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In high energy heavy-ion collisions, the degrees of freedom at the very early stage can be effectively
represented by strong classical gluonic fields within the Color Glass Condensate framework. As the
system expands, the strong gluonic fields eventually become weak such that an equivalent description
using the gluonic particle degrees of freedom starts to become valid. In this paper, the spectrum of
these gluonic particles are reexamined by solving the classical Yang-Mills equations semi-analytically
with the solutions having the form of power series expansions in the proper time. A different formula
for the gluon spectrum, which is consistent with energy density during the whole time evolution, is
proposed. One finds that the chromo-electric fields have larger contributions to the gluon spectrum
than the chromo-magnetic fields do. Furthermore, the large momentum modes take less time to reach
the weak-field regime while smaller momentum modes take more time. The resulting functional form
of the gluon spectrum is exponential in nature and the spectrum is close to a thermal distrubtion
with effective temperatures around 0.6 to 0.9Qs late in the Glasma evolution. The sensitiveness of
the gluon spectrum to the infrared and the ultraviolet cut-offs are discussed.

I. INTRODUCTION

In high energy heavy-ion collisions, the time evolution
of the produced quark-gluon plasma has been success-
fully described by relativistic hydrodynamic models
[1]. One of the prerequisites for hydrodynamics to be
applicable is the local thermal equilibrium assumption.
Comparisons with experimental data indicate that
hydrodynamics starts very early in the collisions. This
early thermalization has been a challenging theoretical
problem which is still under active research and debate.
Recently, an effective kinetic theory in the weak coupling
regime was applied to bridge the early Glasma stage
and the hydrodynamics stage [2]. One of the inputs in
this approach is the initial phase space distribution of
the gluons which is usually parameterized as either a
step function [3, 4] or a Gaussian form [2, 3, 5]. On
the other hand, the gluon distribution at late time in
the Glasma evolution has been extensively investigated
by numerically solving the boost-invariant classical
Yang-Mills equations [6–10]. Incorporating the rapidity
dependence [11] has also been explored. In these numeri-
cally simulations, the gluon distribution in the weak field
regime is fitted to be a Bose-Einstein distribution for
lower momentum modes and a power law form for higher
momentum modes. It would be interesting to reexamine
the gluon spectrum in the boost-invariant Glasma from
a different approach, which will be the topic of this
paper. The focus will be the simplest boost-invariant
classical Yang-Mills equations and the evolution of the
Glasma during the very early time τ . 1.0 fm/c. For
important physics originating from violating the assump-
tion of boost-invariance, such as Glasma instabilities
and possible pressure isotropization induced, one can
consult papers [12–21]. There is also the recently found
universal self-similar gluon distribution at extremely
large proper time in simulating the 3+1D classical
Yang-Mills equations assuming an initially (τ ∼ 1/Qs)

overpopulated and anisotropic gluon distribution [22–26].

The paper is organized as follows. In section II, a
different formula for the gluon spectrum in the boost-
invariant Glasma is proposed and its relation with the
conventional formula used in the literature is discussed.
Section III is devoted to the actual computations of the
gluon spectrum using a power series expansion method.
The calculations will be done in the leading Q2 approxi-
mation and contributions from the chromo-electric fields
and the chromo-magnetic fields are presented explicitly.
Results are given and discussed in Section IV where com-
parisons with previous results from numerically solving
the classical Yang-Mills equations are also discussed. The
Appendix includes main computational steps and expres-
sions.

II. FORMULA FOR THE GLUON SPECTRUM

In the Color Glass Condensate (CGC) framework, par-
ticularly the McLerran-Venugapolan model [27, 28] ap-
plied to the high energy heavy-ion collisions, describing
the very early stages of the collisions is equivalent to
solving the classical Yang-Mills equations with appropri-
ate initial conditions [29, 30]. In general, solving the
full 3+1D classical Yang-Mills equations is needed to ob-
tain both transverse dynamics and longitudinal dynam-
ics. For the study of the gluon spectrum, I concentrate
on the boost-invariant situation to be aligned with the
previous numerical simulations. The classical Yang-Mills
equations in the Fock-Schwinger gauge (Aτ = 0) under
the assumption of boost-invariance are
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supplemented by the constraint equation

igτ [Aη,
∂

∂τ
Aη]− 1

τ
[Di,

∂

∂τ
Ai⊥] = 0 . (2)

The constraint equation comes from the equation of mo-
tion related to the Aτ component after we choose the
Fock-Schwinger gauge. The Yang-Mills equations are
written in the Milne coordinates (τ, x, y, η) with the

proper time τ =
√
t2 − z2 and the pseudorapidity η =

1
2 ln t+z

t−z . The non-Abelian vector potentials Aη(τ,x⊥)

and Ai⊥(τ,x⊥) (i = x, y) are independent of the pseu-
dorapidity η due to the assumption of boost-invariance;
they are matrices in the SU(3) color group space. The co-
variant derivative isDi = ∂i−igAi⊥ and the field strength

tensor is F ij = ∂iAj⊥ − ∂jAi⊥ − ig[Ai⊥, A
j
⊥]. The initial

conditions [29, 31] for the equations of motion (1) are

Ai⊥(τ = 0,x⊥) = Ai1(x⊥) +Ai2(x⊥) ,

Aη(τ = 0,x⊥) = − ig
2

[Ai1(x⊥), Ai2(x⊥] ,

∂

∂τ
Ai⊥(τ = 0,x⊥) = 0,

∂

∂τ
Aη(τ = 0,x⊥) = 0 .

(3)

Here Ai1(x⊥) and Ai2(x⊥) are the pure gauge fields pro-
duced by the two colliding nuclei individually until the
collision. Once the non-Abelian gauge potentials Aη

and Ai⊥ are solved, physical quantities like the energy-
momentum tensor can be computed accordingly. The
energy-momentum tensor is defined as Tµν = FµλF νλ +
1
4g
µνFκλFκλ with the general field strength tensor Fµν =

∂µAν − ∂νAµ − ig[Aµ, Aν ]. Tracing over color indexes
is understood in the definition of the energy-momentum
tensor. The energy-momentum tensor thus defined is lo-
cal in space-time and gauge-invariant. Among the vari-
ous components of the energy-momentum tensor, the en-
ergy density play a crucial role in the definition of the
gluon spectrum.

