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Background: The interacting boson model has been used extensively to calculate the matrix ele-
ments governing neutrinoless double-beta decay. Studies within other models—the shell model, the
quasiparticle random-phase approximation, and nuclear energy-density functional theory—indicate
that a good description of neutron-proton pairing is essential for accurate calculations of those ma-
trix elements, even though the isotopes used in experiment have significantly more neutrons than
protons. The usual interacting boson model is based only on like-particle pairs, however, and the
extent to which it captures neutron-proton pairing is not clear.
Purpose: To determine whether neutron-proton pairing should be explicitly included as neutron-
proton bosons in interacting-boson-model calculations of neutrinoless double-beta decay matrix
elements. In this initial work we restrict ourselves to nuclei in the lower half of the pf shell, where
exact shell model calculations are possible.
Method: An isospin-invariant version of the nucleon-pair shell model is applied to carry out shell-
model calculations in a large space and in a collective subspace, and to define effective operators
in the latter. A democratic mapping is then used to define corresponding boson operators for the
interacting boson model, with and without an isoscalar neutron-proton pair boson.
Results: Interacting-boson-model calculations with and without the isoscalar boson are carried out
for nuclei near the beginning of the pf shell, with a realistic shell-model Hamiltonian and neutrinoless
double-beta-decay operator as the starting point. Energy spectra and double-beta matrix elements
are compared to those obtained in the underlying shell model.
Conclusions: The isoscalar boson is not important for energy spectra but improves the results
for the double-beta matrix elements. To be useful at the level of precision we need, the mapping
procedure must be further developed to better determine the dependence of the boson Hamiltonian
and decay operator on particle number and isospin, and extended to heavier nuclei. But the benefits
provided by the isoscalar boson in the nuclei examined here suggest that through an appropriate
combination of mappings and fitting, it would make interacting-boson-model matrix elements more
accurate in the heavier nuclei used in experiments.

PACS numbers: 21.60.Cs, 21.60.Ev,21.30.Fe

I. INTRODUCTION

Experiments to measure the rate of neutrinoless
double-beta (0νββ) decay, in which two neutrons decay
to two protons and two electrons, are growing in number
and expense [1–4]. A nonzero rate would imply that neu-
trinos are Majorana particles [5] and provide information
about neutrino masses [6, 7], and possibly about exotic
new particles [8]. To efficiently plan and interpret the
experiments, however, one must know with reasonable
accuracy the nuclear matrix elements that govern the
decay. The matrix elements cannot be measured, and so
calculating them with controlled precision has become an
important theoretical goal.

A variety of many-body methods have been loosed on
the matrix element problem [9]. Of these, most are em-
bedded in phenomenological models that describe energy
levels and other decay processes well in heavy nuclei. The
interacting boson model (IBM) [10], in which the funda-
mental constituents are spin-zero and spin-two bosons
that stand both for like-nucleon pairs and the collective
quadrupole degree of freedom, is a good example [11–

13]. The version called IBM-2 [14], in which neutron and
proton bosons are distinguishable, successfully describes
spectra and electromagnetic transitions [10] plus single-β
decay [15] in a wide variety of nuclei.

Because the IBM is equivalent to the Bohr-Mottelson
collective model in certain limits, one might expect
the important physics in the IBM to mirror that in
approaches such as nuclear energy-density functional
(EDF) theory, in which quadrupole degrees of freedom
are emphasized. Similarly, because the IBM’s bosons are
related to collective shell-model excitations, the impor-
tant physics in the IBM and the shell model should have
something in common. In both EDF-based methods—in
particular, the generator coordinate method (GCM)—
and in the shell model, 0νββ matrix elements tend to
be too large unless care is taken with the J = 1, T = 0
(isoscalar) pairing interaction. That component of the
nuclear Hamiltonian has been known to be important
from QRPA calculations [16, 17] for nearly 30 years.
More recently, Ref. [18] showed that the inclusion of the
isoscalar-pairing amplitude as a generator coordinate re-
duces matrix elements significantly, and Ref. [19] showed
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that the isoscalar pairing in the Hamiltonian does the
same in the shell model. Here we investigate whether it
plays a similar role in the IBM. More explicitly, we ask
whether we need to add a spin-1 isoscalar boson to the
model to avoid over-estimating 0νββ matrix elements,
and try to provide an answer.

To address the question, one would like to modify the
IBM 0νββ calculations of Refs. [11–13] by adding the
isoscalar spin-1 boson, which we will label p. But be-
cause the IBM Hamiltonian is phenomenological, we do
not know a priori how to add to and alter its Hamiltonian
so as to correctly include the physics of the new boson.
One might examine single-β decay and other processes in
which the boson could play a significant role in order to
pin down new terms in the Hamiltonian, but that task
is beyond what we are able to do here. Instead, we try
to derive the boson Hamiltonian and the corresponding
decay operator, not in nuclei that actually undergo 0νββ
decay, but rather in light pf -shell nuclei for which exact
shell model results are available, both for spectra and for
0νββ matrix elements [19]. Since the IBM is supposed
to represent collective dynamics in a major shell, we con-
struct a mapping of operators from the pf shell to a set of
bosons, including not only the usual bosons of the IBM-2
but “neutron-proton” bosons as well. Ref. [11] developed
a mapping to obtain a boson 0νββ operator; here, start-
ing from square one, we map the Hamiltonian as well.
Though this procedure will not tell us how much a p bo-
son would change the realistic IBM 0νββ predictions, it
will give us a good idea of the extent to which a p boson
is required to faithfully reflect shell-model results.

It is not obvious that the extra boson will improve
the description of 0νββ decay. Certainly it will cap-
ture some of the isoscalar-pair correlations that elude the
IBM-2. But because the product of two isoscalar J = 1
pair creation operators can be rewritten as a superpo-
sition of products of proton pair creation operators and
neutron pair creation operators, some of the physics of
isoscalar pairing is probably already in the IBM-2. Fur-
thermore, the use of too many boson types can cause a

model to degrade for a related reason: an over-counting,
roughly speaking, of the independent collective degrees of
freedom. Thus, though an independent isoscalar-pairing
coordinate is clearly important in GCM calculations of
0νββ matrix elements, an isoscalar boson may or may
not improve the corresponding IBM calculations.

We carry out the mapping from shell model to IBM
in two steps, the first of which relies on the nucleon-
pair shell model (NPSM) [20–22] to define a collective
subspace. We briefly review the NPSM in Secs. II and III,
with the main purpose of introducing notation for an
isospin-invariant formulation of the model [23]; with a
collective subspace specified by the NPSM, we show in
Sec. IV that we can use the method of Suzuki and Lee [24]
to construct effective operators for the subspace. The
second step, which we describe in Sec. V, involves the
mapping of the (effective) Hamiltonian and the 0νββ-
decay operator from the fermion to boson spaces. In
Sec. VI we apply the formalism to the energy spectra
of and 0νββ-transition strengths between nuclei in the
lower part of the pf shell, taking into account correlations
in the entire shell. Finally, in Sec. VII, we present our
conclusions.

II. THE NUCLEON-PAIR SHELL MODEL

We introduce the following notation for pairs of
fermions:

P †αΓMΓ
≡ (a†γ1

× a†γ2
)
(Γ)
MΓ

, (1)

where γi denotes the angular momentum ji and isospin
ti (which is always 1

2 ) of a single nucleon, Γ stands for
the coupled angular momentum J and isospin T (which
can be 0 or 1) of the nucleons with γ1 and γ2 (with α
standing for γ1, γ2), andMΓ represents the corresponding
projections (i.e., MΓ = MJMT ). We write an arbitrary
n-pair state of the NPSM as

|α1Γ1 . . . αnΓnΛ2 . . .Λn〉 ≡

(
· · ·
((

P †α1Γ1
× P †α2Γ2

)(Λ2)

× P †α3Γ3

)(Λ3)

× · · · × P †αnΓn

)(Λn)

|O〉 , (2)

or,

|Pr〉 ≡ |α1Γ1 . . . αnΓnΛ2 . . .Λn〉 , r = 1, . . . ,Θ , (3)

for short. The state |O〉 in Eq. (2) is the bare fermion
vacuum, and the index r in Eq. (3) stands for the set of
quantum numbers {α1Γ1 . . . αnΓnΛ2 . . .Λn}, which spec-
ifies the character of the n pairs αqΓq, the set Λq of in-
termediate angular momenta and isospins, and Λn, the
state’s total angular momentum and isospin.

