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Background: Deuteron induced reactions are widely used to probe nuclear structure and astrophysical informa-
tion. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques.

Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order
to arrive at sets of coupled integral equations in one variable. However, it needs to be demonstrated that their
solution based on separable interactions agrees exactly with solutions based on non-separable forces.

Methods: Momentum space Faddeev equations are solved with non-separable and separable forces as coupled
integral equations.

Results: The ground state of 6Li is calculated via momentum space Faddeev equations using the CD-Bonn
neutron-proton force and a Woods-Saxon type neutron(proton)-4He force. For the latter the Pauli-forbidden
S-wave bound state is projected out. This result is compared to a calculation in which the interactions in the
two-body subsystems are represented by separable interactions derived in the Ernst-Shakin-Thaler framework.

Conclusions: We find that calculations based on the separable representation of the interactions and the orig-
inal interactions give results that agree to four significant figures for the binding energy, provided that energy
and momentum support points of the EST expansion are chosen independently. The momentum distributions
computed in both approaches also fully agree with each other.

PACS numbers: 21.45.-v,27.20.+n
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I. INTRODUCTION

A variety of applications of nuclear physics require the understanding of neutron capture on unstable nuclei. Due
to the short lifetimes involved, direct measurements are currently not possible, and thus indirect methods using (d,p)
reactions have been used for both the direct capture [1, 2] as well as the compound [3] components. A recent review
on (d,p) reactions and its connection to neutron capture can be found in [4]. In addition, single neutron transfer
(d,p) reactions can be used to constrain proton capture cross sections, due to mirror symmetry (e.g. [5]). Beyond
these astrophysical motivations, single-nucleon transfer reactions involving the deuteron have been the preferred tool
to study shell evolution in nuclear structure, both for nuclei close and far from stability (see Refs. [6, 7] for two recent
examples). In all these cases, a reliable reaction theory for (d,p) is a critical ingredient.
Scattering and reaction processes involving deuterons either as projectile or as target are perhaps the most natural

three-body problem in the realm of nuclear reactions. The binding energy of the deuteron is so small that its root-
mean-square radius is significantly larger than the range of the force. That means that when a deuteron interacts
with a compact, well bound nucleus, one may expect that it will behave like a three-body system consisting of proton
p, a neutron n, and a nucleus A. The obvious three-body reactions are elastic scattering, rearrangement and breakup
processes. In order to describe those processes on the same footing, deuteron-nucleus scattering should be treated at
least at the three-body level. Note that if the target itself has low-lying excitations, one may need to go beyond the
pure three-body treatment, see e.g. [8]. However, for the application we consider here (namely 6Li ≡ n+ p+α), one
expects the three-body treatment to be sufficient.
The three-body Hamiltonian governing the dynamics of the (d,p) reactions contains the well understood nucleon-

nucleon (NN) interaction as well as an effective interaction between the nucleons and the target. Commonly these
nucleons-nucleus interactions are parameterized by phenomenological optical potentials which fit a large body of
elastic scattering data [9–11].
The application of momentum space Faddeev techniques to nuclear reactions has been pioneered in Ref. [12], and

successfully applied to (d,p) reactions for light nuclei [13]. However, when extending these calculations to heavier
nuclei [14, 15], it becomes apparent that the screening techniques employed for incorporating the Coulomb interaction
in Faddeev-type reaction calculations with light nuclei cannot be readily extended to the heaviest nuclei. Therefore,
a new method for treating (d,p) reactions with the exact inclusion of the Coulomb force as well as target excitation
was formulated in Ref. [16]. This new approach relies on a separable representation of the pairwise forces.
Separable representations of the forces between constituents forming the subsystems in a Faddeev approach have

a long tradition in few-body physics. In the context of describing light nuclei like 6Li [17–19] and 6He [20] in a
three-body approach, rank-1 separable interactions of Yukawa-type have been successfully used. In the case of the
three-nucleon problem, separable representations for the NN force of higher rank had to be developed in order to
improve the agreement with exact Faddeev calculations [21–24]. Those were based on the scheme suggested by
Ernst-Shakin-Thaler [25] (EST).
The pioneering work of Hlophe and collaborators [26–28] demonstrated that an EST-based separable interaction of

rank up to 5 provides a precise description of nucleon-nucleus elastic scattering for a wide range of energies, including
nuclei as heavy as 208Pb. The development of these separable complex (and energy dependent) effective potentials
opens the path to apply the method of Ref. [16] to the three-body A(d, p)B reaction problem.
Since a separable expansion of the nuclear transition amplitudes can be viewed as a basis expansion, it is critical to

understand the convergence of the numerical results. In order to benchmark these calculations, one needs to compare
to the solution of the problem without the use of separable interactions. Such a comparison was successfully carried
out for neutron-deuteron scattering at 10 MeV [29], and at slightly higher energies in Ref. [30]. Both studies showed
that, for a converged expansion of the force in the two-body subsystems, observables in the three-body system agree.
For the applications we have in mind, the benchmarks need to be performed for the A+d case in a regime for which

non-separable solutions are possible and exact. Furthermore, our work aims to establish that the approach based on
separable two-body transition matrices is equivalent to the approach using those transition matrices directly, given
the convergence in the expansion. We choose as benchmark, the ground state of 6Li because there is a large number
of reference calculations in the literature; our goal is for an agreement between the separable and the non-separable
approach of up to four significant figures in the binding energy. The ultimate goal is to apply the separable approach
to nuclear reactions. Here we expect to lose some precision in solving the Faddeev equations in the continuum. Note
that benchmarks performed for the four-nucleon bound state ensured 4 digit accuracy [31] while the corresponding
work for positive energies provided only a 2-digit accuracy [32]. This should also be sufficient for the problem we are
considering, particularly when computing (d,p) observables.
In this work, our EST-based separable expansion uses off-shell transition amplitudes at negative energies as basis

states. Those states depend on two parameters, namely the energy and the off-shell asymptotic momentum, which are
chosen independently. This is in contrast to previous work on the neutron-deuteron system [21, 22], which did not
explore the full parameter space. The effective interactions in the neutron-alpha and proton-alpha channels are given
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by a Woods-Saxon type potential fitted to phase shifts in the S- and P-wave channels. Since the nα Woods-Saxon
potential supports a bound state in the S-wave two-body channel, which is Pauli forbidden, we derive a projection
scheme for both approaches which differs from previous works [18, 33] in that it does not add additional Faddeev
components, but rather only modifies the respective two-body transition amplitudes.
In Sec. II a brief summary of the theory is provided, including the three-body equations we solve and the new

formulation used to project out the Pauli forbidden S-wave state in the neutron(proton)-alpha channel. The inputs
to the problem are presented in Sec. III A, including the interactions that govern the two-body subsystems, and the
results for the 6Li binding energy and wavefunction are discussed in Sec. III B and III C. Our findings are summarized
in Sec. IV.

II. FORMAL CONSIDERATIONS

A. Faddeev Equations for the ground state of 6Li

The bound state of three particles with masses mi, mj, and mk and spins ji, jj , and jk which interact via pairwise
forces V i ≡ Vjk (i, j, k = 1, 2, 3 and cyclic permutations thereof) is given by the Schrödinger equation, which reads in
integral form

|Ψ〉 = G0(E3)

3
∑

i=1

V i|Ψ〉. (1)

Here the free propagator is given by G0(E) = (E3 −H0)
−1, where H0 stands for the free Hamiltonian and E3 for the

binding energy of the three-body system. Introducing Faddeev components

|Ψ〉 =
3
∑

i=1

|ψi〉 ≡ |ψjk〉+ |ψki〉+ |ψij〉, (2)

with

|ψi〉 = G0(E3)V
i|Ψ〉, (3)

leads to three coupled integral equations for the three components |ψi,j,k〉,

|ψi〉 = G0(E3) ti
∑

j 6=i

|ψj〉. (4)

The operator ti = V i + V iG0(E3)ti describes the two-body t-matrix in the subsystem jk. In order to solve Eqs. (4)
standard Jacobi momenta are used,

~pk ≡ ~pij = µij

(

~ki
mi

−
~kj
mj

)

~qk ≡ ~qij = µ3b,k

(

~kk
mk

−
~ki + ~kj
mi +mj

)

