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Abstract

Projection of many-body states with good angular momentum from an initial state is usually

accomplished by a three-dimensional integral. We show how projection can instead be done by

solving a straightforward system of linear equations. We demonstrate the method and give sample

applications to 48Cr and 60Fe in the pf shell. This new projection scheme, which is competitive

against the standard numerical quadrature, should also be applicable to other quantum numbers

such as isospin and particle number.
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I. INTRODUCTION

In the quantum theory of many-body systems we can have exact or nearly exact sym-

metries, sometimes referred to as ‘good’ symmetries, such as angular momentum, parity,

isospin (for nuclear physics), and particle number. Breaking those good symmetries can

paradoxically improve results and insights. In mean-field methods such as the Hartree-Fock

(HF) approximation, deformed solutions often have lower energies than spherically symmet-

ric solutions [1, 2]; number-mixing appproximations such as Hartree-Fock-Bogoliubov and

Bardeen-Cooper-Schriefer also improve estimates of the ground state [2].

To go even further, one wants to restore or project good quantum numbers, either before

or after variation. (Henceforth we will restrict our discussion to angular momentum, though

certainly our approach could be applied to other quantum numbers.) Angular momentum

projection is typically accomplished by a three-dimension integral over the Euler angles

[1, 2], using a complete, orthogonal set of angular functions.

We present an alternate approach which, instead of relying upon orthogonality, only needs

two conditions: first, that the eigenfunctions of rotation are merely linearly independent,

and second, that any initial state contains only a finite number of angular momenta. Under

these two conditions projection of angular momentum in a finite space can be cast as solving

a straightforward set of linear equations. The first condition is already trivially satisfied from

orthogonality of the rotation matrices; and in a finite space not only can there be only a finite

set of angular momentum eigenfunctions, in fact in most cases Slater determinants calculated

from mean-field theory contain only a small fraction of the possible angular momentum

states. Because of this small number we find linear algebra projection of angular momentum

can be numerically competitive with the standard three-dimensional integral. Finally, we

also discuss how the numerical efficiency can be improved by using the norm or overlap

matrix elements to reduce the dimension of the linear algebra to be solved.

First we review the standard projection via quadrature over orthogonal functions. The

most common projection operator uses the fact that rotation of a state of good total an-

gular momentum J and z-component K, (in nuclear physics, one often uses K to denote

the z-component of angular momentum in the so-called “intrinsic” frame [2]; here we use it

to denote the z-component in the original frame, in order to better match common repre-

sentations in the literature), does not mix total angular momentum J but does mix the z
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component [3]:

R̂(α, β, γ)|J K〉 =
∑

M

D
(J)
M,K(α, β, γ)|J M〉, (1)

where we have the the rotation operator over the Euler angles

R̂(α, β, γ) = exp
(

iγĴz
)

exp
(

iβĴy
)

exp
(

iαĴz
)

, (2)

with Ĵz and Ĵy the generators of rotations about the z and y-axes, respectively, and where

D
(J)
M,K is aWigner D-matrix. The Wigner D-matrices are the matrix elements of the the rota-

tion operator in a basis of good angular momentum, and can be shown to be eigenfunctions

of the quantized symmetric top [3] and form a complete orthogonal set,

∫ 2π

0
dα
∫ π

0
sin βdβ

∫ 2π

0
dγD

(J ′)∗
M ′,K ′(α, β, γ)D

(J)
M,K(α, β, γ) =

8π2

2J + 1
δJ,J ′δM,M ′δK,K ′, (3)

a property which can be exploited for angular momentum projection. Consider some initial

state which is a mixture of states of good angular momenta:

|Ψ〉 =
∑

J,λ

cJ,λ|ψ : Jλ,Kλ〉. (4)

We use λ to distinguish components with the same J but different initial Kλ; in general

these will not be eigenstates of the Hamiltonian. Then applying the rotation operator,

R̂(α, β, γ)|Ψ〉 =
∑

J,λ

cJ,λ
∑

M

D
(J)
M,Kλ

(α, β, γ)|ψ : Jλ,M〉, (5)

where we use Kλ to denote the value of Jz in the original state, and M in rotated states.