ε(x) ≡ T 00(x) =
1

2
( ~E2(x) + ~B2(x)). (4)

The contributions from the chromo-electric field ~E and
the chromo-magnetic field ~B are related to the field

strength tensor by

EzEz =
1

τ2
FτηFτη ,

Ei⊥E
i
⊥ = cosh2 ηFiτFiτ −

1

τ
sinh 2ηFiτFiη

+
1

τ2
sinh2 ηFiηFiη ,

BzBz =
1

2
FklFkl ,

Bi⊥B
i
⊥ = sinh2 ηFiτFiτ −

1

τ
sinh 2ηFiτFiη

+
1

τ2
cosh2 ηFiηFiη .

(5)

where the field strength tensor has subscripts in terms
of the Milne coordinates, Fmn with m,n = (τ, x, y, η).
The gluon spectrum dN/d2k⊥dy, which is the number of
gluons per unit two dimensional transverse momentum
and per unit rapidity, is constructed by requiring it be
consistent with the local energy density in reproducing
the total energy

Etot(τ) =

∫
d2k⊥dy ω(k⊥, y, τ)

dN

d2k⊥dy
(τ) ,

=

∫
d2x⊥dη τ cosh η ε(x⊥, η, τ) .

(6)

Here ω(k⊥, y, τ) is the dispersion relation function that
characterizes the gluonic particles in the Glasma which,
in principle, should be time-dependent. In the strong-
field regime, the dispersion relation function can be
highly nontrivial due to the strong coherence among the
gluonic particles. Also, it is not unambiguous whether
it is legitimate to define a quasiparticle dispersion re-
lation in the strong-field regime. However, once enter-
ing the weak-field regime when particles approximately
decohere, the dispersion relation is approximately time-
independent and it makes sense to talk about the disper-
sion relation for the quasiparticles. Unfortunately, there
are no a prior derivations for the dispersion relation. For
the discussions in this paper, I choose the dispersion rela-
tion of free massless particles ω(k⊥, y, τ) = ω(k⊥) = k⊥
for the boost-invariant situation as in [6–10] while keep-
ing in mind that the problem of choosing dispersion re-
lations is still not rigorously resolved. With the boost-
invariance assumption dy = dη and the focus on the cen-
tral rapidity region η = 0, the requirement (6) becomes

1

τ

∫
d2k⊥k⊥

dN

d2k⊥dy
(τ) =

∫
d2x⊥ ε(x⊥, τ) . (7)

The 1/τ factor is purely geometric in nature as it origi-
nates from the usage of the Milne coordinates (τ, x, y, η).
With the help of the Fourier transformations, one can
easily verify that the following expression for the gluon
spectrum satisfies the requirement (7).
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dN

d2k⊥dy
=

1

2(2π)2

1

k⊥

{[
τFiτ (τ,k⊥)Fiτ (τ,−k⊥) +

1

τ
Fτη(τ,k⊥)Fτη(τ,−k⊥)

]
+

[
τ

2
Fij(τ,k⊥)Fij(τ,−k⊥) +

1

τ
Fiη(τ,k⊥)Fiη(τ,−k⊥)

]}
.

(8)

The terms in the first square bracket of equation (8)
represents contributions from the chromo-electric fields
while the terms in the second square bracket represents
the contributions from the chromo-magnetic fields, see
Eq.(5). The formula is consistent with the energy den-
sity during the whole time evolution. Similar expressions
have been used in [32] where the dispersion relation is

chosen to be ω(k⊥) =
√
k2
⊥ +m2 with an arbitrary ef-

fective mass m included. On the other hand, the formula
(8) differs from those used in the literature [6–10] in the
chromo-magnetic part where formula (8) contains the full
non-Abelian features while the conventional expressions
are Abelian in nature. One of the advantages of the for-
mula (8) over the conventional expression is that one can
follow the whole time evolution of the Glasma and tell
when the strong fields becomes weak mode-by-mode in
which self-interactions of gluons become less important
compared to the kinetic terms. In addition, formula (8)
has gauge-invariant meaning as it is related to the gauge-
invariant local energy density, while in [6–10] the expres-
sion for the gluon spectrum is explicitly gauge dependent
and the additional Coulomb gauge ∂iA

i = 0 has to be im-
posed. Finally, the expression (8) puts the contributions
of the chromo-magnetic part and chromo-electric part on
an equal footing and makes their comparison meaningful.

III. COMPUTING THE GLUON SPECTRUM

To compute the gluon spectrum (8), one first needs to
solve the classical Yang-Mills equations (1). I follow the
semi-analytic approach proposed in [33, 34] where the
gauge potential Aη and Ai⊥ are expressed as power series
expansions in the proper time τ . Recursive relations
of the gauge potentials Aη and Ai⊥ are deduced so
that the solutions can be obtained order by order in
the power series expansions. Mathematically, this is a
rigorous approach to solving the differential equations
involved. However, in practice, it is difficult to compute
the higher order terms as the number of terms involved

grow enormously as one goes to higher orders. To
capture contributions from the higher order terms in the
power series expansion, a momentum scale separation
Q2 � Q2

s � m2 was assumed in [35]. As a result, only
the leading terms that having the highest powers in Q2

were retained while the subleading terms involving loga-
rithmics of Q2 were discarded. Furthermore an infrared
cut-off m and an ultraviolet cut-off Q were introduced
there. The ultraviolet cut-off Q was introduced so that
particles with transverse momentum larger than Q are
not included in the effective classical fields. The infrared
cut-off m can be viewed as the ΛQCD scale. Moreover,
the Qs is the gluon saturation scale which characterizes
the typical transverse momentum of the gluonic parti-
cles. This leading Q2 approximation proposed in [35],
which includes minimal amounts of non-Abelian effects
in the time evolution, is an improvement on the Abelian
approximation discussed in [32, 34]. The Abelian approx-
imation takes into account the full non-Abelian initial
conditions while ignoring non-linear self-interactions
of the gluon fields in their time evolutions [29, 30, 36, 37].

The ensuing two steps are: computing the follow-
ing two-point correlation functions and performing the
Fourier transformations with respect to the transverse
coordinates,〈

τFiτ (τ,x⊥)Fiτ (τ,y⊥)
〉
,
〈1

τ
Fτη(τ,x⊥)Fτη(τ,y⊥)

〉
,〈τ

2
Fij(τ,x⊥)Fij(τ,y⊥)

〉
,
〈1

τ
Fiη(τ,x⊥)Fiη(τ,y⊥)

〉
.