. (5)

Here the two-body reduced mass µij and the three-body reduced mass µ3b,k are given by

µij =
mimj

mi +mj

µ3b,k =
mk(mi +mj)

M
, (6)

with M = mi +mj +mk being the total mass of the system.
Instead of using a three-dimensional Jacobi basis, we expand into momentum eigenstates which depend on the

magnitude of the momenta and angular momentum eigenstates. The orbital angular momenta of the three particles
are coupled to total angular momentum J and its third component MJ ,

|pkqkαk〉(ij)k = |pkqk((lk(jijj)s)Jij(λkjk)Jk)JMJ 〉(ij)k, (7)
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which are normalized as

(ij)k〈p′kq′kα′
k|pkqkαk〉(ij)k =

δ(p′k − pk)

p′kpk

δ(q′k − qk)

q′kqk
δα′

k
αk
. (8)

The notation (ij)k indicates that k is the spectator.
Since we represent each Faddeev component |ψk〉 in its natural set of Jacobi coordinates |pkqkαk〉(ij)k , a trans-

formation between the sets (jk)i to (ij)k and (ki)j to (ij)k is required. The partial wave representation of these
transformations can be calculated as outlined in [34] and can be written as an integral over the cosine x of the relative
angle of pk and qk of the Faddeev components evaluated at shifted momenta π′

j = π′
j(p

′
kqkx) and χ

′
j = χ′

j(p
′
kqkx). All

geometrical information can be parameterized by functions Gα′

k
α′

j
(p′kqkx). We give more details on these transforma-

tions in Appendix A.
Inserting complete sets of states in Eqs. (4) and making use of the geometrical coefficients Gα′

k
α′

j
(p′kqkx), we arrive

at a set of three coupled Faddeev equations:

ψαk

k (pk, qk) = G0(Eqk ; pk)
∑

α′

k

∫

dp′kp
′2
k t

αkα
′

k

k (pk, p
′
k;Eqk)

×
∫ 1

−1

dx

[

∑

α′

i

Gα′

k
α′

i
(p′kqkx) ψ

α′

i

i (π′
i, χ

′
i) +

∑

α′

j

Gα′

k
α′

j
(p′kqkx) ψ

α′

j

j (π′
j , χ

′
j)

]

, (9)

where we introduced the pair kinetic energy Eqk = E3 − q2k
2µ3b,k

and the free three-body propagator

G0(Eqk ; pk) =
1

Eqk − p2

k

2µij

. (10)

The two-body t-matrix t
αkα

′

k

k in the Jacobi coordinates (ij)k is given by the Lippmann-Schwinger equation (LSE),

t
αkα

′

k

k (pk, p
′
k;Eqk) = V k;αkα

′

k(pk, p
′
k) +

∑

α′′

∫

dp′′kp
′′2
k V k;αkα

′′

k (pk, p
′′
k) G0(Eqk ; p

′′
k) t

α′′

kα
′

k

k (p′′k, p
′
k;Eqk). (11)

For brevity, we labeled the partial wave channels using three-body quantum numbers αk. Since the LSE corresponds
to a two-body problem at an off-shell energy Eqk , the interactions and t matrices will only dependent on quantum
numbers of the two-body subsystems and will be diagonal in the spectator quantum numbers.
As is well known (see e.g. [35]), if the t matrix in the subsystems is separable,

t
αkα

′

k

k (pk, p
′
k;Eqk) =

∑

mn

hαk
m (pk) τ

αkα
′

k
mn (Eqk ) h

α′

k
n (p′k), (12)

the coupled integral equations in two variables, Eqs. (9), can be reduced to coupled integral equations in one variable
(

see Eq. (A5)
)

. The indices {m,n} represent the rank of the separable potential, and k stands for the index of
the Faddeev component. It is possible, with an appropriate choice of integration variables and the introduction of
the modified geometric functions G̃α′

k
α′

j
(qiqkx) as defined by Eq. (A6), to obtain a separable form for the Faddeev

amplitudes:

ψαk

k (pk, qk) ≡ G0(Eqk , pk)
∑

m

hαk
m (pk) F

(k)
mαk

(qk). (13)

Reinserting the above expressing into Eqs. (9) leads to a coupled set of equations for the amplitudes F
(k)
mαk

(qk),

F (k)
mαk

(qk) =
∑

να′

i

∫

dq̃i q̃
2
i

[

∑

nα′

k

τ
αkα

′

k
mn (Eqk) Z

(ki)
nα′

k
,να′

i

(qk, q̃i)

]

F
(i)
να′

i

(q̃i)

+
∑

να′

j

∫

dq̃j q̃
2
j

[

∑

nα′

k

τ
αkα

′

k
mn (Eqk ) Z

(kj)
nα′

k
,να′

j

(qk, q̃j)

]

F
(j)
να′

j

(q̃j), (14)

where all amplitudes are generated by cyclic permutations of (ijk). The functions Z
(ki)
nα′

k
,να′

k

(qk, q̃i) are the so-called

transition amplitudes [35] coupling the different types of subsystems. For completeness, the expressions are explicitly
given in Appendix A. We solve both sets of Faddeev equations using iterative Lanczos-type techniques [36].
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B. Treatment of Pauli Blocking in the Faddeev Equations

Three-body models of nuclei or nuclear reactions require taking Pauli blocking into account to remove components
of the wavefunction that would disappear under full anti-symmetrization of the (A+2)-body problem. Though this
topic has already been extensively treated in the literature (see e.g. [18, 33, 37–39]), we need to pick it up again and
develop a formulation for projecting out a Pauli forbidden state in momentum space Faddeev equations that works
for separable and non-separable forces alike.
Let us assume that the Pauli forbidden state is created by a potential V i in the subsystem i. This two-body bound

state with the wave function |φi〉 is a normalized eigenstate of Hi = H0 + V i. It can be projected out by introducing
the channel Hamiltonian

H̃i = H0 + V i + V̂ i = Hi + Ṽ i, (15)

where V̂ i = λ|φi〉〈φi| with λ being a large number. The Faddeev equations require two-body transition matrices as
input. Thus one needs

t̃i(z) = Ṽ i + Ṽ iG0(z)t̃i(z), (16)

with G0(z) being the free resolvent with z = E + iε. In this derivation we will drop the subscript i, representing the
arrangement channel, for brevity. The discussion is general for each pair that contains forbidden states. Using the
Gell-Mann-Goldberger relation [40] in the form

t̃(z) = t(z) +
(

1 + V G(z)
)

t̂(z)
(

1 +G(z)V
)

, (17)

where G−1(z) = (z −H), and t̂(z) an operator fulfilling the LSE,

t̂(z) = V̂ + V̂ G(z)t̂(z) = V̂ + V̂ G̃(z)V̂ . (18)

Here G̃−1(z) = (z − H̃). Since V̂ is separable and of rank-1, the analytic solution for t̂ is separable and of rank-1,

t̂(z) = |φ〉 1
1
λ − 〈φ|G(z)|φ〉 〈φ|. (19)

Using V G(z) = t(z)G0(z) Eq. (17) becomes

t̃(z) = t(z) +
|η(z)〉〈η̄(z)|
1
λ − 1

z−Eb

, (20)

where Eb represents the two-body energy for the bound state b that needs to be projected out, and

|η(z)〉 =
(

1 + t(z)G0(z)
)

|φ〉 ,
〈η̄(z)| = 〈φ|

(

1 +G0(z)t(z)
)

. (21)

Equation (20), already presented in Ref. [41], allows to take the limit λ → ∞ analytically. It remains to express the
states in Eq. (21) in a more convenient fashion. Inserting the identity 1 = G−1

0 (z)G0(z) and using the representation
G(z) = G0(z) +G0(z)t(z)G0(z) of the full resolvent leads to

|η(z)〉 = (1 + t(z)G0(z))|φ〉
= (z −H0)G(z)|φ〉
= (z −H0)

1

z − Eb
|φ〉 (22)

Similarly, one obtains

〈η̄(z)| = 〈φ|(1 +G0(z)t(z))

=
1

z − Eb
〈φ|(z −H0) . (23)