The reason we do this is in the expansion (4), if we rotate states with the same J and

different λ to have the same orientation, they need not be orthogonal to each other, that is,

〈ψ : Jλ,M |ψ : Jµ,M〉 does not need to vanish when λ 6= µ. To project angular momentum,

we rotate all components of (4) to have the same orientation M . This leads to the standard

angular momentum projection equations [2]: one constructs the norm matrix

NJ
MK =

8π2

2J + 1

∫

dΩD
(J)∗
M,K(Ω)

〈

Ψ
∣

∣

∣R̂(Ω)
∣

∣

∣Ψ
〉

(6)

where Ω stands in for the Euler angles α, β, γ. The norm matrix can be can be written in

terms of the expansion (4):

NJ
MK =

∑

λµ

δM,Kλ
c∗J,λcJ,µ〈ψ : Jλ,M |ψ : Jµ,M〉. (7)
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We can do the same for the Hamiltonian matrix

HJ
MK =

8π2

2J + 1

∫

dΩD
(J)∗
M,K(Ω)

〈

Ψ
∣

∣

∣ĤR̂(Ω)
∣

∣

∣Ψ
〉

(8)

=
∑

λµ

δM,Kλ
c∗J,λcJ,µ〈ψ : Jλ,M |Ĥ|ψ : Jµ,M〉,

where Ĥ is the many-body Hamiltonian. One then solves for each J the generalized eigen-

value problem, with solutions labeled by r

∑

K

HJ
MKg

(J)
K,r = Er

∑

K

NJ
M,Kg

(J)
K,r, (9)

with the reconstructed eigenfunction

|ΨJM, r〉 =
∑

K

g
(J)
K,r

∫

dΩD
(J)∗
M,K(Ω)|Ψ〉 (10)

=
∑

K

g
(J)
K,r

∑

λ

δK,Kλ
cJ,λ|ψ : Jλ,M〉.

If one projects from a single initial state, for each J there are at most 2J+1 unique solutions;

the number of actual unique solutions corresponds to the number of nonzero eigenvalues of

the matrix NJ , although in many applications one projects on multiple initial states.

Some of the many applications are projected Hartree-Fock [2, 4] including variation after

projection [2, 5], and Hartree-Fock-Bogoliubov [2, 6–9] and projected relativistic mean-field

calculations [10]; the Monte Carlo Shell Model [11, 12]; the projected shell model [13–15]; the

projected configuration-interaction [16] and related methods [17]; and projected generator

coordinate [18, 19]. This list is far from exhaustive.

The matrices NJ
MK and HJ

MK are generally small in dimension, but to arrive at them

one needs to evaluate the integrand matrix elements
〈

Ψ
∣

∣

∣R̂(Ω)
∣

∣

∣Ψ
〉

and
〈

Ψ
∣

∣

∣ĤR̂(Ω)
∣

∣

∣Ψ
〉

for a

large number of angles Ω. As an example, a recent paper [9] used 32 points per Euler angle,

or a total of 323 = 32, 768 angles. If one imposes symmetries, i.e. axial symmetry, upon the

mean-field state one can reduce the number of evaluations [13], but even so each evaluation

is computationally intensive, especially of the Hamiltonian; see section V.

Projecting out from fully triaxial states, or projecting additional quantum numbers such

as isospin or particle number, is so computationally intensive one often has to severely

restrict the model space [20]. Given the applications of angular momentum projection and

the computational burden, we were motivated to find an alternate approach, not by speeding

up the evaluation of the integrands for any set of Euler angles, but rather to reduce the

number of mesh points needed.

4



II. LINEAR ALGEBRA SOLUTION FOR ANGULAR MOMENTUM PROJEC-

TION

Equations (6) and (8) are usually taken as recipes for computing the norm and Hamilto-

nian matrices, respectively. We ignore the integrals, instead using (7) and (8) to define those

matrices in terms of the expansion (4). Starting from Eqn. (5) and using those definitions,

one finds for any given value of the Euler angles Ω = (α, β, γ),

〈Ψ|R̂(Ω)|Ψ〉 =
∑

J,K,M

D
(J)
M,K(Ω)N

J
MK , (11)