(9)

The bracket 〈. . .〉 indicates averaging over different con-
figurations of the initial color distributions at the end of
the computations. Only the event-averaged gluon spec-
trum is considered in this paper. For works related to
event-by-event observables within the semi-analytic ap-
proach, the readers are referred to [38]. These four terms
in (9), before averaging over the initial color distribu-
tions, are also expressed as power series expansions in
the proper time,

τFiτ (τ,x⊥)Fiτ (τ,y⊥) =

∞∑
n=2

n−1∑
k=1

k(n− k)

4n−1[k!(n− k)!]2
[Dj

x, [D
{2k−2}
x , B0(x⊥)]][Dj

y, [D
{2n−2k−2}
y , B0(y⊥)]]τ2n−1 . (10)

1

τ
Fτη(τ,x⊥)Fτη(τ,y⊥) =

∞∑
n=0

n∑
k=0

1

4n[k!(n− k)!]2
[D{2k}x , E0(x⊥)][D{2n−2k}

y , E0(y⊥)]τ2n+1 . (11)
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τ

2
Fij(τ,x⊥)Fij(τ,y⊥) =

∞∑
n=0

n∑
k=0

1

4n[k!(n− k)!]2
[D{2k}x , B0(x⊥)][D{2n−2k}

y , B0(y⊥)]τ2n+1 . (12)

1

τ
Fiη(τ,x⊥)Fiη(τ,y⊥) =

∞∑
n=2

n−1∑
k=1

k(n− k)

4n−1[k!(n− k)!]2
[Di

x, [D
{2k−2}
x , E0(x⊥)]][Di

y, [D
{2n−2k−2}
y , E0(y⊥)]]τ2n−1 . (13)

In obtaining the above expressions, I used the results
for the different components of the field strength tensor
Fiτ , Fτη, Fij and Fiη under the leading Q2 approxima-
tion in [35]. Note that the equations (10) and (13) are
very similar. Their only difference lies in whether the
initial (τ = 0) field is the longitudinal chromo-electric
field E0(x⊥) or the longitudinal chromo-magnetic field
B0(x⊥). The same observation applies to the equations
(11) and (12). Let us recall the difference between the
initial chromo-electric field and chromo-magnetic field
[34, 39],

B0(x⊥) = igεmn[Am1 (x⊥), An2 (x⊥)],

E0(x⊥) = igδmn[Am1 (x⊥), An2 (x⊥)] .
(14)

The initial longitudinal chromo-electric field and the lon-
gitudinal chromo-magnetic field are different event-by-
event E0(x⊥) 6= B0(x⊥). But they contribute the same
to the initial energy density after averaging over all the
events 〈E0(x⊥)E0(x⊥)〉 = 〈B0(x⊥)B0(x⊥)〉. The spatial
indexes in δmn and εmn will be contracted when averag-
ing over the initial color distributions. In the calculation
of the local energy-momentum tensor in [34, 35], similar
computational procedures had been encountered. How-
ever, in that situation, the limit r⊥ = x⊥ − y⊥ → 0 was
taken while here finite values of the r⊥ = x⊥−y⊥ have to
be retained as Fourier transformations from the coordi-
nate space to the momentum space will be implemented.
All the techniques needed have already been discussed in
[34, 35]; more details on the correlation functions with
finite values of r⊥ are given in the Appendix. The final
results are summarized here:

EiEi ≡ 1

k⊥

〈
τFiτ (τ,k⊥)Fiτ (τ,−k⊥)

〉
= (πR2

A)(2ε0)

[ ∞∑
n=3

(−1)nC2(n, k⊥)(Qτ)2n−1

[
ln
Q2

m2

]−2

+

∞∑
n=2

(−1)nC1(n, k⊥)(Qτ)2n−1

[
ln
Q2

m2

]−1
]
,

(15)

BiBi ≡ 1

k⊥

〈1

τ
Fiη(τ,k⊥)Fiη(τ,−k⊥)

〉
= (πR2

A)(2ε0)

[ ∞∑
n=3

(−1)nC̃2(n, k⊥)(Qτ)2n−1

[
ln
Q2

m2

]−2

+

∞∑
n=2

(−1)nC1(n, k⊥)(Qτ)2n−1

[
ln
Q2

m2

]−1
]
,

(16)

EzEz ≡ 1

k⊥

〈1

τ
Fτη(τ,k⊥)Fτη(τ,−k⊥)

〉
= (πR2

A)(2ε0)

[ ∞∑
n=2

(−1)nD2(n, k⊥)(Qτ)2n+1

[
ln
Q2

m2

]−2

+
1

2
G0(k⊥)(Qτ) +

∞∑
n=1

(−1)nD1(n, k⊥)(Qτ)2n+1

[
ln
Q2

m2

]−1
]
,

(17)

BzBz ≡ 1

k⊥

〈τ
2
Fij(τ,k⊥)Fij(τ,−k⊥)

〉
= (πR2

A)(2ε0)

[ ∞∑
n=2

(−1)nD̃2(n, k⊥)(Qτ)2n+1

[
ln
Q2

m2

]−2

+
1

2
G0(k⊥)(Qτ) +

∞∑
n=1

(−1)nD1(n, k⊥)(Qτ)2n+1

[
ln
Q2

m2

]−1
]
.

(18)

The EiEi, BiBi, EzEz and BzBz are used to label the
four terms. They are ultimately related to their counter-
parts in the expression for the energy density Eq. (5).
The RA is the radius of the colliding nucleus. The initial
(τ = 0) energy density ε0 [33, 34] serves as a normaliza-
tion factor,

ε0 = 2π
Nc

N2
c − 1

(
g2

4π

)3

µ2

[
ln
Q2

m2

]2

(19)

Here Nc = 3 is the number of colors and g is the
strong coupling constant which depends on the energy
scales. The µ is an input paramter in the McLerran-
Venugopalan model that characterizes the Gaussian
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width of the color fluctuations from the large-x partons
within each nucleus. It depends on the transverse
coordinate x⊥ in general while we assume homogeneity
of µ on the transverse plane in our discussions of
the Glasma evolution. The initial flows due to the
inhomogeneity on the transverse plane are discussed in
detail in [34, 40, 41]. In addition, µ is quantitatively
related to the gluon saturation scale Qs [42]. Note that
the two colliding nuclei are assumed to be the same so
that the gluon saturation scales are also the same, as
well as the ultraviolet and the infrared cut-offs. The
coefficient functions C1(n, k⊥), C2(n, k⊥), C̃2(n, k⊥),