In general the basis in Eq. (2) is non-orthonormal and

overcomplete. A calculation in this basis therefore re-
quires the diagonalization of the overlap matrix 〈Pr|Ps〉,
the elements of which can be computed with a recur-
rence relation presented in Ref. [21] and generalized to
include isospin in Ref. [23]. Here we need matrix ele-
ments between one- and two-pair states; these are trivial
for n = 1 and summarized in Appendix A for n = 2.
Vanishing eigenvalues of the matrix 〈Pr|Ps〉 indicate the
overcompleteness of the pair basis. In a subspace of Ω
pair states in which all eigenvalues of the overlap matrix
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are non-zero, one can construct an orthonormal set given
by:

|P̄r〉 =

√
1

Or

Ω∑
s=1

Crs |Ps〉 ≡
Ω∑
s=1

C̄rs |Ps〉 , r = 1, . . . ,Ω ,

(4)
whereOr is the rth eigenvalue of the Ω×Ω overlap matrix:

Ors ≡ 〈Pr|Ps〉 , r, s = 1, . . . ,Ω , (5)

and the coefficients {Crs, s = 1, . . . ,Ω} specify the corre-
sponding eigenvector. If Ω is the dimension of the original
shell-model space H, which we call the “complete” shell-
model space, then the vectors {|P̄r〉 , r = 1, . . . ,Ω} form
a basis of H.

It is important to distinguish between the total number
Θ of possible n-pair states in Eq. (3) and the number Ω ≤
Θ of linearly independent states among them. To apply
the NPSM in a collective subspace, one needs to expand
an arbitrary n-pair state in terms of the orthogonal basis
states,

|Pr〉 =

Ω∑
s=1

Ars |P̄s〉 , r = 1, . . . ,Θ , (6)

where the coefficients Ars are given by

Ars ≡ 〈Pr|P̄s〉 =

Ω∑
t=1

C̄st 〈Pr|Pt〉 , (7)

with r = 1, . . . ,Θ and s = 1, . . . ,Ω. We assume here
and henceforth that the matrix elements are real, that
is, that 〈Pr|Ps〉 = 〈Ps|Pr〉 and 〈P̄r|Ps〉 = 〈Ps|P̄r〉.

An arbitrary shell-model operator T̂ f (where f stands
for “fermion”) between two sets of orthogonal basis
states,

|P̄ ′r′〉 =

Ω′∑
s′=1

C̄ ′r′s′ |P ′s′〉 , r′ = 1, . . . ,Ω′ ,

|P ′′r′′〉 =

Ω′′∑
s′′=1

C̄ ′′r′′s′′ |P ′′s′′〉 , r′′ = 1, . . . ,Ω′′ ,

(8)

has the matrix elements

〈P̄ ′r′ |T̂ f |P̄ ′′r′′〉 =

Ω′∑
s′=1

Ω′′∑
s′′=1

C̄ ′r′s′C̄
′′
r′′s′′ 〈P ′s′ |T̂ f |P ′′s′′〉

= (C̄CC
′ × TTT f × C̄CC ′′T )r′r′′ .

(9)

Here MMMT is the transposed matrix of MMM and C̄CC
′
, TTT f , and

C̄CC
′′

are the following matrices:

C̄CC
′

: {C̄ ′r′s′ , r′ = 1, . . . ,Ω′, s′ = 1, . . . ,Ω′} ,
TTT f : {〈P ′s′ |T̂ f |P ′′s′′〉 , s′ = 1, . . . ,Ω′, s′′ = 1, . . . ,Ω′′} ,

C̄CC
′′

: {C̄ ′′r′′s′′ , r′′ = 1, . . . ,Ω′′, s′′ = 1, . . . ,Ω′′} .
(10)

For the Hamiltonian operator, T̂ f = Ĥ f , the dimen-
sions in bra and ket of Eq. (9) are the same, Ω′ = Ω′′ ≡ Ω,
and the diagonalization of the Ω×Ω Hamiltonian matrix
leads to the eigenstates

|Ēt〉 =

Ω∑
r=1

Etr |P̄r〉 , t = 1, . . . ,Ω , (11)

where the coefficients {Etr, r = 1, . . . ,Ω} are the compo-
nents of the eigenvector associated with the eigenvalue
Et. If T̂ f is another operator, e.g. a transition operator,
its action on eigenstates of Ĥ f in the complete Hilbert
space H is given by

〈Ē′t′ |T̂ f |Ē′′t′′〉 =

Ω′∑
r′=1

Ω′′∑
r′′=1

E′t′r′E
′′
t′′r′′ 〈P̄ ′r′ |T̂ f |P̄ ′′r′′〉

= (EEE′ × C̄CC ′ × TTT f × C̄CC ′′T ×EEE′′T )t′t′′ ,

(12)

with t′ = 1, . . . ,Ω′ and t′′ = 1, . . . ,Ω′′.
All this shows us that it is possible to carry out stan-

dard shell-model calculations in the NPSM, albeit in a
complicated way. The advantage of the NPSM is that it
allows a truncation to a shell-model subspace constructed
in terms of collective pairs.

III. COLLECTIVE SUBSPACE

A collective fermion pair is a superposition of pairs
built from orbits with different γ1 and γ2, all coupled to
the same Γ. It can be specified by its coefficients αΓ

γ1γ2
:

B†αΓMΓ
≡
∑
γ1γ2

αΓ
γ1γ2

(a†γ1
× a†γ2

)
(Γ)
MΓ

, (13)

where the subscript α is to emphasize the dependence of
the pair on its coefficients. After selecting a particular set
of collective pairs {BΓ}, we can construct NPSM states
from them, viz.

|α1Γ1 . . . αnΓnΛ2 . . .Λn〉 ≡

(
· · ·
((

B†α1Γ1
×B†α2Γ2

)(Λ2)

×B†α3Γ3

)(Λ3)

× · · · ×B†αnΓn

)(Λn)

|O〉 . (14)

Although the formalism does not require it, we shall
henceforth consider only one collective pair for a given

Γ (i.e., J and T ). This step enables us to dispense
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with the indices αq, reducing the necessary labels to
{Γ1 . . .ΓnΛ2 . . .Λn} and leading to the abbreviation

|Bi〉 ≡ |Γ1 . . .ΓnΛ2 . . .Λn〉 , i = 1, . . . , ω , (15)

where ω is the number of couplings {Γ1 . . .ΓnΛ2 . . .Λn}.
The collective NPSM states in Eq. (14) can be ex-

pressed as linear combinations of the non-collective ones
in Eq. (2):

|Bi〉 =

Θ∑
r=1

air |Pr〉 =

Θ∑
r=1

Ω∑
s=1

airArs |P̄s〉

=

Ω∑
s=1

(aaa×AAA)is |P̄s〉 , i = 1, . . . , ω ,

(16)

with coefficients air that are functions of αΓ
γ1γ2

. Results
analogous to those in Sec. II can now be obtained by
diagonalizing the collective overlap matrix

oij ≡ 〈Bi|Bj〉 =

Ω∑
r=1

(aaa×AAA)ir(aaa×AAA)jr

= (aaa×AAA×AAAT × aaaT )ij , i, j = 1, . . . , ω .

(17)

The number of linearly independent vectors |Bi〉 is given
by the number of non-zero eigenvalues of the matrix oij .
We assume here that all eigenvalues of the matrix (17)
are non-zero, which will be the case for any reasonable
choice of the collective subspace. As we have noted, the
NPSM is interesting because when one restricts oneself
to a set of collective pairs, the resulting space has a much
lower dimension than does H itself, i.e., ω � Ω.

To carry out a shell-model calculation in the collec-
tive subspace, we employ notation that is analogous to
what we used for the full space H. Thus, we work with
orthonormal states

|B̄i〉 =

√
1

oi

ω∑
j=1

cij |Bj〉 ≡
ω∑
j=1

c̄ij |Bj〉

=

Ω∑
r=1

(c̄cc× aaa×AAA)ir |P̄r〉 ≡
Ω∑
r=1

bir |P̄r〉 ,

(18)

where oi is the ith eigenvalue of the overlap matrix (i =
1, . . . , ω) and the coefficients {cij , j = 1, . . . , ω} make up
the corresponding eigenvector. A shell-model operator
T̂ f has the matrix elements

〈B̄′i′ |T̂ f |B̄′′i′′〉 =

Ω′∑
r′=1

Ω′′∑
r′′=1

bi′r′bi′′r′′ 〈P̄ ′r′ |T̂ f |P̄ ′′r′′〉

= (bbb′ × C̄CC ′ × TTT f × C̄CC ′′T × bbb′′T )i′i′′ ,

(19)

with i′ = 1, . . . , ω′ and i′′ = 1, . . . , ω′′. For the Hamilto-
nian operator, T̂ f = Ĥ f , the matrix (19) has dimension
ω × ω and its diagonalization leads to the eigenstates

|ēk〉 =

ω∑
i=1

eki |B̄i〉 =

Ω∑
r=1

(eee× bbb)kr |P̄r〉 , (20)

with k = 1, . . . , ω and with the coefficients {eki, i =
1, . . . , ω} given by the components of the eigenvector as-

sociated with the eigenvalue ek. If T̂ f is some other op-
erator, its matrix elements in the basis of eigenstates of
Ĥ f are given by

〈ē′k′ |T̂ f |ē′′k′′〉 = (eee′×bbb′× C̄CC ′×TTT f × C̄CC ′′T ×bbb′′T ×eee′′T )k′k′′ ,
(21)

with k′ = 1, . . . , ω′ and k′′ = 1, . . . , ω′′.

