressure is zero. Di�erences between LS220† and LS220∗ are largest near
this line. �e wide horizontal band at the bo�om of the panels marks the region where the original L&S implementation does not converge
for non-uniform nuclear ma�er and assumes that the system is uniform.

TABLE III: Summary of the surface properties of nuclear ma�er
obtained for the considered Skyrme parameterizations. SS is the
surface symmetry energy (in MeV; Equation 53a), AS is the surface
level density (in MeV−1; Equation 53b), σs is the surface tension of
symmetric nuclear ma�er at zero temperature (in MeV fm−2; Equa-
tion 25). q, λ, and p are the dimensionless surface tension parame-
ters in Equations (19) and (20).

Parametrization SS AS σs q λ p
LS220 [3] 45.81 0.1365 1.150 24.40 3.000 2.000
KDE0v1 [68] 78.63 0.1315 1.215 13.54 3.245 1.493
LNS [69] 95.17 0.1089 1.044 7.78 3.507 1.506
NRAPR [59] 92.44 0.1316 1.140 13.96 3.522 1.467
SKRA [70] 86.99 0.1332 1.125 14.26 3.464 1.492
SkT1 [71] 78.71 0.0979 1.090 16.06 3.449 1.606
Skxs20 [72] 106.94 0.1117 1.045 6.48 3.540 1.555
SLy4 [73] 64.31 0.1423 1.247 18.51 3.128 1.474
SQMC700 [74] 98.48 0.1280 1.191 9.90 3.442 1.486

lseos.html, labeled here as LS220∗. In order to be con-
sistent in our comparison with the original L&S implementa-
tion, for the cases discussed in this subsection only, we make
the following choices: (1) We set the alpha-particle bind-
ing energy to Bα = 28.3 MeV. (2) We set mp = mn =
939.5654 MeV. (3) We set the proton-neutron mass di�er-
ence to ∆ = 1.29 MeV and carry it explicitly. (4) We �x
Ā = 60 in Equation (36).

In Figure 2, we plot the ratio of the total nuclear pressures
(excluding electrons and photons) returned by the two LS220
implementations. We choose proton fractions of y = 0.05,
0.20, 0.35, and 0.50, densities in the range 10−7 fm−3 ≤ n ≤
1 fm−3, and temperatures 0.01 MeV ≤ T ≤ 100 MeV. We
choose these ranges since the original L&S implementation
only converges consistently for proton fractions in the range
0.03 ≤ y ≤ 0.51, densities higher than 10−7 fm−3, and tem-
peratures higher than 10−1.5 MeV. In our implementation,
however, we are able to compute the EOS for proton frac-
tions 0.001 . y . 0.7, and for temperatures and densities as
low as 10−4 MeV and 10−13 fm−3, respectively.

Figure 2 demonstrates that in uniform ma�er, with the ex-
ception of regions very close to P ' 0, our results and those
of L&S agree within 0.5% or be�er. For non-uniform ma�er
and very low temperatures, T . 0.04 MeV, the L&S imple-
mentation is unable to �nd a non-uniform solution and as-
sumes the system is uniform. �is gives rise to the large ra-
tio between the pressures in that region. In most of the non-
uniform regions with temperatures above T & 0.04 MeV,
the agreement is, again, within 0.5% or be�er. Exceptions
occur near the transition from uniform to non-uniform mat-
ter and regions where the nuclear pressure is close to zero.
Even though the ratios are large in these regions, the absolute
pressure di�erences are relatively small. Di�erences between
the two implementations also appear in regions of parameter
space with very low proton fraction, represented in Figure 2

http://www.astro.sunysb.edu/dswesty/lseos.html
http://www.astro.sunysb.edu/dswesty/lseos.html
http://www.astro.sunysb.edu/dswesty/lseos.html
http://www.astro.sunysb.edu/dswesty/lseos.html
http://www.astro.sunysb.edu/dswesty/lseos.html
http://www.astro.sunysb.edu/dswesty/lseos.html
http://www.astro.sunysb.edu/dswesty/lseos.html
http://www.astro.sunysb.edu/dswesty/lseos.html
http://www.astro.sunysb.edu/dswesty/lseos.html
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FIG. 3: (Color online) Total pressure per nucleon P/n in MeV baryon−1 for the NRAPR Skyrme parametrization [59] and proton fractions
y = 0.01, 0.10, 0.30, and 0.50. �e solid black curves denote, from top to bo�om, the adiabats at entropies s = 10nkB baryon−1 for n = 2
to n = −3 in−0.5 increments. �e dashed black curves correspond, from right to le�, to the isoergs for speci�c energies ε = 100, 30, 10, 3,
0, and −3 MeV baryon−1. Note that only the y = 0.30 and y = 0.50 panels contain the ε = −3 MeV baryon−1 isoerg. �e pressure per
nucleon is dominated by electrons, positrons, and photons in large portions of the density–temperature space. Only at the highest densities,
at and above saturation density, is the pressure dominated by the nucleon contributions and the impact of strong interactions.

by y = 0.05, and densities 0.006 fm−3 . n . 0.03 fm−3.
Discrepancies are also visible in regions of non-uniform sym-
metric nuclear ma�er at temperatures T ' 10 MeV. In these
regions, the original L&S implementation has convergence
issues for some values of density n and temperature T . At
very low proton fraction, even in regions where both im-
plementations converge, we observe di�erences in the cal-
culated pressures as large as 2%.

We carry out similar comparison studies for other ther-
modynamic quantities, including the speci�c energy, speci�c
entropy, proton and neutron chemical potentials, average nu-
clear charge and mass, and the mass fractions of protons,
neutrons, alpha particles, and heavy nuclei. In all these com-
parisons we �nd di�erences that are qualitatively and quan-
titatively very similar to what is shown for the pressure in
Figure 2.

B. Comparing Equations of State

We compare full EOSs obtained with the set of considered
Skyrme parametrizations. We focus on SNA EOSs and defer
a detailed discussion of our approach for matching to NSE
at low densities to Section VII A. In contrast to the previous
section on the LS220 parametrization, we go back to an al-
pha particle binding energy of Bα = 30.887 MeV since all
free energies are computed with respect to the free energy
of a gas of unbound neutrons. We set mp = 938.2721 MeV

and mn = 939.5654 MeV [77]. �e proton-neutron mass
di�erence ∆ = mn −mp is obtained self-consistently. De-
spite changing the proton mass, our LS220 implementation
uses the same Skyrme parameters obtained by L&S and used
in Section IV A. �is results in small di�erences between the
LS220 EOS and the LS220† and LS220∗ EOSs. �e di�erences
come from small changes in the proton e�ective mass term,
Equation 8. Finally, we let Ā vary in the translational free
energy density (Equation 36).

In Figure 3, we plot the pressure per nucleon using the
NRAPR parametrization for proton fractions y = 0.01, 0.10
0.30, and 0.50. We also include in the plots eleven adia-
bats, s = 10nkB baryon−1 for n = −3 to n = 2 in 0.5
increments, and six isoergs at ε = −3, 0, 3, 10, 30, and
100 MeV baryon−1. �e pressure per baryon is dominated
by the electron and photon contributions in large portions
of density–temperature space. At the highest temperatures,
the electrons, positrons, and photons behave as an ultra-
relativistic gas and drive the strong temperature dependence
of the pressure seen there. At lower temperatures (T .
1 MeV) and for densities below saturation density, degener-
ate electrons give a large contribution to the pressure and the
pressure is relatively insensitive to the temperature. Never-
theless, throughout the phase diagram, the nuclear contribu-
tion to the pressure is o�en signi�cant, although subdomi-
nant. At the highest densities (i.e., at and above saturation
density), the pressure is dominated by the nucleon contri-
butions and the impact of strong interactions. �e EOSs ob-
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FIG. 4: (Color online) Temperature along adiabats with speci�c entropy s = 10, 1.0, 0.1, and 0.01 kB baryon−1 in the single-nucleus
approximation and for all considered Skyrme parametrizations. Note that electrons, positrons, and photons are included. �e adiabats di�er
mostly in regions dominated by nucleonic pressure around and above saturation density n0 ∼ 0.16 fm−3 and for y ' 0.30 and T . 1 MeV,
where the number of free neutrons varies signi�cantly between parametrizations.
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FIG. 5: (Color online) Adiabatic index Γ along the s = 1 kB baryon−1 adiabat for full EOSs in the single-nucleus approximations. At low
densities and proton fractions y & 0.1, electrons dominate and Γ ∼ 4/3. At high densities and y = 0.50, Γ is roughly the same for all EOSs
re�ecting the well constrained properties of symmetric nuclear ma�er. �e sharp discontinuity is due to the transition between non-uniform
and uniform nuclear ma�er at n ' 0.1 fm−3. It becomes smoother at lower proton fraction due to large free neutron contributions. Also, as
the proton fraction decreases, di�erences between parametrizations increase due largely to variations in the density-dependent symmetry
energy (cf. Figure 1.)
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FIG. 6: (Color online) Average heavy nucleus mass number Ā along the s = 1 kB baryon−1 adiabat as a function of density for the considered
Skyrme parametrizations in the single-nucleus approximation (SNA) and, at low densities, for nuclear-statistical equilibrium (NSE) with 23,
807, and 3 335 nuclides (we discuss our NSE treatment and matching to SNA in Section VII A). For the SNA curves, di�erences in nuclear sizes
result from di�erences in symmetry energy and the surface properties obtained for each parametrization. �e 3 335 nuclide NSE network
exhibits large oscillations in Ā. �ese are due to nuclear shell e�ects included implicitly in the nuclear masses.

tained from the other Skyrme parametrizations considered in
this study are qualitatively similar to the EOS resulting from
the NPAPR parametrization and shown in Figure 3.