〈Ψ|ĤR̂(Ω)|Ψ〉 =
∑

J,K,M

D
(J)
M,K(Ω)H

J
MK . (12)

These key equations say 〈Ψ|R̂(Ω)|Ψ〉 is a linear combination of the the norm matrix elements

NJ
MK , and the same for 〈Ψ|ĤR̂(Ω)|Ψ〉 and the Hamiltonian matrix elements HJ

MK . While

in usual practice one uses the orthogonality of the D-matrices, Eq. (3), to find NJ
MK , H

J
MK ,

we instead rely only upon their linear independence and solve solve Eqn. (11) and (12) as a

linear algebra problem. That is, if we label a particular choice of Euler angles Ω by i and

the angular momentum quantum numbers J,M,K by a, and define

ni ≡ 〈Ψ|R̂(Ωi)|Ψ〉,

Dia ≡ D
(Ja)
Ma,Ka

(Ωi), (13)

Na ≡ NJa
MaKa

,

we can rewrite Eq. (11) simply as

ni =
∑

a

DiaNa (14)

which can be easily solved for Na = NJ
M,K , as long as Dia is invertible, with a similar

rewriting of Eq. (12) and solution for HJ
M,K.

A key idea is that the sums (11), (12) are finite. To justify this, we introduce the

fractional ‘occupation’ of the wave function with angular momentum J , which is the trace

of the fixed-J norm matrix:

fJ =
∑

M

NJ
M,M . (15)

Assuming the original state is normalized, one trivially has

∑

J

fJ = 1. (16)
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FIG. 1. (Color online) Fraction of given angular momentum J (fJ) in a Slater determinant,

calculated both for ordinary Hartree-Fock (HF) and cranked HF with cranking frequency h̄ω = 1.0

MeV, for 60Fe in the pf shell. The maximum angular momentum for this nuclide in this model

space is 26 h̄.

The fractional occupation fJ and its sum rule (16) have multiple uses. First, the sum

rule is an important check on any calculation. Second and more important, one can use

the exhaustion of the sum rule to determine a maximum angular momentum, Jmax, in our

expansions; in our trials we found both (4) and (16) dominated by a finite and relatively

small number of terms, far fewer terms than are allowed even in finite model spaces. As

discussed in the next section, we found that fractional occupations below 0.001 could be

safely ignored.

In general, for a Hartree-Fock state the distribution of fJ is weighted towards low J and

does not reach the maximum J in the many-body space. In Fig. 1 we show this for 60Fe

in the pf shell where the maximum J in the space is 26, using the pf -shell interaction

derived from a G-matrix, version A, or GXPF1A [21, 22]. We also show the distribution

of fJ for a strongly cranked Slater determinant, where we added h̄ωJz (or, alternately, Jx)

with h̄ω = 1.0 MeV. For uncranked Hartree-Fock the maximum J is 12 with an fJ ∼ 0.001;

because the Hartree-Fock state is axially symmetric, only even J were populated. For the

strongly cranked Hartree-Fock state, most of the state had J = 12, but the range was

between 6 and 16. Because the cranked HF state was triaxial we also got odd J .
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In multi-shell spaces, the results are not very different. To investigate, we took a realistic

two-body ab initio interaction [23] in a harmonic oscillator basis including five major shells,

that is, shells labeled by principal quantum number N = 0, 1, 2, 3, 4. When we cranked 24Mg

with h̄ω = 1.0 MeV, the distribution was still centered on J = 12, though not as sharply

peaked. The lowest J occupied was J = 6, with fJ = 0.006, and the largest J values were

J = 19 with fJ = 0.0016.

Our method is not completely unprecedented. For example, previous applications in the

so-called shell-model Monte Carlo extracted traces over states with good particle number

[24] and good M (z-component of angular momentum) [25] via Fourier methods which can

be thought of as inverting the linear relation analytically. To the best of our knowledge,

however, this is the first time one has fully projected out angular momentum using inversion

of linear equations.

III. IMPLEMENTATION

To implement projection by linear algebra, we worked in finite single-particle shell-model

spaces, such as the pf shell. We used the code SHERPA [26, 27] to generate unrestricted

Hartree-Fock states |ΨHF 〉; SHERPA reads in interaction files in a shell-model basis, and can

handle even and odd number of protons and neutrons, and allows for arbitrary triaxility. We

then projected out the norm and Hamiltonian matrices using both quadrature and linear

algebra.