Thus, the modified transition amplitude, in which the Pauli-forbidden state is projected to infinity becomes with
z ≡ E,

t̃(E) = t(E)− (E −H0)
|φ〉〈φ|
E − Eb

(E −H0). (24)
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This modified two-body transition amplitude can easily be implemented in the Faddeev equations as written in Eq. (9).
Since different channels may have Pauli-forbidden states at different energies, in general, one has Eb ≡ Eb(i). Although
in this section we have dropped the explicit mention of the index i, Pauli-forbidden states in different subsystems can
be implemented without any problem.
In case there are several Pauli-forbidden states in a specific channel of a subsystem, it is straightforward to generalize

Eq. (24) to give

t̃(E) = t(E)− (E −H0)
∑

b

|φb〉〈φb|
E − Eb

(E −H0), (25)

where b runs over the number of Pauli-forbidden states.
Although the expression of Eq. (24) was presented in Ref. [18], it was not used in this form. Rather the Faddeev

equations were modified to explicitly accommodate the two-body bound state being projected out. In fact, due to
the difference (E −H0), where E is the energy of the subsystem and thus depending on the spectator momentum q,
the expression of Eq. (24) is not a priori separable in the coordinates needed in the Eqs. (14). This makes the task of
incorporating the Pauli projection into the separable expansion somewhat challenging.
To proceed, we first recall the basic properties of the generalized EST separable representation scheme [42]. The

EST separable potential in any given partial wave has the form

vsep(p′, p) =
∑

lm

hl(p
′) λlm hm(p), (26)

where the form factors are given as the off-shell t matrices

hl(p
′) ≡ t(p′, pl;El), (27)

corresponding to the original potential V . The strength of the potential is represented by matrix elements λlm which
depend entirely on the form factors. This implies that the potential vsep(p′, p) is completely determined by the choice
of form factors. According to Eq. (27), the latter are uniquely specified by the EST support points {El, pl}, where El

is a fixed energy and pl a fixed momentum. We shall refer to El as the support energy and pl the support momentum
hereafter. The momentum pl can either be on-shell or off-shell for positive values of El. For negative support energies,
pl is always off-shell. The number of EST support points give the rank of the separable expansion as well as the upper
bound for the indices l and m. If the potential used to compute t(p′, pl;El) supports a bound state, the latter will be

present in the separable expansion. If this bound state is a Pauli forbidden state, we choose the potential Ṽ defined in
Eq. (15) as the starting point in the EST construction and the Pauli forbidden state is projected out. Constructing a

separable expansion of Ṽ implies that the form factors hl = t(p′, pl;El) in Eq. (26) are replaced by h̃l(p
′) = t̃(p′, pl;El).

Additionally, the matrix elements λlm must be replaced by λ̃lm, where the latter are computed using the form factors
h̃l(p

′). Starting from Eq. (24) the expression for the modified form factors is given by

h̃l(p
′) = hl(p

′)− (El − Ep′)

(Eb − Ep′)
hb(p

′)
1

El − Eb
hb(pl)

(El − Epl
)

(Eb − Epl
)
, (28)

where hb(p
′) ≡ 〈p′|V |φ〉. The momentum subscripts on the energy variables imply Epl

= 2µp2l . The explicit derivation

of Eq. (28) is given in Appendix B. Using h̃(p) in the separable expansion is straightforward and does not increase the
rank. Multiple Pauli forbidden bound states simply produce additional modifications to the form factors in accordance
with Eq. (25).

III. RESULTS AND DISCUSSION

A. Interactions in the two-body subsystems

For computing the ground state of 6Li in a three-body model, we need the interactions in the different subsystems,
np, nα, and pα. For the np subsystem, we employ the CD-Bonn potential [43] and include only the deuteron channel
(3S1 −3 D1). This potential is one of the so-called ‘high-precision’ potentials that fit the two-nucleon observables
up to 300 MeV with χ2 ≈ 1. The proton and neutron masses given in Ref. [43] are mp = 938.2723 MeV and
mn = 939.5656 MeV. For the nα (pα) subsystem, we ignore the microscopic structure of the alpha-particle and
employ a phenomenological interaction that is fitted to the low-energy nucleon-alpha phase shifts. Here we include
the S1/2, P1/2, and P3/2 partial waves. Our choice is the interaction given by Bang [44], which is of Woods-Saxon
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type, and supports a Pauli-forbidden S-wave bound state. For this work, we slightly modify the Bang potential by
changing the central potential depth from −43 MeV to −44 MeV, to improve the description of the nα and pα phase
shifts, particularly of the P-waves below Elab = 10 MeV. As mass of the alpha particle we use mα = 3727.379 MeV.
The S- and P-wave phase-shifts for n + α and p + α scattering calculated with this potential are shown in Fig. 1.
They are compared to the phase shifts [45] extracted from an R-matrix fit to data.
To describe the pα interaction, we add to the nα potential a Coulomb force that consists of a short-range part,

corresponding to a charged sphere of radius Rc = 1.25 × 41/3 fm and the standard long-range point Coulomb force
[33],

Vc(r) =

{

Z1Z2e
2

2Rc

[

3−
(

r
Rc

)2
]

r < Rc

Z1Z2e
2

r r > Rc,
(29)

where Z1Z2 = 2, and e2 = 1.43997 MeVfm.

B. Binding energy of 6Li: separable vs non-separable

In this section, we consider two approaches to solve the momentum-space Faddeev equations for the ground state
of 6Li using the two-body interactions described in Section IIIA as input. The first approach consists of solving the
bound state Faddeev equations directly as given by Eqs. (9) leading to an ‘exact’ solution of the three-body bound
state problem. The numerical results are obtained using Gauss-Legendre quadratures. The momentum grids for
converged results consist of Np = 200 points for the pair momentum p and Nq = 200 for the spectator momentum
q. The maximum values for the above-mentioned momenta are set to p = 60 fm−1 and q = 60 fm−1, respectively.
This calculation yields E3 = −3.787 MeV for the three-body binding energy of 6Li when no Coulomb interaction
is included and E3 = −2.777 MeV with the Coulomb interaction of Eq. (29). The Coulomb potential is treated by
introducing a cutoff radius Rcut beyond which Vc(r) is set to zero. The momentum space representation is evaluated
using either an analytic or numerical Fourier transform. Both methods are numerically stable. To further test the
numerical stability of the calculation, the binding energy was computed using different values of the cutoff radius.
We found that the result for E3 is independent of the cutoff radius for Rcut > 15 fm. The experimental value is
Eexp

3 = −3.699 MeV from Ref. [46]. Our three-body calculation slightly underbinds 6Li, a standard feature of these
three-body models. The difference is typically accounted through a three-body interaction [47].
The second approach for solving the Faddeev equations consists of two steps. First, the EST [42] scheme is

employed to construct separable representations of the two-body potentials given in Section IIIA. Then, the separable
interactions are used to solve Eqs. (14) in order to obtain the three-body binding energy as well as the Faddeev
amplitude according to Eq. (13). In the current example, the separable expansion is used to make a prediction for the
6Li three-body binding energy with a precision of four significant figures. To check the accuracy of this prediction,
the results are compared to the ones obtained directly without the separable expansion.
According to Eq. (27), the EST separable expansion employs solutions of the LSE as basis states. These states

depend on two parameters, the two-body energy El as well as the asymptotic momentum pl. We refer to each
combination of El and pl as an EST support point. It should be pointed out that if one employs the constraint
El = 2µp2l , with µ being the reduced mass of the two-body system, the basis states depend only on one parameter.
While the EST scheme [22, 29, 30] has been applied in solving Faddeev equations in separable form, those works did

not take advantage of the full parameter space by imposing pl =
√

2µ|El|. We make use of the full parameter space
for the basis states and choose pl and El independently as suggested in Ref. [42]. The bound state Faddeev equations
require off-shell two-body t-matrices as input in the energy range −∞ ≤ E2b ≤ E3. Therefore, a good separable
representation of the off-shell properties of the t-matrices is required to reproduce the direct calculation accurately.
A successful application of the EST scheme hinges on an effective selection of the support energies and momenta.