In Figure 4, we plot the temperatures along four adia-
bats (s = 0.01, 0.1, 1, and 10 kB baryon−1) at a range
of proton fractions. Except for very low entropies, s .
0.1 kB baryon−1, or very high densities, n & 0.1 fm−3,
the entropy does not signi�cantly depend on the Skyrme
parametrization. For uniform ma�er, the entropy depends
only on the temperature, density, proton fraction, and nu-
cleon e�ective masses. �erefore, we see systematically
higher entropies for parametrizations with smaller e�ective
masses at high density. At lower densities, variations be-
tween EOSs are caused by the di�erent properties of the sin-
gle nucleus predicted by the di�erent Skyrme parametriza-
tions.

In Figure 5, we compare the adiabatic index Γ, Equation
(42), along the s = 1 kb baryon−1 adiabats. �e largest dif-
ferences between the adiabatic indices indexes occur for very
low proton fractions, y . 0.10. �is follows from the Skyrme
parameters being chosen to �t properties of isospin symmet-
ric ma�er and, therefore, predicting signi�cantly di�erent
properties of ma�er when extrapolated to large isospin asym-
metries. In the very neutron rich regime, y . 0.10, the LS220
parametrization shows results that di�er from the others not

only quantitatively, but also qualitatively. Unlike the other
parametrizations, at low proton fractions, ΓLS220 exhibits a
peak close to the phase transition between non-uniform and
uniform ma�er. �e change of ΓLS220 across the transition
is overall much smoother and occurs at lower densities than
for the other parametrizations.

�e composition of non-uniform ma�er in�uences the
EOS and can impact neutrino transport in CCSNe. Each
Skyrme parametrization predicts di�erent properties for the
equilibrium nucleus in the SNA. In Figure 6, we show
the masses Ā of the SNA nuclei formed along the s =
1 kB baryon−1 adiabat for di�erent Skyrme parametriza-
tions. We compare them with Ā obtained for ensembles of
nuclei in NSE (see Section VII A). �e LS220 parametriza-
tion produces much heavier nuclei at low y than any of the
other parametrizations. By Equation 30, the nuclear size r
increases with the surface tension. �erefore, increasing σ
increases Ā, all other things being equal. LS220 has the weak-
est y dependence of the surface tension (which results in
a relatively larger surface tension at low y) and the small-
est symmetry energy of any of the Skyrme parameteriza-
tions. �is explains the large nuclei predicted by LS220. �e
Skxs20 and LNS parametrizations predict the lightest nuclei
and have the smallest surface tensions at low y. Except for
some parametrizations at very low proton fractions, the SNA
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FIG. 7: (Color online) Neutron-proton chemical potential di�erence µ̂ = µn − µp along the s = 1.0 kB baryon−1 adiabat as a function of
density for the considered Skyrme parametrizations at proton fractions y = 0.01, 10, 0.30, and 0.50. Note that we multiply µ̂ by a factor of
-25 in the bo�om right panel showing the y = 0.5 case. µ̂ is sensitive to the density dependence of the symmetry energy and the di�erences
between parametrizations seen here correlate with those in Figure 1.

EOSs produce heavy nuclei that increase with density for
n & 10−4 fm−3 until close to the phase transition to uniform
nuclear ma�er. �is is the region where the nuclear “pasta”
phase is expected to appear. �e di�erent masses of nuclei
may signi�cantly alter neutrino cross sections and CCSNe
neutrino spectra as well as the cooling rates of NSs. Since
Skyrme parametrizations are ��ed to properties of SNM, all
parametrizations yield similar predictions for Ā at y = 0.5.

Figure 6 includes NSE results for Ā that were obtained
with ensembles of 23, 837, and 3 335 nuclides. We see that
Ā predicted by NSE for the s = 1 kB baryon−1 adiabat is
rather sensitive to the number of nuclides included. In the
ensemble containing 23 nuclei, which includes nuclides with
Z ≤ 26, the only heavy and neutron rich nuclide included,
66Fe, dominates the composition for neutron rich ma�er. �e
837-nuclide ensemble includes nuclides with Z ≤ 50 and the
dominant nucleus for neutron rich ma�er is 89Ge.

�e 3 335-nuclide NSE network includes nuclides up to
Z = 85 and su�ciently many neutron-rich heavy nuclides
that there is no single nuclide that dominates in neutron
rich ma�er. For SNM, on the other hand, all nuclide en-
sembles predict very similar compositions at low densities,
n . 10−4 fm−3.

Finally, we present in Figure 7 the di�erence between the
neutron and proton chemical potentials, µ̂ = µn − µp, along

the s = 1 kB baryon−1 adiabat. �e quantity µ̂ is relevant
for charged current neutrino interactions as it enters into the
equilibrium neutrino chemical potential, µν = µe− µ̂, which
determines detailed balance for charged current interactions
and in�uences how hard it is to turn neutrons into protons (or
vice versa) in the medium. Furthermore, µ̂ is correlated with
the symmetry energy S , which gives a large contribution to
the pressure at high densities. First, we note that for SNM, all
Skyrme parametrizations produce similar curves for µ̂, espe-
cially for densities n & 0.1 fm−3. �is is expected, since the
coe�cients of each parametrization are chosen to reproduce
properties of uniform SNM where experimental constraints
are abundant.

It is apparent from Figure 7 that for most proton frac-
tions the LS220 parametrization predicts the lowest values
for µ̂ in the range 0.01 fm−3 . n . n0 and the highest
for densities above nuclear saturation density. In the neu-
tron rich regime, the LS220, SLy4, and KDE0v1 parametriza-
tions all predict µ̂ that increases monotonically with density.
�e other parametrizations, on the other hand, have a global
maximum above nuclear saturation density, which occurs in
the range 2n0 . n . 4n0 and is higher (lower) for Skxs20
(SKRA) than for the other parametrizations. In the next Sec-
tion V, we discuss the e�ects of this behavior on the radial
pro�le and maximum mass of cold nonrotating NSs.
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V. NEUTRON STAR MASS-RADIUS RELATIONSHIP

We construct the mass-radius relationship of cold neu-
tron stars (NS) by solving the Tolman-Oppenheimer-Volko�
(TOV) equations [78] for neutrino-less beta equilibrated mat-
ter (BEM) near zero temperature. We choose a low tempera-
ture of T = 0.1 MeV, and determine for each density n the
proton fraction y where the neutrino chemical potential is
zero, i.e., µν = µe − µn + µp = 0. If no such solution can
be found, or the solution implies a large discontinuity from
y ' 0 to y > 0.50, we set the proton fraction to the mini-
mum value available for a given combination of n and T in
the EOS table.

In Figure 8, we present density-dependent graphs of pres-
sure, speci�c internal energy, and proton fractions for the
LS220, NRAPR, SLy4, LNS, and KDE0v1 parametrizations.
For comparison, we also show results obtained with the orig-
inal L&S implementation (LS220∗), which converges reliably
only for proton fractions y & 0.035.

Figure 8 reveals some di�erences between the LS220 and
the LS220∗ curves. �ese are due to small di�erences in
chemical potentials between the EOSs owing to the di�erent
treatments of proton masses (cf. Section IV A) and to the L&S
implementation limit of proton fractions y ≥ 0.035. �e four
other parametrizations shown in Figure 8, SLy4, KDE0v1,
NRAPR, and LNS, have very similar qualitative and quantita-
tive behavior below nuclear saturation density in the three
quantities plo�ed. For densities above nuclear saturation
density, on the other hand, the EOSs can be separated into
two groups according to their prediction for the BEM proton
fraction. Group I EOSs, which includes the LS220, LS220∗,
SLy4, and KDE0v1 parametrizations, have proton fractions
that increase monotonically above nuclear saturation den-
sity. Meanwhile, Group II EOSs, which include the NRAPR
and LNS parametrizations, have BEM proton fractions with a
maximum near nuclear saturation density and that decrease
to zero at higher densities. Group II also includes the other
four parametrizations that we consider in this study (SKRA,
SkT1, Skxs20, and SQMC700), but do not show in Figure 8.