There are two practical choices which must be made. The first is one of tolerance of small

values; the second is the choice of mesh of Euler angles for evaluating matrix elements.

When solving the generalized eigenvalue equation (9), the norm matrix often is not for-

mally invertible, because it has eigenvalues which either are zero or are very small. Such

tiny eigenvalues generally have numerical noise and including them leads to unphysical solu-

tions. Hence one needs to choose a tolerance ǫ; for any eigenvalues less than ǫ we exclude the

associated subspace. We found a tolerance of ǫ ∼ 0.001 worked satisfactorily. One also has

to choose a tolerance for satisfying the sum rule (16). This essentially dictates the maximal

J used in inversions. Again, we found that a tolerance of ∼ 0.001 worked satisfactorily, that

is,
∑Jmax

J fJ ≥ 0.999 determined Jmax. If we chose a smaller Jmax, so that the sum rule on

the norm was not fulfilled, we obtained erroneous results. This is the equivalent of choosing
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too few mesh points for quadrature. The results were stable, albeit less efficient, with a

choice of larger Jmax.

In order to solve for the projected Hamiltonian and norm matrices, one must first choose

a mesh of Euler angles such that the linear equations are solvable. For our initial inversions

we found a simple mesh, which allowed us to invert each Euler angle separably, worked well.

To simplify our solution, we solved for each each quantum number J,K,M separately. To

make clear this approach, we we expand (14) to read

nijk =
∑

JKM

Dijk,JKMN
J
KM (17)

where

nijk ≡ 〈Ψ| exp(iαiĴz) exp(iβj Ĵy) exp(iγkĴz)|Ψ〉 (18)

=
∑

JKM

DJ
K,M(αi, βj , γk)N

J
K,M

=
∑

JKM

eiαiMdJMK(β)e
iγkK NJ

K,M

where dJMK(β) is of course the Wigner little-d function. By separable we mean the Euler

angles α,βj , γk run independent of each other and we solve (17) one index at a time. To begin

with, we use on the angles α, γ an equally spaced mesh γk = (k−1) 2π
2Jmax+1

, k = 1, 2Jmax+1,

(and similarly for αi). We analytically invert the finite Fourier sums using [25]

1

N

N
∑

k=1

exp

(

i
2πMk

N

)

= δM,0. (19)

and introduce the matrix

ZKk =
1

2Jmax + 1
exp(−iKγk). (20)

(where 2Jmax + 1 = N in Eq. (19), otherwise the inversion would not be analytic) which we

multiply by the result of Eq. (18) to arrive at the intermediate quantity

nj,MK =
∑

ik

ZMiZKknijk =
∑

J

dJMK(βj)N
J
MK . (21)

At this point we have done two-thirds of the work. We have ‘projected’ the magnetic

quantum numbers K and M ; all that remains is to project out total J .

To obtain projection on total J , we also need a mesh on β. We chose an equally spaced

mesh on βj :

βj = (j − 1/2)
π

N
, j = 1, N (22)
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where N = Jmax + 1 if an even system and = Jmax + 1/2 if an odd number of nucleons. To

invert, construct

∆J ′J
MK =

∑

j

dJ
′

MK(βj)d
J
MK(βj), (23)

with J, J ′ ≥ |M |, |K|. (This step is inspired by singular value decomposition treatment of

nonsquare matrices, although we are not formally carrying out singular value decomposi-

tion.) The matrix ∆J ′J is real and symmetric with fixed M,K. We numerically confirmed,

for J ≥ max(|K|, |M |), it is invertible and has nonzero (and nonnegative) eigenvalues. We

construct from the result of Eq. (21) another intermediate matrix,

ÑJ ′,MK =
∑

j

dJ
′

MK(βj)nj,MK. (24)

Then we simply solve
∑

J

∆J ′J
MKN

J
MK = ÑJ ′,MK . (25)

In a similar fashion we solved for HJ
KM and then could solve Eq. (9). We confirmed our

matrices were the same using either quadrature or linear algebra to project.

