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We propose a method for calculating the nucleon form factors (FFs) of G-parity-even operators
by combining Chiral Effective Field Theory (χEFT) and dispersion analysis. The FFs are expressed
as dispersive integrals over the two-pion cut at t > 4M2

π . The spectral functions are obtained
from the elastic unitarity condition and expressed as products of the complex ππ → NN̄ partial-
wave amplitudes and the timelike pion FF. χEFT is used to calculate the ratio of the partial-
wave amplitudes and the pion FF, which is real and free of ππ rescattering in the t-channel (N/D
method). The rescattering effects are then incorporated by multiplying with the squared modulus
of the empirical pion FF. The procedure results in a marked improvement compared to conventional
χEFT calculations of the spectral functions. We apply the method to the nucleon scalar FF and
compute the scalar spectral function, the scalar radius, the t-dependent FF, and the Cheng-Dashen
discrepancy. Higher-order chiral corrections are estimated through the πN low-energy constants.
Results are in excellent agreement with dispersion-theoretical calculations. We elaborate several
other interesting aspects of our method. The results show proper scaling behavior in the large-Nc
limit of QCD because the χEFT calculation includes N and ∆ intermediate states. The squared
modulus of the timelike pion FF required by our method can be extracted from Lattice QCD
calculations of vacuum correlation functions of the operator at large Euclidean distances. Our
method can be applied to the nucleon FFs of other operators of interest, such as the isovector-
vector current, the energy-momentum tensor, and twist-2 QCD operators (moments of generalized
parton distributions).
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I. INTRODUCTION

A. Form factors and dispersion relations

Form factors (FFs) are the most basic expressions of
the nucleon’s complex internal structure and finite spatial
extent. They parametrize the transition matrix elements
of local operators between nucleon states with different
momenta and can be related to the spatial distribution
of the corresponding physical quantities in localized nu-
cleon states [1, 2]. The most widely studied FFs are
those of the conserved vector and axial vector currents
(spin-1 operators), which describe the interaction of the
nucleon with electromagnetic and weak external fields.
The nucleon vector FFs are measured in elastic electron
scattering experiments and generally known well [3]; on
the axial FFs limited information is available from neu-
trino scattering and other sources [4]. Besides the con-
served currents, there are many more local operators of
interest for nucleon structure in the context of QCD. The
quark and gluon scalar operators (spin-0 operators) rep-
resent the trace of the QCD energy-momentum tensor
and measure the contribution of quark and gluon fields
to the nucleon mass; they also govern the coupling of the
nucleon to the Higgs boson [5]. The corresponding rank-
2 traceless tensor operators (spin-2 operators) represent
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the traceless part of the QCD energy-momentum tensor
and measure the momentum and angular momentum of
quarks and gluons in the nucleon, as well as the forces
acting on them [6–8]. A much larger class of local QCD
operators (spin-n operators, n ≥ 1) emerges in the QCD
factorization of hard exclusive processes on the nucleon,
in connection with the moments of the generalized parton
distributions; see Refs. [9–12] for a review. Because all
these operators couple to external fields that are not eas-
ily excited through scattering processes, little is known
about the FFs from present experiments. It is therefore
necessary to develop theoretical methods for calculating
the nucleon FFs of such operators from first principles.

Dispersion relations have proven to be a useful tool in
the theoretical analysis of nucleon FFs. They rely on the
analytic properties of the FFs as functions of the invari-
ant momentum transfer t and connect their behavior in
the spacelike and timelike regions, t < 0 and t > 0. The
FFs are represented as dispersive integrals over their cuts
in timelike region, which describe processes in which the
operator couples to the nucleon through exchange of a
hadronic system in the t-channel. For G-parity-even op-
erators the hadronic state with the lowest mass is the ππ
state, and the cut starts is at t > 4M2

π (two-pion cut).
Examples of such operators are the isovector-vector cur-
rent, and the isoscalar-scalar and isoscalar-spin-2 oper-
ators. To evaluate the dispersive integrals one needs to
know the imaginary part of the FFs on the cut (spectral
functions). The two-pion cut lies in the unphysical region
below the NN̄ threshold, where the spectral functions
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cannot be obtained from timelike nucleon FF data. In
the case of the vector and scalar FFs the spectral func-
tions on the two-pion cut have been determined using
amplitude analysis techniques with empirical input (uni-
tarity relations with πN and ππ scattering data [13–17];
Roy-Steiner equations [18, 19]). In order to make the
dispersive method predictive, and to extend it to other
operators of interest, one needs a theoretical method to
calculate the spectral functions of the nucleon FFs.

Chiral Effective Field Theory (χEFT) represents a sys-
tematic method for describing pion and nucleon struc-
ture and interactions in the low-energy, large-distance
regime of strong interactions [20, 21]; see Refs. [22–24]
for a review. It is based on the effective dynamics result-
ing from the spontaneous breaking of chiral symmetry
and allows one to calculate amplitudes at pion momenta
kπ ∼Mπ in an expansion in Mπ/Λχ with controlled accu-
racy (Λχ ∼ 1 GeV represents the chiral symmetry break-
ing scale). The method has been applied to the spectral
functions of the nucleon FFs on the two-pion cut, using
either the relativistic or the heavy-baryon formulation
for the nucleon degrees of freedom [25–29]. The χEFT
results reproduce the empirical isovector-vector spectral
functions at energies very near the two-pion threshold,
t − 4M2

π = fewM2
π , but significantly underestimate the

latter at larger energies t ∼ 10–50 M2
π ; see Ref. [29] for

an explicit comparison. The reason for the discrepancy is
the strong ππ rescattering in the t-channel, which mani-
fests itself in the ρ resonance at t = 40M2

π = 0.77 GeV2

and results in an enhancement of the empirical spectral
function. In χEFT this effect is encoded in higher-order
ππNN contact terms and pion loops and would appear in
the form of large higher-order corrections, which makes
the method impractical. A similar situation is observed
in the spectral function of the scalar FF, where ππ rescat-
tering does not produce a narrow resonance but is nev-
ertheless strong. The limited reach of the χEFT calcu-
lations of the spectral functions precludes evaluation of
the dispersion integral for the FFs based on χEFT input
alone, as the contributions from larger t require separate
modeling. In order to extend the reach of χEFT calcula-
tions of the spectral functions beyond the near-threshold
region one must find a way to account for ππ rescattering
in the t-channel more effectively.

In this article we describe a new method that allows
one to construct the spectral functions of FFs on the two-
pion cut up to larger values of t (in practice, t . 1 GeV2)
and enables predictive dispersive calculations of the full
nucleon FFs based on χEFT input alone. It uses the
elastic unitarity condition for the ππ system in the t-
channel [13, 14] and the N/D method of amplitude anal-
ysis [30]. The spectral function of the nucleon FF on the
ππ cut is expressed as the product of the ππ → NN̄ t-
channel partial-wave amplitude (PWA) and the complex-
conjugate timelike pion FF. The two complex functions
have same phase on the two-pion cut (Watson theorem)
[31]. χEFT is used to calculate the ratio of the PWA and
the timelike pion FF, which is real (it has no two-pion

cut) and is free of ππ rescattering effects. This func-
tion is then multiplied with the squared modulus of the
empirical timelike pion FF, which contains the full ππ
rescattering effects. The method results in a marked
improvement compared to conventional “direct” calcu-
lations of the spectral functions in χEFT. Realistic spec-
tral functions with controlled uncertainties are obtained
up to t . 1 GeV2. The basic idea was introduced in
Ref. [32] in the context of a χEFT calculation of the nu-
cleon’s peripheral transverse densities (the Fourier trans-
forms of the FFs) in the LO approximation. Here we
describe the general method, include NLO chiral cor-
rections (fixing of low-energy constants or LECs, con-
vergence, uncertainty estimates), and demonstrate the
potential for dispersive calculations of the FFs proper
and their derivatives, which opens up a range of new ap-
plications. We also explore other interesting aspects of
the new method. We point out a possible combination
with first-principles calculations of the squared modulus
of the timelike pion FF with Euclidean correlation func-
tions (e.g. Lattice QCD), which could be used for the dis-
persive calculation of FFs of QCD operators whose pion
FF are not known empirically. We demonstrate that our
nucleon FF results have the correct scaling behavior in
the large-Nc limit of QCD because the χEFT amplitudes
include N and ∆ intermediate states.