�e two di�erent behaviors in the proton fraction above
nuclear saturation density can be traced back to the symme-
try energy S (shown in Figure 1) and the related neutron-
proton chemical potential di�erence µ̂ (see Figure 7). �e
EOSs in Group I have S and µ̂ for neutron rich ma�er that
increase monotonically with density. �erefore, above nu-
clear saturation density, their proton fraction y for BEM
also increases monotonically with density. In Group II,
meanwhile, both S and µ̂ have a maximum at a density
above nuclear saturation and then decrease for higher den-
sities. Figure 7 shows the density dependence of µ̂ for the
s = 1 kB baryon−1 adiabat, which is qualitatively similar
to the density dependence near zero temperature and en-
tropy. In Reference [67], Stone et al. argued that a key quan-
tity for distinguishing between these two groups of Skyrme
parametrizations is the density dependence of the symmetry
energy, expressed by the asymmetry parameter

as(n) = εB(n, y = 1/2)− εB(n, y = 0) . (55)
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FIG. 8: (Color online) Pressure P (top panel), speci�c internal en-
ergy ε (plus an additive constant ε0 = 2 × 1019 erg g−1; center
panel), and proton fraction y for low temperature neutrino-less beta
equilibrated ma�er (bo�om panel). We show results for �ve select
Skyrme parametrizations that span the range of maximum neutron
star masses shown in Figure 9. �e LS220∗ (LS220) curve uses L&S’s
(our) implementation of the L&S K0 = 220 MeV parametrization.
Di�erences between LS220 and LS220∗ are due to the L&S imple-
mentation limit of proton fractions y ≥ 0.035 and a small di�erence
in the proton masses used (cf. Section IV A). �e proton fraction y
at high densities, ρ & 1014.5 g cm−3, mirrors the high density be-
havior of the symmetry energy S(n) (cf. Figure 1).

Stone et al. argued that parametrizations for which as and,
thus, µ̂ increases monotonically with density above satura-
tion density, are more realistic since their behavior matches
that observed for realistic nuclear potentials. Realistic nu-
clear potentials, such as the Argonne v18 [80], CD-Bonn
[81] and Nijmegen II [82] are obtained by ��ing 40 to 60
adjustable parameters to thousands of experimental data
points of free nucleon-nucleon sca�ering and properties of
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FIG. 9: (Color online) Mass-radius curves for cold, beta-equilibrated neutron stars (NSs) obtained by solving the Tolman-Oppenheimer-
Volko� equations for the considered Skyrme parametrizations. We summarize NS properties in Table IV. �e gray strip represents the mass
of the NS PSR J0348 + 0432, MJ0348+0432 = 2.01 ± 0.04M� [79]. �e yellow region indicates the NS mass-radius constraints from
model A of Nä�ilä et al. [12]. Besides the LS220 parameterization, only SLy4 and (barely) KDE0v1 and NRAPR satisfy the Mmax & 2M�
constraint. Di�erences between our implementation of LS220 and the original L&S implementation (LS220∗) are due to the lower limit of
y ≥ 0.035 in the la�er (cf. Figure 8).

the deuteron.
In Figure 9, we show the NS mass-radius curves that we

obtain by solving the TOV equations with our EOSs. We also
indicate the mass of the currently most massive known NS
(PSR J0348+0432 [79]) and the 2σ con�dence region for the
NS mass-radius relationship given by “model A” of Nätillä et
al. [12]. �ey obtained these constraints via a Bayesian anal-
ysis of Type-I X-ray burst observations. For completeness,
we summarize in Table IV key properties of the TOV NS se-
quences obtained with all considered Skyrme parametriza-
tions.

We note from Figure 9 that there is a small di�erence be-
tween the mass-radius relation curves for NSs obtained with
the LS220 and LS220∗ EOSs for low-mass NSs. Recall that
LS220 represents results from our full SNA implementation of
the LS220 parametrization and LS220∗ represents results ob-
tained with an EOS table generated with the original code by
L&S . �e di�erences in theM−R curves come from pressure
di�erences in the range 1013 g cm−3 . ρ . 1014 g cm−3 that
are a result of the lower proton fraction limit of y = 0.035
for LS220∗.

Most of the considered Skyrme parametrizations are un-
able to support a 2M� NS. To date, the most massive ob-
served NS have masses MJ1614−2230 = 1.97± 0.04M� [11]
(recently revised to 1.928± 0.017 by Fonseca et al. [83]) and
MJ0348+0432 = 2.01 ± 0.04M� [79]. �e la�er is shown as
a gray strip in Figure 9. Besides the LS220 parametrizations,

only the NRAPR, SLy4, and KDE0v1 EOSs can account for
the existence of 2M� NSs.

�e radiusR1.4 of a canonical 1.4M� NS was constrained
by La�imer et al. to be in the range 10.5 to 12.5 km [84], by
Guillot et al. to be in the 10 to 11.5 km range ([85] as updated
by [14]), and by Nätillä et al. to beR1.4 = 12.0±0.7 km [12].
As shown in Table IV, the results for R1.4 from all consid-
ered Skyrme parametrizations are in agreement with these
constraints. Combining the results for R1.4 with the lower
limit of the maximum NS mass from observations, we see
that LS220, NRAPR, SLy4, and KDE0v1 parametrizations are
the ones which more closely ful�ll current astrophysical con-
straints. Note, however, that the LS220 parametrization is an
outlier and predicts R1.4 about 1 km larger than the upper
limit obtained by Guillot et al.

We plot density and proton fraction pro�les for 1.4M�
NSs in Figure 10 and for maximum mass NS con�gurations
in Figure 11. We note that the LS220 parametrization predicts
lower densities and higher central proton fractions than the
other parametrizations. �is results from the LS220 EOS be-
ing sti�er than all other considered EOSs and having signi�-
cantly di�erent predictions for the density-dependent sym-
metry energy S(n) (cf. Equation 50 and Table II.) In the
maximum-mass all NSs have central densities far above n0
and we can again separate the EOSs into two groups. In
Group I, which encompasses the LS220, SLy4,and KDE0v1
parametrizations, the proton fraction increases toward the
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TABLE IV: Summary of neutron star (NS) properties for the considered Skyrme parametrizations. Mmax is the maximum NS mass, Rmax

is the radius of the maximum-mass NS, (cs/c)max is its central speed of sound relative to the speed of light c and (nc/n0)max is its central
density relative to saturation density n0. R1.4, (cs/c)1.4, and (nc/n0)1.4 are the radius of a 1.4M� NS, its central speed of sound, and its
central density, respectively.

Parametrization Mmax (M�) Rmax (km) (cs/c)max (nc/n0)max R1.4 (km) (cs/c)1.4 (nc/n0)1.4
LS220 [3] 2.04 10.61 0.880 7.18 12.66 0.556 2.84
KDE0v1 [68] 1.97 9.80 0.966 7.75 11.67 0.617 3.46
LNS [69] 1.72 9.29 0.839 8.58 11.02 0.612 4.18
NRAPR [59] 1.94 9.94 0.913 7.94 11.87 0.594 3.46
SKRA [70] 1.77 9.48 0.852 8.98 11.31 0.600 4.15
SkT1 [71] 1.85 9.74 0.868 8.30 11.55 0.595 3.73
Skxs20 [72] 1.74 9.63 0.811 8.86 11.52 0.587 4.12
SLy4 [73] 2.05 9.99 0.990 7.47 11.72 0.624 3.35
SQMC700 [74] 1.76 9.40 0.853 8.60 11.16 0.609 4.06

center of the NS. In contrast, for Group II, which includes
the other six parametrizations, the proton fraction decreases
toward the center of the NS, even reaching y = 0 for SKRA,
SkT1, and SQMC700.
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FIG. 10: (Color online) Radial rest-mass density (top panel) and
proton fraction pro�les (bo�om panel) of cold, beta-equilibrated
1.4M� neutron stars (NSs) obtained with the considered Skyrme
parametrizations. Note that LS220 is an outlier, yielding the lowest
central density, the largest radius, and the highest central proton
fraction. �is is due primarily to its largeL parameter and the linear
behavior of its density-dependent symmetry energy, which results
in the smallest symmetry energies below saturation density and the
largest symmetry energies above saturation density of all the EOS
considered here (cf. Figure 1). We summarize key NS quantities in
Table IV.
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FIG. 11: (Color online) Radial rest-mass density (top panel) and
proton fraction (bo�om panel) pro�les of cold, beta-equilibrated
maximum-mass neutron stars (NSs) as predicted by the considered
Skyrme parametrizations. Note that the maximum mass varies be-
tween parametrizations. Table IV summarizes key NS quantities for
all parametrizations. As in the 1.4M� NS case shown in Figure 10,
the LS220 parametrization is an outlier and yields the lowest central
density, the highest central proton fraction, and the largest radius
for its maximum-mass NS con�guration.

A. High density EOS modi�cations

Most Skyrme parametrizations fail to produce 2M� NSs
(see, e.g., [9] and Table IV). Since 2M� NSs have been ob-
served in nature [11, 79, 83], a Skyrme parametrization in-
tended for astrophysical simulations should satisfy this lower
limit on the maximum NS mass. However, Skyrme parame-
ters are o�en chosen to produce properties of nearly symmet-
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FIG. 12: (Color online) Mass-radius curves for cold, beta-equilibrated neutron stars (NS) obtained with the SkT1 parametrizations and its
various high-density modi�cations. �e gray strip represents the mass PSR J0348 + 0432 MJ0348+0432 = 2.01 ± 0.04M� [79] and the
yellow region indicates the NS mass-radius constraints from model A of Nä�ilä et al. [12].

ric nuclear ma�er in the range∼ n0/2− 3n0 while densities
in the center of a NS near maximum mass may reach∼ 10n0
and ma�er may be very neutron rich. Under these condi-
tions, the properties of ma�er are still fairly unconstrained.
�erefore, Skyrme interactions are not expected to be valid
beyond a density n ∼ 3n0 ∼ 0.5 fm−3 [9, 67]. �us, the max-
imum NS mass should not be necessarily used to invalidate
a Skyrme parametrization. Ideally, a model of high density
ma�er should be matched to the Skyrme model at high den-
sities. Dutra et al. use the Skyrme interaction up to about 3n0
and match it to a di�erent high-density EOS at higher den-
sities [9]. For n & 3n0, they chose a zero-temperature full
quark-meson-coupling (FQMC) model [86], which includes
a full baryon octet in the high-density ma�er and predicts
2M� NSs, in agreement with observations. Since we are in-
terested in �nite-temperature EOSs, we instead propose a di-
rect modi�cation of the Skyrme parametrization that a�ects
its behavior at high densities, but leaves the EOS properties
at and below saturation density unchanged.