IV. EXAMPLE APPLICATIONS

We give two brief example applications of the method, both in the pf shell. The first,

48Cr, shows the level of agreement between projection by quadrature and linear algebra

projection. We have done numerous other tests in other nuclei and other model spaces,

including multi-shell spaces, and find similar agreement. The second exhibits good agree-

ment of yrast excitation energies in 60Fe between full shell-model diagonalization and linear

algebra projected Hartree-Fock.

Table I shows the low-lying projected Hartree-Fock spectra of 48Cr computed in the

pf shell with GXPF1A [21, 22]. We show four calculations, two quadrature calculations

with 20 and 40 points, and two linear algebra projection (LAP) calculations, one with a

full inversion and one with the ‘need-to-know’ modification described in section V. The

quadrature calculation with 40 points on each angle, or 403 = 64, 000 evaluations agrees

with both the full LAP (12,615 evaluations) and the need-to-know (4,375 evaluations) to

within 2 keV, except for the J = 12 state, which agreed within ∼ 10 keV. (This latter had a

fractional occupation fJ = 0.007, close to our tolerance, and in general we found less reliable
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TABLE I. Low-lying energies, in MeV, of 48Cr from projected Hartree-Fock in the pf shell with

the interaction GX1A. fJ is the fraction of the Hartree-Fock state with angular momentum J ,

eqn. (15). ‘quad’ refers to projection by quadrature, eqn. (6) and (8) and the number of points,

while ‘LAP’ refers to linear algebra projection.

J fJ quad. quad. LAP LAP

20 pts 40 pts (full) (‘need-to-know’ )

0 0.0695 -97.9760 -97.9778 -97.9778 -97.9775

2 0.2817 -97.5024 -97.5044 -97.5044 -97.5037

4 0.3115 -96.5570 -96.5522 -96.5522 -96.5520

6 0.2077 -95.2162 -95.1115 -95.1115 -95.1114

8 0.0935 -104.2016 -93.3330 -93.3330 -93.3325

10 0.0292 -133.9126 -91.1718 -91.1719 -91.1717

12 0.0069 -141.5208 -88.8433 -88.8499 -88.8558

results in both quadrature and LAP for states with tiny fractional occupations, < 0.01.) The

quadrature calculation with 20 points on each angle, or 8000 evaluations, agrees for small J

but breaks down for larger angular momentum; although we don’t show it, this breakdown

is also signaled by a failure in the sum rule (16).

The other demonstration is of the yrast excitation energies of 60Fe, shown in Fig. 2,

also computed in the pf shell with the GXPF1A interaction. We compare results from full

shell-model diagonalization (black circles), also known as configuration-interaction method,

against our LAP projected Hartree-Fock results (red squares). For such a simple calculation

we get good agreement between the two calculations, although both diverge at high J from

experiment (blue diamonds).

Although we have shown only even-even cases, LAP works just fine for odd-A and odd-odd

cases. Of course, projected Hartree-Fock spectra do not always provide a good approxima-

tion to equivalent full shell-model diagonalization. Unsurprisingly the best agreement was

for rotational spectra of even-even nuclei. We plan to study this more systematically in the

future. In general the PHF spectra for even-even nuclei better approximate the numerically

exact results; in addition, systems with an odd number of particles generally mix in all

values of J and M , thus making the need-to-know algorithm less applicable. Nonetheless,
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FIG. 2. (Color online) Yrast excitation energies for 60Fe computed in the pf shell with the semi-

phenomenological interaction GXPF1A. Results are from full shell-model diagonalization (SM,

black circles) and linear algebra projected Hartree-Fock (PHF, red squares). For comparison we

also show the experimental values (blue diamonds). .

we have found excellent agreement between quadrature projection and LAP for odd-A and

odd-odd nuclei.

We carried out similar explorations for many nuclides in the sd- and pf shells, in the

sd-pf space, in the 0g7/2-1d-2s-0g11/2 space, and in a no-core shell model space including

all orbits up to principal quantum number N = 5. This included odd-A and odd-odd

nuclides. Qualitatively all results were similar to Fig. 1, and without cranking we seldom

found fJ > 0.001 for J > 16. (In spaces including opposite parity orbits we also projected

on parity, by taking |Ψ〉 ± P |Ψ〉 where P is the parity inversion operator.) Only when we

cranked did we get large J , but in those cases the distribution was again clustered on a

relatively small number of J values.