Here we apply the method to the nucleon scalar FF and
its spectral function. The choice is motivated by peda-
gogical considerations and physical interest. The scalar
density is the simplest operator, with only a single nu-
cleon FF, and a single t-channel partial wave in the uni-
tarity relation for the spectral function. The pion scalar
FF has been determined from dispersion analysis with
χEFT constraints and is available as input for our calcu-
lation [33–35]. The scalar nucleon FF has been computed
using amplitude analysis techniques and serves as a ref-
erence point for our results [17, 19]. The scalar FF thus
represents the ideal testing ground for our method. It is
also of great physical interest in itself, in connection with
the nucleon mass problem and the coupling to the scalar
sector of the standard model (see below). Applications
of our method to the nucleon isovector-vector FFs will
be presented in a forthcoming article [36].

The plan of this article is as follows. In the remain-
der of this section we summarize the basic properties
of the scalar FF and its dispersive representation. In
Sec. II we describe the general method of dispersively
improved χEFT, including the elastic unitarity relation
and N/D method, LO χEFT calculations, estimates of
higher-order corrections, and the properties of the pion
FF. In Sec. III we apply the method to the nucleon
scalar spectral function and use it to calculate the nu-
cleon scalar radius, the scalar FF, and the Cheng-Dashen
discrepancy. In Sec. IV we discuss the extraction of the
timelike pion FF from Euclidean correlation functions
and the correspondence of our approach with large-Nc
QCD. An outlook on further applications is presented in
Sec. V.
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A combination of χEFT and dispersion theory similar
to the one used here was proposed in the context of a re-
cent study of hyperon transition FFs [37]. Techniques
related to the N/D method were also applied in ear-
lier χEFT studies of meson-meson, meson-baryon, and
baryon-baryon scattering [38–44].

B. Scalar form factor

The scalar density of light quarks in QCD is measured
by the composite local operator

Oσ(x) ≡ m̂
∑
f=u,d

ψ̄f (x)ψf (x), (1)

where ψf (x) (f = u, d) is the quark field and m̂ ≡ mu =
md the quark mass (we assume isospin symmetry). The
operator Eq. (1) is scale-independent and represents the
quark mass term in the QCD Lagrangian and Hamilto-
nian densities. The same operator appears in the trace of
the QCD energy-momentum tensor, alongside the gluonic
and strange-quark scalar operators and a similar light-
quark operator that results from the trace anomaly; see
Ref. [5] for details. The transition matrix element of the
operator Eq. (1) between nucleon states with 4-momenta
p and p′ is of the form

〈N(p′, s′)|Oσ(0) |N(p, s)〉 = ū′u σ(t), (2)

where ū′ and u are the nucleon 4-spinors, and σ(t) is
the nucleon scalar FF. It is a function of the invariant
momentum transfer t ≡ (p′ − p)2, with t < 0 in the
physical region of the nucleon transition (spacelike FF).
The corresponding timelike FF is defined analogously, as
the matrix element between the vacuum and a nucleon-
antinucleon state, with t ≡ (p′ + p)2 > 0. The matrix
elements are diagonal in isospin (N = proton, neutron).

The scalar FF is an analytic function of t. The physical
sheet has cuts along the positive real axis, which result
from processes in which the operator creates a hadronic
state that couples to the NN̄ system,

operator→ hadronic state→ NN̄ ; (3)

such processes occur in the unphysical region below the
NN̄ threshold. The lowest-mass hadronic state with
scalar quantum numbers is the ππ state with threshold at
t = 4M2

π (two-pion cut); other hadronic states (4π etc.)
give rise to further cuts with higher thresholds; the cuts
can be combined to a principal cut starting at t = 4M2

π .
One can thus write dispersion relations that express the
FF in the complex plane as an integral over the discon-
tinuity on the principal cut. In practice one considers a
once-subtracted dispersion relation,

σ(t) = σ(0) +
t

π

∫ ∞
4M2

π

dt′
Imσ(t′)

t′(t′ − t)
, (4)

which suppresses contributions from large t′ and ensures
rapid convergence of the integral (see below). It deter-
mines the FF up to a subtraction constant, which is cho-
sen as the value of the FF at t = 0, σ(0), the so-called
pion-nucleon sigma term. The integration is over the
imaginary part of the FF on the principal cut, Imσ(t′),
which is referred to as the spectral function.

Of particular interest is the behavior of the scalar FF
near t = 0. The derivative of the FF at t = 0 defines
nucleon’s scalar charge radius,

〈r2〉σ ≡
6

σ(0)

dσ

dt

∣∣∣∣
t=0

. (5)

The finite difference

∆σ ≡ σ(t = 2M2
π)− σ(t = 0) (6)

is needed in the extraction of the sigma term from πN
scattering data using the Cheng-Dashen theorem [45],
which connects the Born-subtracted isoscalar πN scat-
tering amplitude at s = m2

N and t = 2M2
π to σ(t = 2M2

π).
The dispersive representation of these quantities is

〈r2〉σ =
6

πσ(0)

∫ ∞
4M2

π

dt′
Imσ(t′)

t′2
, (7)

∆σ =
2M2

π

π

∫ ∞
4M2

π

dt′
Imσ(t′)

t′(t′ − 2M2
π)
. (8)

The convergence of these integrals at large t′ is similar
to that of the once-subtracted dispersion relation for the
FF, Eq. (4).

The spectral function of the scalar nucleon FF has been
constructed using amplitude analysis techniques with
empirical input [17, 19]. Figure 1 shows the distribution
of strength in the dispersive integrals Eqs. (7) and (8).
One sees that the integral converges rapidly, and that the
main contribution comes from the region t′ . 0.5 GeV2.
This determines the range where one needs to calculate
spectral function if one aims for a first-principles calcu-
lation of the scalar quantities through their dispersive
integrals.

Evaluation of the integrals with the empirical spec-
tral functions of Ref. [17] has found 〈r2〉 ∼ 1.6 fm2, sub-
stantially larger than the proton’s charge radius 〈r2〉1 ∼
0.65 fm2 (Dirac radius). The discrepancy ∆σ has been
obtained at ∼ 14 MeV. The significance of these findings
will be discussed in Sec. III.

The scalar FF of the pion is defined analogously to
that of the nucleon in Eq. (2),

〈π(p′)|Oσ(0) |π(p)〉 = σπ(t), (9)

where π = π+, π−, π0 (isospin symmetry) and t = (p′ −
p)2 < 0 in the physical region. The value at t = 0 is

σπ(0) = M2
π , (10)

which follows from the fact that the scalar operator corre-
sponds to the chiral-symmetry-breaking pion mass term
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FIG. 1. Distribution of strength in the dispersive integrals
for the scalar charge radius, Eq. (7) (solid red line), and the
Cheng-Dashen discrepancy, Eq. (8) (dashed blue line). The
plot shows the integrands as functions of t, divided by the
value of the integral, i.e., normalized to unit area under the
curves.

in the chiral Lagrangian. The corresponding timelike FF
is defined as

〈0|Oσ(0) |π(p′)π(p)〉 = σπ(t), (11)

where now t = (p + p′)2 > 4M2
π in the physical region.

The scalar FF of the pion is of physical interest in itself,
and enters in dispersive calculations of nucleon scalar FF.

II. METHOD

A. Dispersively improved χEFT

We now describe the method for calculating the spec-
tral function of nucleon FFs on the two-pion cut in χEFT
using a representation based on the elastic unitarity con-
dition and the N/D method. While we use the scalar
FF as a specific example, the method is general and can
be applied to the FFs of any G-parity-even operator cou-
pling to the ππ state.