For most Skyrme parametrizations the terms {ci, di, δi} ci
and di in Equation (7) are only non-zero for a single value of
i, i.e., i = 1. In our formalism Tthe generalization to include
extra non-zero ci and di terms is straightforward. �e choice
of number of i > 1 terms added in a given parametrization
as well as the choice for the exponents δi that accompany
the extra terms is arbitrary. Ideally, the extra i > 1 terms do
not change the EOS signi�cantly in regions where it is well
constrained, i.e., , it barely changes the properties of nuclear
ma�er at saturation density. However, the extra terms should
improve the EOS agreement with experimental constraints

above nuclear saturation density or, at least, help reproduce
known observables, such as the lower limit on the maximum
NS mass. Furthermore, it may be desirable to maintain the
properties of a given parametrization at saturation densities,
while sti�ening or so�ening it at higher densities.

With this in mind, we proceed as follows: we add an ex-
tra set of terms {c2, d2, δ2} to the sum in Equation (7) with
δ2 > 3. We adjust the values of c2 and d2 to minimally im-
pact the properties of saturation-density ma�er. As an ex-
ample of this high density EOS modi�cation, we consider the
SkT1 parametrization, which predicts a maximum NS mass of
Mmax = 1.85M�. We add extra terms to it so that the con-
tribution to the nuclear incompressibility K0 = K(n0, 0.5)
(see Equation 45) from the i = 2 term is 1% of the i = 1 term
contribution, i.e.,

δ2
δ1

δ2 − 1

δ1 − 1

c2 + d2
c1 + d1

nδ20
nδ10

= 0.01. (56)

�is choice, along with δ1 < δ2 . 10, leaves all nuclear
ma�er properties at saturation densityn0 well within current
known experimental constraints, but signi�cantly increases
the pressure at high densities.

We study here six modi�ed SkT1 parametrizations. Be-
sides the choice de�ned by Equation (56), we chose the ex-
ponent values δ2 = 4 and 5, and set the constants c2 and d2
such that c2 = 0, or d2 = 0, or c2 = d2.

In Figure 12, we plot NS mass-radius curves for these mod-
i�ed parametrizations. We summarize key properties of the
TOV NS sequences in Table V. Both �gure and table show, as
expected, that the higher the exponent δ2 and the larger c2
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TABLE V: Summary of neutron star (NS) properties for the SkT1 parametrization and its high-density modi�cations. Mmax is the maximum
NS mass,Rmax is the radius of the maximum-mass NS, (cs/c)max is its central speed of sound relative to the speed of light c and (nc/n0)max

is its central density relative to saturation density n0. R1.4, (cs/c)1.4, and (nc/n0)1.4 are the radius of a 1.4M� NS, its central speed of
sound, and its central density, respectively. Note that the central speed of sound in the maximum-mass NS is superluminal for most of the
modi�ed EOSs.

Parametrization Mmax (M�) Rmax (km) (cs/c)max (nc/n0)max R1.4 (km) (cs/c)1.4 (nc/n0)1.4
SkT1 [71] 1.85 9.74 0.868 8.30 11.55 0.595 3.73
δ2 = 4, c2 = 0 1.85 9.65 0.891 8.49 11.55 0.597 3.69
δ2 = 4, c2 = d2 1.96 9.59 1.091 8.11 11.63 0.608 3.55
δ2 = 4, d2 = 0 2.04 9.58 1.209 7.92 11.68 0.616 3.45
δ2 = 5, c2 = 0 1.88 9.56 0.989 7.85 11.60 0.602 3.37
δ2 = 5, c2 = d2 2.19 9.56 1.533 6.84 11.73 0.638 3.12
δ2 = 5, d2 = 0 2.32 9.88 1.615 6.23 11.83 0.655 2.98

is with respect to d2, the sti�er the EOS for cold BEM be-
comes. �is results in a higher maximum NS mass and a
larger radius for the 1.4M� NS. �e main drawback of the
proposed modi�cations is that the speed of sound increases
signi�cantly for densities above 3n0. It becomes superlumi-
nal at densities lower than those at the center of maximum-
mass NSs (cf. Table V). Nevertheless, the modi�cations can be
useful for studying the impact of a higher maximum NS mass
on astrophysical simulations while keeping the properties of
saturation-density nuclear ma�er �xed. A thermodynami-
cally consistent method to modify non-relativistic equations
of state so that they respect causality at high densities has re-
cently been suggested [87]. We postpone its implementation
to future work.

VI. ADIABATIC COMPRESSION

To check the thermodynamic consistency of our code and
of the EOS tables it generates, we perform adiabatic com-
pression tests. An isolated system that is slowly compressed
from a lower to a higher density should retain its initial
entropy. To test this, we generate EOS tables for di�erent
Skyrme parametrizations in the ranges of density n, temper-
ature T , and proton fraction y, given in Table VI. We set
the table resolution to 30 points per decade in temperature
and density and 1 point every 0.01 in proton fraction. We
also consider tables with double the resolution across each
EOS dimension. �e lower resolution is similar to that of the
tables available at https://stellarcollapse.org/
equationofstate. �ese older tables are described by
O’Connor & O� in [50] and have been used frequently in
astrophysical simulations. Following [50], we interpolate tri-
linearly in n, T , and y. We �nd T for a given n, y, and speci�c
internal energy ε or speci�c entropy s via Newton-Raphson
root �nding.

In our adiabatic compression tests, for a given proton
fraction, we set the system to an initial temperature T =
10−2 MeV and determine the initial densities for which the
entropy has values of 0.1, 0.2, 0.5, and 1.0 kB baryon−1. Ev-
ery step, the density is increased by δn = 10−3n until the
system reaches a density of 1 fm−3 or its temperature ex-
cedes the maximum of our tables (Tmax = 250 MeV). As the

TABLE VI: Ranges in density n, temperature T , and proton frac-
tion y, and the number of EOS table points in each dimension for
our standard-resolution EOS tables. �e high-resolution tables have
the same range, but contain twice the number of points in each di-
mension.

Parameter minimum maximum points
log10[n(fm−3)] −12.2 0.8 391
log10[T (MeV)] −3.0 2.4 163

y 0.005 0.655 66

system is compressed, we integrate the �rst law of thermo-
dynamics using a fourth-order Runge-Ku�a integrator and
determine the ratio of the entropy s(n) to the initial entropy
s0 as a function of density. As a representative example
result, we show in Figure 13 the fractional changes in en-
tropy during the compression for both the high-resolution
and standard-resolution SLy4 tables.

We see from Figure 13 that for speci�c entropies of
s & 0.5 kB baryon−1 and proton fractions y & 0.3, even
the standard-resolution tables yield nearly perfectly adiabatic
compression. �is bodes very well for stellar collapse and
CCSN simulations, since entropies always stay higher than
0.5 kB baryon−1 and proton fractions below ∼ 0.3 are not
reached until the �nal phase of collapse.

At lower entropies and proton fractions, we observe sub-
stantial deviations from adiabatic compression with entropy
errors of order 10% or greater with the standard-resolution
tables. �is issue is largely numerical and due to interpo-
lation and root-�nding errors, since the high-resolution ta-
bles yield much be�er results. However, large changes in
entropy can still occur near the �rst-order phase transition
between non-uniform and uniform nuclear ma�er near n '
10−1 fm−3.

For comparison, we carry out adiabatic compression
tests also for the tables of [50]. We �nd that even our
standard-resolution tables yield smaller entropy errors than
any of the EOS tables of [50] available at https://
stellarcollapse.org/equationofstate.

Finally, adding a transition from SNA to NSE at low densi-
ties, as we discuss below in Section VII A, only leads to small
quantitative changes compared to the results presented in

https://stellarcollapse.org/equationofstate
https://stellarcollapse.org/equationofstate
https://stellarcollapse.org/equationofstate
https://stellarcollapse.org/equationofstate
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FIG. 13: (Color online) Relative error in the speci�c entropy as a function of density during adiabatic compression tests with the full EOS based
on the SLy4 parametrization and the single-nucleus approximation at all densities. �e di�erent panels show results for proton fractions
y = 0.01, 0.10, 0.3, and 0.5. All curves start at T = 0.01 MeV and we choose the initial densities to obtain starting values of the speci�c
entropy of s0 = 0.1, 0.2, 0.5, and 1.0 kB baryon−1. �ick (thin) curves correspond to tests with the high (standard) resolution tables
(cf. Table VI). In most cases the thick lines (obtained from high resolution tables) are very close to 1 at all densities and lie on top of each
other, which may make their visualization di�cult. For s0 & 0.5 kB baryon−1 and proton fractions y & 0.3, the standard-resolution tables
perform very well. In stellar collapse, the speci�c entropy always stays higher than 0.5 kB baryon−1 and proton fractions below ∼0.3 are
not reached until the �nal phase of collapse. Errors at lower s0 and y are largely numerical and are reduced by employing the high resolution
table. However, large changes in entropy can still occur near the �rst-order phase transition between non-uniform and uniform ma�er at
n ' 0.1 fm−3.

this section.