IV. EFFECTIVE SHELL-MODEL OPERATORS
IN A COLLECTIVE SUBSPACE

The eigenspectrum of Ĥ f and the matrix elements of
transition operators T̂ f in the restricted Hilbert space
differ from the corresponding eigenspectrum and matrix
elements of the operators in the complete Hilbert space
H. We need an effective Hamiltonian Ĥ f

eff and, more

generally, effective operators T̂ f
eff in the restricted Hilbert

space that preserve the original eigenvalues and matrix
elements. We begin their construction by letting HP be
the restricted Hilbert space and HQ the excluded Hilbert

space, with H = HP ∪ HQ. The operators P̂ and Q̂

project onto the corresponding spaces, so that P̂H =
HP and Q̂H = HQ. The eigenstates of Ĥ f in H are

given by {|Ēt〉 , t = 1, . . . ,Ω} and those of Ĥ f in HP by
{|ēk〉 , k = 1, . . . , ω}. For each eigenstate |ēk〉 we identify
a corresponding eigenstate |Ēk〉, usually by requiring a
maximum overlap

〈Ēk|ēk〉 =

Ω∑
r=1

Etr(eee× bbb)kr = (EEE × bbbT × eeeT )tk . (22)

This procedure defines a set of ω eigenstates {|Ētk〉 , k =

1, . . . , ω} and an associated ω × Ω matrix ẼEE with the
elements

ẼEE : {Ẽkr ≡ Etkr, k = 1, . . . , ω, r = 1, . . . ,Ω} . (23)

For each of the eigenstates |Ētk〉 we define its component
in HP ,

|ek〉 ≡ P̂ |Ētk〉 , k = 1, . . . , ω , (24)

and assume that the states {|ek〉 , k = 1, . . . , ω} are lin-
early independent and therefore span the entire restricted
Hilbert space HP .

We use the method of Suzuki and Lee [24] to deter-
mine effective operators in HP . The method employs an
operator η̂ that maps states in HP to states in HQ such
that

η̂ |ek〉 = Q̂ |Ētk〉 , k = 1, . . . , ω . (25)

Since η̂ = Q̂η̂P̂ , the operator η̂ satisfies the relations

P̂ η̂ = η̂Q̂ = 0 , η̂P̂ = Q̂η̂ = η̂ , η̂2 = 0 . (26)
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It follows that

|Ētk〉 = (P̂+Q̂) |Ētk〉 = |ek〉+η̂ |ek〉 = (Î+η̂) |ek〉 , (27)

and, inversely, that

|ek〉 = (Î − η̂)(Î + η̂) |ek〉 = (Î − η̂) |Ētk〉 . (28)

The transformed (non-hermitian) Hamiltonian Ĥf ≡ (Î−
η̂)Ĥ f(Î + η̂) satisfies the relation

Ĥf |ek〉 = (Î − η̂)Ĥ f |Ētk〉 = Etk(Î − η̂) |Ētk〉 = Etk |ek〉 ,
(29)

which shows that the states {|ek〉 , k = 1, . . . , ω} are

eigenstates of Ĥf , with eigenvalues {Etk , k = 1, . . . , ω}.
A matrix element of η̂ is nonzero only if the bra is in HQ

and the ket in HP . The operator is therefore determined
by the matrix elements

〈P̄r|η̂|B̄i〉 , r = 1, . . . ,Ω , i = 1, . . . , ω , (30)

where |P̄r〉 ∈ H and |B̄i〉 ∈ HP . To calculate the ma-
trix elements in Eq. (30), we first note that although
the states {|ek〉 , k = 1, . . . , ω} span the entire Hilbert
space HP , they do not form an orthonormal basis. A bi-
orthogonal basis {〈ẽk| , k = 1, . . . , ω} can be defined such
that

〈ẽk|ek′〉 = δkk′ , (31)

which implies that the operator P̂ , which is nothing but
the identity operator on HP , can be written as

P̂ =

ω∑
k=1

|ek〉 〈ẽk| . (32)

Thus we have

〈P̄r|η̂|B̄i〉 =

ω∑
k=1

〈P̄r|η̂|ek〉 〈ẽk|B̄i〉 . (33)

The first matrix element in this sum can be written as

〈P̄r|η̂|ek〉 = 〈P̄r|Ētk〉 −
ω∑
i=1

〈P̄r|B̄i〉 〈B̄i|Ētk〉 , (34)

where we have used the relation P̂ =
∑
|B̄i〉 〈B̄i|. With

the help of Eqs. (11) and (18) we deduce the relations

〈P̄r|Ētk〉 = Ẽkr , 〈P̄r|B̄i〉 = bir , 〈B̄i|Ētk〉 = (bbb× ẼEE
T

)ik ,
(35)

which lead to the following expression for the first matrix
element in the sum in Eq. (33):

〈P̄r|η̂|ek〉 = Ẽkr − (ẼEE × bbbT × bbb)kr . (36)

To determine the second matrix element in the sum in
Eq. (33), we note that

〈B̄i|B̄j〉 =

ω∑
k=1

〈B̄i|ek〉 〈ẽk|B̄j〉 = δij , (37)

which implies that the matrix 〈ẽk|B̄i〉 is the inverse of
the matrix with the elements

dik ≡ 〈B̄i|ek〉 = 〈B̄i|P̂ |Ētk〉 = (bbb× ẼEE
T

)ik . (38)

We conclude that the matrix elements of the operator η̂
are

ηri ≡ 〈P̄r|η̂|B̄i〉 =
(

(IIIΩ − bbbT × bbb)× ẼEE
T
× ddd−1

)
ri
, (39)

with r = 1, . . . ,Ω and i = 1, . . . , ω, and IIIΩ given by the
Ω × Ω identity matrix. The matrix elements ηri can be
defined entirely in terms of the Ω2 NPSM overlap matrix
elements in Eq. (5).

With an expression for the matrix elements of η̂, we
are now finally in a position to define effective operators
for the collective subspace. To any operator T̂ f , which
acts on states in a Hilbert space H′′ to give states in a
Hilbert space H′, there corresponds an effective, hermi-
tian operator [25]

T̂ f
eff = P̂ ′T̂ ′−1/2

η (Î ′ + η̂′†)T̂ f(Î ′′ + η̂′′)T̂ ′′−1/2
η P̂ ′′ , (40)

where

T̂ ′η ≡ (Î ′ + η̂′†η̂′) , T̂ ′′η ≡ (Î ′′ + η̂′′†η̂′′) . (41)

The operator T̂ f
eff acts on states in the restricted Hilbert

space H′′P to give states in the restricted Hilbert space
H′P . Its matrix elements involve sums over the inverse
square root of the matrix

〈B̄i|T̂η|B̄j〉 = (IIIω + ηηηT × ηηη)ij , i, j = 1, . . . , ω . (42)

Since η̂ defines a positive-definite metric, the square root
of the matrix in Eq. (42) can be taken through diagonal-
ization. And the matrix elements of the other part of the
operator in Eq. (40) are given by

〈B̄′j′ |(Î ′ + η̂′†)T̂ f(Î ′′ + η̂′′)|B̄′′j′′〉

= ((bbb′ + ηηη′T )× C̄CC ′ × TTT f × C̄CC ′′T × (bbb′′T + ηηη′′))j′j′′ ,
(43)

with j′ = 1, . . . , ω′ and j′′ = 1, . . . , ω′′.
Equation (40) gives the effective version of any opera-

tor. For the Hamiltonian operator an alternative expres-
sions exists [25]:

Ĥ f
eff ≡ P̂ ′T̂ ′+1/2

η Ĥ f(Î ′′ + η̂′′)T̂ ′′+1/2
η P̂ ′′ , (44)

which involves the matrix elements

〈B̄′j′ |Ĥ f(Î ′′ + η̂′′)|B̄′′j′′〉

= (bbb′ × C̄CC ′ ×HHH f × C̄CC ′′T × (bbb′′T + ηηη′′))j′j′′ ,
(45)

with j′ = 1, . . . , ω′ and j′′ = 1, . . . , ω′′.

V. MAPPING TO BOSON OPERATORS

To study the IBM, we need to map the collective
fermion pairs onto bosons. Given a choice of collec-
tive pairs {BΓ} we can introduce a corresponding set of
bosons {bΓ}. The boson analog of the state in Eq. (14)
is
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|bi〉 ≡

(
· · ·
((

b†Γ1
× b†Γ2

)(Λ2)

× b†Γ3

)(Λ3)

× · · · × b†Γn

)(Λn)

|o〉 , i = 1, . . . , ω , (46)

where the |o〉 is the boson vacuum and the index i is
again short-hand for the labels {Γ1 . . .ΓnΛ2 . . .Λn}. In
general, the boson states in Eq. (46) do not form an or-
thonormal basis, leading to complications described in
Ref. [26]. For a mapping that is limited to operators
with at most two-body terms between the bosons, how-
ever, only boson states with n = 1 and n = 2 are needed,
in which case the overlap matrix 〈bi|bj〉 is diagonal and
no such complications arise. The boson states that cor-
respond to the orthogonalized fermion-pair states are ob-
tained from the unitary transformation

|b̄i〉 =

ω∑
j=1

cij |bj〉 , i = 1, . . . , ω , (47)

with the coefficients cij taken from the orthogonalization
process in the collective fermion subspace [see Eq. (18)].