In the region 4M2
π < t < 16M2

π only the ππ state con-
tributes to the discontinuity of the nucleon FF through
the process Eq. (3). In this situation the spectral function
can be computed using the elastic unitarity condition,
which expresses the conservation of flux in the t-channel
[13–15]. For the scalar nucleon FF it takes the form [17]

Imσ(t) =
3kcm

4p̃2
N

√
t
f0

+(t)σ∗π(t), (12)

where

kcm ≡
√
t/4−M2

π (13)

is the center-of-mass momentum of the pions in the ππ
system, and

p̃N ≡
√
m2
N − t/4 (14)

I = J = 0

N
_

t > 4Mπ
2

=

=

=

π

π

N

(c)

(a)

(b)

2

+J

0

π

π

+J σ

σ

πf +

0

σ

σ

σ

f +

0

0

FIG. 2. (a) Unitarity relation for the imaginary part of the
nucleon scalar FF on the two-pion cut, Eq. (12). (b) Real
function J0

+(t), Eq. (16), defined as the ratio of the ππ → NN̄
PWA and the pion FF. (c) Unitarity relation in terms of J0

+(t)
and the squared modulus of the pion FF, Eq.(15).

is related to the unphysical momentum of the nucleons
in the NN̄ system (see Fig. 2a). The function f0

+(t) is

the I = J = 0 ππ → NN̄ t-channel PWA, and σ∗π(t) is
the complex conjugate of the timelike pion FF Eq. (11).
While the unitarity condition applies at real t > 4M2

π

on the upper edge of the cut (t → t + i0), the functions
f0

+(t) and σπ(t) are defined for arbitrary complex t, and
it is worthwhile to recall their analytic structure. The
PWA f0

+(t) has both a right-hand cut and a left-hand cut
(see Fig. 3a). The right-hand cut results from t-channel
processes with the ππ intermediate state and starts at t =
4M2

π . The left-hand cut results from s-channel processes
with intermediate baryonic states (N,∆, πN , . . . ) and
starts at t = 4M2

π−M4
π/m

2
N for the intermediate N . The

two cuts are thus of different physical origin. The pion
FF σ(t) has only a right-hand cut starting at t = 4M2

π ,
resulting from the ππ intermediate state, which is just
the two-pion cut of the pion FF (see Fig. 3b).

A crucial point is that the complex functions f0
+(t) and

σπ(t) have the same phase on the right-hand cut (the
two-pion cut). Physically, this follows from the fact that
the phases of the two amplitudes arise from the same
elastic ππ rescattering processes (Watson theorem) [31].
Mathematically, this is necessary for the product of f0

+(t)
and σ∗π(t) to result in the real function Imσ(t), as was
already implied in the unitarity condition Eq.(12). This
circumstance allows one to rewrite the unitarity relation
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in a manifestly real form [13] (see Fig. 2 b and c)

Imσ(t) =
3kcm

4p̃2
N

√
t
J0

+(t) |σπ(t)|2, (15)

J0
+(t) ≡

f0
+(t)

σπ(t)
. (16)

The function J0
+(t) is real at t > 4M2

π and therefore has
no right-hand cut; if it had one, there would be a discon-
tinuity resulting in a non-zero imaginary part. It does
have a left-hand cut, inherited from the PWA f0

+(t). The
squared modulus |σπ(t)|2 is obviously real. The repre-
sentation of Eqs. (15) and (16) permits a simple physical
interpretation. Since the phase of f0

+(t) and σπ(t) arises
from ππ rescattering processes, the equations effectively
separate the ππ → NN̄ coupling [contained in J0

+(t), in
which the phase cancels] from the ππ rescattering [con-
tained in |σπ(t)|2, which is a purely pionic amplitude].
This interpretation can provide useful guidance for the
following.

The representation of Eqs. (15) and (16) is equivalent
to applying the N/D method to the ππ → NN̄ PWA
[30]. In this approach the PWA is represented in the
form f0

+(t) = N(t)/D(t), such that the right-hand cut
(related to the t-channel exchanges) appears only in the
factor 1/D(t), and the left-hand cut (related to the s-
channel intermediate states) appears in the factor N(t).
In the case at hand the D function is chosen as the inverse
pion FF, D(t) = 1/σπ(t), and the N function is given by
Eq. (16), N(t) = J0

+(t) [15].
The representation of Eqs. (15) and (16) suggests a

new approach to calculating the spectral function of nu-
cleon FFs on the two-pion cut in χEFT. We use χEFT
to compute the real function J0

+(t) at t > 4M2
π to a fixed

order. We then multiply the result with the empirical
|σπ(t)|2, which contains the effects of ππ rescattering.
This approach has several advantages compared to “di-
rect” calculations of the nucleon spectral functions:

(a) The χEFT calculations of J0
+(t) are not affected

by ππ rescattering, as the latter is contained en-
tirely in |σπ(t)|2. The rescattering effects are strong
and would require large higher-order corrections
when treated within χEFT. We therefore expect
the new approach to show much better convergence
than direct χEFT calculations of the spectral func-
tion. Higher-order corrections can perturbatively
improve the coupling of the ππ system to the nu-
cleon described by J0

+(t), while the rescattering
effects described by |σπ(t)|2 are taken from other
sources (dispersion theory, data, Lattice QCD).

(b) The organization according to Eqs. (15) and (16)
is consistent with the idea of “separation of scales”
basic to χEFT. The function J0

+(t) is dominated by
the singularities of the N and ∆ Born diagrams, or
diagrams with πN inelastic intermediate states in
higher orders, which are governed by the scales Mπ

and m∆ −mN . The t-dependence of the pion FF,

(b)

(a)

0

2

π
σ

4

t

−channelt

0
f

M

+
f

s−channel

π

t

+

FIG. 3. (a) Analytic structure of the ππ → NN̄ PWA. The
function has a right-hand cut resulting from the t-channel
ππ intermediate state, and a left-hand cut resulting from s-
channel intermediate states (N,∆, πN , . . . ). The phase of the
PWA on the right-hand cut is the same as that of the pion
FF. (b) Analytic structure of the pion FF. The function has
a right-hand cut resulting from the ππ intermediate state.

in contrast, is governed by the chiral-symmetry-
breaking scale Λχ ∼ 1 GeV. The intrinsic logic of
χEFT therefore suggests to apply the χEFT cal-
culations to J0

+(t) and treat |σπ(t)|2 as an external
input.

(c) The timelike pion FF enters only through its
squared modulus |σπ(t)|2, not its phase. This re-
duces model dependence in the determination of
the empirical pion FF and represents an advantage
over approaches working with the original unitar-
ity condition, Eq. (12), where the pion FF enters
as a complex function. The squared modulus of
the timelike scalar pion FF can be extracted di-
rectly from Euclidean vacuum-to-vacuum correla-
tion functions of the scalar operator, which can
be computed in Lattice QCD (see Sec. IV A). In
the electromagnetic case the squared modulus of
the timelike pion FF can directly be measured in
e+e− → π+π− exclusive annihilation experiments.

We refer to the new method as “dispersively improved
χEFT” (DIχEFT). The method is applicable strictly at
4M2

π < t < 16M2
π , where only the ππ channel is open

and the elastic unitarity condition Eq. (12) is valid. It is
expected that inelasticities from other channels (4π) are
small up to the KK̄ threshold; neglecting those the rep-
resentation of Eqs. (15) and (16) can effectively be used
up to t ∼ 1 GeV2. Our method could thus in principle be
applied up to such values of t, provided that the χEFT
calculations of J0

+(t) converge sufficiently well (this ques-
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tion will be investigated below).

B. Leading-order calculation

For the calculation of J0
+(t) we use SU(2)-flavor χEFT

with relativistic N and ∆ degrees of freedom. The rela-
tivistic formulation ensures the correct analytic structure
of the amplitudes (position of branch points, threshold
behavior), which is critical in the present application.
The inclusion of the ∆ as an explicit degree of freedom
is needed because the ∆ Born term makes important
contributions to the ππ → NN̄ PWA (see below); it is
also needed to reproduce the correct scaling behavior of
the spectral function in the large-Nc limit of QCD (see
Sec. IV B). These features have proved to be essential
also in other applications of baryon χEFT to πN scat-
tering, photoproduction, and nucleon structure [46–56].