Since we are interested in a separable expansion for two-body energies E2b between −∞ and E3, we restrict ourselves
to negative energy support points. The off-shell t matrix has a smooth energy-dependence and is dominated by the
energy-independent Born term at large values of |E2b|. It is thus not necessary to incorporate support points at large
negative energies. In practice, it is sufficient to consider support energies in the range −100 MeV ≤ El ≤ 0.
The use of separable expansions for the two-body potentials introduces uncertainty in three-body observables. This

uncertainty must be quantified in order to make meaningful predictions. The dependence of E3 on the choice of
support points reflects the uncertainty in our procedure. By varying the latter while keeping the rank fixed can lead
to a quantitative estimate of this uncertainty. Carrying out this procedure for successively increasing ranks provides
means for making precise predictions of three-body observables using this approach.
Contrary to the smooth energy dependence of the off-shell t matrix, its dependence on the off-shell momenta is

much more intricate and is determined by the shape of the underlying potential. As a consequence, the predicted
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three-body observables show more sensitivity to the choice of the support momenta. To make an economic choice for
the latter, we first identify the relevant range of the t matrix in momentum space and define the support momenta
within it.

To illustrate how the support momenta are chosen, the off-shell t matrix corresponding to the CD-Bonn poten-
tial is computed for the 3S1 −3 D1 partial wave. Figure 2 shows the off-shell t matrix elements tlnp

′lnp
(p′, p;E2b)

for the np system as a function of the off-shell momentum p. The matrix elements t00 (p′, p;E2b) are depicted
in panel (a) while t22 (p′, p;E) and t20 (p′, p;E) are shown in panels (b) and (c). The center-of-mass energy
(c.m.) is fixed at E2b = −50 MeV. Results obtained using the CD-Bonn potential are indicated by solid lines
for p′ = 0.3 fm−1 and dashed lines for p′ = 0.8 fm−1. Corresponding t matrix elements calculated using a rank-6
separable representation of the CD-Bonn potential are illustrated by triangles for p′ = 0.3 fm−1 and diamonds for
p′ = 0.8 fm−1. The energies are in units of MeV while the momenta are given in fm−1. The support points are
{El, pl} = {−60, 0.4}, {−60, 1.1}, {−60, 2.5}, {−5, 0.4}, {−5, 1.1}, {−5, 2.5}. As mentioned above, the support ener-
gies are selected within the range −100 MeV ≤ El ≤ 0. Their specific values can be altered without compromising
the accuracy of the separable representation. However, the support momenta are chosen to reproduce the structure
of the t matrix below 5 fm−1. As a first guess, the momenta are chosen such that there is one in the vicinity of
each minimum or maximum. Improvement of the separable expansion is attained by further adjustment of the initial
values.

The choice of momenta is not unique since a slight change in the given values can still capture the structure of the
off-shell t matrix. However, changing the value of each support momentum by, e.g. 0.5 fm−1, can already lead to a
poor representation of the t matrix, as well as the three-body observables. It is thus imperative to check that each
chosen set of momenta captures the shape of the off-shell t matrix in order to ensure that the separable expansion
converges rapidly. It should be noted that, although the structure of the t matrix differs for each E and p′, the
regions of intricate momentum dependence remain mostly unaltered. For example, this can be seen by comparing
the t matrix at p′ = 0.3 fm−1 and p′ = 0.8 fm−1. Although the shape is quite different in each case, the features
that determine the location of the support momenta are situated at similar positions. Consequently, the support
points adjusted to reproduce the off-shell t matrix at p′ = 0.3 fm−1 are equally well suited for p′ = 0.8 fm−1. Thus,
by accurately representing the off-shell t matrix at a single energy by including several support momenta, one can
obtain an accurate representation of the off-shell t matrix at other energies. Although such a choice is specific to the
CD-Bonn potential, these support points would be applicable to any NN t matrix that exhibits either (1) a similar
off-shell structure or (2) a considerably less complicated dependence on the off-shell momenta. The structure of the
NN t matrix corresponding to most high precision and chiral potentials is similar in the low momentum region that
determines the support momenta. We thus expect that the support points determined for the CD-Bonn potential will
provide an equally good representation for all such NN potentials. For example, we verified that those same support
points yield excellent results for the high precision Nijmegen I [48] and AV18 [49] as well as the chiral potential of
Ref. [50]. Contrarily, the structure of the off-shell t matrix corresponding to the Woods-Saxon Bang potential is very
different from that of the NN t matrices, and thus an independent determination of the support momenta must be
carried out.

To quantify the uncertainty on the three-body binding energy, separable representations of successively increasing
rank are constructed for both, the CD-Bonn and the Bang potential. Table I shows several separable representations
of the CD-Bonn potential. The first and second columns give the label and rank of the separable potential. The EST
support energies and momenta are listed in the third and forth columns, respectively. The same information is given
in Table II for the Bang potential. To proceed, we first fix the EST support points for the Bang interaction while
varying those of the CD-Bonn potential. Table III shows the three-body binding energies for the ground state of 6Li
calculated using a variety of np separable representations taken from Table I. For this study we do not include the
Coulomb interaction. The EST8-4 separable representation of the Bang interaction defined in Table II is adopted in
the nα and pα subsystems. To ease comparison, we include in the last rows of Tables III and IV the exact results
obtained when solving Eq. (9) directly.

We observe that the numerical value for the binding energy fluctuates as the support points are varied. However, the
fluctuations decrease as the rank of the separable potentials is increased. From Table III we see that the uncertainty in
the binding energy is δE3 ≈ 50 keV for the rank 3 representation. Increasing the rank to five reduces the uncertainty
down to δE3 ≈ 5 keV. A further increase of the rank to six reduces the uncertainty to δE3 ≈ 0.5 keV, which
corresponds to a precision of four significant figures. In addition to the uncertainty associated with the selection of
the support energies, one must take into account the convergence of the binding energy with respect to the rank of
the separable potential. From Table III we see that increasing the rank from six to seven leaves the fourth digit of the
binding energy unaltered. This observation, together with the fact that δE3 < 0.5 keV, guarantees that the numerical
result for E3 is precise to four significant figures.

Next, the support points for the CD-Bonn potential are fixed and those corresponding to the Bang potential are
varied. Table IV is the same as Table III but shows results for different separable expansions of the Bang interaction.
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The EST8-1 separable representation of the CD-Bonn potential taken from Table I is adopted for the np subsystem.
Here we observe that rank-3 and rank-4 potentials lead to the uncertainties δE3b ≈ 40 keV and δE3b ≈ 13 keV.
Moreover, a rank-7 representation is needed in order to obtain an uncertainty of approximately 0.5 keV. To ensure
that the binding energy is converged to at least four significant figures, it is necessary to increase the rank to 8. The
predicted value for the three-body binding energy can thus be read off from Tables III and IV as E3b = −3.787 MeV,
in perfect agreement with the exact result.
The rapid reduction of the uncertainty observed in Tables III and IV is primarily due to the efficient choice of the

support momenta. To illustrate this point, we consider calculations in which the constraint pl =
√

2µ|El| is imposed.
We choose three sets of support support energies for the CD-Bonn potential, namely, El = [−150,−120,−80,−60,−45,
−35,−15,−5} MeV, {−180,−140,−100,−70,−55,−35,−10,−3} MeV, and {−200,−160,−120,−80,−40,−25,−10,
−4} MeV. These sets yield E3b = −3.803 MeV, E3b = −3.788 MeV, and E3b = −3.795 MeV, respectively. Here we
see that despite being rank-8, these representations lead to fluctuations in the third digit. This demonstrates that,
in order to obtain a result that is precise to four significant figures, it is essential that the full parameter space for
choosing a basis is considered and the support momenta are chosen independently from the support energies.
Finally we calculate the three-body binding energy of 6Li when the Coulomb interaction of Eq. (29) is included in

the description of the pα subsystem. The Coulomb interaction leads to a different structure of the the pα potential,
and the above analysis has to be repeated, leading to a different set of support points. The rank required to obtain a
precision of at least four significant figures remains unchanged at eight. Using a rank-8 separable representations for
the Coulomb and Bang potentials yields a three-body binding energy of -2.777 MeV which agrees completely with the
exact calculation. The support points were chosen to be {El, pl} = {-55,0.2}, {-55,1.0}, {-55,1.2}, {-55,3.0}, {-3,0.2},
{-3,1.0}, {-3,1.2}, {-3,3.0}.
Lastly, we want to comment that it is mandatory to perform the projection procedure for the Pauli-forbidden state

in the separable representation as in the exact calculation.