VII. APPLICATION TO STELLAR CORE COLLAPSE

We carry out a set of example core collapse and postbounce
CCSN simulations to investigate how our new EOSs perform
in this important astrophysical scenario and how they in�u-
ence core collapse, postbounce evolution, and black hole for-
mation. Before discussing the CCSN simulations, we describe
how we modify our EOSs at low density to include an ensem-
ble of nuclei in NSE.

A. Nuclear statistical equilibrium (NSE)

NSE holds for temperatures T & 0.5 MeV at which for-
ward and backward nuclear reaction rates are so high that
equilibrium is obtained faster than any other timescale in
the system. At low density and moderate temperatures, the
NSE equilibrium state of ma�er includes an ensemble of nu-
clear species (nuclides) and SNA is not a good approximation

for describing the thermodynamics. SNA predicts di�erent
thermodynamic quantities, average nuclear binding energies,
and neutrino opacities than a model assuming NSE [88, 89].
Furthermore, SNA predicts a single average nucleus whose
properties can di�er signi�cantly from the observed proper-
ties of nuclei due to shell closures, pairing, and many body-
body e�ects missing from the simple liquid-drop SNA. Con-
versely, NSE breaks down at high densities when interactions
between the nuclear interior and the surrounding medium
become important. �is can be partially overcome by includ-
ing excluded volume corrections in the NSE formulation [40].
However, such an approach does not account for changes in
nuclear shapes and requires a very large, neutron rich en-
semble of nuclei to reasonably reproduce the high density,
low proton fraction composition. To alleviate the aforemen-
tioned issues with the SNA while still retaining its advantages
at high density, we transition from SNA to an NSE EOS at
densities where nuclear interactions are small and SNA and
NSE can be smoothly matched.

Another reason for transitioning from the SNA to NSE is
that at low density and temperature, the abundances of nuclei
can fall out of equilibrium, which requires smoothly transi-
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tioning from material in NSE to following a network of re-
actions between separate nuclides. To perform such a tran-
sition in a thermodynamically consistent manner, the same
set of nuclei and nuclear partition functions must be used to
calculate both the equilibrium number densities and for the
non-equilibrium evolution. �e SNA will not satisfy this con-
sistency condition, but it can be easily enforced by using an
NSE EOS at moderate temperature and density.

For completeness, we provide a full discussion of our stan-
dard treatment for an ensemble of nuclei in NSE in Ap-
pendix B. Once the free energy densities for the SNA and
NSE phases, FSNA and FNSE, respectively, have been deter-
mined, we combine the two using a density dependent func-
tion χ(n), i.e.,

FMIX = χ(n)FSNA + [1− χ(n)]FNSE . (57)

Here, the SNA (NSE) subscripts denote the contribution to
the thermodynamical quantities from the high (low) density
parts of the EOS. FSNA is given by Equation (2) while FNSE

is given by Equation (B6). �e limits of the function χ(n) are
chosen so that it goes to zero at low densities and to one at
high densities. We mix the two using the smooth choice for
χ(n),

χ(n) =
1

2

[
1 + tanh

(
log10(n)− log10(nt)

nδ

)]
, (58)

where n is the density of the system, nt the center of the
transition, and nδ its width. We set the center of the tran-
sition density nt = 10−4 fm−3 (' 1.7 × 1011 g cm−3) and
its dimensionless width nδ = 0.33. �is choice guarantees
that the transition happens in a region where di�erences
in the nuclear contributions to the total pressure, entropy,
and energy density in the NSE and SNA treatments are rela-
tively small, at least for ma�er with small isospin asymmetry,
where EOS constraints are more accurately known. Further-
more, this transition is at su�ciently low densities that the
EOS is dominated by the electron (photon) contribution at
low (high) temperatures. At the same time, the transition
density is high enough that above nt we expect large de-
formed nuclei and the pasta phases to dominate, which are
well described in the SNA approximation.

Because χ(n) is density dependent, the transition proce-
dure introduces corrections to the pressure and other deriva-
tives with respect to density in the transition region that are
of order FSNA − FNSE. For example, in the mixing region,
the pressure is given by

PMIX = n2
∂(FMIX/n)

∂n

∣∣∣∣
T,y

= χ(n)PSNA + [1− χ(n)]PNSE

+ n
∂χ(n)

∂n
(FSNA − FNSE) . (59)

Other quantities are readily computed. In practice, we �nd
that the corrections due to χ(n) are small compared to the
other contributions to the free energy. Although this proce-
dure is ad-hoc, it results in a thermodynamically consistent
EOS and does not require the calculation of a more compli-
cated phase transition.

B. Stellar Collapse

To study the impact of our new EOSs on stellar collapse, we
employ the open-source spherically-symmetric (1D) general-
relativistic hydrodynamics code GR1D [50–52]. For simplic-
ity and e�ciency, we employ its neutrino leakage/heating
scheme described in [50] and postpone detailed radiation-
hydrodynamics studies using GR1D’s two-moment transport
solver to future work. Deleptonization during the collapse
phase is handled via a parametrization of the proton frac-
tion y as a function of rest-mass density ρ as proposed by
Liebendörfer [90] with the parameters given in [50]. GR1D’s
EOS routines interpolate tabulated thermodynamic variables
such as pressure, speci�c internal energy, speci�c entropy,
etc. linearly in log10 ρ, log10 T , and y, and do not obtain them
via the interpolated free energy (and its derivatives). �is
means that thermodynamic consistency is not guaranteed, is
subject to interpolation errors and EOS table resolution, and
must be checked [91].

We study core collapse and postbounce evolution in two
progenitor stars: (1) In the 15-M� progenitor of Woosley and
Weaver (W&W herea�er) [92], which has been used widely
in the literature. (2) In the 40-M� progenitor of Woosley and
Heger (W&H herea�er) [93], which has a very massive, high-
compactness core and is expected to form a black hole (BH)
[51]. For the 15-M� progenitor, we use a computational grid
with 1000 grid cells, constant cell size of 100 m out to a radius
of 20 km, and then geometrically increasing cell size to an
outer radius of 10 000 km. For the 40-M� progenitor, whose
collapse we evolve until BH formation, we use 1500 grid cells,
a constant cell size of 75 m out to 25 km, and geometrically
increasing cell size to an outer radius of 10 000 km.

Stellar evolution codes use EOSs (e.g., [94]) that can di�er
substantially from the EOSs presented in this paper. On the
one hand, in the NSE region, the predicted pressure, entropy,
etc. depend on the number of nuclides tracked in the stellar
model. On the other hand, in the non-NSE region, composi-
tional details will depend on the employed nuclear reaction
network and, again, composition will a�ect the thermody-
namical variables. �ese di�erences between EOSs are not
negligible for core collapse simulations: at the onset of col-
lapse, small variations in the pressure pro�le between stellar
and core collapse EOSs can alter the hydrodynamics of the
core, and may accelerate or delay collapse.

In order to start our simulations in a way that is as con-
sistent as possible with the hydrodynamical structure of our
progenitor models, we map the stellar rest-mass density ρ,
proton fraction y, and pressureP to GR1D, and then �nd tem-
perature T (and speci�c internal energy, entropy, etc.) using
the EOS table. We stress that our approach for se�ing up the
initial conditions results in di�erences between the original
stellar pro�le and the GR1D initial conditions in all quanti-
ties except ρ, y, and P . Also note that for the purpose of this
study, we assume NSE throughout the part of the star mapped
to GR1D’s grid. �is is an approximation that will need to be
relaxed in the future, since the outer regions of the core and
the silicon-rich and oxygen-rich layers are not in NSE.

In most of our core collapse simulations, we use our
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standard-resolution EOS tables described in Table VI. Our
adiabatic compression tests in Section VI suggest that higher
resolution tables lead to more accurate adiabatic collapse re-
sults, in particular for low entropies. However, in our col-
lapse simulations, entropies are always su�ciently high that
using our standard-resolution tables yields excellent results.
Tests with the high-resolution tables show only negligible
di�erences in the simulation results. Only in the case of very
sti� EOS, such as SkT1∗ (see below), we �nd it necessary to
use higher-resolution tables to accurately track simulations
on the route to BH formation at central proto-NS densities
above ∼ 1015 g cm−3.

1. 15-M� Progenitor

We follow core collapse and postbounce evolution up to
1.2 s a�er bounce in the 15-M� progenitor. While this star is
expected to explode in nature (e.g., [95]), we use the default
scaling factor fheat = 1 for neutrino heating in GR1D and
do not obtain an explosion in our GR1D simulations. �is is
consistent with more elaborate 1D radiation-hydrodynamic
simulations (e.g., [96]).

In a �rst set of simulations, we focus on the e�ects of di�er-
ent Skyrme parametrizations. We employ ten di�erent EOSs
– the nine Skyrme parametrizations discussed in Section IV
and one of the modi�ed versions of the SkT1 parametriza-
tions sti�ened at high density studied in Section V A. We call
this parametrization SkT1∗ and use δ2 = 5, d2 = 0, which
produces the highest cold NS mass for SkT1. We merge the
SNA Skyrme EOSs with an NSE EOS containing 3 335 nu-
clides following the prescription detailed in Section VII A.
We employ a transition density nt = 10−4 fm−3 (ρt '
1.67 × 1011 g cm−3) and dimensionless width of nδ = 0.33
(cf. Equation 58).