The basic setup of the relativistic χEFT used in the
present study (fields, Lagrangian, power counting, cou-
plings) is described in Ref. [57] and summarized in
Ref. [32]. The spin-1/2 N is described by a relativistic
bispinor field (Dirac field). The spin-3/2 ∆ is introduced
as a 4-vector-bispinor field, which has to be subjected to
relativistically covariant constraints to eliminate spuri-
ous spin-1/2 degrees of freedom. Here we use the formu-
lation in which the spin-1/2 degrees of freedom are al-
lowed to propagate but are filtered out at the interaction
vertices (consistent vertices) [58–61]. The construction of
the chiral Lagrangian with the spin-3/2 fields has been
described in Refs. [62, 63]. Several expansion schemes
have been proposed for the χEFT with the ∆, assuming
certain parametric relations between the chiral parame-
ters kπ ∼Mπ and the N -∆ mass splitting m∆ −mN . In
the present application the differences between the vari-
ous expansion schemes for the ∆ are irrelevant, because
the calculations are carried out at an accuracy where ∆
loops do not enter. The only difference to χEFT with N
only is in the appearance of the ∆ Born graphs at leading
order. We therefore denote the order of our calculations
by LO, NLO, N2LO, as is common in χEFT with N only.

Regarding the power counting, we note that χEFT
calculations with relativistic baryons must in principle
deal with power-counting-breaking terms arising from
chiral loops with baryons, i.e., lower-order terms in chi-
ral counting resulting from higher-order terms in the
loop expansion. The standard power counting for loops
can be recovered by adopting the extended-on-mass-shell
(EOMS) scheme [64]. While diagrams with chiral loops
are not considered in the present study, it is important to
mention this scheme here, as it ensures that the tree-level
results are not mixed up with power-counting-breaking
terms arising from chiral loops.

The LO χEFT diagrams for the I = J = 0 ππ → NN̄
partial-wave amplitude f0

+(t) are the N Born term
shown in Fig. 4a and the ∆ Born term in Fig. 4b;
ππNN contact terms appear only in higher orders and
will be discussed below. In the LO calculation of the

(c)

N

(a)

∆

(b)

FIG. 4. (a, b) LO χEFT diagrams contributing to the ππ →
NN̄ PWA. (c) Pion scalar FF in LO.
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FIG. 5. LO χEFT result for the function
[3kcm/(4p̃

2
N

√
t)] J0

+(t), which enters in the manifestly
real unitarity relation Eq. (15). Dashed blue line: Contribu-
tion of N Born term, Fig. 4a. Solid red line: Sum of N and
∆ Born terms, Fig. 4a and b.

ratio J0
+(t), Eq. (16), the pion FF in the denominator is

evaluated at LO, see Fig. 4c. At this order in χEFT the
pion is pointlike, σπ(t) ≡ σπ(0) = M2

π . The LO result
for J0

+(t) is therefore just the result for f0
+(t) divided by

M2
π . At this accuracy our approach based on Eq. (15)

simply amounts to multiplying the LO χEFT result for
the nucleon spectral function Imσ(t) (as obtained by
direct χEFT calculation of the spectral function without
the unitarity condition) by the normalized empirical
pion FF |σπ(t)|2/M4

π ,

Imσ(t) = Imσ(t) [LO] × |σπ(t)|2

M4
π

. (17)

This formula permits an extremely simple implementa-
tion of unitarity at LO accuracy. The factor |σπ(t)|2/M4

π

describes the enhancement of the direct χEFT result for
the spectral function due to ππ rescattering. Numeri-
cal results obtained with this approximation will be pre-
sented below.

The analytic expressions for the LO χEFT results for
J0

+(t) are given in Appendix A. The numerical val-
ues are shown in Fig. 5. For a better view the plot
shows the function multiplied by the kinematic factor of
Eq.(15), 3kcm/(4p̃

2
N

√
t) J0

+(t); this combination is equal
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+

σ

=

FIG. 6. Adjustment of the LECs of the NLO ππNN contact
term in our unitarity-based approach. The original contact
term (filled circle, left-hand side) is equated with the sum of
σ meson exchange and a reduced contact term (open circle).
The reduced contact terms are used in the present scalar FF
calculation with explicit unitarization.

to Imσ(t)/|σπ(t)|2 by virtue of Eq.(15). One observes
that the contributions from the N and ∆ Born term am-
plitudes have the same sign and are roughly comparable
in magnitude.

C. Estimates of higher-order corrections

At NLO accuracy corrections to the πN scattering am-
plitude arise only from NLO ππNN contact terms in
the chiral Lagrangian. The NLO contributions to the
I = J = 0 ππ → NN̄ PWA in Eq. (16) therefore have a
simple structure. Corrections to the pion FF appear only
at N2LO accuracy through pion loops. The expression
for the NLO corrections to J0

+(t) is given in Eq. (A15) of
Appendix A. At this accuracy Eq. (17) is still valid, and
the NLO corrections to the spectral function are obtained
simply by replacing J0

+(t) by its NLO expression.
For evaluating the higher-order corrections we use the

LECs of πN scattering. The values have to be adjusted
consistently with the logic of our unitarity-based ap-
proach. The LECs in standard χEFT absorb rescattering
effects that are treated explicitly within our unitarity-
based approach. The contact terms appropriate for our
approach are therefore obtained by subtracting the ef-
fects of rescattering from the original LECs. To do this
in practice, we describe the rescattering effects in the
I = J = 0 ππ channel through the σ meson exchange
model of Ref. [65]. The resonance saturation hypothesis
[66] then allows us to estimate how much of the original
LECs is due to rescattering and subtract those amounts
(see Fig. 6).

We take the NLO χEFT πN amplitude from Ref. [57]
and perform the partial-wave projection according to the
formulas of Ref. [13]. The LECs appearing in this ampli-
tude at NLO have been determined through relativis-
tic χEFT analysis of πN scattering with explicit ∆’s
[57, 67]. Performing the adjustment as described above,
we obtain the values ci (i = 1, 2, 3) listed in Table III
in Appendix A. We use the parameters to evaluate the
NLO contribution to J0

+(t) and estimate its uncertainty
by varying the values in the determined range. Numeri-
cal results from this procedure will be shown below.

At N2LO accuracy both the ππ → NN̄ PWA and the
pion FF involve loop corrections, and the structure of

0.0 0.2 0.4 0.6 0.8

1.0

1.5

2.0

2.5

3.0

t (GeV2)

|σ
π
(t
)

2
/M

π4

FIG. 7. Pion scalar FF obtained in the dispersive analysis of
Ref. [35]. The plot shows the normalized squared modulus of
the FF, |σπ(t)|2/M4

π , as it enters in the improvement formula
Eq. (17).

the χEFT expressions becomes considerably richer. At
this order ππ rescattering in the t-channel occurs both
in the PWA and in the pion FF, so that both functions
become complex at t > 4M2

π ; one should therefore be
able to verify explicitly that they have the same phase,
and that the phase cancels in the ratio in Eq. (16). Fur-
thermore, at N2LO πN and π∆ s-channel intermediate
states appear in the PWA and contribute to its left-hand
cut. Here we do not pursue a full N2LO calculation of
the function J0

+(t) including loops. Instead, we estimate
the size of the N2LO corrections in a simple way, by us-
ing the N2LO tree level result and varying the LECs in
a meaningful range. To this end we impose the unsub-
tracted dispersion relation for the scalar FF at t = 0
(sigma term),

σ(0) =
1

π

∫ ∞
4M2

π

dt′
Imσ(t′)

t′
, (18)

with the integration restricted to the region t′ < 1 GeV2.
This relation fixes the LECs in the N2LO tree level re-
sult in terms of σ(0). We then generate an uncertainty
band by varying σ(0) in the range 45–59 MeV. The first
value was determined in an earlier dispersive analysis of
the sigma term [68], while the second was obtained by
χEFT from modern πN PWAs and pionic atom data
[46], and supported in a subsequent analysis using Roy-
Steiner equations [69]. Numerical results for J0

+(t) with
these parameters will be shown below.

D. Pion form factor

For the pion scalar FF in Eq. (17) we take the result
of the dispersive analysis of Ref. [35]; for earlier results
see Refs. [33, 34]. The analysis includes the KK̄ chan-
nel at t > 1 GeV2 in a coupled-channel approach; we
require only the result on the ππ cut for t < 1 GeV2. Fig-
ure 7 shows the normalized squared modulus of the FF,
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|σπ(t)|2/M4
π , as it enters in the dispersive improvement

formula Eq. (17). One sees that it reaches a value ∼ 3 at
t ∼ 0.3 GeV2, which indicates the presence of strong ππ
rescattering. This underscores the rationale for our ap-
proach, as it would be very difficult to incorporate these
effects through higher-order chiral corrections.

