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Core collapse supernova simulations can be sensitive to neutrino interactions near the neutri-
nosphere. This is the surface of last scattering. We model the neutrinosphere region as a warm
unitary gas of neutrons. A unitary gas is a low density system of particles with large scattering
lengths. We calculate modifications to neutrino scattering cross sections because of the universal
spin and density correlations of a unitary gas. These correlations can be studied in laboratory cold
atom experiments. We find significant reductions in cross sections, compared to free space inter-
actions, even at relatively low densities. These reductions could reduce the delay time from core
bounce to successful explosion in multidimensional supernova simulations.

Neutrinos radiate 99% of the energy and play a cru-
cial role in core-collapse supernovae [1–3]. The scatter-
ing of neutrinos and their transport of energy to the
shock region are sensitive to the physics of low-density
nucleonic matter, which is a complex problem due to the
strong correlations induced by nuclear forces. A recent
three-dimensional supernova simulation was sensitive to
modest changes in neutral-current neutrino-nucleon in-
teractions and exploded when strange-quark contribu-
tions were included [4]. However, these strange-quark
contributions were probably taken to be unrealistically
large [5]. In a recent paper [6], we found that similar
reductions in neutral-current interactions can arise, not
from strange-quark contributions but, from correlations
in low-density nucleonic matter. Recent two-dimensional
supernova simulations find that these reductions of neu-
trino interactions, from correlations, can impact super-
nova dynamics and may reduce the delay time from
core bounce to successful explosion [7, 8], see also [9].
Note that the physics of neutrino-matter interactions is
a broad and active field, where many interesting studies
of neutrino-matter interactions have been performed over
the years, see for example [10–25]. Furthermore, we have
modeled both neutron and nuclear matter in a virial ap-
proximation [26, 27] and used this to calculate neutrino
interactions [6, 28–30].

Neutrinos decouple from matter near the neutri-
nosphere. Here the details of neutrino interactions can be
particularly important for supernova simulations. The
neutrinosphere region is typically a warm, low density
gas of neutron rich matter at densities near 1012 g/cm3.
At these low densities, around 1/100 of nuclear density,
a typical distances between neutrons is of order 8 fm.
This distance is both smaller than the very large neutron-
neutron scattering length ann ≈ −19 fm and larger than
the neutron-neutron effective range r0 = 2.8 fm [31].
Note that the S-wave phase shift δ at low energies, or
wave number k, is expanded k cot δ = −1/ann + 1

2r0k
2 +

O(k4).
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A unitary gas is a system where the scattering length
is infinite |ann| → ∞ and the effective range is near zero
r0 → 0. Because of the large nn scattring length, and
the low density, matter near the neutrinosphere should
approximate well a warm unitary gas. This is important
because unitary gasses are universal. Any system with
large scattering length and short effective range should
behave in the same way. Several unitary gasses of cold
atoms have been studied in the laboratory.

In this paper, we model the neutrinosphere region as
a unitary gas. We believe this is a better approximation
than modeling the neutrinosphere as a free Fermi gas,
as is often done in core collapse supernova simulations.
There are many theoretical calculations of properties of
a unitary gas. In particular, we are interested in neu-
trino interactions with a unitary gas. Neutrinos have
large spin couplings (from the axial current) to nucleons.
Therefore, we are most interested in the spin response of
a unitary gas. This function describes correlations be-
tween the spins of particles in the gas and provides the
linear response of the system to any weakly interacting
probe that couples to spin.

It is very important that one can study systems of
cold atoms, with large scattering lengths, in the labora-
tory. This allows one to experimentally verify properties
of unitary gases. In contrast, it can be difficult to di-
rectly study a warm neutron gas. We will discuss some
present cold atom experiments and suggest future cold
atom experiments that could measure properties directly
relevant for the supernova neutrinosphere.