�e time from the onset of collapse to core bounce is ap-
proximately the same for all simulations, tbounce = 0.331 ±
0.008 s, since it is mostly a function of the low density part of
the EOS, which is the same for all tables which include NSE
at low densities. In Figure 14, we plot the postbounce evo-
lution of the central density, central temperature, and cen-
tral speci�c entropy resulting from the 10 di�erent Skyrme
parametrizations. As the proto-NS’s mass increases due to
the se�ling of material that accretes through the stalled su-
pernova shock, its core is adiabatically compressed since
the time scale for neutrino di�usion is much longer than
the accretion time scale. Core density and temperature in-
crease, while the central entropy stays nearly constant over
the 1.2 s of postbounce time we simulate. �e la�er is a fur-
ther demonstration of the thermodynamic consistency of our
EOSs. We a�ribute the small wiggles and the small secular
dri� in the central entropy to interpolation errors and the �-
nite resolution of our EOS tables.

�e postbounce central density and temperature evolu-
tions shown in Figure 14 exhibit signi�cant dependence on
Skyrme parametrization. �e ordering of the central den-
sity evolution and its slope roughly follows the sti�ness of
the EOS. So�er EOSs (lower maximum NS mass) have higher
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FIG. 14: (Color online) Results from core collapse simulations with
the 15-M� progenitor and EOSs generated with various Skyrme
parametrizations and a 3 335-nuclide NSE EOS at low densities.
From top to bo�om, we show 1.2 s of postbounce evolution of the
central density ρc, central temperature Tc, and central speci�c en-
trop sc. Note that the entropy stays roughly constant (modulo mild
numerical oscillations) throughout the postbounce evolution, as it
should for thermodynamically consistent EOSs. As postbounce ac-
cretion adds mass to the proto-NS, it contracts, which is marked by
an increase in ρc and so�er EOSs result in a steeper increase. �e
spli�ing of the Tc evolutions into two groups of parametrizations
can be understood by considering that those resulting in lower tem-
peratures have a larger e�ective nucleon mass (see Section II A and
Table II).

densities at bounce and a steeper postbounce slope in ρc than
sti�er EOSs. �e two bracketing cases are SLy4 (Mmax ∼
2.05M�) and Skxs20 (Mmax ∼ 1.74M�). Note that the SkT1
and the SkT1∗ parametrizations start out at the same ρc at
bounce, but that the slope of ρc in the SkT1∗ simulation be-
comes gradually shallower as the proto-NS contracts. �is
is a direct consequency of the sti�ened high-density part of
SkT1∗.

�e Tc evolution in Figure 14 is divided into two groups. In
the �rst group, containing LS220, Skxs20, SkT1, and SkT1∗,
Tc right a�er bounce is∼ 13−15 MeV and rises to Tc ∼ 19−



24

60

90

120

0

1

2

3

52

54

56

1

2

0.00 0.05 0.10 0.15

R
s

(k
m

)

SNA
23
82

206
837

3335

60

90

120

Ṁ
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FIG. 15: (Color online) Results of core collapse simulations with
the 15-M� progenitor and the LS220 Skyrme parametrization. We
compare results obtained for pure SNA (at all densities) with results
from simulations that use SNA at high densities, smoothly matched
to an NSE EOS with varying number of nuclides at low densities
(see Section VII A for details). From top to bo�om, we plot the
postbounce evolution of shock radius Rs, accretion rate Ṁ300 at
a radius of 300 km, average nuclear mass number 5 km above the
shock, and di�erence in speci�c internal energy, ∆ε 5 km above
and 5 km below the shock. Note that the pure-SNA simulation pre-
dicts a slightly larger shock radius than the SNA+NSE simulations
between ∼50 ms and ∼80 ms a�er bounce. �is is a consequence
of the SNA simulation having a slightly lower accretion rate and
slightly less bound nuclei crossing the shock in that interval.

22 MeV within the �rst second a�er bounce. For the second
group, containing all other parametrizations, we �nd Tc ∼
17 − 19 MeV right a�er bounce, rising to ∼ 28 − 30 MeV
a second a�er bounce. �ese pronounced di�erences in core
temperatures result from di�erent treatments of the nucleon
e�ective masses in Equations (7) and (8) with the parameters
in Table II. At a �xed density and proton fraction, the ther-
mal contribution to the free energy of uniform ma�er only
depends on the chosen Skyrme parametrization through the
e�ective masses, at least in the mean �eld approximation. For
non-relativistic particles, temperature enters the baryon en-

tropy for �xed neutron and proton densities only through
the combinations m∗tT . �erefore, if m∗t h mt, then tem-
peratures at similar density and entropy will be smaller than
in cases where m∗t < mt. �is explains the Tc-grouping in
Figure 14.

In a second set of simulations with the 15-M� progenitor,
we investigate the sensitivity of the collapse and postbounce
evolution to the number of nuclides included in the low-
density NSE part of the EOS. We choose the frequently used
LS220 Skyrme parametrization for the high-density SNA part
and match it to a set of low-density NSE EOSs with 23, 82,
206, 837, and 3 335 nuclides, using the same matching pa-
rameters as before. Each larger list of nuclides includes all
of the nuclides of the smaller nuclide lists and we provide
all lists at https://stellarcollapse.org/SROEOS.
We also carry out a simulation with an EOS table that uses
the SNA at all densities.

Since the low-density EOS is dominated by relativistic de-
generate electrons, di�erences in the number of NSE nuclei
have only a mild e�ect on the collapse dynamics. We �nd
times to core bounce that vary by less than 2 ms. �e SNA
simulation reaches bounce at 0.334 s, while all simulations
that include nuclides in NSE reach bounce within a very
similar time, tbounce = 0.332 ± 0.001 s. �e close agree-
ment of the SNA and NSE bounce times is particular to the
LS220 parametrization and the 15-M� progenitor. For the
same progenitor and other parameterizations, we �nd that
SNA simulations reach bounce up to 20 − 30 ms later than
NSE simulations. For other progenitor stars that have lower-
density cores at the onset of collapse, the di�erences can be
even larger (see Section VII B 2, where we discuss results for
a 40-M� progenitor).

In Figure 15, we plot the postbounce evolution of the shock
radius, the mass accretion rate at a radius of 300 km, average
nuclear mass number Ā at 5 km above the shock, and the
di�erence ∆ε in speci�c internal energy between 5 km above
and 5 km below the shock. We focus on the �rst 150 ms of
postbounce evolution.

Figure 15 shows that the the shock radius and the post-
bounce accretion rate are only mildly sensitive to di�erences
between SNA and NSE at low densities. Furthermore, the
number of nuclides included in the NSE EOS also has li�le ef-
fect on the collapse properties. One notes that the SNA EOS
leads to higher early accretion rates and a slightly earlier drop
in the accretion rate, since the density discontinuity that is
present at the edge of the iron core in the 15-M� progenitor
reaches small radii and the shock earlier. �is is also re�ected
in the shock radius evolution, which shows a pronounced ex-
cursion when the density drop reaches the shock. �is ex-
cursion is larger for the simulation with the pure SNA EOS
since less energy is needed to break up the nuclei formed just
above the shock radius (bo�om panel of Figure 15). We �nd
that these qualitative �ndings are independent of the high-
density part of the EOS.

From the third panel of Figure 15, showing the average nu-
clear mass Ā just above the shock, we note that Ā and the
nuclear binding energy predicted by the LS220 SNA is very
di�erent from what NSE predicts. It also appears that one

https://stellarcollapse.org/SROEOS
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needs in excess of ∼ 82 nuclides for NSE to predict a con-
verged Ā, though this is likely sensitive to the speci�c set
of nuclides included. �e large di�erences in Ā and nuclear
binding energy translate to the di�erences in ∆ε shown in
the bo�om panel. �ese, in turn, explain the di�erent shock
radii plo�ed in the top panel and discussed in the above.

2. 40-M� Progenitor

�e 40-M� progenitor is expected to result in BH forma-
tion with no or only a very weak explosion (e.g., [51]). We
carry out two sets of simulations with this progenitor. In
the �rst set, we employ ten di�erent Skyrme parametriza-
tions combined with a 3 335-nuclide NSE EOS at low densi-
ties using the same matching parameters as in the previous
Section VII B 1. In the second set, we use the same Skyrme
parametrization, but with SNA at all densities. We summa-
rize key simulation results in Table VII for both sets to facil-
itate comparison.

In Figure 16, we present the postbounce central density ρc,
central temperature Tc, and central entropy sc evolutions in
the model set with an NSE treatment at low densities. First,
we note that the central entropy stays roughly constant as it
should (modulo numerical noise) throughout the evolution
to BH formation. Proto-NS collapse and BH formation is
marked by a dramatic increase in the slope of ρc, which is
mirrored by Tc. At this point, the GR1D simulations crash,
since the formulation of Einstein’s equations used in GR1D
does not permit the evolution to continue beyond BH forma-
tion (see [50] for details).