In the standard method for carrying out the boson
mapping, introduced in the IBM by Otsuka, Arima, and
Iachello (OAI) [27], one uses the Gram-Schmidt proce-
dure to orthogonalize the fermion basis (not the boson
basis). The procedure proposed in Eq. (47), known as
democratic mapping [28], is different from OAI because
it relies on the diagonalization of the overlap matrix for
the non-orthogonal fermion basis. It is thus similar to
Löwdin’s symmetric orthogonalization procedure [29], in-
troduced in quantum chemistry, which yields the orthog-
onal basis that is “closest” to the original non-orthogonal
one [30, 31]. The democratic mapping has the additional
advantage that it imposes no Graham-Schmidt-like hier-
archy on the basis states, and as a result is more useful
for models with several kinds of bosons, such as those
to be considered here, for which an ordering would be
arbitrary.

In the democratic mapping the boson image T̂ b of a
fermion operator, which can be T̂ f or its effective version
T̂ f

eff , is determined by the relation

〈b̄′i′ |T̂ b|b̄′′i′′〉
.
= 〈B̄′i′ |T̂ f |B̄′′i′′〉 , i′,′′ = 1, . . . , ω′,′′ , (48)

where the symbol
.
= indicates that the equality holds by

virtue of the mapping. In terms of the original basis
states |bi〉, this relation leads to the boson matrix ele-
ments

〈b′i′ |T̂ b|b′′i′′〉
.
=

ω′∑
j′=1

ω′′∑
j′′=1

c′j′i′c
′′
j′′i′′ 〈B̄′j′ |T̂ f |B̄′′j′′〉

= (ccc′T × bbb′ × C̄CC ′ × TTT f × C̄CC ′′T × bbb′′T × ccc′′)i′i′′ ,

(49)

with i′ = 1, . . . , ω′ and i′′ = 1, . . . , ω′′.
In the most general mapping several technical issues

arise, including the elimination of spurious boson states

and ambiguities for n > 2, which are described in
Ref. [26]. No such difficulties exist for a mapping to a
collective subspace with no more than two-body opera-
tors, n ≤ 2. Even so, one must carefully define boson
operators order by order. For example, for the Hamilto-
nian operator, T̂ = Ĥ, one determines the single-boson
energy from

εΓ ≡ 〈bΓ|Ĥb|bΓ〉 = 〈b̄Γ|Ĥb|b̄Γ〉
.
= 〈B̄Γ|Ĥ f |B̄Γ〉 , (50)

and subsequently the two-body part of the boson Hamil-
tonian from

υΛ
Γ′

1Γ′
2Γ′′

1 Γ′′
2
≡ 〈bΓ′

1
bΓ′

2
; Λ|Ĥb

2 |bΓ′′
1
bΓ′′

2
; Λ〉

= 〈bΓ′
1
bΓ′

2
; Λ|Ĥb|bΓ′′

1
bΓ′′

2
; Λ〉 − (εΓ′

1
+ εΓ′

2
)δΓ′

1Γ′′
1
δΓ′

2Γ′′
2
,

(51)

where we have assumed that the two-boson states are
normalized and that the labels Γ′i and Γ′′i appear in some
standard order (i.e., Γ′1 ≤ Γ′2 and Γ′′1 ≤ Γ′′2). Similar rea-
soning leads to somewhat more complicated expressions
for the 0νββ-decay operator because it is non-scalar in
isospin. The order-by-order mapping of non-scalar oper-
ators is explained in Appendix B.

VI. APPLICATION TO 0νββ DECAY IN THE pf
SHELL

To test the role of an isoscalar-pair boson in the IBM,
we now apply the formalism presented above to nuclei
in the lower part of the pf shell. We will map both the
Hamiltonian and the 0νββ operator from the pf shell to
a system of bosons.

Like Ref. [19], we use two fermion Hamiltonians: the
modified Kuo-Brown Hamiltonian KB3G [32], which is
used throughout the pf shell [33], and a multi-separable
collective approximation to it [34]. The collective Hamil-
tonian contains a monopole term, isovector pairing,
isoscalar paring, a quadrupole-quadrupole interaction,
and a particle-hole spin-isospin interaction. Its virtue
is that it allows us to selectively remove particular pieces
of the Hamiltonian, for example isoscalar pairing, which
has been shown to be important [19] and which we are
interested in investigating within the IBM. The detailed
results we report now, however, are produced by KB3G.
We will turn to the collective interaction towards the end
of this section.

We now construct two boson models designed to test
the ability of the IBM, with and without an explicit
isoscalar-pair degree of freedom, to capture the physics
important to 0νββ decay. The first consists of isovector
bosons with angular momentum ` = 0 (s) and ` = 2
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TABLE I. Two-boson interaction matrix elements 〈JT |Ĥb
2 |JT 〉 (in MeV), mapped from the KB3G interaction (IBMb, top),

from the effective fermion interaction (IBMe, middle), and from the 1f7/2 interaction of Ref. [37] (bottom).

J = 0 J = 1 J = 2 J = 3 J = 4

T 〈s2|V̂ |s2〉 〈d2|V̂ |d2〉 〈s2|V̂ |d2〉 〈d2|V̂ |d2〉 〈sd|V̂ |sd〉 〈d2|V̂ |d2〉 〈sd|V̂ |d2〉 〈d2|V̂ |d2〉 〈d2|V̂ |d2〉

0
−4.440
−6.379
−7.200

−4.258
−5.013
−6.650

−3.402
−3.489
−2.090

—
−6.350
−8.263
−8.290

−4.916
−7.873
−6.600

0.661
−0.563

0.960
—

−5.116
−8.642
−8.500

1 — — —
−3.029
−4.861
−5.620

−2.284
−4.224
−4.460

— —
−3.106
−4.831
−5.280

—

2
2.985
1.438
0.210

3.229
1.699
∞

3.490
2.072

0
—

0.896
0.473
0.210

0.899
0.297
0.710

−0.822
−0.520

0
—

0.719
−0.282
−0.380

(d), and with isospin t = 1. This set corresponds to the
isospin-invariant version of the IBM known as IBM-3 [35].
In the second model the set is enlarged by adding an
isoscalar (p) boson with ` = 1 and t = 0 (and positive
parity). The result is not the full SU(4)-invariant ver-
sion of the interacting boson model known as IBM-4 [36],
but it incorporates that model’s most important isoscalar
correlations and therefore is situated somewhere between
IBM-3 and IBM-4. We refer generically to the boson
models here simply as the IBM. To refer specifically to
the versions without or with the isoscalar boson, we use
the terms IBM and p-IBM.

A. Mapping of the Hamiltonian

We use the order-by-order mapping described earlier
to obtain the boson Hamiltonian from two- and four-
nucleon systems, that is, from the A = 42 and A = 44
nuclei. The first yields the boson energies, which turn
out to be εs = −2.692, εd = −1.322, and εp = −2.350, in
MeV. It also determines the structure coefficients αΓ

γ1γ2

of the collective S, D, and P pairs. In principle these
may vary with mass number A to reflect the changing
structure of the collective pairs. Here, however, we de-
rive (boson) operators completely from the two- and four-
nucleon systems. A strategy to account for the variation
of the boson Hamiltonian with A is discussed below. Ac-
tually, in the two-nucleon calculation there is no need to
introduce effective two-body operators since the eigenval-
ues and eigenvectors in the restricted Hilbert space HP
do not differ from those in the complete Hilbert space H.

We thus derive the two-body interaction matrix ele-
ments between the bosons from an analysis of the four-
nucleon system. The first step here is to diagonalize the
shell-model Hamiltonian in a complete two-pair basis H,
following the procedure outlined in Sec. II to overcome
the non-orthogonality of this basis. The resulting eigen-
spectrum should coincide with the one obtained with any
standard shell-model code, allowing a rigorous check of
the formalism and its implementation. Next, we diag-
onalize the Hamiltonian in the restricted Hilbert space

HP , which is the collective subspace defined in terms of
the pairs derived from the two-nucleon system. We will
report two different types of result: (i) one with the origi-
nal “bare” shell-model Hamiltonian, and (ii) one with an
effective Hamiltonian, defined by the procedure outlined
in Sec. IV. The third and final step is to use the mapping
procedure of Sec. V to determine the two-body part of the
boson Hamiltonian. If S and D pairs are mapped onto
s and d bosons, without considering an isoscalar P pair,
then we call the resulting boson model IBMb or IBMe,
depending on whether the bare or the effective shell-
model Hamiltonian is used. Likewise, if S, D, and P pairs
are mapped onto s, d, and p bosons, the resulting mod-
els are referred to as p-IBMb or p-IBMe. We emphasize
that, unlike in the two-nucleon system, for four nucleons
a realistic shell-model Hamiltonian in general couples the
collective subspace to the rest of the space with poten-
tially important renormalization effects. Therefore, the
mapped two-body matrix elements in IBMb and IBMe
may differ significantly.