First we describe how neutrinos interact with a warm
unitary gas. We focus on neutrino neutral-current in-
teractions. These are an important opacity source for
mu and tau neutrinos in a supernova. We expect similar
results for charged-current reactions, however we leave
these to later work. Next we will use a virial expan-
sion to describe properties of a warm unitary gas and
how these modify neutrino interactions in the medium.
The virial expansion provides model-independent results
for neutrino interactions in the limit of low momentum
transfer q → 0.

The free cross section for neutrino-neutron neutral-
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current scattering is

dσ0

dΩ
=
G2
FE

2
ν

16π2

(
g2
a(3− cos θ) + 1 + cos θ

)
, (1)

where GF is the Fermi constant, Eν the neutrino energy,
and θ the scattering angle. The axial coupling constant
is |ga| = 1.26. The cross section in Eq. (1) neglects cor-
rections of order Eν/m, with m the nucleon mass. These
corrections arise from weak magnetism and other effects,
for details see [32].

In the medium this cross section is modified by the den-
sity (vector) SV and the spin (axial) SA response func-
tions. The response of the system to density fluctuations
is described by SV , while SA describes the response of
the system to spin fluctuations. The cross section per
nucleon, in the medium, is then given by

dσ

dΩ
=
G2
FE

2
ν

16π2

(
g2
a(3− cos θ)SA + (1 + cos θ)SV

)
. (2)

Neutrinos interact very weakly with matter. There-
fore, the cross section for neutrino scattering follows from
linear response theory involving SA(q, ω) and SV (q, ω).
In general, these dynamical response functions depend on
the momentum transferred from the neutrino to the nu-
cleons q and on the energy transferred ω. Both SV (q, ω)
and SA(q, ω)have been measured for a unitary gas of cold
6Li atoms using Bragg spectroscopy [33]. The spin re-
sponse SA(q, ω) is observed to be reduced compared to
that of a free Fermi gas, while SV (q, ω) shows an ad-
ditional peak at lower ω that corresponds to scattering
from a correlated pair of atoms.

These measurements were done at a relatively low tem-
perature T ≈ 0.1εF , compared to the Fermi energy εF .
At this temperature the system is in a superfluid state. In
contrast, supernova matter is often much warmer. Near
the neutrinosphere T ≈ 2 − 3εF . At these temperatures
the unitary gas is in a normal state. It would be very
useful to have measurements of SA(q, ω) and SV (q, ω) as
in ref. [33] but for larger temperatures (and ideally for
lower momentum transfers q, see below).

Often one does not need the full energy information
in SA(q, ω), but can instead deal with energy integrated
static quantities. In the rest of the paper we focus on
SV (q) =

∫
dωSV (q, ω) and SA(q) =

∫
dωSA(q, ω). In

the limit q � kF , there are exact results for SV (q) and
SA(q) valid for any temperature. The static structure
factor SV (q) for large q involves the Fourier transform of
the radial distribution function at short distances. The
Tan contact I(T/εF ) describe the probability to find two
particles within range of the interactions and determines
both the universal radial distribution function at short
distances and the high momentum tail of the momentum
distribution. For large momentum transfers, SV (q � kF )
and SA(q � kF ) are [34],

SV (q � kF ) = 1 +
I(T/εF )

4

kF
q
, (3)

SA(q � kF ) = 1− I(T/εF )

4

kF
q
. (4)

These equations can be directly used to determine the
interaction of high energy neutrinos with supernova mat-
ter.

However, most neutrinos in supernovae have relatively
low energies Eν ≈ 3T . These neutrinos scatter with q ≈
Eν � kF . Therefore we are most interested, not in the
q � kF limit, but in the opposite long wavelength limit
q → 0. In this limit one can derive model independent
results from the virial expansion.