C. Properties of 6Li

After discussing the convergence and accuracy of the three body binding energy of 6Li, we need to consider properties
of the wave function obtained in both schemes, since we do not only want to have excellent agreement in the three-
body binding energy but also in observables derived from the wave function. To this aim, we consider the momentum
distributions with respect to the Jacobi coordinates of the wave function Ψ(~p, ~q). Choosing a specific set of Jacobi
variables, e.g. the set (ij)k, in which k is the spectator with respect to the pair (ij), the momentum distribution of
the spectator is given as

n(qk) =
∑

αk

∫

dpkp
2
k|Ψαk

(pk, qk)|2, (30)

and the momentum distribution of the pair is given as

n(pk) =
∑

αk

∫

dqkq
2
k|Ψαk

(pk, qk)|2. (31)

The momentum distribution of the different pairs in the ground state of 6Li are shown in panels (a) and (b) of
Fig. 3 on a linear as well as a logarithmic scale, where the corresponding pair is indicated in the round brackets of the
legend. The solid, dashed as well as dotted lines are calculated using the non-separable forces, whereas the crosses,
downward and upward triangles correspond to the same calculation using separable forces. The calculations are in
excellent agreement. For small momenta, the distribution in the (np) pair is about twice as large as the ones in the
(nα) and (pα) pairs, whereas for momenta larger than 2 fm−1 there is an order of magnitude (or more) difference
between the momentum distribution in the (np) pair and the (nα) and (pα) pairs, an indication of the high momentum
components of the CD-Bonn potential.
Panels (c) and (d) of Fig. 3 depict the momentum distributions of the spectator particle with respect the pair given

in brackets in the legend. For very small momenta q, the distribution of the alpha momentum with respect to the (np)
pair dominates by an order of magnitude over the ones of the two other spectator momenta. However, the logarithmic
scale in panel (d) shows that for different values of q, these roles interchange twice. Finally, for q ≥ 3.5 fm−1 the
distributions in which either the proton or the neutron are the spectators dominate, which, again is a reflection of the
high momentum components of the CD-Bonn potential.
As discussed in Sec. III A, the effective interaction between the neutron (proton) and the alpha particle is represented

by Woods-Saxon type potentials. Thus, in both subsystems there is a bound state in the S1/2-state, for the nα
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subsystem this bound state is at -10.326 MeV and for the pα subsystem at -8.879 MeV. Those bound states are
forbidden by the Pauli principle, and need to be projected out using the formulation outlined in Sec. II B. In both
subsystems we introduce an additional term to the potential according to Eq. (15), V̂ i = λi|φi〉〈φi|, and let the
parameters λi go to infinity.

In order to better understand the action of the parameters λnα = λpα ≡ λ, we choose a set of finite values for
λ and calculate the ground state three-body binding energy and expectation value as function of λ. The results of
these calculations are listed in Table V. To simplify this study, the Coulomb potential is here omitted, leading to
Vnα = Vpα. The expectation value of the total Hamiltonian is in this case given by

〈E3(λ)〉 ≡ 〈Ψ(λ)|H3b|Ψ(λ)〉
= 〈Ψ(λ)|H0 + Vnp + 2Vnα|Ψ(λ)〉, (32)

where H3b is the three-body Hamiltonian. The values of E3(λ) obtained from the solution of the Faddeev equation,
Eq. (9), start to agree with the expectation value calculated using Eq. (32) within 4 significant figures once λ exceeds
1000 fm−1. Letting λ → ∞ gives perfect agreement. In order to illustrate that the Pauli forbidden S1/2 state |φnα〉
is completely projected out for λ→ ∞, we define a probability

PTDB(λ) =
∑

α′

k

∫ ∞

0

q2k

∣

∣

∣

∣

∣

∫ ∞

0

dp′k p
′
k
2
φα′

k
(p′k)Ψα′

k
(p′k, qk;λ)

∣

∣

∣

∣

∣

2

dqk, (33)

which gives the overlap between the Pauli forbidden S1/2 state and the 6Li ground state wave function calculated for
a specific λ. A detailed discussion of this probability is provided in Appendix C. Obviously, this quantity is calculated
in the Jacobi coordinates where nα constitutes the subsystem. The calculated values of PTDB(λ) are listed in the
last column of Table V and clearly indicate that for λ ≥ 104 fm−1 the overlap is numerically zero.

Studying the evolution of the three-body binding energy as function of the parameter λ shows how the deep three-
body bound state including the Pauli forbidden states in the nα and pα subsystems moves to the physical three-body
bound state. However, the binding energy does not give further information about the characteristics of the bound
state. Since the Pauli forbidden states in the nα and pα subsystems occur in the S1/2 partial wave, the unphysical
deep bound state should be dominated by this partial wave. However, we know that the physical ground state is
dominated by P3/2 components. It is thus illustrative to investigate how the components of the ground state wave
function change as a function of the parameter λ. To proceed, we note that the probability for each partial wave state
|αk〉 in the three body wavefunction is given by

〈Ψαk
(λ)|Ψαk

(λ)〉 =
∞
∫

0

dpk dqk p
2
kq

2
k

∣

∣Ψαk
(pk, qk;λ)

∣

∣

2
. (34)

Here the index k represents the Jacobi coordinate (nα)p in which the proton is the spectator with momentum qk. We
recall that the three-body angular momentum states |αk〉 are constructed by coupling angular momentum states of
the pair |βk〉 to those of the spectator |γk〉, so that |αk〉 = |βk〉 ⊗ |γk〉. In the present case |βk〉 corresponds to the
S1/2, P1/2, and P3/2 partial wave states of the nα subsystem. To determine the probability for each of those two-body
states, one must sum over the angular momenta of the spectator γk. The probability for a state |βk〉 is thus given by

Nβ(λ) =
∑

γ

∞
∫

0

dp dq p2q2
∣

∣Ψα(p, q;λ)
∣

∣

2
, (35)

where α = {β, γ} and the subscript k is omitted for concision. Figure 4 shows the values of Nβ(λ) as a function of
λ for the 6Li three-body ground state. The solid, dashed, and dot-dashed lines represent the S1/2, P3/2 and P1/2

partial wave states of the nα subsystem. The vertical line indicates the value of λ for which the nα system becomes
unbound. As expected, for λ = 0 the ground state is completely dominated by the S1/2 state. This remains true for

values of λ smaller than 0.05 fm−1. It is worthwhile to note that, even when the nα subsystem becomes unbound,
the three-body ground state of 6Li is still dominated by the S1/2 component. Only when λ approaches 0.1 fm−1, the
probability of the S1/2 component rapidly decreases. The corresponding probability of the P3/2 rapidly increases to
its final value of about 70%. Moreover, the ground state acquires a P1/2 probability of about 20% and maintains an
S1/2 probability of about 10% which is due to the continuum states of nα, pα, and np subsystems.
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IV. SUMMARY AND OUTLOOK

In this work, we explore solving momentum-space Faddeev equations using separable interactions based on the EST
scheme [26–28], for bound three-body systems of the type n+ p+A. Our goal is to benchmark this separable method
against the standard approach of directly solving momentum-space Faddeev equations. We apply both approaches
to 6Li, taking the CD-Bonn [43] interaction for the np pair and the Bang [44] potential for the n(p)-α subsystems.
Our results for the 6Li bound state demonstrate that using a separable implementation of the Faddeev equations is
equivalent to solving them directly: the binding energies obtained with the separable interactions agree within 4-digits
with the exact calculation, and the momentum distributions are also in perfect agreement. Our values of the binding
energy obtained for 6Li with CD-Bonn and Bang are consistent with previous three-body calculations. Since we are
dealing with a bound state problem, including the Coulomb interaction in the momentum-space Faddeev equations
does not present a problem in both approaches.
As a consequence of our study, there are a few important developments worth highlighting. First and foremost,