The two-body matrix elements between the s and d
bosons appear in Table I, both for the “bare” KB3G
interaction (IBMb) and for its effective version renor-
malized to the collective subspace (IBMe). Because the
largest components of the S and D pairs are in the 1f7/2

shell, we can compare the IBMe Hamiltonian with that
obtained by Thompson et al. [37] from a 1f7/2 shell-
model interaction. The middle row of Table I indeed
shows that the IBMe Hamiltonian resembles the one of
Ref. [37], which is given in the bottom row. There are
some differences, notably in the J = 0, T = 2 matrix ele-
ments, which suffer from a spurious d2 state in the 1f7/2

mapping (a problem that is absent from the pf map-
ping), and smaller differences appear because the shell-
model interactions and mapping procedures (OAI versus
democratic) are not exactly the same. But overall, the
correspondence is good.

The two-body matrix elements between the s and d
bosons appear in Table I, both for the “bare” KB3G
interaction (IBMb) and for its effective version renor-
malized to the collective subspace (IBMe). Because the
largest components of the S and D pairs are in the 1f7/2
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TABLE II. Two-boson interaction matrix elements 〈JT = 0|Ĥb
2 |JT = 0〉 (in MeV), mapped from the KB3G interaction

(p-IBMb, top) and from the effective fermion interaction (p-IBMe, bottom).

J = 0 J = 2 J = 4

|s2〉 |d2〉 |p2〉 |sd〉 |d2〉 |p2〉 |d2〉

〈s2| −3.718
−3.909

−2.476
−2.093

3.792
4.418

〈sd| −6.078
−7.978

0.477
−0.601

−1.721
−1.195 〈d2| −5.116

−8.642

〈d2| −3.436
−4.147

2.187
1.984

〈d2| −4.802
−7.898

0.826
−0.065

〈p2| −0.620
−1.975 〈p2| −0.327

−2.088

TABLE III. Two-boson interaction matrix elements 〈JT = 1|Ĥb
2 |JT = 1〉 (in MeV), mapped from the KB3G interaction

(p-IBMb, top) and from the effective fermion interaction (p-IBMe, bottom).

J = 1 J = 2 J = 3

|sp〉 |d2〉 |dp〉 |sd〉 |dp〉 |d2〉 |dp〉

〈sp| 0.468
0.117

0.422
0.710

−1.032
−0.949 〈sd| −2.075

−2.518
−1.327
−1.990 〈d2| −3.019

−4.649
0.861
0.559

〈d2| −2.328
−3.020

1.754
1.678

〈dp| −1.441
−2.256 〈dp| −0.435

−2.123

〈dp| −0.664
−1.267

shell, we can compare the IBMe Hamiltonian with that
obtained by Thompson et al. [37] from a 1f7/2 shell-
model interaction. The bottom row of Table I indeed
shows that the IBMe Hamiltonian resembles the one of
Ref. [37]. There are some differences, notably in the
J = 0, T = 2 matrix elements, which suffer from a spu-
rious d2 state in the 1f7/2 mapping (a problem that is
absent from the pf mapping), and smaller differences ap-
pear because the shell-model interactions and mapping
procedures (OAI versus democratic) are not exactly the
same. But overall, the agreement is good.

The two-body matrix elements between the s, d, and
p bosons, both for the p-IBMb and p-IBMe, are shown
in Table II for T = 0 and in Table III for T = 1. The P
pair does not influence the T = 2 matrix elements, which
therefore can be taken from Table I. A general feature
of the results, either with s and d, or with s, d, and p
bosons, is that the diagonal matrix elements of the effec-
tive Hamiltonians are more attractive (or less repulsive)
than corresponding matrix elements of the bare Hamilto-
nians. This is to be expected because the renormalization
takes account of correlations from outside the collective
subspace.

Figure 1 shows four-nucleon spectra for T = 2, T = 1,
and T = 0, corresponding to low-lying levels in the nuclei
44Ca, 44Sc, and 44Ti. In each case the figure shows the
levels calculated in the shell model (SM) with the KB3G
interaction. Some of these levels are exactly reproduced
with an effective Hamiltonian constructed for a particular
subspace: SM levels in dashed blue pertain to the SD
subspace and those in dotted red to the SDP subspace,

while SM levels in dash-dotted purple are calculated in
both subspaces. For comparison, the figure also shows
the results produced by the bare KB3G Hamiltonian in
the two collective subspaces.

All levels in Fig. 1 result from fermionic calculations,
in which the Pauli principle is fully taken into account,
though possibly in a truncated Hilbert space. The var-
ious fermionic systems are mapped onto corresponding
bosonic systems, consisting of either s and d bosons, or
s, d, and p bosons. For a four-nucleon system and a bo-
son Hamiltonian containing up to two-body interactions
between the bosons, the mapping is exact. Therefore,
the levels in the left (middle) columns of Fig. 1 are also
obtained in the boson calculation with the bare Hamil-
tonian of the IBMb (p-IBMb) while the colored levels in
the right column are obtained in IBMe (p-IBMe).

In summary, the two-boson calculations (with the
IBMe or p-IBMe Hamiltonians) exactly reproduce the en-
ergy of some eigenstates of the four-nucleon shell-model
calculation. As explained in Sec. IV, the normal proce-
dure is to select those that have maximal overlap with
the eigenstates in the two-pair basis. This set usually
includes the yrast state but not necessarily the yrare
state. For example, the shell model gives a J = 0, T = 0
ground state at −13.668 MeV, which we also include in
the (p)-IBMe; the next J = 0, T = 0 state in the two-
boson calculation is at −5.601 MeV and corresponds to
the third shell-model state with those quantum numbers.
For the J = 4 states, both with T = 0 and T = 2, we find
that the D2 pair state is fragmented over the yrast and
yrare shell-model states. We choose to assign the boson
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FIG. 1. Four-nucleon spectra for T = 2 (a), T = 1 (b), and T = 0 (c), corresponding to low-lying levels in the nuclei 44Ca,
44Sc, and 44Ti. The left column (dashed blue) shows all levels obtained with the bare Hamiltonian in the collective subspace
constructed from S and D pairs. The middle column (dotted red) shows the same for S, D, and P pairs. The right column
shows the low-energy levels obtained in the shell model with the KB3G interaction; the ones that are exactly reproduced with
an effective Hamiltonian in the SD and SDP subspaces are drawn in dash-dotted purple and those that are reproduced only
in the SDP subspace in dotted red.

state to the lowest one, irrespective of the overlap; this
choice conforms to the one of Thompson et al. [37].

From Fig. 1 it is apparent that the dash-dotted pur-
ple SM levels are concentrated in the low-energy region,
indicating that the s and d bosons capture the essen-
tial collective degrees of freedom. The same statement
cannot be made about the dotted red levels, which also
occur at higher energies. This is a first indication that
the isoscalar p boson is not crucial for describing low-
lying spectra, a fact that is not surprising in light of past
work [38].

B. Mapping of the 0νββ-decay operator

The boson 0νββ-decay operator (0νββ operator for
short) is also determined by the A = 42 and A = 44
nuclei. Although the 0νββ operator has no fermion one-
body term, its boson one-body terms are non-zero and
determined by the analog of Eq. (50). The shell-model
0νββ operator, together with the KB3G interaction ap-
plied to A = 42, leads to 〈s‖T̂ b

1,ββ‖s〉 = −11.395 and

〈d‖T̂ b
1,ββ‖d〉 = −15.179. No 0νββ transition occurs be-

tween P pairs with T = 0, and hence 〈p‖T̂ b
1,ββ‖p〉 = 0.

The two-body part of the 0νββ operator is specified by
the reduced matrix elements 〈b1b2; JTf‖T̂ b

2,ββ‖b′1b′2; JTi〉.
For the Ti = 2 → Tf = 0, Ti = 2 → Tf = 1, and
Ti = 1 → Tf = 1 transitions the p boson can contribute
while the Ti = 2→ Tf = 2 transitions are independent of
the p boson.

The total 0νββ operator, both in the IBMb and

p-IBMb, and their effective versions, the IBMe and
p-IBMe, is completely specified by the reduced matrix
elements 〈b1b2; JTf‖T̂ b

2,ββ‖b′1b′2; JTi〉. Of course, similar
mappings can be executed for separate pieces of the 0νββ
operator, such as its Gamow-Teller part. The effective-
operator theory of Suzuki and Lee [24] ensures that the
transition matrix elements between eigenstates in the re-
stricted Hilbert space HP coincide exactly with those be-
tween some of the eigenstates in the complete Hilbert
space H.