We start by reviewing the virial expansion for a unitary
gas of, possibly polarized, spin 1/2 fermions [35]. We
will use this to calculate SV (q → 0) and SA(q → 0). The
pressure P is expanded in powers of the fugacities of spin
up particles z1 = exp(µ1/T ) with chemical potential µ1

and spin down particles z2 = exp(µ2/T ) with chemical
potential µ2,

P =
T

λ3

∑
n1,n2

bn1,n2
zn1

1 zn2
2 . (5)

Here bn1,n2 is an n1 + n2 order virial coefficient for a
system with n1 spin up and n2 spin down particles. We
will work to fourth order n1 + n2 ≤ 4. Finally, T is
the temperature, and λ = [2π/(mT )]1/2 is the thermal
wavelength of particles of mass m. The virial coefficients
for a noninteracting spin 1/2 Fermi gas are b0n = bn,0 =

(−1)n+1/n5/2, see Table I. Note that bn1,n2
= bn2,n1

and,
for a unitary gas, there are no interactions between like
spin particles.

For an unpolarized gas, z1 = z2 = z, Eq. 5. reduces
to,

P =
2T

λ3

4∑
n=1

bnz
n (6)

with b1 = 1, b2 = b02 + b1,1/2, b3 = b03 + b2,1, and b4 =
b04 + b3,1 + b2,2/2. The values of these virial coefficients
are collected in Table I. Our conventions are to include
the noninteracting contributions b0n in bn and we note
that all of our virial coefficients are for a uniform infinite
system rather than a harmonic trap. The density of the
system n is

n =
z

T

dP

dz
=

2

λ3

[
z + 2z2b2 + 3z3b3 + 4z4b4

]
. (7)

For this density the Fermi momentum is kF = [(3π2)n]1/3

and we define a Fermi energy εF = k2
F /(2m) so that the

degree of degeneracy is related to εF /T ,

εF
T

=
(9π

16

)1/3(
z + 2z2b2 + 3z3b3 + 4z4b4

)2/3
. (8)

For the unitary gas the virial coefficients are indepen-
dent of temperature so all properties are only functions
of εF /T instead of depending on n and T separately.
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FIG. 1. (Color online) Fourth order virial calculations of
the vector response SV (red heavy dashed line), axial re-
sponse SA (heavy blue dashed-dotted line), and total response
Stot (heavy black line) versus Fermi energy over temperature
εF /T . The fugacity z = exp(µ/T ) is shown as the heavy Cyan
dotted line. The dotted error bands show the effect of statis-
tical and systematic errors in theoretical calculations of the
fourth virial coefficient b4. Finally the thin red dashed line
shows SV calculated using an approximate virial expansion
to tenth order [38].

n bn b0n b3,1 Ref.
2 0.53033 -0.17678
3 -0.29095 0.06415 [37]
4 0.047(18) -0.03125 0.170(13) [35]

TABLE I. Virial coefficients bn for a unitary gas, while b0n are
virial coefficients for a free Fermi gas. Finally b3,1 is the fourth
order coefficient for three spin up and one spin down particles
(see text). The numbers in parentheses are the theoretical
errors in the fourth order coefficients [35].

Equation 8 can be inverted to find z as a function of
εF /T .

The vector response SV , in the long wavelength limit,
can be calculated from the virial equation of state
SV (q → 0) = T/(∂P/∂n)T = z(∂n/∂z)/n,

SV (q → 0) =
1 + 4zb2 + 9z2b3 + 16z3b4
1 + 2zb2 + 3z2b3 + 4z3b4

. (9)

Figure 1 shows SV . This first increases with εF /T be-
cause of density fluctuations and then decreases at higher
densities because of Pauli blocking. We emphasize that
SV (and SA) include corrections (contained in b0n) from
the Pauli blocking of the scattered nucleon.

The axial or spin response SA, in the long wavelength
limit, can be calculated from the virial equation of state
for a spin polarized system, see for example [11],

SA(q → 0) =
2z

n

∂

∂(z1 − z2)
(n1 − n2)

∣∣
z1=z2

. (10)

where ni = zi(dP/dzi)/T . Using Eq. 5 we get,

SA(q → 0) =
1 + 4zb02 + z2(8b03 + b3) + z3(16b04 + 4b3,1)

1 + 2zb2 + 3z2b3 + 4z3b4
.