The overall uncertainty of the nucleon spectral func-
tion calculated in our approach is determined by the un-
certainty of the χEFT calculation of J0

+(t) and the un-
certainty of the empirical σπ(t). In the numerical results
presented in the following we show only the uncertainties
resulting from the χEFT calculation of J0

+(t), which can
be quantified within our approach.

III. RESULTS

A. Nucleon scalar spectral function

We now present the results of the dispersively improved
χEFT calculation of the scalar FF with the methods de-
scribed in Sec. II. Figure 8 shows the function J0

+(t),
Eq. (16), which is the primary object of the χEFT cal-
culation (cf. Fig. 5). One observes:

(a) The chiral expansion shows good convergence.
Higher-order correction are small at threshold and
become increasingly important at larger t. NLO
corrections from the LECs give a strong positive
contribution at t > 0.5 GeV2 (mainly due to the
contribution of c3), which is corrected downwards
by the N2LO corrections estimated according to
Sec. II C. As a consequence, the NLO+N2LO re-
sults are close to the LO over a wide range of t.

(b) The χEFT predictions agree well with the
dispersion-theoretical result of Ref. [70], obtained
by analytic continuation of the ππ → NN̄ PWA
extracted from πN scattering data. The LO χEFT
result describes the dispersion-theoretical result
very close to threshold. The NLO corrections im-
prove the behavior in the near threshold-region and
lead to agreement with the dispersion-theoretical
result up to t . 0.2GeV2, but are too large at
larger t. Finally, the N2LO estimate reproduces the
dispersion-theoretical result over the entire range
up to t ∼ 0.8GeV2.

These observations provide strong justification for our
program of applying χEFT to the real function J0

+(t), in-
cluding the approximate treatment of N2LO corrections
(see Sec. II C). The convergence pattern observed here
directly carries over to the spectral function Imσ(t).

Figure 9 shows our predictions for the scalar spectral
function Imσ(t), obtained by multiplying the χEFT re-
sults for J0

+(t) with the empirical |σπ(t)|2, Eq. (15). Also
shown is the spectral function obtained from a recent

NLO

NLO+N2LO

Höhler

LO

0.0 0.2 0.4 0.6 0.8
-10

0

10

20

30

40

50

60

t (GeV2 )

(K
in
em
at
ic
fa
ct
or
)
×
J +
0

FIG. 8. χEFT results for the function 3kcm/(4p̃
2
N

√
t) J0

+(t),
which enters in the manifestly real unitarity relation Eq. (15).
Long-dashed red line: LO. Blue band with short-dashed con-
tours: NLO. Red band with solid contours: NLO + N2LO,
estimated as described in Sec. II C. (The bands labeled
NLO and NLO+N2LO show the total result up to that order
and include the LO contribution.) Dashed-dotted black line:
Dispersion-theoretical result of Ref. [70].

analysis using Roy-Steiner equations [19].1 One observes
that the LO χEFT result is in reasonable agreement
with the Roy-Steiner result up to energies t ∼ 0.3 GeV2.
The NLO correction improves the near-threshold behav-
ior but overestimates the spectral function at intermedi-
ate energies. The N2LO corrections, estimated according
to Sec. II C, have the right t-dependence to correct this
issue. Altogether we obtain excellent agreement with the
Roy-Steiner result up to t ∼ 1 GeV2.

B. Nucleon scalar radius

With the DIχEFT result for the spectral function we
can now compute the nucleon scalar radius, using the
well-convergent dispersion integral Eq. (7). Table I shows
the results obtained with different values of σ(0). Note
that σ(0) enters directly in the normalization factor,
Eq. (7), and indirectly through the procedure fixing the
N2LO parameters (see Sec. II C). One observes that
the nucleon scalar radius is substantially larger than the
charge radius (Dirac radius), 〈r2〉σ > 〈r2〉1 ∼ 0.65 fm2,
as pointed out in Ref. [17].

It is interesting to compare our results for the scalar ra-
dius with those of the dispersion-theoretical calculation
of Ref. [17], not the least because the DIχEFT calcu-
lation can provide systematic uncertainty estimates. We

1 We compare our results for J0
+(t) with the dispersion-theoretical

analysis of Ref. [70], which is based on old data but quotes results
directly for this real function. Our results for Imσ(t) we rather
compare with the Roy-Steiner analysis of Ref. [19], which is based
on the most recent ππ and πN scattering data.



9

NLO

NLO+N2LO

Hoferichter et al.

LO○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○
○

○
○

○
○

○

○

○
○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

(a)

0.0 0.2 0.4 0.6 0.8
-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

t (GeV2 )

Im
σ
(t
)

NLO

NLO+N2LO

Hoferichter et al.

LO

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○
○

○
○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○
○

○
○

○

○

○

○

(b)

0.0 0.1 0.2 0.3 0.4

0.00

0.05

0.10

0.15

0.20

0.25

t (GeV2 )

Im
σ
(t
)

FIG. 9. DIχEFT results for the scalar spectral function,
Eq. (17). The upper plot (a) covers the full range up to
t = 0.8 GeV2; the lower plot (b) covers the near-threshold
region. The long-dashed red lines (LO approximation), blue
bands with short-dashed contours (NLO), and red bands with
solid contours (NLO+N2LO) correspond to those of Fig. 8.
Dashed-dotted black lines: Roy-Steiner result of Ref. [19].

LO NLO NLO+N2LO

〈r2〉σ (fm2) A 1.06 1.40–1.67 1.03–1.13

B 1.38 1.83–2.19 1.34–1.49

TABLE I. Nucleon scalar radius obtained in DIχEFT with
different values of σ(0). A) σ(0) = 59 MeV; B) 45 MeV.

find that, at NLO+N2LO accuracy, our radius calculated
with σ(0) = 45 MeV is smaller than that of Ref. [17],
which uses the same value of σ(0). The difference can
be traced back to the spectral function, which in our cal-
culation comes out smaller than that of Ref. [17] in the
near-threshold region. We note that the DIχEFT result
agrees with that of the Roy-Steiner analysis of Ref. [19].
The latter provides a value of 〈r2〉σ = 1.07(4) fm2 when
σ(0) = 59 MeV is used [71], in excellent agreement with
what we obtain.

C. Nucleon scalar form factor

Using the once-subtracted dispersion relation Eq. (4)
we can also calculate the t-dependent scalar FF, both
in the region below threshold t < 4M2

π (where it is
real) and above threshold t > 4M2

π (where it is com-
plex). Figure 10 shows the results obtained with the
DIχEFT spectral functions at different orders, along with
the dispersion-theoretical result of Ref. [17]. In order
to suppress the dependence on the uncertain σ(0) the
figure shows the difference σ(t) − σ(0) instead of σ(t).
One observes that the DIχEFT calculations converge
well, especially at t < 4M2

π . The LO approximation al-
ready gives a result in good agreement with the disper-
sive one. The NLO contribution corrects the LO result
in the right direction, but by too much in magnitude;
this is because it overestimates the spectral function in
the intermediate-t region, which still has some modest
influence on the result of the dispersion integral for the
FF. At NLO+N2LO, once we enforce that the disper-
sion integral reproduce the chosen σ(0) (see Sec. II C),
the DIχEFT scalar FF is in excellent agreement with the
dispersion-theoretical one.

D. Cheng-Dashen discrepancy

Table II gives the results for the Cheng-Dashen dis-
crepancy Eq. (6) in DIχEFT, calculated through the dis-
persion integral Eq.(8). One observes the same pattern
of convergence as in the scalar radius and the FF: The
NLO corrections are strongly positive, the N2LO correc-
tions are negative, such that the total result at N2LO is
rather close to the original LO one.