we extended the EST construction of the separable interaction to include off-shell properties of the t-matrix by
allowing energy and momentum support points to be chosen independently. This proved to be critical for the high
quality description of the properties of the three-body system and to achieve the desired 4-digit precision. Second,
the energy and momentum support points developed for the np subsystem are independent of the choice of the NN
interaction as long as it describes the low energy behavior of the deuteron channel with high precision. The numerical
implementation valid for the CD-Bonn interaction will transport immediately to other high precision NN potentials as
well as chiral NN potentials. However, when solving the n+p+A problem for bound systems where A > 4, and given
the wide range of nucleon-nucleus effective interactions available, we expect one will need to inspect the properties of
the two-body nucleon-nucleus t-matrices carefully and revisit the issue of optimum energy and momentum support
points in those cases again. Similar to [26–28], we find here that the structure of the two-body t-matrices as a function
of energy and momentum determines the minimal rank needed for an accurate description of both the two-body and
three-body observables.
Another important development resulting from this study concerns the method used to project two-body Pauli-

forbidden states out of the model space. We have developed an approach that does not modify the Faddeev equations
and thus can be implemented straightforwardly in momentum-space Faddeev equations either in their non-separable
or EST-type separable representation. This approach is effective in projecting out the forbidden state at a minimal
computational cost. We also provide a generalization for dealing with an arbitrary number of Pauli-forbidden states
in a computationally efficient manner. This will be essential when moving to heavy systems.
This work lays the ground to now proceed to three-body scattering with EST-separable interactions. In the separable

formulation, the Coulomb interaction can be accurately taken into account even for complex nuclei with large Z as
outline in Ref. [16]. The next step is to tackle d + A elastic scattering below and above the three-body breakup
threshold, followed by the ultimate goal of applying the method to deuteron induced nuclear reactions on heavy ions,
at energies well above three-body breakup threshold.
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Appendix A: Explicit representation of non-separable and separable Faddeev equations

Here we summarize the explicit expressions entering our formulation of the Faddeev Eqs. (9) and (14). Besides
the t-matrix, the Faddeev equations in non-separable form require coordinate transformations from Jacobi momenta
that single out particle i to Jacobi coordinates that single out particle k. These are most conveniently performed
separately for orbital and spin space. Therefore, the basis states of Eq. (7) are first recoupled into an LS basis and
then the transformation is applied. The resulting geometrical function is then

Gαkαi
(pkqkx) =

∑

LS

(2S + 1)
√

(2Jij + 1)(2Jk + 1)(2Jjk + 1)(2Ji + 1)







lk sk Jij
λk jk Jk
L S J













li si Jjk
λi ji Ji
L S J







×8π2
L
∑

M=−L

{

Y ∗
lk(p̂k)Y

∗
λk
(q̂k)

}LM
{

Yli(−α~pk − β~qk
∧

)Yλi
(~pk − γ~qk
∧

)
}LM

×(−)si+2ji+jj+jk
√

(2sk + 1)(2si + 1)

{

ji jj sk
jk S si

}

. (A1)

The spherical harmonics Ylm(p̂) dependent on the angles p̂ of the vector ~p. For the evaluation, we choose a coordinate
system where the pair momentum is angular independent and the spectator momentum is in the x-y plane:

~pk =





0
0
pk



 ~qk =





qk
√
1− x2

0
qkx



 . (A2)

The curly brackets grouping the spherical harmonics indicate that they are coupled to a state of total orbital angular
momentum L and third component M . The mass ratios are given by

α =
mk

mj +mk
(A3)

β =
(mi +mj +mk)mj

(mi +mj)(mj +mk)

γ =
mi

mi +mj
.

For this case, the shifted momenta are given by

π′
i(pkqkx) =

√

α2p2k + β2q2k + 2αβpkqkx (A4)

χ′
i(pkqkx) =

√

p2k + γ2q2k − 2γpkqkx .

For the derivation, we followed similar steps as in Ref. [34]. Different but equivalent expressions that involve Legendre
polynomials can be derived [51]. We used the ones given above since the numerical implementation is stable even for
large orbital angular momenta.

For the derivation of Eq. (14), we insert the separable expansion Eq. (13) into the Faddeev equations. It is then
advantageous to substitute the p′k integral by an integral over qi or qj , respectively. The Faddeev equations then read

ψαk

k (pk, qk) = G0(Eqk , pk)
∑

α′

k

∫ 1

−1

dx

[

∫

dqiq
2
i t

αkα
′

k

k (pk, πk;Eqk)
∑

α′

i

G̃α′

k
α′

i
(qkqix)ψ

α′

i

i (π′
i, qi) (A5)

+

∫

dqjq
2
j t

αkα
′

k

k (pk, πk;Eqk)
∑

α′

j

G̃α′

k
α′

j
(qkqjx)ψ

α′

j

j (π′
j , qj)

]

.
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In this case, the geometrical function is defined by

G̃αkαi
(qkqix) =

∑

LS

(2S + 1)
√

(2Jij + 1)(2Jk + 1)(2Jjk + 1)(2Ji + 1)







lk sk Jij
λk jk Jk
L S J













li si Jjk
λi ji Ji
L S J







×8π2
L
∑

M=−L

{

Y ∗
lk
(γ~qk + ~qi
∧

)Y ∗
λk
(q̂k)

}LM {

Yli(−~qk − α~qi
∧

)Yλi
(q̂i)
}LM

×(−)si+2ji+jj+jk
√

(2sk + 1)(2si + 1)

{

ji jj sk
jk S si

}

. (A6)

The momentum vectors are chosen as

~qk =





0
0
qk



 ~qi =





qi
√
1− x2

0
qix



 , (A7)

and the shifted momenta change to

πk(qkqix) =
√

γ2q2k + q2i + 2γqkqix, (A8)

π′
i(qkqix) =

√

q2k + α2q2i + 2αqkqix.

Using this form of the Faddeev equations, it is easy to read off Eq. (14). Since the form factors of the separable
interaction are given a priori, it is possible to precalculate the angular integral leading to the definition

Z(ki)
nαk,ναi

(qk, qi) =

∫ 1

−1

dx hαk
n (πk)G̃αkαi

(qkqix)G0(Eqi , π
′
i)h

αi

ν (π′
i) . (A9)

The wave functions cannot be represented in a separable form. They are obtained from ψαk

k (pk, qk) using Eq.(2).

Thereby further coordinate transformations using either Gαkαi
(pkqkx) or G̃αkαi

(qkqix) are required to represent all
three Faddeev components in the same set of coordinates.

Appendix B: Projecting Pauli-forbidden states in case of separable potentials

In order to set up the formulation for projecting a Pauli-forbidden state to infinity when using separable potentials
based in the EST formulation, let us have a closer look at the functions |η(z)〉 and 〈η̄(z)| of Eqs. (21). The explicit
momentum space representation reads

〈η̄(z)|p〉 = 〈φ|
[

1 +G0(z)t(z)
]

|p〉
= 〈φ|G(z)G0(z)

−1|p〉
=
z − Ep

z − Eb
〈φ|p〉

=
z − Ep

z − Eb
〈φ|V G0(Eb)|p〉

=
z − Ep

z − Eb
〈φ|V |p〉 1

Eb − Ep
, (B1)

where we used the Schrödinger equation for 〈φ|p〉. The momentum subscript, p, on the energy variable, E, implies
Ep = p2/2µ, while the bound state energy is represented by Eb. Similarly, one obtains

〈p′|η(z)〉 = 〈p′|
[

1 + t(z)G0(z)
]

|φ〉
=

1

Eb − Ep′

〈p′|V |φ〉z − Ep′

z − Eb
. (B2)

Putting everything together and setting z ≡ E, Eq. (24) takes the explicit form

t̃(p′, p;E) = t(p′, p;E)− (E − Ep′)

(Eb − Ep′)

(E − Ep)

(Eb − Ep)

〈p′|V |φ〉〈φ|V |p〉
E − Eb

. (B3)
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The above expression clearly shows that the half-shell elements of t̃(p′, p;E) and t(p′, p;E) are identical, and for
E → Eb the pole of t is removed for t̃. However, due to the differences (E − Ep′) and (E − Ep), and having in mind
that energy E of the subsystem depends on the spectator momentum q in the Faddeev equations, t̃(p′, p;E) is not
yet in the separable form needed in Eqs. (14). At a specific off-shell support energy El and support momentum pl we
have

t̃(p′, pl;El) = t(p′, pl;El)−
(El − Ep′)

(Eb − Ep′)

〈p′|V |φ〉〈φ|V |pl〉
El − Eb

(El − Epl)

(Eb − Epl)
, (B4)

having in mind that these off-shell EST functions are characterized by {El, pl}, and only need to be linearly indepen-
dent and solutions of a Lippmann-Schwinger type integral equation [42]. The form factors that take into account the
projection of the Pauli-forbidden state to infinity read,

〈p′|t̃(El)|pl〉 ≡ h̃El,pl
(p′) = hl(p

′)− (El − Ep′ )

(Eb − Ep′)
hb(p

′)
1

El − Eb
hb(pl)

(El − Epl
)

(Eb − Epl
)
, (B5)

where hl(p
′) ≡ t(p′, pl;El) and hb(p

′) ≡ 〈p′|V |φ〉. These form factors also define the strength constants λnm [42].