G0(k⊥), D1(n, k⊥), D2(n, k⊥), D̃2(n, k⊥) are given in
Appendix B. These coefficient functions depend on
the input parameters: the ultraviolet cut-off Q, the
infrared cut-off m and the gluon saturation scale Qs.
As power series expansions in Qτ , EiEi and BiBi have
the lowest order (Qτ)1 while EzEz and BzBz have
the lowest order (Qτ)3. It is not surprising to notice
that the expressions of EiEi and BiBi are almost the
same except for the minor difference in the coefficient
functions C2(n, k⊥) and C̃2(n, k⊥). The same observation
applies to the expressions of EzEz and BzBz. Mathe-
matically speaking, these differences originate from the
difference in the initial longitudinal chromo-electric field
E0 and the longitudinal chromo-magnetic field B0, see
Eq. (14). It involves spatial index contraction with
either δmn or εmn when averaging over initial color fluc-
tuations. Physically speaking, these minor differences
represent non-Abelian effects in the time evolutions
that deviate from the Abelian approximation where
there exists duality between the E-fields and the B-fields.

As power series expansions in Qτ , one would naively
expect the radius of convergence of these four terms to
be τc ∼ 1/Q, which is around 0.05 fm/c for Q = 4.0 GeV.
However, the coefficient functions C1(n, k⊥), C2(n, k⊥),

C̃2(n, k⊥), D1(n, k⊥), D2(n, k⊥) and D̃2(n, k⊥) decrease
very fast as one increases the order n of the power se-
ries expansions, see Fig. 1. The fast decrease of these
coefficients compensates for the increase of (Qτ)n when
extending to regions of larger proper time. As a result,
the convergence radius is approximately enhanced by ten
times to τc ∼ 0.5 fm/c . This point becomes apparent in
the results shown in the next section.

IV. RESULTS AND DISCUSSIONS

The input parameters are chosen to be Q = 4.0 GeV,
m = 0.2 GeV and Qs = 1.2 GeV as in [35] to be consis-
tent with the assumption of the momentum scale sepa-
ration Q2 � Q2

s � m2. The strong coupling constant
g is calculated at the momentum scale Q. These val-
ues will be the benchmark input values for comparisons
when varying one of them while keeping the other two
fixed. In the numerical computations, the power series
expansions are cut to the order of n = 60. Depending on

� �� �� �� �� �� ��
���

���

���

���

���

���

� �� �� �� �� �� ��
���

���

���

���

���

���

���

FIG. 1: (color online) The coefficient functions
2n+1
√
C1(n,k⊥), 2n+1

√
C2(n,k⊥), 2n+1

√
C̃2(n,k⊥), 2n−1

√
D1(n,k⊥),

2n−1
√
D2(n,k⊥) and 2n−1

√
D̃2(n,k⊥) at different orders n for

k⊥ = Qs. The input parameters are Q = 4.0 GeV,
m = 0.2 GeV and Qs = 1.2 GeV.

the proper time window one is interested in, higher order
terms in the power series expansion can also be incor-
porated although the computational time will increase
dramatically. Additionally, there is the limit due to the
radius of convergence of the power series expansions that
prohibits extension to larger values of the proper time
τ . This reveals the limitation of the small proper time
power series expansion method.

Figure 2 shows the time evolution of the four terms
(15), (16), (17) and (18) in the gluon spectrum for the
momentum mode k⊥ = Qs. The contributions from the
chromo-electric part EiEi+EzEz is larger than that from
the chromo-magnetic part BiBi+BzBz as shown in Fig.
3. Late in the evolution, the fields become weak so that
the non-Abelian self-interacting terms are less important
than the kinetic terms. Ideally, if the self-interacting ef-
fects could be completely ignored, one has the abelianized
theory where there exists duality between the chromo-
electric field E and chromo-magnetic field B. One would
have the same contributions to the gluon spectrum from
the chromo-electric fields and the chromo-magnetic fields.
However, non-Abelian self-interacting effects persist even
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FIG. 2: (color online) Time evolution of the four terms
EiEi, BiBi, EzEz and BzBz for the momentum mode
k⊥ = Qs.
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FIG. 3: (color online) Time evolution of chromo-electric
part EiEi + EzEz and the chromo-magnetic part
BiBi + BzBz for the momentum mode k⊥ = Qs.

in the weak field regime. As a result, the initial difference
between the chromo-electric field E0 and the chromo-
magnetic field B0 is passed on nonlinearly to the late
time so that their differences show up even in the event-
averaged results as demonstrated by Fig. 3. Note that
although E0 and B0 are different for a single event, after
averaging over all the initial color distributions, 〈E0E0〉
is the same as 〈B0B0〉, which is also demonstrated by
Fig. 3.

Figure 4 shows the time evolution of four differ-
ent momentum modes k⊥/Qs = 0.8, k⊥/Qs = 1.0,
k⊥/Qs = 1.2 and k⊥/Qs = 1.5 from the gluon spectrum.
After a short proper time of continuous increasing, they
all saturate at constant values. These plateau features
are reminiscent of the fact that the energy density ε(τ)
approximately behaves as 1/τ at late time, which means
free streaming. Once reaching the plateau regions, the
gluon spectrum is independent of time. This feature is

��� ��� ��� ��� ��� ��� ���
����

����

����

����

����

����

FIG. 4: (color online) Four different momentum modes
of the gluon spectrum evolve with time.

further identified as the criteria that the classical gluon
fields switch to the weak field regime from the initial
strong field regime. A time independent gluon spectrum
thus has physical meaning and can be intepretated as
distribution of the particle numbers. Apparently, larger
momentum modes reach the weak field regime faster
than the smaller momentum modes do as can be seen
from Fig. 4.