(11)
Two particles are correlated in the 1S0 state. This spin
zero state reduces the spin response so that SA < 1. This
is shown in Fig. 1.

To summarize, the neutrino cross section in the
medium is given by Eq. 2 with SV given by Eq. 9 and
SA given by Eq. 11. We define the total response Stot as
the ratio of the in-medium transport cross section to the
free one,

Stot =

∫
dΩ dσ

dΩ (1− cos θ)∫
dΩ dσ0

dΩ (1− cos θ)
=

5g2
aSA + SV
5g2
a + 1

. (12)

Thus Stot is a combination of SA and SV and is domi-
nated by SA because of the large 5g2

a coefficient.
We now discuss the convergence of our virial results

and their sensitivity to errors in the virial coefficients. We
use the Path Integral Monte Carlo (PIMC) results for the
fourth order coefficients b4 and b3.,1 [35], rather than the
somewhat more accurate experimental value for b4 [36],
because the PIMC calculations also include a value for
b3,1 that we need to calculate SA. Figure 1 includes dot-
ted error bands for SV , SA, and Stot obtained by chang-
ing b4 and b3,1 by their theoretical errors. We see that SA
and Stot are relatively insensitive. In contrast, SV does
depend sensitively on b4 for εF /T > 1.1 Therefore, the
convergence of SV , as a function of z, may be poorer than
the convergence of SA. This arrises because SV involves
two derivatives of the pressure with respect to z. To test
the convergence of the virial expansion for SV we evalu-
ate it to tenth order using the approximate higher order
virial coefficients from ref. [38]. This is shown in Fig. 1
and agrees within errors with our calculation. Note that
the convergence of the virial expansion for the pressure is
known to be very good [38]. We conclude that the results
in Fig. 1 should be reliable.

We compare our unitary gas results to earlier virial
calculations for pure neutron matter. We start with the
vector response. Figure 2 shows that neutron matter
virial calculations from ref. [6] are consistent with our
unitary gas results for SV only at low densities. This is
because the neutron matter virial calculations are only to
second order. Indeed second order virial results for the
unitary gas are similar to the neutron matter results, but
somewhat larger, see Fig. 2. This is because the second
virial coefficient for a unitary gas b2 ≈ 0.53 is somewhat
larger than for a neutron gas bn ≈ 0.3. Note, b2 for a
unitary gas is independent of temperature while bn for
a neutron gas depends very weakly on temperature and

1 Note the lower error band for SV in Fig. 1 may be unrealistic
because the experimental value of b4 is close to the value for the
upper error band [36].
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FIG. 2. (Color online) Vector response SV (upper three
curves) and axial response SA (lower four curves) versus Fermi
energy over temperature εF /T . Unitary gas fourth order virial
results from Fig. 1 are solid while second order virial results
are dotted. Pure neutron gas results at a temperature of 10
MeV, to second order in the virial expansion, are dashed. Fi-
nally the dot-dashed curve shows the fit from ref. [6] for pure
neutron matter. This reproduces virial results at low density
and RPA calculations [11] at high densities.

i z SV SA Stot

1.5 0.97362 1.1153 -1.7008 -1.3858
2 -0.55516 -1.1148 +1.3336 1.0597
3 0.13744 0.10751 -0.11221 -0.08763

TABLE II. Expansion coefficients axi in fits of z, SV , SA, and
Stot as a function of εF /T , see Eq. 13. This fit is valid for
0 < εF /T < 1.5.

we evaluate it at T = 10 MeV. We conclude from Fig. 2
that a second order virial calculation may overestimate
SV except at low densities.