Appendix C: Probability of the Pauli Forbidden State in the 6Li Ground State Wavefunction

The Pauli projection method described in Section II B shifts the energy of the forbidden two-body bound state
to positive infinity. To estimate the probability of the Pauli-forbidden state in the 6Li ground state three-body
wavefunction, one needs to project it onto the subspace comprising of product states between the bound nα pair and

the spectator nucleon. The two-body projector P 2b
φ = |φjpβ β jpmj〉〈φjpβ β jpmj | is defined for that purpose, where the

two-body bound state is characterized by the total pair angular momentum jp and its projection along the z-axis
mj . The index β represents the spins and orbital angular momenta of the pair which couple to jp separating different
angular momentum components of the two-body bound state. Since P 2b

φ is defined in the two-body subspace, its
application in the three-body space requires summation over the spectator quantum numbers as well as an integration
over the spectator momentum. The projection operator in the three-body space thus takes the form

Pφ =
∑

β

∑

smsmj

∫

d~q
∣

∣~q sms φ
jp
β β jpmj

〉 〈

~q sms φ
jp
β β jpmj

∣

∣, (C1)

where s is the spin of the spectator with ms being its projection along the z-axis. The spectator momentum is denoted
by ~q. Since we are using a partial wave expansion to represent the three-body system, it is advantageous to represent
the spectator in terms of partial wave states |q(λs)JmJ 〉. The angular dependence is expanded in terms of a spectator
orbital angular momentum λ which is coupled with the spectator spin s to a total spectator angular momentum J
and its third component mJ . Finally, we couple the spectator and two-body bound state angular momenta to the
total three-body angular momentum J and its third component M . In terms of these states, the projector can be
rewritten as

Pφ =
∑

β

∑

λsJ JM

∞
∫

0

dq q2
∣

∣q(jp(λs)J )JM φ
jp
β β

〉 〈

q(jp(λs)J )JM φ
jp
β β

∣

∣, (C2)

The sum over the angular momentum quantum numbers β, λ, s, J , J and M and the integral over q implies that all
possible configurations the spectator and the bound pair are included. Applying Pφ to the three body wavefunction
yields

|ΨP 〉 ≡ Pφ|ΨJM 〉. (C3)

From Eq. (C3) we see that the probability of the state
∣

∣φ
jp
β β jpmj

〉

is given by

PTDB = ‖ΨP ‖2

=
〈

ΨJM
∣

∣P †
φ Pφ

∣

∣ΨJM
〉

. (C4)

Since Pφ is Hermitian and fulfills P 2
φ = Pφ, the probability can be recast as the expectation value

PTDB =
〈

ΨJM
∣

∣ Pφ

∣

∣ΨJM
〉

,
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=
∑

β

∑

λsJ JM

∞
∫

0

dq q2
〈

ΨJM
∣

∣q(jp(λs)J )JM φ
jp
β β

〉 〈

q(jp(λs)J )JM φ
jp
β β

∣

∣ΨJM
〉

(C5)

To evaluate the quantity
〈

q(jp(λs)J )JM φ
jp
β β

∣

∣ΨJM
〉

we insert a complete set of momentum eigenstates

〈

q(jp(λs)J )JM φ
jp
β β

∣

∣ΨJM
〉

=
∑

α′

∞
∫

0

dp′p′
2
dq′q′

2〈
q(jp(λs)J )JM φ

jp
β β

∣

∣p′q′α′JM
〉〈

p′q′α′JM
∣

∣ΨJM
〉

,

=

∞
∫

0

dp′p′
2
φ
jp
β (p′) ΨJ

α(p
′q′). (C6)

In the last step, we used that the quantum numbers of the projector agree with the definition of α′ and therefore
uniquely define all quantum numbers. The wave functions are independent of the third component and the magnitude
of the spectator momentum is fixed by the projector, too. Based on this result, the desired probability is

PTDB =
〈

ΨJM
∣

∣ Pφ

∣

∣ΨJM
〉

,

=
∑

α

∞
∫

0

dq q2

∣

∣

∣

∣

∣

∣

∞
∫

0

dp′p′
2
φ
jp
β (p′) ΨJ

α(p
′q′)

∣

∣

∣

∣

∣

∣

2

(C7)

where α is short hand notation for β and λ, s, J , J and M as defined in Eq. (7) in agreement with Eq. (33).
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label rank support energy El [MeV] support momenta kl [fm−1]

EST3-1 3 −35,−15,−5 0.92, 0.60, 0.35
EST3-2 3 −5,−5,−5, 0.8, 1.1, 2.5
EST3-3 3 −25,−5,−5 0.8, 0.8, 1.1
EST3-4 3 −65,−10,−10 0.8, 0.8, 2.5

EST4-1 4 −20,−3,−3,−3 0.7, 0.4, 1.1, 2.5
EST4-2 4 −40,−3,−3,−3 0.7, 0.4, 1.1, 2.5
EST4-3 4 −40,−5,−5,−5 0.7 , 0.4, 1.1, 2.5
EST4-4 4 −60,−7,−7,−7 0.7, 0.4, 1.1, 2.5

EST5-1 5 −30,−20,−3,−3,−3 0.4, 0.4, 0.4, 1.5, 2.5
EST5-2 5 −60,−60,−3,−3,−3 0.5, 0.5, 0.4, 1.5, 2.5
EST5-3 5 −40,−30,−5,−5,−5 0.3, 0.3, 0.4, 1.5, 2.5
EST5-4 5 −60,−40,−5,−5,−5 0.3, 0.3, 0.4, 1.5, 2.5

EST6-1 6 −20,−20,−20,−3,−3,−3 0.4, 1.1, 2.5, 0.4, 1.1, 2.5
EST6-2 6 −30,−30,−30,−3,−3,−3 0.4, 1.1, 2.5, 0.4, 1.1, 2.5
EST6-3 6 −40,−40,−40,−5,−5,−5 0.4, 1.1, 2.5, 0.4, 1.1, 2.5
EST6-4 6 −60,−60,−60,−5,−5,−5 0.4, 1.1, 3.5, 0.4, 1.1, 2.5

EST7-1 7 −20,−20,−20,−3,−3,−3,−3 0.4, 1.1, 3.0, 0.4, 1.1, 3.0, 15.0
EST7-2 7 −30,−30,−30,−3,−3,−3,−3 0.4, 1.1, 3.0, 0.4, 1.1, 2.5, 15.0
EST7-3 7 −40,−40,−40,−40,−5,−5,−5 0.4, 1.1, 3.0, 15.0, 0.4, 1.1, 3.0
EST7-4 7 −60,−60,−60,−60,−5,−5,−5 0.4, 1.1, 3.0, 15.0, 0.4, 1.1, 3.0

EST8-1 8 −60,−60,−60,−60,−5,−5,−5,−5 0.4, 1.1, 3.0, 15.0, 0.4, 1.1, 3.0, 15.0

TABLE I. Separable representations of the CD-Bonn potential [43] in the energy range −∞ < E2b ≤ −2 MeV. The labels and
ranks of the separable potentials are listed in the first and second column. The corresponding support energies and momenta
are given in the third and fourth columns.
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label rank support energy El [MeV] support momenta kl [fm−1]

EST3-1 3 −20,−1,−1 0.5 0.8, 1.2
EST3-2 3 −30,−2,−2, 0.5, 0.8, 1.2
EST3-3 3 −15,−3,−3 0.4, 0.4, 2.0
EST3-4 3 −5,−5,−5 0.5, 1.2, 2.0