The gluon spectrum and the energy density spectrum
at τ = 0.6 fm/c are shown in Fig. 5. The expression
of the gluon spectrum is reorganized as the number of
gluons per unit transverse area, per unit radian, per unit
rapidity and per transverse momentum magnitude k⊥,

n(k⊥) ≡ dn

dk⊥
= k⊥

dN

dyd2k⊥

1

(πR2
A)

. (20)

The area under the curve n(k⊥) represents the total num-
ber of gluons per unit area and per unit radian. The
energy density spectrum is then defined as

ε(k⊥) = k⊥n(k⊥) = k2
⊥

dN

dyd2k⊥

1

(πR2
A)

. (21)

The functional form of the gluon spectrum n(k⊥) is
first fitted using a thermal distribution function (Bose-
Einstein distribution) with finite effective mass Meff and
finite effective temperature Teff

n(k⊥) = a1

(
e
√
k2⊥+M2

eff/Teff − 1
)−1

. (22)

The fitting parameters are a1 = 2.616 GeV, Meff =
0.706 GeV and Teff = 0.848 GeV. The effective tempera-
ture is roughly Teff ∼ 0.7Qs. Apparently, the gluon spec-
trum is close to but slightly different from the equilib-
rium Bose-Einstein distribution. The deviation from the
Bose-Einstein distribution is amplified in the energy den-
sity spectrum, Fig. 5b. A modification function h(k⊥) is
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(a) The gluon spectrum fitted with a thermal function.
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(b) The energy density spectrum fitted with a thermal
function .

FIG. 5: (color online) The gluon spectrum and the
energy density spectrum at τ = 0.6 fm/c. The blue dots
are the numerical results while the red curves are from
the thermal fitting functions (22)

then introduced in the fitting function.

n(k⊥) = a2

(
e
√
k2⊥+M̃2

eff/T̃eff − 1
)−1

h(k⊥) . (23)

The modification function is

h(k⊥) =

1 + a3

√
k2
⊥ + M̃2

eff/T̃eff + a4

(√
k2
⊥ + M̃2

eff/T̃eff

)2

1 + a5

√
k2
⊥ + M̃2

eff/T̃eff + a6

(√
k2
⊥ + M̃2

eff/T̃eff

)2 .

(24)

The fitting result is shown in Fig. 6. For the nonthermal
function (23), the fitting parameters are a2 = 2.439 GeV,

M̃eff = 0.802 GeV, T̃eff = 0.944 GeV, a3 = −1.535, a4 =
0.690, a5 = −1.606 and a6 = 0.751. Here the effective
temperature is roughly T̃eff ∼ 0.8Qs. Both the gluon
spectrum and the energy density are fitted well with the
nonthermal function (23).

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

(a) The gluon spectrum fitted with a nonthermal function.

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

(b) The energy density spectrum fitted with a nonthermal
function.

FIG. 6: (color online) The gluon spectrum and the
energy density spectrum at τ = 0.6 fm/c. The blue dots
are the numerical results while the red curves are from
the non-thermal function (23)

It is interesting that one can use a different nonthermal
function that fits the gluon spectrum result as well as
(23).

n(k⊥) = a2(ek⊥/T̃eff − 1)−1 k⊥ h̃(k⊥), (25)

with

h̃(k⊥) =
1 + a3 k⊥ + a4 k

2
⊥

1 + a5 k⊥ + a6 k2
⊥

(26)

The fitting results are shown in Fig 7. The fitting pa-
rameters are a2 = 2.623, a3 = −0.666 GeV−1, a4 =
0.848 GeV−2, a5 = −1.176 GeV−1, a6 = 1.634 GeV−2

and T̃eff = 0.762 GeV. Here the effective temperature is
roughly T̃eff ∼ 0.65Qs.

In comparison with the first nonthermal fitting func-
tion (23), the second nonthermal fitting function (25)
assumes a zero effective mass and the functional form of
the modification function is multiplied by an additional
k⊥. Both nonthermal fittings give much better results
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(a) The gluon spectrum fitted with a nonthermal function.
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(b) The energy density spectrum fitted with a nonthermal
function.

FIG. 7: (color online) The gluon spectrum and the
energy density spectrum at τ = 0.6 fm/c. The blue dots
are the numerical results while the red curves are from
the non-thermal function (25)

than the thermal fitting function (22). The different
forms of the fitting functions indicate that the main
feature of the functional form for the gluon spectrum
is exponential. The effective mass term M̃eff is not
necessary while the effective temperature T̃eff which is
approximately 0.6Qs ∼ 0.9Qs characterizes the typical
momentum for the gluonic modes at the weak field
regime of the Glasma evolution. It is worth noting that
in [7, 9] the gluon spectrum had already been fitted
with the Bose-Einstein distribution function for lower
momentum modes. However, the fitted curves were for
dN/dyd2k⊥ in [7, 9] rather than for k⊥dN/dyd

2k⊥ as
fitted in the current paper. Also, those higher momen-
tum modes were fitted with a power law function so
as to compare with the results from perturbative QCD
calculations. In this paper, the momentum modes reside
in the range from m = 0.2 GeV to Q = 4.0 GeV within
which descriptions in terms of the classical fields are
assumed to be justified. Therefore, momentum modes
lower than the scale m or larger than the scale Q should

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

FIG. 8: (color online) The normalized gluon spectrums
for three different values of Qs. The area under each
curve is normalized to be one.

Qs (GeV) 1.0 1.2 1.5

M̃eff (GeV) 0.775 0.802 0.997

T̃eff (GeV) 0.875 0.944 1.087

a2 1.658 2.439 4.410

a3 -1.273 -1.535 -1.843

a4 0.529 0.690 0.837

a5 -1.431 -1.606 -1.906

a6 0.651 0.751 0.900

TABLE I: The fitting parameters for the nonthermal
fitting function (23) when choosing different values of
Qs while Q = 4.0 GeV and m = 0.2 GeV.

be understood as coming from extrapolations. Higher
moments of the gluon distributions beyond the energy
density spectrum (first moment of the gluon spectrum)
should be able to reveal further deviations from a pure
Bose-Einstein distribution. In this paper, the energy
density spectrum is used as a second constraint for the
fittings and higher moments of the gluon distribution
are not further considered.

To compare different results when varying the input
parameters, the gluon spectrum is normalized by the
total number of gluons per unit area, per unit radian
N =

∫
dk⊥n(k⊥). The function f(k⊥) = n(k⊥)/N there-

fore has the meaning of probability density. In Fig. 8,
the gluon spectrums for three different values of Qs are
presented. Other input parameters are chosen to be the
same as the benchmark values. Increasing the values of
the gluon saturation scale Qs can be realized by increas-
ing the collision energys of the colliding nuclei. The gluon
saturation scale Qs, which is linearly related to the effec-
tive temperature T̃eff , characterizes the typical momen-
tum of the gluonic system at the weak field regime of
the Glasma evolution. Larger values of Qs mean smaller
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FIG. 9: (color online) The normalized gluon spectrums
for three different values of Q. The area under each
curve is normalized to be one.