We conclude this and the previous subsection by re-
emphasizing that the formalism developed in this paper
allows us to derive a boson Hamiltonian and, in general,
boson operators that exactly reproduce the properties of
a subset of the shell-model eigenstates of all two- and
four-nucleon systems.

C. Results for the energies

We now turn to systems with more nucleons and con-
sider nuclei for which a shell-model calculation is feasible
in the complete Hilbert space, in order to compare its re-
sults with those of the IBM. Our procedure incorporates
no A dependence into the IBM operators, so that we have
neither the mass-dependent structure coefficients αΓ

γ1γ2

mentioned earlier nor a dependence of the IBM Hamilto-
nian on the boson number n and isospin T , which is dis-
cussed in Refs. [39, 40]. Not only is it difficult to combine
the two effects but in addition the (n, T )-dependence as
derived in Refs. [39, 40] applies only to a seniority-based
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mapping, the generalization of which to an arbitrary sys-
tem of bosons is not obvious. For the purpose of this pa-
per, therefore, we propose the following heuristic method
to obtain an A-dependent IBM Hamiltonian and, in gen-
eral, A-dependent IBM operators.

As explained in Subsec. VI A, for a given bosonic sys-
tem (e.g., sd or sdp) the mapping defines a bare bo-

son Hamiltonian Ĥb
b —obtained from the bare fermion

Hamiltonian—as well as an effective one Ĥb
e . The for-

mer underbinds the two-boson system, when compared
with the shell-model result for four nucleons, while the
latter exactly reproduces the shell-model binding energy.
In the use of these Hamiltonians for systems with more
bosons, we have consistently found that, for a given bo-
son number n, angular momentum J , and isospin T , Ĥb

b
underestimates the corresponding (positive) shell-model

binding energy and Ĥb
e overestimates it. Therefore, al-

though we have no formal proof of it, we conjecture the
following inequalities:

〈Ĥb
e 〉n,J,T ≤ 〈Ĥ

f〉2n,J,T ≤ 〈Ĥ
b
b 〉n,J,T , (52)

where 〈Ĥ f〉2n,J,T is the lowest eigenvalue, for a given nu-
cleon number 2n, angular momentum J , and isospin T ,
of the shell-model Hamiltonian in the complete Hilbert
space H. These inequalities suggest the use of an (n, T )-
dependent boson Hamiltonian of the form

Ĥb = xĤb
b + (1− x)Ĥb

e , (53)

with x an (n, T )-dependent parameter between 0 and 1
that we consider adjustable, to be determined by a com-
parison with the spectrum of the shell-model Hamilto-
nian in the complete Hilbert space H. By construction
x = 0 for n = 2 bosons and we expect x to increase with
increasing n and T .

Figure 2 shows spectra of nuclei with mass number
A = 46; the results of the interpolation procedure can be
called satisfactory. The panels in the figure are labeled
with the nuclei and spectra refer to their low-energy lev-
els with isospin T = |Tz|. Since isospin symmetry is
conserved in both the shell model and the IBM, the cal-
culated spectra in 46Ca and 46Ti are identical to those
of the mirror nuclei 46Fe and 46Cr. (Because both the
shell model and the IBM produce absolute energies, one
would need different Coulomb corrections in the mirror
nuclei.) The levels in 46Ca have isospin T = 3 and are
not affected by the p bosons; the 46Ca spectra in IBM
and p-IBM are consequently identical. For the T = 1
levels of 46Ti, on the other hand, the IBM and p-IBM
yield different results. In the IBM a value of x can be
chosen such that the binding energies and the excitation
spectra are reasonably well reproduced. That is not the
case in the p-IBM: If x is adjusted to reproduce the shell-
model binding energy of 46Ti, then an unrealistic exci-
tation spectrum results, with a 0+-2+ energy splitting
that is far too low. This difficulty confirms our suspicion
that the isoscalar p boson does not play a vital role in
the spectroscopy of light pf -shell nuclei. Not only does it

render the mapping to the bosonic system more complex
but it also worsens the results of the simpler IBM. We
have, however, yet to examine its role in 0νββ decay.

Figure 3 shows spectra for nuclei with mass number
A = 48. The boson approximation clearly breaks down
in 48Ca, a fact that is unsurprising because the sub-shell
closure at neutron number N−28 should cause the struc-
ture of the collective pairs to change dramatically from
we constructed in A = 42 nuclei. The binding energy
of the 48Ca ground state is not badly wrong, however,
and that particular state, which consists mostly of eight
neutrons in the f7/2 shell but also includes correlations
from the p3/2, f5/2, and p1/2, may still be described well
enough to use in calculating the 0νββ matrix element.
The spectra for A = 48, however, again confirm our state-
ment p bosons do not improve spectra.

Finally, Fig. 4 shows spectra for nuclei with mass num-
ber A = 50. The neutron sub-shell closure at N = 28
causes problems again in 50Ti. Unlike 48Ca, for which
only T = 2 matrix elements enter the boson calculation,
50Ti has ground-state structure that depends on all bo-
son matrix elements, including those with T = 1 and
T = 0. The many significant matrix elements might lead
the IBM and p-IBM to overestimate the degree of correla-
tion in the 50Ti ground state. The same seems to be true
in the IBM without p bosons for 50Cr. We could improve
the excitation energies in these nuclei, if we wanted, by
relaxing the requirement of matching the binding ener-
gies.

D. Results for 0νββ-decay transitions

We turn finally to 0νββ matrix elements. Our main
interest at this point is a comparison of the results of the
shell model, as reported by Menéndez et al. [19], with
those of the IBM and p-IBM. The matrix elements de-
pend on the values of the Hamiltonian-interpolation pa-
rameter x in the initial and final nuclei. We can also as-
sign a similar parameter xββ to the 0νββ operator, that
is we can use a linear combination of the bare and effec-
tive 0νββ operators the same way we do for the Hamil-
tonian in Eq. (53). Here we make the simplest choice for
xββ , setting it equal to the average of the Hamiltonian x
parameters in the initial and final nuclei.

The results for the total 0νββ matrix elements are
shown in Fig. 5. Because isospin is conserved both in
the shell model and in the IBM, transition matrix ele-
ments for mirror sets of nuclei (e.g., 44Ca → 44Ti and
44Ti → 44Cr) are equal and we show them for only one
set here and in what follows. The shaded area in the fig-
ure indicates the values of the 0νββ matrix elements ob-
tained by varying the Hamiltonian and 0νββ operators
together between their bare and effective limits. Such
limits probably overestimate the errors on the calculated
matrix elements, but at least give some idea of the un-
certainties. It would be helpful to have similar error esti-
mates on the shell-model matrix elements but these are
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FIG. 2. Spectra of the A = 46 nuclei 46Ca (T = 3) (a) and 46Ti (T = 1) (b). The shell-model spectra (SM) are produced by
the KB3G interaction with six nucleons in the pf shell. The IBM spectra, with three bosons (sd or sdp), are produced by a

Hamiltonian interpolated between the bare Ĥb
b and the effective Ĥb

e (see text).
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FIG. 3. Spectra of the A = 48 nuclei 48Ca (T = 4) (a), 48Ti (T = 2) (b), and 48Cr (T = 0) (c). The shell-model spectra (SM)
are produced by the KB3G interaction with eight nucleons in the pf shell. The IBM spectra, with four bosons (sd or sdp), are

produced by a Hamiltonian interpolated between the bare Ĥb
b and the effective Ĥb

e (see text).

not available to our knowledge. The shaded area is very
large in the IBM and significantly reduced if effects of
the p boson are included. Figure 6 shows the results
for the Gamow-Teller part of the 0νββ matrix elements,
MGT

0ν . The p-IBM is clearly superior to IBM in matching
the shell-model trends, although it systematically over-
estimates the 0νββ matrix elements. One conspicuous
feature of the shell-model calculation is the enhancement
of transitions between mirror nuclei (i.e., 42Ca → 42Ti,
46Ti → 46Cr, and 50Cr → 50Fe). This p-IBM repro-
duces the resulting “kink” in the calculated set of matrix

Gamow-Teller matrix elements, but the IBM does not.