To illustrate the speed-up of calculations, we timed an uncranked calculation of 24Mg

in 5 major harmonic oscillator shells, as described in section II. Taking a 40 point mesh in

quadrature, or 64,000 evaluations, the calculation took 2800 seconds on a desktop machine,

while a 32 point mesh, or 33,000 evaluations, took 1440 seconds. With Jmax = 12 in LAP, or

8125 evaluations, the calculation took 265 seconds. (The ratio of times was greater than the

ratio of number of evaluations, due to an inefficient calculation of the Wigner D-matrices
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in Eqns. (6), (8) in the innermost loop of the quadrature code, that adds about 25% to

the time.) We did not parallelize these calculations, though they could be parallelized. As

discussed in the next section, further improvements in both methods are possible.

V. COMPUTATIONAL BURDEN AND IMPROVED EFFICIENCY THROUGH

‘NEED TO KNOW’

The motivation for introducing this new algorithm is to reduce the computational burder

of projecting good quantum numbers. In this section we discuss the origin and scaling of

the computational burden and outline an advanced algorithm with even greater efficiency.

Let’s briefly overview some details on computing matrix elements in this particular

framework [28]. Suppose, starting from Ns orthonormal single-particle basis states φa,

a = 1, Ns, represented by creation and destruction operators ĉ†a, ĉa, we construct general

single-particle states
∑

aΨaiφa, i = 1, Np. Then we can represent the Slater determinant

which is the antisymmetrized product of these Np states by the Ns × Np matrix Ψ, even

if the column vectors are not orthonormal. The overlap between two such general Slater

determinants is 〈Ψ|Ψ′〉 = detΨ†Ψ′; computing the matrix Ψ†Ψ′ is of the order of N2
pNs

operations, while the determinant can be computed using LU decomposition and takes

on the order of N3
p operations. As long as the two Slater determinants are not orthogo-

nal to each other, the one-body density matrix is ρab = 〈Ψ|ĉ†aĉb|Ψ〉 = (Ψ′(Ψ†Ψ′)−1Ψ′)ba,

and the (normalized) matrix element of a two-body operator V̂ =
∑

abcd Vabcdĉ
†
aĉ

†
bĉdĉc is

〈Ψ|V̂ |Ψ〉/〈Ψ|Ψ′〉 =
∑

abcd Vabcd(ρacρbd − ρadρbc). This last sum, which goes roughly like N4
s

(though some matrix elements are zero by selection rules), and because Ns > Np it is evalu-

tion of the Hamiltonian that is computationally burdensome. For more detailed exposition

on this, see [26, 28] and references therein. In other frameworks, i.e., coordinate space

mean-field calculations, the analysis may be different.

Previous calculations with quadrature also sought to reduce the number of evalutions of

the kernels, in particular the Hamiltonian kernel. These took two forms. The first is through

the use of symmetries [6, 7, 10, 13]. For example, for any wave function with A particles,

one has the symmetry under rotation

exp
(

i2πĴz
)

|Ψ〉 = (−1)A|Ψ〉. (26)
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Under the rotation in (26) a wave function with goodM picks up a phase ei2πM which is +1

for M an integer (for an even A) and −1 for M a half-integer (for odd A); the works cited

only considered A even. Using the identity

exp
(

−iβĴy
)

= exp
(

−iπĴz
)

exp
(

iβĴy
)

exp
(

iπĴz
)

, (27)

one can, incorporating (26), arrive at the identity for the norm kernel

〈

Ψ
∣

∣

∣R̂(α, β, γ)
∣

∣

∣Ψ
〉

= (−1)A
〈

Ψ
∣

∣

∣R̂(π − α, β, γ − γ)
∣

∣

∣Ψ
〉∗

(28)

and several other related symmetries, which reduce the number of evaluations by roughly a

factor of 2. Further symmetries can be found if the wave function has D2 symmetry, so that

exp
(

iπĴy
)

|Ψ〉 = |Ψ〉. (29)

Our Hartree-Fock code does not enforce this symmetry. Nonetheless, one could certainly

exploit these symmetries, especially (26), although it would require a non-analytic inversion

on the angles α, γ rather than the analytic finite Fourier in Eqns. (19),(20). As discussed

below, finding numerically invertible meshes is not trivial, and we leave this important

question to future work.