Q (GeV) 3.0 4.0 5.0

M̃eff (GeV) 0.859 0.802 0.693

T̃eff (GeV) 0.898 0.944 1.016

a2 2.748 2.439 1.716

a3 -1.381 -1.535 -1.786

a4 0.533 0.690 1.112

a5 -1.409 -1.606 -1.945

a6 0.559 0.751 1.217

TABLE II: The fitting parameters for the nonthermal
fitting function (23) when choosing different values of Q
while Qs = 1.2 GeV and m = 0.2 GeV.

weights at the lower momentum while smaller values of
Qs indicate larger weights at lower momentum. Figure 8
is consistent with this qualitative properties. Note that
the area under each curve is normalized to be one. The
corresponding effective mass M̃eff and the effective tem-
perature T̃eff when fitted with the nonthermal function
(23) by changing Qs are given in Table I. Both M̃eff and

T̃eff increase as Qs is increased. The effective tempera-
ture T̃eff is roughly 0.6Qs ∼ 0.9Qs. Figure 9 shows the
results when varying the ultraviolet cut-off Q. Other in-
put parameters are the same as the benchmark values.
As can be seen, the results are barely sensitive to the
changes of ultraviolet cut-offs. The fitting parameters
when changing the ultraviolet cut-offs are given in Ta-
ble II. Figure 10 shows the results for different values
of the infrared cut-off m. The differences are noticeable.
Smaller values of the m incorporate more lower momen-
tum modes, thus increases the weights in the lower mo-
mentum regions. The corresponding fitting parameters
when changing the infrared cut-offs are listed in Table
III.
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FIG. 10: (color online) The normalized gluon spectrums
for three different values of m. The area under each
curve is normalized to be one.

m (GeV) 0.1 0.2 0.3

M̃eff (GeV) 0.457 0.802 1.254

T̃eff (GeV) 0.920 0.944 0.954

a2 2.015 2.439 2.875

a3 -1.657 -1.535 -0.908

a4 1.516 0.690 0.236

a5 -1.476 -1.606 -0.962

a6 1.117 0.751 0.270

TABLE III: The fitting parameters for the nonthermal
fitting function (23) when choosing different values of m
while Q = 4.0 GeV and Qs = 1.2 GeV.

V. CONCLUSION AND OUTLOOK

In high energy heavy-ion collisions, understanding the
complete time evolution of the Glasma state is impor-
tant to gain insights on the very initial stages of the col-
lisions. For the simplest boost-invariant situation, the
gluon spectrum is reexamined from a semi-analytic ap-
proach. A different formula for the gluon spectrum is
proposed by relating it to the local energy density stud-
ied before. One finds that the gluon spectrum has differ-
ent contributions from the chromo-electric part and the
chromo-magnetic part, which reflects the effects of non-
Abelian self-interactions in the weak field regime of the
Glasma evolution. All the momentum modes reach their
plateau regions after certain times, which is consistent
with the free-streaming (ε ∼ 1/τ) at the late time of the
Glasma evolution. However, larger momentum modes
take less time to enter the weak field regime while smaller
mometum modes take more time. To have a meaningful
result for the gluon spectrum, one needs to make a proper
time cut-off large enough so that most of the momentum
modes of the gluon spectrum are not changing with time.
The proper time τ = 0.6 fm/c is chosen and one finds that
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the functional form of the gluon spectrum is nonequilib-
rium in nature but is close to a thermal distribution with
effective temperatures around 0.6Qs ∼ 0.9Qs.

The gluon spectrum is essentially exponential with
modification function that accounts for the deviations
from the equilibrium. This functional form is different
from either the Gaussian distribution or the step func-
tion used in the literature. It would be interesting to
see how the system evolves starting from these differ-
ent forms of the initial gluon spectrum. In addition, the
close-to-equilibrium feature of the gluon spectrum may
give us some hints on the early thermalization problem.

Apparently, the boost-invariant gluon spectrum lacks
information about the longitudinal dynamics. It is neces-
sary to go beyond the boost-invariance assumption, espe-
cially for the initial conditions, to explore the dependence
on the longitudinal momentum for the gluon spectrum.
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Appendix A: Correlation Functions with Finite
Range

The relevant correlation functions involve an auxiliary
function γ(x⊥,y⊥). A few examples [34] are

〈Aia(x⊥)Ajb(y⊥)〉
=∇ix∇jyγ(x⊥,y⊥)T (x⊥,y⊥)δab ,

(A1)

〈DkAia(x⊥)DlAjb(y⊥)〉
=∇kx∇ix∇ly∇jyγ(x⊥,y⊥)T (x⊥,y⊥)δab ,

(A2)

〈DkDlAia(x⊥)Ajb(y⊥)〉
=∇lx∇kx∇ix∇jyγ(x⊥,y⊥)T (x⊥,y⊥)δab ,

(A3)

〈DmDnDkDlAia(x⊥)Ajb(y⊥)〉
=∇mx ∇nx∇lx∇kx∇ix∇jyγ(x⊥,y⊥)T (x⊥,y⊥)δab .

(A4)

with

T (x⊥,y⊥)

=
2g2

g4NcΓ(x⊥,y⊥)

{
exp

[
g4Nc

2(N2
c − 1)

Γ(x⊥,y⊥)

]
− 1

}
,

(A5)

and

Γ(x⊥,y⊥) = Γ(r) =
µ

8π
r2 lnm2r2 . (A6)

Here r = |x⊥−y⊥|. The main efforts are to calculate the
auxiliary function γ(x⊥,y⊥) and its higher order deriva-
tives. The γ(x⊥,y⊥) is expressed as

γ(x⊥,y⊥) = µ

∫
d2~k⊥
(2π)2

eik⊥(x⊥−y⊥)G(k⊥)G(−k⊥) .