EST4-1 4 −20,−5,−5,−5 0.3, 0.8, 1.2, 2.0
EST4-2 4 −30,−8,−8,−8 0.4, 0.8, 1.2, 2.0
EST4-3 4 −40,−12,−12,−12 0.4, 0.8, 1.2, 2.0
EST4-4 4 −40,−15,−15,−15 0.4, 0.8, 1.2, 2.0

EST5-1 5 −40,−20,−5,−5,−5 0.3, 0.5, 0.8, 1.2, 2.0
EST5-2 5 −60,−30,−10,−10,−10 0.3, 0.5, 0.8, 1.2, 2.0
EST5-3 5 −40,−40,−3,−3,−3 0.4, 1.0, 0.8, 1.2, 2.0
EST5-4 5 −60,−40,−20,−20,−20 0.4, 0.4, 0.8, 1.2, 2.0

EST6-1 6 −20,−20,−20,−5,−5,−5 0.8, 1.1, 2.0, 0.8, 1.2, 2.0
EST6-2 6 −20,−20,−20,−8,−8,−8 0.8, 1.1, 2.0, 0.4, 1.1, 2.0
EST6-3 6 −30,−30,−30,−10,−10,−10 0.8, 1.1, 3.0, 0.4, 1.1, 2.0
EST6-4 6 −40,−40,−40,−15,−15,−15 0.8, 1.1, 3.0, 0.4, 1.1, 2.0

EST7-1 7 −30,−30,−30,−30,−5,−5,−5 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0
EST7-2 7 −40,−40,−40,−40,−5,−5,−5 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0
EST7-3 7 −50,−50,−50,−50,−10,−10,−10 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.2
EST7-4 7 −60,−60,−60,−60,−10,−10,−10 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 3.2

EST8-1 8 −20,−20,−20,−20,−5,−5,−5,−5 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0, 3.2
EST8-2 8 −30,−30,−30,−30,−8,−8,−8,−8 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0, 3.2
EST8-3 8 −50,−50,−50,−50,−10,−10,−10,−10 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0, 3.2
EST8-4 8 −60,−60,−60,−60,−10,−10,−10,−10 0.8, 1.1, 2.0, 3.2, 0.4, 1.1, 2.0, 3.2

TABLE II. Separable representations of the Bang potential [44] in the energy range −∞ < E2b ≤ −2 MeV. The labels and
ranks of the separable potentials are listed in the first and second column. The corresponding support energies and momenta
are given in the third and fourth columns.
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label rank E3b [MeV]

EST3-1 3 -3.7967
EST3-2 3 -3.7519
EST3-3 3 -3.7507
EST3-4 3 -3.7480

EST4-1 4 -3.7774
EST4-2 4 -3.7737
EST4-3 4 -3.7712
EST4-4 4 -3.7823

EST5-1 5 -3.7847
EST5-2 5 -3.7848
EST5-3 5 -3.7855
EST5-4 5 -3.7845

EST6-1 6 -3.7867
EST6-2 6 -3.7868
EST6-3 6 -3.7871
EST6-4 6 -3.7870

EST7-1 7 -3.7867
EST7-2 7 -3.7867
EST7-3 7 -3.7867
EST7-4 7 -3.7867

EXACT -3.787

TABLE III. Three-body binding energies for the ground state of 6Li calculated using the separable representations of the CD-
Bonn potential listed in Table I. The labels and ranks of the separable potentials are shown in the first and second column. The
corresponding three-body binding energies are listed in the third column. The EST8-4 separable representation of the Bang
potential defined in Table II is adopted for the nα subsystem. Calculations shown in this table do not include the Coulomb
potential.
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label rank E3b [MeV]

EST3-1 3 -3.7527
EST3-2 3 -3.7524
EST3-3 3 -3.7151
EST3-4 3 -3.7127

EST4-1 4 -3.7788
EST4-2 4 -3.7777
EST4-3 4 -3.7773
EST4-4 4 -3.7778

EST5-1 5 -3.7798
EST5-2 5 -3.7797
EST5-3 5 -3.7807
EST5-4 5 -3.7806

EST6-1 6 -3.7856
EST6-2 6 -3.7852
EST6-3 6 -3.7852
EST6-4 6 -3.7856

EST7-1 7 -3.7868
EST7-2 7 -3.7864
EST7-3 7 -3.7867
EST7-4 7 -3.7865

EST8-1 8 -3.7870
EST8-2 8 -3.7870
EST8-3 8 -3.7866
EST8-4 8 -3.7868

EXACT -3.787

TABLE IV. Three-body binding energies for the ground state of 6Li calculated using the separable representations of the Bang
potential listed in Table II. The labels and ranks of the separable potentials are shown in the first and second columns. The
corresponding three-body binding energies are listed in the third column. The EST8-1 separable representation of the CD-Bonn
potential defined in Table I is adopted for the np subsystem. Calculations shown in this table do not include the Coulomb
potential.

λ [fm−1] E(λ) [MeV] 〈E(λ)〉 [MeV] PTDB(λ) [%]

0 -35.65 -35.65 89.21
0.01 -32.15 -35.62 88.08
0.1 -4.798 -16.84 30.52

1 -3.842 -3.886 1.133×10−2

10 -3.794 -3.801 1.654×10−4

100 -3.788 -3.789 1.765×10−6

1000 -3.787 -3.788 1.843×10−8

10000 -3.787 -3.787 2.450×10−10

100000 -3.787 -3.787 2.328×10−11

∞ -3.787 -3.787 1.259×10−10

TABLE V. The binding energy of the ground state of 6Li computed with different values of the parameter λ in the projection
operator. For this calculation the Coulomb interaction in the pα subsystem is omitted. The quantity 〈E(λ)〉 represents the
expectation value of Hamiltonian computed according to Eq. (32) with the corresponding projection. The probability PTDB(λ)
defined in Eq. (33) for finding the Pauli forbidden S1/2 state in the 6Li ground state wave function is given in the last column.
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FIG. 1. The S- and P-wave phase shifts in the nα and pα subsystems as function of the neutron/proton laboratory kinetic
energy. The solid (dashed) lines represent the calculations with the modified Bang interaction [39] for the nα and pα systems.
The phase-shifts extracted from an R-matrix fit [45] are shown for nα by filled circles and for pα by filled diamonds.
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FIG. 2. The off-shell t matrix elements tl′nplnp
(p′, p;E) for the np system as function of the off-shell momentum p. The center

of mass energy is E2b= -50 MeV while the total angular momentum and spin are fixed at Jnp = Snp = 1. The t matrix elements
t00 (p′, p;E) are shown in panel (a) while the ones corresponding to lp = l′p = 2 are illustrated in panel (b). Panel (c) shows the
matrix elements t20 (p′, p;E). The solid and dashed lines depict the t matrix elements computed with the CD-Bonn potential
for p′= 0.3 fm−1 and p′= 0.8 fm−1 respectively. The results obtained using a rank-6 separable representation of the CD-Bonn
potential are indicated by upward triangles for p′= 0.3 fm−1 and by diamonds for p′= 0.8 fm−1. The six EST support points
are located at {El, pl} = {−60, 0.4}, {−60, 1.1}, {−60, 2.5}, {−5, 0.4}, {−5, 1.1}, {−5, 2.5}. The energies have units of MeV
while the momenta are given in fm−1.
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FIG. 3. Panels (a) and (b) show the momentum distributions n(p) in the (np)-α (solid line), (nα)-p (dotted line), and (pα)-n
(dashed line) arrangement channels of the 6Li ground state calculated with the CD-Bonn [43] np interaction and the modified
Bang [44] nα interaction. For the pα interaction the Coulomb interaction given in Eq. (29) is added. Panels (c) and (d) show
the momentum distributions n(q) for the same arrangement channels as panels (a) and (b). The crosses as well as the upward
and downward triangles correspond to the same calculations but using separable forces.
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FIG. 4. The probability Nβ(λ) for the 6Li three-body ground state as a function of the projector strength λ calculated according
Eq. (34). The solid, dashed, and dot-dashed lines represent the S1/2, P1/2 and P3/2 partial wave states of the nα subsystem.
The dashed vertical line indicates the value of λ at which the S1/2 state becomes unbound.