A second strategy for reducing evaluations is skipping over elements of the kernel with

tiny values, that is, if for a given set of Euler angles Ω the magnitude of the norm kernel

〈Ψ|R̂(Ω)|ψ〉 is very small, the corresponding 〈Ψ|ĤR̂(Ω)|ψ〉 is also assumed to be very small

and not evaluated and treated as zero. We investigated this possibility and, in the cases

tried, eliminated less than 25% of evaluations. One could imagine for superdeformed cases,

however, the fraction would be larger.

Following the theme of the above strategies for reducing the number of required evalua-

tions, we pursued a new strategy.. As in our implementation, the norm matrix elements are

far cheaper than the Hamiltonian, we devised a ‘need to know’ methodology: (1) using a

large Jmax, compute the norm matrix elements and the fJ , confirming that the sum rule (16)

is satisfied; (2) using some cutoff fmin, selected the occupied values of J such that fJ > fmin,

typically around 10−3; (3) solve (11) and (12) but using only the occupied values of J in the

sum. This means fewer terms in the expansion and thus a corresponding smaller number of

Euler angles Ωi at which to evaluate the computationally expensive left-hand side of (12) in

particular.
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We can sketch out the comparative computational burden. For most of our cases, we

found quadrature meshes between 253 = 15, 625 Euler angles and 323 = 32, 768 angles were

sufficient. Suppose we have a Jmax = 12. In the simplest possible mesh for linear algebra

projection (LAP), J runs from 0 to 12, and M,K run between -12 and 12; thus the number

of evaluations are 13× 25× 25 = 8125 Euler angles, or between half and a quarter as many

evaluations required as for quadrature. In fact, this is overcounting: the minimal number of

evaluations should be, for each occupied value of J , a sum over all combinations of allowed

M and K or 2J + 1 for each, that is,
∑Jmax

J=0 (2J + 1)2 ≈ (4/3)J3
max which is a factor of 3

smaller still. While we have not yet implemented such a minimal mesh for LAP, we did

implement a ‘need to know’ mesh. For example, if one has only even J values, then the

number of evaluations is half as much. This involves inverting ∆J ′J
KM only for select values

of J ′, J . We gave such an example for 48Cr in section IV.

We found, however, the invertibility of the matrix ∆J ′J
KM as defined in Eq. (23) is surpris-

ingly sensitive to both the choice of Js and to the angles βi as in Eq. (22). Other choices

for {βj} must be checked individually so that ∆J ′J
KM is invertible. We succeeded in the case

of 48Cr, by taking only the even values of J, J ′ and skipping every other value of βi in the

mesh (22), reducing the number of evaluations from 12,615 to 4,375, but in other cases we

were not successful. Fortunately the invertibility is easy to know, as it depends upon the

eigenvalues of the symmetric matrix ∆J ′J
KM . We found as long as the eigenvalues were > 10−4

we got good results. While further investigation is needed, this approach looks promising.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed and demonstrated a new method of projecting angular momentum

using linear algebra. Our initial implementation demonstrates the method works and, for

moderately high angular momentum J , is computationally competitive, in many cases re-

quiring significantly fewer evaluations than standard quadrature methods. While for our

demonstrations we mostly used the most straightforward separable inversion, we demon-

strated a ‘need-to-know’ inversion, where one computed the fractional occupations fJ via

the norm matrix and then used a reduced sampling for extracting the computationally ex-

pensive Hamiltonian matrix. Because the inversion becomes sensitive to the choice of angles,

further investigation into these improved inversions is suggested. We also leave to future
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work application to systems beyond shell-model spaces (i.e., coordinate-space mean-field

wave functions), to cases with multiple initial states, e.g., generator-coordinator and rela-

tive methods, to transitions, and other finite quantum numbers such as isospin and particles

number [20].
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Science, Office of Nuclear Physics, under Award Number DE-FG02-96ER40985, as well as
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Jiao for inspiring discussions.
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