(A7)

Here G(k⊥) = 1/k2
⊥ is the momentum space Green func-

tion. To get meaningful results, the integral in (A7) has
to be regularized. In [32, 34] an infrared scale m is intro-
duced to modify the expression of G(k⊥) from 1/k2

⊥ to
1/(k2

⊥+m2) while the ultraviolet cut-off Λ is imposed on
the upper integration limit. In this paper, the infrared
cut-off m and the ultraviolet cut-off Q are explicitly im-
posed as the limits of the momentum integration,

γ(x⊥,y⊥) = µ

∫ Q

m

d2k⊥
(2π)2

eik⊥(x⊥−y⊥) 1

k4
⊥
. (A8)

Taking derivatives on γ(x⊥,y⊥) is carried out inside of
the integral before the momentum integration

∇ix∇jyγ(~x⊥, ~y⊥) = µ

∫
d2~k⊥
(2π)2

ei
~k⊥(~x⊥−~y⊥) k

i
⊥k

j
⊥

k4
⊥

' µδ
ij

2

∫
d2~k⊥
(2π)2

ei
~k⊥(~x⊥−~y⊥) k

2
⊥
k4
⊥
.

(A9)

Rotational invariance on the transverse plane in the mo-
mentum space is assumed so that only the symmetric
part of ki⊥k

j
⊥, which is δijk2

⊥/2, is kept. An equivalent
approach is to evaluate the integral in (A8) first and then
take derivatives on the spatial function obtained

∇jy∇ixγ(r) = −∂
2γ(r)

∂rj∂ri

=− δij 1

r

∂γ(r)

∂r
− rirj

r2

(
∂2γ(r)

∂r2
− 1

r

∂γ(r)

∂r

)
.

(A10)

The second approach coincides with the first approach
after making the approximation rirj/r2 ' δij/2 in (A10),
which is valid as long as 0 . mr � 1. The first approach
examplified by (A9) will be followed. Two more examples
are

∇kx∇ly∇ix∇jyγ(x⊥,y⊥)

=µ

∫
d2k⊥
(2π)2

eik⊥(x⊥−y⊥) k
i
⊥k

j
⊥k

k
⊥k

l
⊥

k4
⊥

=µ
∆ijkl

8

∫
d2k⊥
(2π)2

eik⊥(x⊥−y⊥) ,

(A11)
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∇mx ∇ny∇kx∇ly∇ix∇jyγ(x⊥,y⊥)

=µ

∫
d2k⊥
(2π)2

eik⊥(x⊥−y⊥) k
i
⊥k

j
⊥k

k
⊥k

l
⊥k

m
⊥ k

n
⊥

k4
⊥

=µ
∆ijklmn

48

∫
d2k⊥
(2π)2

eik⊥(x⊥−y⊥)k2
⊥.

(A12)

The spatial index functions ∆ijkl and ∆ijklmn are the
sum of all possible products of the Kronecker delta func-
tions

∆ijkl = δijδkl + δikδjl + δilδjk ,

∆ijklmn = δij∆klmn + δik∆jlmn

+ δil∆jkmn + δim∆jkln + δin∆jklm .

(A13)

The general expression for n ≥ 2 is evaluated as

∇i1x ∇i2y . . .∇i2n−1
x ∇i2ny γ(x⊥,y⊥)

=
µ

2π

∆i1i2...i2n−1i2n

(2n)!!

1

r2n−2

1

2

z2n−2

n− 1
1F2[n− 1; 1, n;−z2/4]

∣∣∣Qr
mr

' µ

4π

∆i1i2...i2n−1i2n

(2n)!!

Q2n−2

n− 1
1F2[n− 1; 1, n;−(Qr)2/4] .

(A14)

In the second equality, the requirement 0 . mr � 1
is taken into account so that the contribution from the
lower integration limit mr can be ignored. The n = 1
case is computed separately

∇ix∇jyγ(x⊥,y⊥)

' µ

4π

δij

2

[
− (Qr)2

4
2F3[1, 1; 2, 2, 2;−(Qr)2/4] + ln

Q2

m2

]
.

(A15)

Both expressions involve the Hypergeometric functions

1F2[a; b, c; z] and 2F3[a, b; c, d; z], respectively. Let us

summarize the general expressions for the correlation
functions that are used in the computation of the gluon
spectrum,

〈Di1Di2 . . . Di2nAia(x⊥)Ajb(y⊥)〉

=(−1)n
µ

4π

∆i1i2i3...i2nij

2(n+ 1)!!

Q2n

n
1F2

[
n; 1, n+ 1;− (Qr)2

4

]
× T (x⊥,y⊥)δab ,

(A16)

〈Aia(x⊥)Ajb(y⊥)〉

=
µ

4π

δij

2

[
− (Qr)2

4
2F3[1, 1; 2, 2, 2;−(Qr)2/4] + ln

Q2

m2

]
× T (x⊥,y⊥)δab .

(A17)
In the limit r → 0, the term containing the hyper-
geometric function in (A17) vanishes. With further
replacement of Q ↔ 1/r, one recovers the well-known
result of the two-point correlation function in the
McLerran-Vegnugopalan model [43].

Appendix B: The Coefficient Functions

The coefficient functions C1(n, k⊥) and C2(n, k⊥) are

C1(n, k⊥) =

n−1∑
k=1

1

4n
2(2n− 2k)(2k)

[k!(n− k)!]2
1

2

(
1

n− 1

)
F2(n, k⊥) ,

(B1)
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C2(n, k⊥) =

n−1∑
k=1

1

4n
2(2n− 2k)(2k)

[k!(n− k)!]2

k−1∑
β=0

n−k−1∑
α=0

β∑
σ=0

α∑
ρ=0

(
n− k − 1

α+ ρ

)(
α+ ρ

2ρ

)(
k − 1

β + σ

)(
β + σ

2σ

)
1

2ρ+ 2σ + 1

(
2ρ+ 2σ + 2

ρ+ σ + 1

)
1

22

1

α+ β + 1

1

n− α− β − 2
F1(n, α, β, k⊥)

+

n−1∑
k=2

1

4n
(2n− 2k)(2k)

[k!(n− k)!]2

k−2∑
β=0

n−k−1∑
α=0

β∑
σ=0

α∑
ρ=0

(
n− k − 1

α+ ρ

)(
α+ ρ

2ρ

)(
k − 1

β + σ + 1

)(
β + σ + 1

2σ + 1

)
1

2ρ+ 2σ + 3

(
2ρ+ 2σ + 4

ρ+ σ + 2

)
1

23

1

α+ β + 1

1

n− α− β − 2
F1(n, α, β, k⊥)× 2

+

n−2∑
k=2

1

4n
(2n− 2k)(2k)

[k!(n− k)!]2

k−2∑
β=0

n−k−2∑
α=0

β∑
σ=0

α∑
ρ=0

(
n− k − 1

α+ ρ+ 1

)(
α+ ρ+ 1

2ρ+ 1

)(
k − 1

β + σ + 1

)(
β + σ + 1

2σ + 1

)
1

2ρ+ 2σ + 3

(
2ρ+ 2σ + 4

ρ+ σ + 2

)
1

22

1

α+ β + 1

1

n− α− β − 2
F1(n, α, β, k⊥) .