We now discuss the axial response. Figure 2 shows
that second order virial calculations do somewhat better
jobs of reproducing SA (than they do for SV ). Finally,
ref. [6] provided a simple fit to SA that reproduces neu-
tron matter virial results up to a fugacity ≈ 0.5 and then
fits the model dependent RPA calculations of Burrows
and Sawyer [11] at higher densities. This fit agrees re-
markably well with our unitary gas results. However the
present unitary gas calculations are simpler, cleaner, and
less model dependent. Furthermore they can be experi-
mentally verified with laboratory cold atom experiments.

We now consider applying our unitary gas results to
astrophysical simulations. First, we fit the results in Fig.
1 for SV , SA, Stot with the simple functional form

Sx ≈ 1 + ax1.5(εF /T )3/2 + ax2(εF /T )2 + ax3(εF /T )3 , (13)

for x = V , A, and tot. This fit is valid for 0 < (εF /T ) <
1.5 and the coefficients axi are given in Table II. We

also fit the fugacity z ≈ az1.5(εF /T )3/2 + az2(εF /T )2 +
az3(εF /T )3 in Table II.

We recommend applying our results to supernova or
other astrophysical simulations as follows. Neutrino-
neutron neutral current cross sections are given by Eq. 2
with SV and SA given by Eq. 13 and Table II. Alterna-
tively, one could simply multiply the free-space neutrino-
neutron interaction by Stot from Eq. 12 and Table II.
We have not explicitly considered small admixtures of
protons. A minimal assumption would be to describe
neutrino-proton neutral current scattering by Eq. 2 with
SV = 0, because the weak charge of a proton is small,
and SA = 1. We choose SA = 1, rather than the reduced
unitary gas value, because ref. [6] finds the reduction in
SA to be somewhat smaller as Ye increases. In Eq. 13 a
minimal assumption for εF /T is

εF
T

= Min
{ (3π2nn)2/3

2mT
, 1.5

}
, (14)

where nn is the neutron density. Our virial results should
be valid for 0 < εF /T < 1.5. For larger values of εF /T we
suggest simply using our results evaluated at εF /T = 1.5
as a minimal assumption. For example, at a temperature
of 15 MeV our results are good up to a density of 7×1013

g/cm3. Neutrino interactions at higher densities may not
be very important for supernova dynamics except at later
times. However, we will explore the unitary gas response
at higher densities in later work. Our procedure is based
on only the unitary gas response. However, it should
give results similar to the hybrid approach of ref. [6]
that matched on to model dependent RPA results at high
densities.

Future work would be very useful in three areas. First,
calculations of third (or fourth) order virial coefficients
for neutron and nuclear matter would be very helpful.
Perhaps this could be done by calculating the energies of
three (or four) nucleons in a harmonic trap and taking
the limit as the trap frequency goes to zero. Second, mi-
croscopic calculations of the vector and axial responses
should be done for both a unitary gas and for neutron
and nuclear matter. These should reproduce our virial re-
sults at low densities and be directly applicable at higher
densities. One approach would be to use quasipoten-
tials, that reproduce NN scattering, in a random phase
approximation or in many-body perturbation theory. Fi-
nally, more experimental measurements of the dynami-
cal spin response of a unitary gas of cold atoms would
be very useful. These should be done at higher temper-
atures than pervious measurements [33] and ideally at
lower momentum transfers.

In conclusions, core collapse supernova simulations can
be sensitive to neutrino interactions near the neutri-
nosphere. In this paper we model the neutrinosphere re-
gion as a warm unitary gas of neutrons. Using the virial
expansion to fourth order we calculate modifications to
neutrino scattering cross sections because of spin corre-
lations in the unitary gas. These spin correlations are
universal for any unitary gas and can be studied in the
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laboratory with cold atom experiments. We find signif-
icant reductions in cross sections, even at relatively low
densities. These reductions could reduce the delay time
from core bounce to successful explosion in multidimen-
sional supernova simulations.
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