Despite the better performance of the p-IBM, the range
of possibilities it predicts—reflected by the shaded areas
that represent the plausible amount of phenomenological
modification to the mapped effective operators—is large
enough that one could question whether a p boson is re-
ally essential in IBM calculations of matrix elements for
the more complicated nuclei that are used in experiments.
To provide a better measure of the p-boson’s importance,
we examine the degree to which the IBM captures the
effects of isoscalar pairing (shown repeatedly to be im-
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FIG. 4. Spectra of the A = 50 nuclei 50Ti (T = 3) (a) and 50Cr (T = 1) (b). The shell-model spectra (SM) are produced
by the KB3G interaction with ten nucleons in the pf shell. The IBM spectra, with five bosons (sd or sdp), are produced by a

Hamiltonian interpolated between the bare Ĥb
b and the effective Ĥb

e (see text).

portant for ββ decay [16, 19]) with and without the new
degree of freedom. There is not a unique prescription for
isolating the isoscalar-pairing part of the KB3G interac-
tion, so we substitute the multi-separable collective in-
teraction employed in Ref. [19]. This “collective” Hamil-
tonian supplements the KB3G monopole part with sepa-
rable like-particle pairing, isoscalar-pairing, quadrupole-
quadrupole , and spin-isospin interactions, with coef-
ficients determined through the methods presented in
Ref. [34]. With this Hamiltonian, it is a simple matter
to turn the isoscalar pairing on or off for tests.

To carry out such tests, we repeat the entire mapping
procedure with the new Hamiltonian, with and without
isoscalar pairing. Figure 7 shows the results for the ma-
trix elements of MGT

0ν . The left column contrasts these
matrix elements for our sd IBM, with (c) and without (a)
isoscalar pairing. Without isoscalar pairing the IBM re-
produces the shell-model matrix elements fairly well, and
the range of predictions associated with the shaded band,
though not small, is not unreasonable. When isoscalar
pairing is turned on, shell-model matrix elements shrink
considerably, except for the mirror transitions. Though
the IBM matrix elements also shrink on average, the
range of predictions is much larger.

The results of the p-IBM in the right column are dif-
ferent, not so much in the top figure (b), where, as ex-
pected, the p boson makes little difference in the absence
of isoscalar pairing, but in the bottom figure (d). When
the T = 0 pairing interaction is on, the p-IBM with the
best value of x reproduces the shell model results nearly
perfectly, and the range of predictions is much smaller
than when the pairing is off or when the p boson is ab-
sent. Clearly, the p boson is required to fully capture
the effects of isoscalar pairing. Even with it, however,

the range of predictions grows noticeably after the boson
number reaches about four.

We can look in a little more detail at how the two mod-
els attempt to capture the physics of the Gamow-Teller
matrix element. Figure 8 shows its decomposition into
pieces produced by different terms in the corresponding
boson operator for the decay of 44Ca. The contribution
of all terms involving particular creation and destruction
operators are grouped together, with all possible values
for the angular momentum and isospin of pairs of cre-
ation (and annihilation) operators summed over. As in
the realistic IBM-2 calculations of Ref. [11], the largest
contribution is from the s†s term, which converts a neu-
tron s boson into a proton s boson. And as in those
calculations, the contribution of d†d, representing transi-
tions between d bosons, is negative and relatively small.
Here, however, other terms that are absent or suppressed
in Ref. [11] contribute significantly. When the p boson is
included, the largest contribution, outside of that from
s†s, is from p†p†ss. This operator, roughly speaking, re-
places one neutron with a proton in each of two J = 0
neutron pairs, while recoupling the resulting pairs to an-
gular momentum J = 1 and isospin T = 0. The isoscalar-
pairing interaction ensures that both the initial and final
configurations are well represented in the corresponding
ground states. In the absence of a p boson, the IBM at-
tempts to mock up the isoscalar pairs in the final nucleus
by isovector proton-neutron s bosons, through the term
s†s†ss. Not surprisingly, the physics of isoscalar pair-
ing is not as well captured. In the IBM-2, which does
not contain neutron-proton bosons of any kind, d†d is
the only term compensating s†s. One suspects that the
effects of isoscalar pairing are overlooked.
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FIG. 5. Eight 0νββ 0+
1 → 0+

1 matrix elements between
f7/2-shell nuclei, calculated in the shell model [19] and in the
IBM (a) and the p-IBM (b). The full black lines connect
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the IBM (p-IBM) results with an x parameter fit to energy
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limits defined by x = 1 (bare operators) and x = 0 (effective
operators).

VII. CONCLUSIONS

Our results clearly suggest that although the isoscalar-
pair bosons have a deleterious effect on spectra—the in-
evitable result of diluting collectivity—they are impor-
tant for ββ decay. In our calculations with the realistic
KB3G interaction, the improvement they offer is only
modest, but the reason, undoubtedly, is that our map-
ping is exact only for two and four nucleons and we do
not know how best to extrapolate it to larger numbers.
This problem plagues almost all applications of the Lee
Suzuki mapping procedure.

What are the implications for the realistic IBM-2 cal-
culations of Refs. [11–13, 41]? Would they be improved
by the addition of a p boson? Isoscalar paring is probably
more effective in light pf -shell nuclei discussed here than,
e.g., in 76Ge, so we have to be a little careful in extrap-
olating blindly. But many studies have shown isoscalar
pairing to affect ββ matrix elements in most of the nuclei
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FIG. 6. Same as Fig. 5 for the Gamow-Teller part of eight
0νββ 0+

1 → 0+
1 matrix elements between f7/2-shell nuclei.

used in experiments, and the p boson thus has the poten-
tial to improve the fidelity with which they are treated.
One could take the first steps in these nuclei by mapping
the 0νββ operator, either with the democratic procedure
developed here or by extending the mapping used in Ref.
[11].

A useful extension of the IBM-2, however, would re-
quire some careful phenomenology. Unlike the 0νββ op-
erator, the IBM-2 Hamiltonian is entirely phenomenolog-
ical and without a guiding principle and careful fitting,
it is not obvious how best to modify it. One might try
to map the Hamiltonian as we do here, select from the
result the most important terms that contain p-boson op-
erators, and then modify the coefficients by fitting, e.g.,
to single-β decay rates (which require their own mapped
operator) or other observables. Until an attempt is made,
we cannot know how successful such a program would
be. Our results, however, imply that an attempt would
be worthwhile.
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FIG. 7. Same as Fig. 5 for the collective Hamiltonian without isoscalar pairing in the IBM (a), without isoscalar pairing in the
p-IBM (b) with isoscalar pairing in the IBM (c), and with isoscalar pairing in the p-IBM (d).
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FIG. 8. Contributions to the Gamow-Teller matrix element
MGT

0ν from different terms in the boson Hamiltonian (see text)
for the IBM (cross-hatched) and p-IBM (solid).
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Appendix A: Matrix elements in a two-pair basis

We summarize in this appendix the expressions for the
matrix element of a generic one- or two-body operator
between two-pair states. For n = 2 we rewrite the pair
state (2) in a more explicitly as

|γaγbγcγd[Γ1Γ2]ΛMΛ〉 ≡ |abcd[Γ1Γ2]ΛMΛ〉 (A1)

∝ A
∑
M1M2

(Γ1M1 Γ2M2|ΛMΛ) |ab; Γ1M1〉 |cd; Γ2M2〉 ,
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where the pair states on the last line are normal-
ized and anti-symmetric, and A is a four-nucleon
anti-symmetrization operator. Coupling to definite
angular momentum and isospin together with anti-
symmetrization leads to an expansion in terms of coeffi-
cients of fractional parentage (CFPs),

|abcd[Γ1Γ2]ΛMΛ〉

=
∑
qrst

∑
Γ̄′

1Γ̄′
2

[qr(Γ̄′1)st(Γ̄′2)Λ|}abcd[Γ1Γ2]Λ]

× |qr(Γ̄′1)st(Γ̄′2); ΛMΛ〉 , (A2)

where the sum {qrst} is over all permutations of {abcd}.
Consider now an operator T̂

(λ)
mλ , where λ refers to the

operator’s tensor character in angular momentum and
isospin, and mλ to the respective projections. By virtue
of the Wigner-Eckart theorem [42], the matrix elements

of T̂
(λ)
mλ can be written as

〈a′b′c′d′[Γ′1Γ′2]Λ′M ′Λ|T̂ (λ)
mλ
|a′′b′′c′′d′′[Γ′′1Γ′′2 ]Λ′′M ′′Λ〉

= (−)Λ′−M ′
Λ

(
Λ′ λ Λ′′

−M ′Λ mλ M ′′Λ

)
× 〈a′b′c′d′[Γ′1Γ′2]Λ′‖T̂ (λ)‖a′′b′′c′′d′′[Γ′′1Γ′′2 ]Λ′′〉 . (A3)

The matrix element on the right side of this equation
is reduced in angular momentum J and isospin T and
the symbol in round brackets, consequently, refers to a
product of Wigner coefficients, one pertaining to J and
the other to T . The reduced matrix element in turn can
be expressed as

〈a′b′c′d′[Γ′1Γ′2]Λ′‖T̂ (λ)‖a′′b′′c′′d′′[Γ′′1Γ′′2 ]Λ′′〉

= p
∑

q′r′s′t′

∑
Γ̄′

1Γ̄′
2

[q′r′(Γ̄′1)s′t′(Γ̄′2)Λ′|}a′b′c′d′[Γ′1Γ′2]Λ′]

×
∑

q′′r′′s′′t′′

∑
Γ̄′′

2

[q′′r′′(Γ̄′1)s′′t′′(Γ̄′′2)Λ′′|}a′′b′′c′′d′′[Γ′′1Γ′′2 ]Λ′′]

× 〈q′r′; Γ̄′1|q′′r′′; Γ̄′1〉 〈s′t′; Γ̄′2‖T̂ (λ)‖s′′t′′; Γ̄′′2〉

× (−)Γ̄′
1+Γ̄′′

2 +Λ′+λ[Λ′][Λ′′]
{

Γ̄′2 Λ′ Γ̄′1
Λ′′ Γ̄′′2 λ

}
, (A4)

with [x] ≡
√

2x+ 1, p = 2 for a one-body and p = 6 for
a two-body operator, and

〈q′r′; Γ̄′1|q′′r′′; Γ̄′1〉 (A5)

=
1

1 + δq′r′

(
δq′q′′δr′r′′ − (−)γq′+γr′−Γ̄′

1δq′r′′δq′r′′
)
.