The Cheng-Dashen discrepancy has been computed
previously using different methods. The first χEFT cal-
culation was reported in Ref. [25] and obtained ∆σ =
4.6 MeV at O(p3) accuracy. The dispersive analysis
of Ref. [17] then obtained a much larger value, ∆σ =
15.2(4) MeV, pointing to the inability of χEFT to gener-
ate sufficient curvature in σ(t) atO(p3) accuracy (accord-
ing to the the same reference, this has almost no effect
on the extraction of the sigma term from πN scattering
data). The curvature necessary to recover the dispersive
result was obtained in an O(p4) calculation in Ref. [72],
which found ∆σ = 14.0 MeV + 2M4

π ē2. This larger value
was supported by an updated dispersive calculation in
Ref. [19], which finds ∆σ = 13.9(3) MeV. The DIχEFT
approach described here gives results in excellent agree-
ment with the dispersive calculation. The main improve-
ment compared to conventional χEFT is that it includes
the strong ππ rescattering effects. It is interesting that
such effects are essential even at t = 2M2

π , which should
be well within the radius of convergence of conventional
χEFT calculations.
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FIG. 10. Nucleon scalar FF ∆σ(t) = σ(t) − σ(0), obtained
from the once-subtracted dispersion integral Eq. (4) with
the DIχEFT spectral functions. The long-dashed red lines
(LO approximation), blue bands with short-dashed contours
(NLO), and red bands with solid contours (NLO+N2LO) cor-
respond to those of Figs. 8 and 9. Green bands with dotted
contours: Dispersion-theoretical result of Ref. [17].

LO NLO NLO+N2LO

∆σ (MeV) 13.3 17.4 - 20.6 13.3 - 14.5

TABLE II. DIχEFT results for the Cheng-Dashen discrep-
ancy ∆σ, Eq. (6).

IV. DISCUSSION

A. Euclidean correlation functions

The DIχEFT approach incorporates ππ rescattering
effects in the nucleon spectral functions through the time-
like pion FF, which is provided by sources outside of
χEFT. An important aspect is that the pion FF enters
only through its squared modulus, and that knowledge of
its phase is not required [see Eq. (15)]. The modulus of
the pion timelike FF can in principle be extracted from
the vacuum correlation function of the operator, which
can be continued to imaginary time (Euclidean QCD)
and evaluated using non-perturbative methods such as
Lattice QCD. This opens up the interesting possibility

q

> 4Mπ

2
q2

q

=

π

π

π
σσΠσ π

FIG. 11. Two-pion cut of the scalar correlation function
Eq. (21).

of combining the χEFT calculations of the ππ → NN̄
amplitude with Euclidean QCD calculations of the pion
timelike FF. Here we describe this connection for the
scalar operator; the expressions can easily be generalized
to other G-parity-even operators.

The vacuum polarization induced by the scalar density
operator Eq. (1) is given by the two-point correlation
function [73–75]

Πσ(q2) ≡ i

∫
d4x eiqx 〈0|TOσ(x)Oσ(0) |0〉, (19)

where x is a 4-dimensional Minkowskian space-time dis-
placement, T denotes the time-ordering operation, and
the 4-momentum q can be spacelike or timelike, q2 < 0
or > 0. Πσ(q2) is an analytic function of q2, with no sin-
gularities at q2 < 0 and cuts at q2 > 0, corresponding to
hadronic intermediate states produced by the operator
Oσ. The function obeys subtracted dispersion relations

of the form [Π
(k)
σ (q2) denotes the k’th derivative with

respect to q2]

Πσ(q2) −
n−1∑
k=0

(q2)k
Π

(k)
σ (0)

k!

=
(q2)n

π

∫ ∞
4M2

π

dt′
Im Πσ(t′)

(t′)n(t′ − q2)
, (20)

where n ≥ 2 for the scalar operator, based on the ex-
pected short-distance behavior of the coordinate-space
correlation function. The imaginary part is propor-
tional to the cross section for hadron production by the
scalar operator at the squared mass t′ and is positive,
Im Πσ(t′) > 0. In the region 4M2

π < t′ < 16M2
π the only

accessible hadronic state is the ππ state (two-pion cut).
The imaginary part on the two-pion cut is given by an
elastic unitarity formula analogous to Eq. (12), with the
pion FF appearing both in the initial (operator → ππ)
and the final (ππ → operator) amplitudes (see Fig. 11),

Im Πσ(t′) =
kcm

8π
√
t
|σπ(t′)|2

(4M2
π < t′ < 16M2

π). (21)

It provides a direct connection between the squared mod-
ulus |σπ(t′)|2 and the vacuum correlation function.

In order to put Eq. (21) to practical use one must have
a method to extract the imaginary part on the two-pion
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cut from (approximate) calculations of the correlation
function Eq. (19). Here one may use the fact that the
lowest-mass state in the spectral representation deter-
mines the asymptotic behavior of the coordinate-space
correlation function at large spacelike distances. Sub-
stituting the spectral representation Eq. (20) of Πσ(q2)
in in Eq. (19) and inverting the Fourier transform, one
obtains a spectral representation of the coordinate-space
function at spacelike distances,2

〈0|TOσ(x)Oσ(0) |0〉

=

∫ ∞
4M2

π

dt′
√
t′K1(

√
t′
√
−x2)

4π2
√
−x2

Im Πσ(t′)

(x2 < 0). (22)

The modified Bessel function decays exponentially at
large arguments, K1(z) ∼ [π/(2

√
z)]1/2 exp(−z) for z �

1. For a given distance
√
−x2 the factor K1(

√
t′
√
−x2)

strongly suppresses the contribution from energies
√
t′ �

1/
√
−x2 in Eq. (22). The asymptotic behavior of the

coordinate-space function is therefore dominated by t′ in
the vicinity of the two-pion threshold in the spectral inte-
gral; it is of the form ∼ exp(−2Mπ

√
−x2) P (−x2), where

the pre-exponential factor P depends on the threshold
behavior of Im Πσ(t′), Eq. (21). At large but finite dis-
tances the spectral integral Eq. (22) extends over the en-
tire two-pion cut, with exponential suppression of higher-
mass states. Whether this representation could be used
to extract quantitative information on |σπ(t′)|2 from Lat-
tice QCD calculations of the coordinate-space correlation
function at distances

√
−x2 ∼ 1/Mπ is an interesting

question for further study. The success of this program
depends on the contribution of higher-mass states with
t′ > 16M2

π to the spectral integral, which could be in-
ferred from the Lattice QCD calculations of the correla-
tor at shorter distances, or estimated using quark-hadron
duality.

The timelike pion FF at 4M2
π < t < 16M2

π can also be
computed in Lattice QCD using a variant of the Lüscher
method, which exploits the correspondence between the
ππ scattering phase shift and the energy levels of the ππ
system in a finite volume [76]. Again this method delivers
the squared modulus of the timelike pion FF without de-
termining the phase. Results for |σπ(t′)|2 obtained with
either of the methods described here could be incorpo-
rated into our DIχEFT approach through Eq. (15).

2 In deriving Eq. (22) one may disregard the subtractions in
Eq. (20) and consider the Fourier transform of the formal unsub-
tracted dispersion integral with n = 0. The subtraction terms re-
sult in delta functions at x = 0, or derivatives thereof, which can
be neglected when considering the behavior of the coordinate-
space correlation function at finite distances.

B. Connection with large-Nc QCD

It is worthwhile to investigate the connection of our
approach with the large-Nc limit of QCD. This exer-
cise shows that the DIχEFT results obey the general
Nc-scaling relations for the scalar FF and explains the
relative contribution of N and ∆ intermediate states in
the chiral processes.

The limit of a large number of colors is a powerful
method for connecting properties of mesons and baryons
with the microscopic theory of strong interactions [77–
79]; see Ref. [80] for a review. While the dynamics re-
mains complex and cannot be solved exactly, the scal-
ing behavior of meson and baryon properties with Nc
can be established on general grounds and provides in-
sights into their structure and guidance for the formula-
tion of effective theories. The masses of low-lying mesons
scale as O(N0

c ); the masses of baryons scale as O(Nc)
for states with spin/isospin O(N0

c ); while the hadronic
size of mesons and baryons is O(N0

c ) and remains sta-
ble in the large-Nc limit. Baryons thus are heavy ob-
jects of finite size, whose external motion in coordinate
and isospin/spin space can be described classically, with
a mass and moment of inertia of O(Nc). The N and
∆ are the rotational states of the classical body with
isospin/spin I = J = 1/2 and 3/2, and the mass splitting
is m∆−mN = O(N−1

c ). Further scaling relations can be
obtained for the matrix elements of QCD operators be-
tween meson and baryon states, and the meson-meson
and meson-baryon couplings. The relations are model-
independent and can be derived in many different ways:
diagrammatic arguments [78], group-theoretical methods
[81, 82], large-Nc quark models [83, 84], and the soliton
picture of baryons [85, 86].