�e time to BH formation is sensitive to the Skyrme
parametrization and set by accretion rate and the maximum
proto-NS mass that can be supported by the parametrization.
Comparing the maximum mass entries in Table IV with those
in Table VII, we note that the maximum proto-NS mass is
systematically 0.2− 0.6M� higher than the maximum cold
NS mass. As shown by O’Connor & O� [51], this is a con-
sequence of thermal pressure support in the proto-NS man-
tle where shocked material is compressed, reaching temper-
atures in excess of 100 MeV at late times. As discussed in the
context of the 15-M� progenitor in Section VII B 1, Skyrme
parametrizations that yield small e�ective nucleon masses re-
sult in higher temperatures. In turn, such parametrizations
produce proto-NSs with more thermal pressure support and
see a greater increase in the maximum mass from cold NS to
hot proto-NS. For example, LS220, which has m∗t = mt and
a maximum cold NS mass of 2.04M�, has a proto-NS mass
of 2.26M� at BH formation (∆M = 0.22M�). �e SLy4
parametrization has a cold NS mass of 2.05M�, but its proto-
NS collapses at a mass of 2.488M� (∆M = 0.438M�).
�is is a direct consequence of SLy4’s low e�ective nucleon
masses (m∗t = 0.695mt; cf. Table II) and the consequently
much higher temperatures reached in its proto-NS.

Like LS220, the SkT1 parametrization also has large ef-
fective nucleon masses, resulting in lower temperatures. Its
maximum cold NS mass is 1.846M� and the proto-NS col-
lapses at 2.204M� (∆M = 0.358M�). Its variant SkT1∗
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FIG. 16: (Color online) From top to bo�om we plot the postbounce
time evolution of the central density ρc, central temperature Tc,
and central speci�c entropy sc for the black hole (BH) formation
simulations with the 40M� progenitor. Proto-NS collapse and BH
formation are marked by a sudden extreme steepening of the ρc
slope. �e di�erent graphs correspond to simulations with di�er-
ent Skyrme parametrizations. We employ a 3 335-nuclide NSE EOS
at low densities (cf. Section VII A). Note that the speci�c entropy
stays, as it should, roughly constant (modulo numerical noise that
can be reduced with higher-resolution EOS tables) throughout the
postbounce evolution and up to BH formation. �ermal pressure
support in the proto-NS mantle plays an important role in sup-
ported proto-NS masses that are 0.2−0.6M� higher than the max-
imum cold NS mass. �ermal contributions are largest for those
parametrizations that result in low e�ective nucleon masses and
higher proto-NS temperatures.

that we sti�ened at high density (see Section V A and Ta-
ble V) has a maximum cold NS mass of 2.318M�. Inter-
estingly, its proto-NS collapses at a mass of only 2.327M�
(∆M = 0.009M�). �is at �rst surprising result can be un-
derstood by considering that the SkT1∗ sti�ening a�ects only
the cold high density core, but not the hot proto-NS mantle,
where most of the extra mass is located. �e so�ness of the
SkT1 parametrization combined with the relatively modest
temperatures reached in the mantle thus explain our result
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TABLE VII: Bounce time tbounce, BH formation time tBH, tBH − tbounce, and proto-neutron star maximum gravitational mass Mg for the
40M� progenitor of W&H. Results are for EOSs using di�erent Skyrme parametrizations in the single-nucleus approximation (SNA) and
in the SNA merged with an NSE EOS at nt = 10−4 fm−3 with nδ = 0.33, see Section VII A. SkT1∗ is the modi�ed versions of the SkT1
parametrization studied in Section V A with δ2 = 5 and d2 = 0.

EOS SNA+NSE SNA
tbounce (s) tBH − tbounce (s) tBH (s) Mg (M�) tbounce (s) tBH − tbounce (s) tBH (s) Mg (M�)

LS220 [3] 0.490 0.595 1.085 2.260 0.513 0.565 1.078 2.275
KDE0v1 [68] 0.490 0.927 1.417 2.425 0.515 0.914 1.429 2.441
LNS [69] 0.490 0.537 1.027 2.234 0.525 0.515 1.040 2.255
NRAPR [59] 0.491 0.902 1.393 2.418 0.531 0.873 1.404 2.442
SKRA [70] 0.491 0.746 1.237 2.345 0.532 0.716 1.248 2.371
SkT1 [71] 0.489 0.497 0.986 2.204 0.530 0.478 1.008 2.214
SkT1∗[71] 0.489 0.782 1.271 2.327 0.532 0.741 1.273 2.334
Skxs20 [72] 0.488 0.448 0.936 2.182 0.545 0.406 0.951 2.182
SLy4 [73] 0.493 1.053 1.546 2.488 0.630 0.936 1.566 2.525
SQMC700 [74] 0.493 0.671 1.164 2.310 0.741 0.488 1.229 2.368

for SkT1∗’s proto-NS mass at BH formation.
In Table VII, we compare the times to core bounce and BH

formation between simulations run with SNA at high densi-
ties and an NSE EOS at low densities (SNA+NSE) and with
SNA at all densities. First we note that in the SNA+NSE
case the time to core bounce is insensitive to the Skyrme
parametrization since the transition to dynamical collapse is
controlled by the NSE part that is identical in all simulations.
In the pure SNA simulations, this is di�erent and the time to
core bounce can vary by hundreds of milliseconds between
some parametrizations. �is is a consequence of the metasta-
bility of the inner iron core at the onset of collapse where
small EOS di�erences can have substantial impact on when
the collapse becomes fully dynamical.

Finally, comparing BH formation times tBH (measured
from the start of the simulation) predicted by SNA+NSE and
pure SNA simulations for a given Skyrme parametrization,
we note that tBH appears insensitive to the low-density EOS
treatment. �is can be understood by recalling that much
of the material that is accreted by the proto-NS to reach its
maximum mass comes from regions in the outer core and sil-
icon and oxygen shells. �ese regions are initially in hydro-
static equilibrium since our simulations preserve the pres-
sure strati�cation from the precollapse stellar pro�le. Once
the rarefaction wave from the core’s collapse reaches these
regions, they proceed to collapse with supersonic velocities
in free fall. Hence, the collapse of the outer regions is much
less sensitive to variations in the EOS than the collapse of the
initially metastable inner core.

VIII. CONCLUSIONS

In the twenty-six years since the seminal La�imer &
Swesty (L&S) paper [3] describing their �nite-temperature
nuclear equation of state (EOS), much progress has been
made in both astrophysics simulation capability and in ex-
perimental and astrophysical constraints on the nuclear EOS.
�e L&S EOS has had tremendous impact on simulations
of core-collapse supernovae (CCSNe) and neutron star (NS)

mergers. �is is due not least to L&S providing their EOS
code as open source to the community.

In this study, we built upon the work of L&S and pre-
sented a generalized method for generating EOSs for CCSN
and NS ma�er, using the compressible non-relativistic liquid-
drop model with the Skyrme interaction. With this paper, we
make publicly available a modern, modular, and parallel For-
tran 90 code for building EOS tables for application in CCSN
and NS merger simulations. �e code and EOS tables for the
Skyrme parametrizations considered in this paper are avail-
able at http://stellarcollapse.org/SROEOS.

Our method di�ers from the original L&S approach in the
following signi�cant ways: (1) EOSs can be generated for
most5 Skyrme parametrization in the literature and for fu-
ture parametrizations. �is feature will facilitate EOS param-
eter studies in astrophysics simulations within a consistent
EOS framework. (2) Our method includes nucleon e�ective
masses di�erent from the rest masses and we obtain nuclear
surface properties self-consistently for each parametrization.
(3) Instead of relying on Maxwell constructions that must be
pre-computed for each parametrization, we treat the transi-
tion from non-uniform to uniform nuclear ma�er as a �rst-
order phase transition that is determined as the EOS is cal-
culated. (4) �e EOS obtained in the single-nucleus ap-
proximation (SNA) can be smoothly merged at low densi-
ties with a nuclear-statistical-equilibrium (NSE) EOS contain-
ing thousands of nuclides. (5) We provide for the possibil-
ity of introducing additional terms to Skyrme parametriza-
tions that sti�en the EOS above saturation density. (6) Our
method converges reliably over a wide range of temperatures
(10−4 MeV . T . 102.5 MeV), proton fractions (10−3 .
y . 0.7), and densities (10−13 fm−3 . n . 10 fm−3). �is
makes it easy to generate EOS tables covering the space in
(n, T, y) required for simulations of CCSNe and NS mergers.

5 Our method cannot presently handle Skyrme parametrizations that mix
proton and neutron densities and kinetic energy densities in the nucleon
e�ective masses (compare Equation 8 with Equation 5 of Dutra et al. [9]).

http://stellarcollapse.org/SROEOS
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Using our new method, we generated EOS tables for nine
Skyrme parametrizations: the L&S parametrization with
K0 = 220 MeV (LS220) [3], NRAPR [59], SLy4 [73], SkT1
[71], SKRA [70], LNS [69], SQMC700 [74], Skxs20 [72] and
KDE0v1 [68]. We thoroughly tested these EOSs, demon-
strated thermodynamic consistency, and showed that our
method can reproduce the results of the original L&S rou-
tines. We computed cold beta-equilibrated NS mass-radius
relationships for all EOS and explored the ad-hoc high-
density modi�cations that sti�en the EOS. We showed that
these modi�cations can raise the maximum NS mass above
the astrophysical lower limit of 2M� while leaving EOS
properties at saturation density largely una�ected.