(B2)

The auxilliary functions F1(n, k⊥) and F2(n, α, β, k⊥) represent the implementation of Fourier transformations

F1(n, α, β, k⊥) =
1

k⊥Q

∫ 1/m

0

dr (2πr)J0(k⊥r) 1F2

[
α+ β + 1; 1, α+ β + 2;− (Qr)2

4

]
× 1F2

[
n− α− β − 2; 1, n− α− β − 1;− (Qr)2

4

]
(T̃ (r))2 ,

(B3)

F2(n, k⊥) =
1

k⊥Q

∫ 1/m

0

dr (2πr)J0(k⊥r)1F2

[
n− 1; 1, n;− (Qr)2

4

]
×

(
− (Qr)2

4
2F3

[
1, 1; 2, 2, 2;− (Qr)2

4

] [
ln
Q2

m2

]−1

+ 1

)
(T̃ (r))2 .

(B4)

The function T̃ (r) is a rescaled expression of T (r) so that T̃ (r)→ 1 as r → 0,

T̃ (r) =
2(N2

c − 1)

g4NcΓ(r)

{
exp

[
g4Nc

2(N2
c − 1)

Γ(r))

]
− 1

}
. (B5)

The limits of integration for r in the Fourier transformations are chosen to be 0 and 1/m to be consistent with our
approximation 0 . mr � 1. The prefactor 1/k in the expressions of F1(n, α, β, k⊥) and F2(n, k⊥) originates from
the dispersion relation in Eq. (8) while the prefactor 1/Q is due to the additional 1/τ geometrical factor in Eq. (7)
when matching the expansions in Qτ . As explained in [35], the binomial coefficients in the expression of C2(n, k⊥)
come from distributing multiple covariant derivatives Dx to either the A1(x⊥) field or A2(x⊥) field in evaluating the
following expressions, (of course, the distributions are also made for the covariant derivative Dy to either the A1(y⊥)
field or the A2(y⊥) field.)〈

[Dj
x, [D

{2k−2}
x , [Am1 (x⊥), An2 (x⊥)]]][Dj

y, [D
{2n−2k−2}
y , [Ap1(y⊥), Aq2(y⊥)]]]

〉
,〈

[D{2k}x , [Am1 (x⊥), An2 (x⊥)]][D{2n−2k}
y , [Ap1(y⊥), Aq2(y⊥)]]

〉
.

(B6)

To obtain the coefficient function C̃2(n, k⊥), we replace the factors 1/(2ρ + 2σ + 1) and 1/(2ρ + 2σ + 3) inside the
nested summations in the expression of C2(n, k⊥) with the pure number 1. These two factors inside the nested
summations come from spatial index contractions with εmnεpq for the B0 field while they give a pure number 1 if
contractions are made with δmnδpq for E0 field.

The coefficient functions D1(n, k⊥) and D2(n, k⊥) are

D1(n, k⊥) =

n∑
k=0

1

4n
(n− k + 1)(k + 1)

(n− k)!(n− k + 1)!k!(k + 1)!

1

n
G3(n, k⊥) , (B7)
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D2(n, k⊥) =

n∑
k=0

1

4n
(n− k + 1)(k + 1)

(n− k)!(n− k + 1)!k!(k + 1)!

[
n−k∑
α=0

k∑
β=0

α∑
ρ=0

β∑
σ=0

(
n− k
α+ ρ

)(
α+ ρ

2ρ

)
(

k

β + σ

)(
β + σ

2σ

)(
2ρ+ 2σ + 2

ρ+ σ + 1

)
1

22

(
1

n− α− β

)(
1

α+ β

)
G1(n, α, β, k⊥)

+

n−k−1∑
α=0

k−1∑
β=0

α∑
ρ=0

β∑
σ=0

(
n− k

α+ ρ+ 1

)(
α+ ρ+ 1

2ρ+ 1

)(
k

β + σ + 1

)(
β + σ + 1

2σ + 1

)
(

2ρ+ 2σ + 4

ρ+ σ + 2

)
1

22

(
1

n− α− β − 1

)(
1

α+ β + 1

)
G2(n, α, β, k⊥)

]
.

(B8)

The functions G0(k⊥), G1(n, α, β, k⊥), G2(n, α, β, k⊥) and G3(n, k⊥) also represent the implementation of the Fourier
transformations,

G0(k⊥) =
1

k⊥Q

∫ 1/m

0

dr (2πr)J0(k⊥r)

(
− (Qr)2

4
2F3

[
1, 1; 2, 2, 2;− (Qr)2

4

] [
ln
Q2

m2

]−1

+ 1

)2

[T̃ (r)]2 , (B9)

G1(n, α, β, k⊥) =
1

k⊥Q

∫ 1/m

0

dr (2πr)J0(k⊥r) 1F2

[
α+ β; 1, α+ β + 1;− (Qr)2

4

]
× 1F2

[
n− α− β; 1, n− α− β + 1;− (Qr)2

4

]
[T̃ (r)]2 ,

(B10)

G2(n, α, β, k⊥) =
1

k⊥Q

∫ 1/m

0

dr (2πr)J0(k⊥r) 1F2

[
α+ β + 1; 1, α+ β + 2;− (Qr)2

4

]
× 1F2

[
n− α− β − 1; 1, n− α− β;− (Qr)2

4

]
[T̃ (r)]2 ,

(B11)

G3(n, k⊥) =
1

k⊥Q

∫ 1/m

0

dr (2πr)J0(k⊥r) 1F2

[
n; 1, n+ 1;− (Qr)2

4

]
×

(
− (Qr)2

4
2F3

[
1, 1; 2, 2, 2;− (Qr)2

4

] [
ln
Q2

m2

]−1

+ 1

)
[T̃ (r)]2 .

(B12)

To obtain D̃2(n, k⊥) from D2(n, k⊥), one just needs to insert the factor 1/(2ρ+2σ+1) into the first nested summation
of D2(n, k⊥) and the factor 1/(2ρ+ 2σ + 3) into the second nested summation of D2(n, k⊥).
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