The Nc-scaling of the nucleon’s scalar FF considered
in the present study can be established as follows. The
standard techniques show that the nucleon sigma term
scales as σ(0) = O(Nc). This is plausible because the
sigma term represents the response of the nucleon mass to
a change of the QCD quark mass, σ(0) = m̂(∂/∂m̂)mN .
Since the nucleon’s spatial size is O(N0

c ), we consider
the scalar FF at non-exceptional momentum transfers
|t| = O(N0

c ), in either the spacelike or timelike domain.
For such values of t the scaling behavior of the FF is then
given by

σ(t) = O(Nc) [|t| = O(N0
c )]. (23)

Because Mπ = O(N0
c ), the t-region of elastic unitarity

(4M2
π < t < 16M2

π) remains stable in the large-Nc limit.
Thus the basic setup of our dispersive analysis remains
stable in the large-Nc limit: the dispersion integral ex-
tends over momenta t = O(N0

c ) and converges in that
parametric domain, and we require the spectral function
at energies t = O(N0

c ). For the pion scalar FF the same
arguments lead to σπ(0) = M2

π = O(N0
c ) and therefore

σπ(t) = O(N0
c ) [|t| = O(N0

c )]. (24)
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Equations (23) and (24) imply that the scalar FF of the
hadrons scales with the number of their valence quarks,
as one would expect in a “constituent quark” picture of
dynamical chiral symmetry breaking.

It is easy to verify the that the DIχEFT results for the
scalar nucleon FF obey the generalNc-scaling of Eq. (23).
Using the explicit expression Eq. (A2) with gA = O(Nc)
and fπ = O(

√
Nc), one finds that the contribution of the

N Born term to J0
+(t) scales as

J0
+(t)[LO, N ] = O(N3

c ) [|t| = O(N0
c )]. (25)

Using Eq. (A5) with hA = O(Nc) one finds the same scal-
ing behavior for the contribution of the ∆ Born term.3

Multiplication with |σπ(t)|2, Eq. (24), does not change
this scaling behavior. Taking into account the scaling be-
havior of the kinematic factor in Eq. (12) one concludes
that the DIχEFT result for the spectral function scales
according to Eq. (23). This scaling behavior then carries
over to the FF through the dispersion relation Eq. (4).

It is interesting to compare the relative contributions
of the N and ∆ Born terms to the scalar spectral function
in the large-Nc limit. In the large-Nc limit the N and ∆
become degenerate, {mN ,m∆} = O(Nc) andm∆−mN =
O(N−1

c ), and the πNN and πN∆ couplings are related
by [85]

gπN∆ =
3

2
gπNN (Nc →∞). (26)

Both statements follow from the fact that the N and ∆
are rotational states of a classical body with combined
isospin/spin symmetry. The conventional couplings of
Eq. (26) are related to the χEFT couplings by

gπNN =
gAmN

fπ
, gπN∆ =

hAmN√
2fπ

. (27)

and scale as {gπNN , gπN∆} = O(N
3/2
c ). Using Eqs. (26)

and (27) and the expressions in Appendix A one easily
shows that the LO χEFT results satisfy

Imσ(t)[LO,∆] = 2 Imσ(t)[LO, N ] (Nc →∞), (28)

i.e., the contribution of the ∆ Born term is twice as large
as that of the N one. Such behavior was observed in
earlier χEFT calculations of the nucleon’s scalar struc-
ture [87, 88]. It was also seen in studies of the nucleon’s
peripheral gluon and singlet quark structure, which are
measured by operators with the same isospin-spin quan-
tum numbers as the scalar density [89, 90].

3 Equation (25) is valid for k2
cm = t/4 − M2

π = O(N0
c ), i.e.,

for non-exceptional values t = O(N0
c ), not parametrically close

to the two-pion threshold. In this case {xN , x∆} = O(N−1
c )

in Eqs. (A3) and (A6), and the inverse tangent functions in
Eqs. (A2) and (A5) count as arctan {xN , x∆} ≈ π/2 = O(N0

c ).
The polynomial terms in Eqs. (A2) and (A5) are suppressed rel-
ative to the inverse tangent terms by a power N−1

c .

The relative factor in Eq. (28) can be explained in a
simple manner. Consider the scalar FF in the proton
isospin state, p. In the Born graph with intermediate N
the possible intermediate states are π0p and π+n; in the
Born graph with intermediate ∆ they are ∆++π−,∆+π0,
and ∆0π+. The Lagrangian with the relevant πNN and
πN∆ couplings is

LπNB ∝
gπNN

2
(
√

2p̄nπ+ + p̄pπ0)

+
gπN∆

3
(
√

3p̄∆++π− +
√

2p̄∆0π0 + p̄∆0π+)

+ (hermitean conjugate), (29)

where we display only the isospin structure and omit the
dependence on the pion momentum (for the full struc-
ture see Ref. [91] and references therein). Each pion
state contributes equally to the scalar charge, cf. Eq. (9).
The relative contribution of the N and ∆ Born graphs
is therefore given by the sum of the squared couplings in
Eq. (29),

Imσ(t)[LO, N ] ∝ g2
πNN

4
(2 + 1) =

3g2
πNN

4
, (30)

Imσ(t)[LO,∆] ∝ g2
πN∆

9
(3 + 2 + 1) =

2g2
πN∆

3
. (31)

With the large-Nc relation between the couplings,
Eq. (26), one then obtains the relative factor of Eq. (28).

The observation of Eq. (28) represents one instance of
a general phenomenon in χEFT: In the large-Nc limit
the contributions of N and ∆ intermediate states are re-
lated by a simple factor, and their sum produces a result
that exhibits correct Nc-scaling established on general
grounds. Note that the factor between the N and ∆ con-
tributions depends on the isospin-spin quantum numbers
of the operator and the matrix element [87, 88]. For the
scalar operator considered here, the individual N and ∆
contributions already have the correct Nc scaling, and
summing them just increases the coefficient compared to
N only. In the case of the isovector-vector FFs (Dirac
and Pauli), the individual N and ∆ contributions have
incorrect Nc-scaling — their scaling exponents are too
large by one power of Nc — and summing them is neces-
sary in order to cancel the leading term and recover the
correct general Nc-scaling Refs. [87, 88, 91, 92].

The large-Nc relation Eq. (28) represents an important
theoretical constraint on our χEFT calculation of scalar
nucleon structure. Confronting the large-Nc prediction
with the actual χEFT results for J0

+(t) obtained with
the physical N and ∆ masses and couplings, Fig. 5, we
observe: (a) The actual N and ∆ contributions have the
same sign, in agreement with the large-Nc predictions.
(b) The magnitude of the actual ∆ contribution is signif-
icantly smaller than the large-Nc prediction, amounting
to ∼ 1/2 rather than 2 times the N contribution. This
demonstrates that 1/Nc suppressed terms play an essen-
tial role in the χEFT result for J0

+(t). Notice that the
large-Nc limit corresponds to the heavy-baryon limit of



13

χEFT because Mπ/mN = O(N−1
c ); it is known that the

heavy-baryon expansion converges poorly for the spec-
tral functions on the two-pion cut; see Refs. [27, 92] for
a discussion.

V. OUTLOOK

We have presented a general method for calculating
the nucleon FFs of G-parity-even operators by combining
χEFT and dispersion theory. The spectral functions on
the two-pion cut are constructed with the help of the elas-
tic unitarity condition, using a manifestly real represen-
tation that separates the coupling of the ππ system to the
nucleon from the ππ rescattering (N/D method). χEFT
is used to calculate the real function describing the ππ
coupling to the nucleon, which is free of ππ rescattering
effects. It is dominated by the LO Born amplitudes with
N and ∆ intermediate states and shows good conver-
gence in higher orders. The effects of ππ rescattering are
then incorporated by multiplying with the squared mod-
ulus of the timelike pion FF, which can be determined
empirically or extracted from Lattice QCD calculations
of the vacuum correlation function of the operator. Our
method represents a major improvement over traditional
χEFT calculations of the spectral functions, which try
to account for the ππ rescattering effects through χEFT
interactions. It permits calculations of nucleon spectral
functions up to t ∼ 1 GeV2 (details depend on the oper-
ator) and opens up the prospect of a realistic dispersive
analysis of nucleon FFs and related quantities based on
χEFT.