As a �rst application of our new EOS tables to astrophysics
simulations, we considered the spherically-symmetric col-
lapse and postbounce CCSN evolution in 15-M� and 40-M�
progenitor star models. We tracked the 40-M� models to
black hole (BH) formation. We compared SNA and NSE treat-
ments of the EOS at low densities and found that subtle dif-
ferences in the thermodynamics can a�ect the inner core’s
collapse time to core bounce and the postbounce accretion
rate. Overall, as pointed out by Burrows & La�imer [53], the
thermodynamical properties are similar in both approaches
and small di�erences translate to only minor variations in the
postbounce evolutions.

In the case of BH formation, we �nd that the maxi-
mum proto-NS mass supported by a given EOS correlates
with the maximum cold NS mass of the employed Skyrme
parametrization, but is also highly sensitive to the treatment
of the nucleon e�ective masses. �e maximum proto-NS
mass is typically substantially higher than the maximum cold
NS mass due to thermal pressure support from compression-
heated accreted outer core material. EOSs with lower e�ec-
tive nucleon masses lead to higher temperatures and thus
more pressure support and a higher maximum proto-NS
mass.

Our goal with this study was to build a new and robust
method for generating �nite-temperature nuclear EOS tables.
�ese can facilitate CCSN and NS merger simulations that ex-
plore the sensitivity of these phenomena to EOS parameters
and predict multi-messenger (neutrino, gravitational wave,
nucleosynthetic) signatures whose observation could help
constrain the EOS. We have realized this goal for the non-
relativistic temperature-dependent liquid-drop model with
Skyrme interaction. Much work lies ahead to generalize our
method to include other mean-�eld parametrizations of nu-
clear interactions. A further important step will be to couple
our new EOS tables to an e�cient nuclear reaction network
for accurately treating the regime in density, temperature,
and composition space that is not in NSE.
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Appendix A: Leptons and photons

We use the Timmes EOS to determine the properties of
photons and leptons [94]. �e only leptons considered here
are electrons and positrons. �e photon gas is assumed to
be generated by a blackbody in local thermodynamic equi-
librium. Its pressure, internal energy, and entropy are given
by

Prad =
4σSBT

4

3c
, Erad = 3Prad , Srad =

4Erad

3T
,

(A1)
where σSB is the Stephan-Boltzmann constant, c the speed
of light and n the baryon number density. �e electron and
positron contributions are determined assuming charge neu-
trality, i.e.,

yn = nele − npos . (A2)

Recall that y is the proton fraction of the system. Here nele
and npos are, respectively, the electron and positron number
densities given by

nele = Kβ3/2
[
F1/2(η, β) + F3/2(η, β)

]
, (A3a)

npos = Kβ3/2
[
F1/2(κ, β) + F3/2(κ, β)

]
, (A3b)

where we de�ne the constant K = 8π
√

2m3
ec

3/h3 with me

being the electron mass. Furthermore, β = T/(mec
2) is the

relativity parameter, η = µ/T is the degeneracy parameter
of electrons where µ is the electron chemical potential, and
we de�ne κ = −η−2/β. �e functionFk(η, β) is the Fermi-
Dirac integral

Fk(η, β) =

∫ ∞
0

uk(1 + 0.5βu)1/2

1 + exp(u− η)
du . (A4)

Note that the Fermi integral, Equation (10), is a special case of
the Fermi-Dirac integral with β = 0. �e degeneracy param-
eter η is found from the solution of Equation (A2) and can be
used to obtain the thermodynamic variables of the electron
and positron gas. �eir pressures and energies per volume
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are given by

Pele =
2K

3
mec

2β5/2

[
F3/2(η, β) +

β

2
F5/2(η, β)

]
,

(A5a)

Ppos =
2K

3
mec

2β5/2

[
F3/2(κ, β) +

β

2
F5/2(κ, β)

]
,

(A5b)

Eele = Kmec
2β5/2

[
F3/2(η, β) + βF5/2(η, β)

]
, (A5c)

Epos = Kmec
2β5/2

[
F3/2(κ, β) + βF5/2(κ, β)

]
+ 2nposmec

2 , (A5d)

where the subscripts ele and pos refer, respectively, to elec-
trons and positrons. Meanwhile, their entropy densities are

Sele =
Pele + Eele

T
− neleη , (A5e)

Spos =
Ppos + Epos

T
− nposκ . (A5f)

For details on how these calculations are performed see
[94].

Appendix B: Nuclear Statistical Equilibrium

In NSE, the chemical potential of nuclear species i is given
by

µi = mi + Ec,i + T log

[
ni

gi(T )

(
2π

miT

)3/2
]
,

= Ziµp + (Ai − Zi)µn , (B1)

where mi is the mass, Ai is the nucleon number, Zi is
the proton number, ni is the number density, and gi(T )
is the internal partition function of species i. We use the
partition functions of Rauscher & �ielemann [97] and nu-
clear masses from the JINA REACLIB database. See Cy-
burt et al. [98] and references therein. �e partition func-
tion tables and nuclear mass tables are available at http:
//stellarcollapse.org/SROEOS. �e Coulomb cor-
rection in the Wigner-Seitz approximation is

Ec,i =
3αCZ

2
i

5ri

(
1

2
ui −

3

2
u
1/3
i

)
, (B2)

where the nuclear radius ri = (3Ai/4πn0)1/3, ui =
yn/n0Ai/Zi, and αC is the �ne structure constant. Impos-
ing mass and charge conservation, this system of equations
can be solved for the composition. When calculating NSE, we
assume that the neutrons and protons are arbitrarily degen-
erate, non-relativistic particles. We neglect Coulomb correc-
tions for the protons.

�e pressure, energy density, and entropy density of the
nuclei ensemble in NSE is given by

Pn =
∑
i

ni

{
T +

∂Ec,i
∂ lnn

}
, (B3)

En =
∑
i

ni

{
3

2
T + Ec,i − Bi + T

d ln gi
d lnT

}
, (B4)

Sn =
∑
i

ni

{
5

2
+ ln

[
gi
ni

(
miTi
2π

)3/2
]

+
d ln gi
d lnT

}
,(B5)

where Bi is the binding energy of species i relative to Ai
neutrons. �e contribution of the nucleons is given by the
expressions in Section II A with the Skyrme parameters set
to zero. �e free energy density of the nuclei ensemble is set
by

FNSE = En − TSn. (B6)

Appendix C: Critical temperature coe�cients

In Section II B we present a method for determining the
critical temperature Tc below which nuclear ma�er may
phase separate into two phases of di�erent densities, ni and
no, and proton fractions, yi and yo. In Table VIII, we present
the coe�cients calculated for the critical temperature ap-
proximation Tc ≡ Tc(yi), Equation (22). Since we do not
obtain the surface properties for the LS220 parametrization,
we set the coe�cients Tc(yi) to match those of L&S. Note
that for all other parametrizations we have ac ' 1.00 and
bc ' −1. In fact, the EOS we calculate are not signi�cantly
altered by enforcing ac = 1 and bc = −1.

TABLE VIII: Coe�cients for the �t of the proton-fraction depen-
dence of the critical temperature Tc(y) given by Equation (22).
�ese coe�cients depend on the Skyrme parametrization and we
provide them here for completeness. Tc is in MeV while ac, bc, cc,
and dc are dimensionless.

Parametrization Tc ac bc cc dc
LS220 [3] 16.80 1.0000 −1.0000 0.0000 −0.0000
KDE0v1 [68] 14.85 1.0035 −1.1600 0.7797 −1.6822
LNS [69] 14.92 1.0017 −1.2052 0.2432 −0.6667
NRAPR [59] 14.39 1.0029 −1.0029 0.4679 −0.9929
SKRA [70] 14.35 1.0031 −1.1227 0.4336 −0.9523
SkT1 [71] 17.05 1.0022 −1.1921 0.4371 −0.7393
Skxs20 [72] 15.37 1.0017 −1.3778 0.4015 −0.6087
SLy4 [73] 14.52 1.0038 −1.0127 0.7771 −1.6520
SQMC700 [74] 14.72 1.0022 −1.1794 0.3284 −0.8968

http://stellarcollapse.org/SROEOS
http://stellarcollapse.org/SROEOS
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[1] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Rev. Mod. Phys.
89, 015007 (2017).

[2] J. M. La�imer and M. Prakash, Phys. Rep. 621, 127 (2016).
[3] J. M. La�imer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991).
[4] D. G. Ravenhall, C. J. Pethick, and J. M. La�imer, Nucl. Phys. A

407, 571 (1983).
[5] M. Hashimoto, H. Seki, and M. Yamada, Prog. �eor. Phys. 71,

320 (1984).
[6] M. Prakash, I. Bombaci, M. Prakash, P. J. Ellis, J. M. La�imer,

and R. Knorren, Physics Reports 280, 1 (1997).
[7] A. W. Steiner, M. Prakash, and J. M. La�imer, Physics Le�ers

B 509, 10 (2001).
[8] J. A. Pons, S. Reddy, P. J. Ellis, M. Prakash, and J. M. La�imer,

Phys. Rev. C 62, 035803 (2000).
[9] M. Dutra, O. Lourenço, J. S. Sá Martins, A. Del�no, J. R. Stone,
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