The symbol in curly brackets in Eq. (A4) refers to a prod-
uct of Racah coefficients [42] in angular momentum and
isospin space,

{
Γ′2 Λ′ Γ′1
Λ′′ Γ′′2 λ

}
≡
{
J ′2 J ′ J ′1
J ′′ J ′′2 λj

}{
T ′2 T ′ T ′1
T ′′ T ′′2 λt

}
. (A6)

An important case occurs if (λ) = (0, 0), that is, the
tensor operator is scalar in angular momentum as well as
isospin. Then Λ′ = Λ′′ ≡ Λ and the expression (A4) for
the matrix element reduces to

〈a′b′c′d′[Γ′1Γ′2]Λ|T̂ (0)
0 |a′′b′′c′′d′′[Γ′′1Γ′′2 ]Λ〉

= p
∑

q′r′s′t′

∑
Γ̄′

1Γ̄′
2

[q′r′(Γ̄′1)s′t′(Γ̄′2)Λ|}a′b′c′d′[Γ′1Γ′2]Λ]

×
∑

q′′r′′s′′t′′

[q′′r′′(Γ̄′1)s′′t′′(Γ̄′2)Λ|}a′′b′′c′′d′′[Γ′′1Γ′′2 ]Λ]

× 〈q′r′; Γ̄′1|q′′r′′; Γ̄′1〉 〈s′t′; Γ̄′2|T̂
(0)
0 |s′′t′′; Γ̄′2〉 . (A7)

This formula (with p = 6) applies to the matrix elements
of a scalar two-body interaction, in which case the last
factor in Eq. (A7) is the two-body matrix element,

〈s′t′; Γ|T̂ (0)
0 |s′′t′′; Γ〉 = υΓ

s′t′s′′t′′ . (A8)

The 0νββ operator can be assumed scalar in angular mo-
mentum but not in isospin, and therefore requires the
application of the more general expression in Eq. (A4).

Appendix B: Order-by-order mapping of non-scalar
operators

For a non-scalar operator,it is better to define the
boson image by requiring the equality of reduced ma-
trix elements in angular momentum and isospin, defined
through the Wigner-Eckart theorem [42]. The one-boson
term follows from

〈bΓ′‖T̂ b(λ)‖bΓ′′〉 = 〈b̄Γ′‖T̂ b(λ)‖b̄Γ′′〉 .= 〈B̄Γ′‖T̂ f(λ)‖B̄Γ′′〉 .
(B1)

The fermion matrix element on the right-hand side of
Eq. (B1) is given by

〈B̄Γ′‖T̂ f(λ)‖B̄Γ′′〉

=
∑
γ′

1γ
′
2

∑
γ′′

1 γ
′′
2

ᾱΓ′

γ′
1γ

′
2
ᾱΓ′′

γ′′
1 γ

′′
2

(−)Γ′−M ′
Γ

(
Γ′ λ Γ′′

−M ′Γ mλ M ′′Γ

)−1

× 〈γ′1γ′2; Γ′M ′Γ|T̂ f(λ)
mλ
|γ′′1 γ′′2 ; Γ′′M ′′Γ 〉 , (B2)

where 〈γ′1γ′2; Γ′M ′Γ|T̂
f(λ)
mλ |γ′′1 γ′′2 ; Γ′′M ′′Γ 〉 are matrix ele-

ments in the complete shell-model space and ᾱΓ
γ1γ2

are
structure coefficients of normalized collective pairs,

B̄†ΓMΓ
|O〉 =

∑
γ1γ2

ᾱΓ
γ1γ2
|γ1γ2; ΓMΓ〉 . (B3)

Equations (B1) and (B2) define entirely the one-body

part T̂
b(λ)
1,mλ

of the mapped boson operator. This object
can be written in second quantization as

T̂
b(λ)
1,mλ

=
∑
Γ′Γ′′

tΓ′Γ′′(b†Γ′ × b̃Γ′′)(λ)
mλ

, (B4)
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with

tΓ′Γ′′ ≡ 〈B̄Γ′‖T̂ f(λ)‖B̄Γ′′〉√
2λ+ 1

, (B5)

an expression showing that in general T̂
b(λ)
1,mλ

is non-
diagonal in the boson basis.

The two-body part of the mapped boson operator fol-
lows from the obvious identity

〈bΓ′
1
bΓ′

2
; Λ′‖T̂ b(λ)‖bΓ′′

1
bΓ′′

2
; Λ′′〉

= 〈bΓ′
1
bΓ′

2
; Λ′‖T̂ b(λ)

1 + T̂
b(λ)
2 ‖bΓ′′

1
bΓ′′

2
; Λ′′〉 . (B6)

The matrix element on the left side is the boson image of
the fermion operator and can be computed from Eq. (48).
By using the operator representation in Eq. (B4), one
can work out the first (one-body) term on the right side,
obtaining

〈bΓ′
1
bΓ′

2
; Λ′‖T̂ b(λ)

1 ‖bΓ′′
1
bΓ′′

2
; Λ′′〉 (B7)

= [Λ′][λ][Λ′′]P̂ (−)Γ′
1+Γ′

2+Λ′′+λtΓ′
1Γ′′

1

{
Γ′1 Λ′ Γ′2
Λ′′ Γ′′1 λ

}
δΓ′

2Γ′′
2
,

where the operator P̂ takes care of the different permu-

tations: P̂ ≡ P̂Γ′
1Γ′

2Λ′ P̂Γ′′
1 Γ′′

2 Λ′′ with

P̂Γ1Γ2Λ ≡
f(Γ1,Γ2,Λ) + (−)Γ1+Γ2−Λf(Γ2,Γ1,Λ)√

1 + δΓ1Γ2

. (B8)

Equation (B6) therefore entirely defines the two-body

part T̂
b(λ)
2,mλ

of the mapped boson operator.
As an example, we apply the above formulas to the

0νββ operator, which is a non-scalar tensor T̂
(λ)
mλ with

λ = (0, 2) and mλ = (0,−2). It is of two-body character
in the fermions and we calculate its image up to two-
body terms in the bosons. We assume, as is the case in
the applications discussed in this paper, that off-diagonal
matrix elements between pair states vanish, that is, that
〈B̄Γ′‖T̂ fββ‖B̄Γ′′〉 = 0 if Γ′ 6= Γ′′. This relation obtains
because the pairs have different angular momenta (S,
D and P ) and the 0νββ operator is assumed scalar in
angular momentum. For two-particle states, 0νββ decay
takes place from an initial state with T = 1,M ′′T = +1
to a final state with T = 1,M ′T = −1, and the matrix
element (B2) reduces to

〈B̄JT ‖T̂ fββ‖B̄JT 〉 (B9)

=
√

5(2J + 1) 〈JT,M ′T = −1|T̂ fββ |JT,M ′′T = +1〉 .

The contribution (B7) of the one-body part of the boson
operator between two-boson states also simplifies because
Γ′1 = Γ′′1 ≡ Γ1 and Γ′2 = Γ′′2 ≡ Γ2, and can be written
explicitly as

〈bΓ1
bΓ2

; Λ′‖T̂ b(λ)
1 ‖bΓ1

bΓ2
; Λ′′〉 = [Λ′][λ][Λ′′](−)Γ1+Γ2+λ

[
(−)Λ′′

tΓ1Γ1

{
Γ1 Λ′ Γ2

Λ′′ Γ1 λ

}
+ (−)Λ′

tΓ2Γ2

{
Γ2 Λ′ Γ1

Λ′′ Γ2 λ

}]
.

(B10)
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[25] P. Navrátil, H. Geyer, and T. Kuo, Physics Letters B

315, 1 (1993).
[26] P. Van Isacker, International Journal of Modern Physics

E 22, 1330028 (2013).
[27] T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A

309, 1 (1978).
[28] L. D. Skouras, P. Van Isacker, and M. A. Nagarajan,

Nuclear Physics A 516, 255 (1990).
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