We have applied the method to the nucleon scalar FF.
The χEFT calculations of the real function J0

+(t) show
good convergence and are in excellent agreement with
dispersion-theoretical results up to t ∼ 0.8 GeV2. This
information is sufficient for evaluating the t-dependence
of the scalar FF, the scalar radius, and the Cheng-Dashen
discrepancy, through a once-subtracted dispersion rela-
tion. Our calculation determines the scalar FF at mo-
mentum transfers up to |t| ∼ 0.5 GeV2 with controlled
uncertainties. The nucleon’s scalar FF is of principal
interest for understanding the role of dynamical chiral
symmetry breaking in nucleon structure and the origin
of the nucleon mass. It is also an ingredient in modeling
the interaction of dark matter with the nucleon for the
purpose of designing direct detection experiments [93].

The method described here can be applied to nu-
cleon FFs of any G-parity-even operators with a two-
pion cut. Applications to the nucleon isovector-vector
FFs will be presented in a forthcoming article [36]. Other
possible applications are the nucleon FFs of the energy-
momentum tensor and the moments of generalized par-
ton distributions; see Ref. [94] for a recent dispersive cal-
culation. The impact of the method depends on the con-
vergence of the χEFT calculations of the J-functions,
and on the actual strength distribution in the disper-
sion integrals under study, and has to be demonstrated

channel-by-channel. Subtractions can make the disper-
sion integrals more convergent and emphasize the low-t′

region where the spectral functions can be computed us-
ing our method. Another attractive possibility is to con-
sider the transverse spatial densities associated with the
FFs, which are represented by exponentially convergent
dispersion integrals and can safely be calculated with our
method at peripheral distances b & 1M−1

π [32]. An in-
teresting question is whether the dispersive method de-
scribed here could be extended to calculate the nucleon’s
peripheral partonic structure at fixed light-front momen-
tum fraction x; such calculations have so far been per-
formed in the standard χEFT approach without explicit
treatment of ππ rescattering [89, 90, 95].

An obvious extension of the present calculation would
be to the nucleon FFs of the scalar strange quark and
gluonic operators, which have the same quantum num-
bers as the light-quark scalar operator Eq. (1) [5]. The
dispersive calculation of these FFs must include also the
KK̄ channel and its coupling to ππ in a coupled-channel
approach. The extension of our method to this situa-
tion raises several interesting questions: (a) One would
need to generalize the N/D method and the manifestly
real representation of the unitarity condition, Eq. (15),
to the case of coupled ππ and KK̄ channels, and possi-
bly other inelasticities. (b) One would need to explore
how well χEFT works for the coupling of the KK̄ system
to the nucleon (octet and decuplet baryon Born terms,
contact terms). (c) The distribution of strength in the
dispersive integral of the strange and gluonic FF is ex-
pected to be very different from that of the light-quark
scalar FF and may involve large contributions from en-
ergies t′ > 1 GeV, where our approach is not applica-
ble. (d) One would need a parametrization of the pion
and kaon FFs of these operators that takes into account
coupled-channel dynamics. Some experimental informa-
tion on these FFs is available from τ lepton decays [35].
The timelike pion and kaon FFs could also be extracted
from the vacuum correlation function of the respective
operators, as described in Sec. IV A.

The DIχEFT approach described here could in princi-
ple also be extended to the nucleon FFs of G-parity odd
operators with a 3-pion cut. Methods for implementing
elastic unitarity in 3-body channels are presently being
developed in connection with the analysis of meson de-
cays [96] and the extraction of scattering phase shifts and
resonance parameters from Lattice QCD [97, 98]. How
to formulate an analog of the present N/D method for
the 3-body system, and how to match the 3-body uni-
tarity formula with χEFT calculations, are interesting
problems for further study. If our method could be ex-
tended to the 3-pion cut it would open up applications
to the nucleon isoscalar-vector and isovector-axial FFs,
about which little is known from first principles.
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Appendix A: Expressions

For reference we present in this appendix the LO
and NLO χEFT expressions for the real function J0

+(t),
Eq. (16), which are used in the analytical and numerical
studies in the text. In the following 4M2

π < t < 4m2
N and

[cf. Eqs. (13) and (14)]

kcm =
√
t/4−M2

π , p̃cm =
√
m2
N − t/4. (A1)

The contribution of the N Born diagram Fig. 4a is

J0
+(t)[LO, N ] =

g2
Am

3
N

4πf2
πM

2
π

(
arctanxN

xN
− t

4m2
N

)
, (A2)

xN ≡
2kcmp̃cm

AN

=
2
√
t/4−M2

π

√
m2
N − t/4

t/2−M2
π

, (A3)

AN ≡ t/2−M2
π . (A4)

The contribution of the ∆ Born diagram Fig. 4b is

J0
+(t)[LO,∆] =

h2
A

48πf2
πM

2
π

(C∆ arctanx∆ +D∆) , (A5)

x∆ ≡
2kcmp̃cm

A∆

=
2
√
t/4−M2

π

√
m2
N − t/4

t/2−M2
π +m2

∆ −m2
N

, (A6)

A∆ ≡ t/2−M2
π +m2

∆ −m2
N . (A7)

The coefficient of the inverse tangent function in Eq. (A5)
is obtained as

C∆ ≡
2p̃2

cmF −A∆mNG

kcm p̃cm
, (A8)

in which

F ≡ α(m∆ +mN ) +
β

3
(m∆ −mN ), (A9)

G ≡ −α+
β

3
, (A10)

α ≡ t

2
−m2

N +
(m2

∆ +m2
N −M2

π)2

4m2
∆

, (A11)

β ≡
(
mN +

m2
∆ +m2

N −M2
π

2m∆

)2

. (A12)

The full expression for the numerator in Eq. (A8), orga-
nized according to powers of M2

π and t, is

2p̃2
cmF −A∆mNG = 1/(48m2

∆)

×
[
8mN (mN +m∆)4(mN −m∆)2

− 8mN (mN +m∆)2(3m2
N − 2mNm∆ + 3m2

∆)M2
π

− 8m∆(mN +m∆)2(m2
N − 4mNm∆ +m2

∆)t

+ 8mN (3m2
N + 2mNm∆ + 3m2

∆)M4
π

+ 16m∆(m2
N −mNm∆ +m2

∆)M2
πt

− 12m3
∆t

2 − 8mNM
6
π − 8m∆M

4
πt
]
. (A13)

The polynomial terms in Eq. (A5) are obtained as

D∆ = 1/(18M2
∆)
[
6mN (mN +m∆)3(mN −m∆)

+ 4mN (4m2
N + 3mNm∆ + 3m2

∆)M2
π

− (19m3
N + 24m2

Nm∆ + 9mNm
2
∆ − 6m3

∆)t

− 6mNM
4
π − (mN + 6m∆)M2

πt

+ (4mN + 6m∆)t2
]
. (A14)

The inverse tangent function in Eqs. (A2) and (A5)
contains the logarithmic singularity in t resulting from
the left-hand cut of the ππ → NN̄ PWA. This singu-
larity corresponds to the intermediate baryon line of the
diagrams going on mass shell, s = {m2

N ,m
2
∆}. The co-

efficient of the singularity is therefore determined by the
πN scattering amplitude at the on-shell point. The lat-
ter is independent of the off-shell behavior of the χEFT
even in the case of the intermediate ∆, where the defini-
tion of the ∆ propagator and the πN∆ vertices off the
mass shell is generally ambiguous (for a discussion see
Refs. [32, 91] and references therein). We note that the
functions F and G in Eqs. (A9) and (A10) are just the
invariant amplitudes of πN scattering at t > 4M2

π and
s = m2

∆, as defined in Eqs. (4.15) and (4.16) of Ref. [91].
The polynomial terms in Eqs. (A2) and (A5) depend on
the behavior of the πN amplitude off the baryon mass
shell. In the case of the ∆ they depend on the specific
choice of the off-shell behavior and the vertices.

The masses and coupling constants used to evalu-
ate the LO expressions are the standard values for the
SU(2) flavor group (see Ref. [54]): Mπ = 139 MeV, fπ =
93 MeV,mN = 939 MeV, gA = 1.27, and m∆ =
1232 MeV, hA = 2.85.
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c1 c2 c3

LECs (GeV−1) (-0.28,-0.18) (1.0, 1.2) ( -1.64, -0.79)

TABLE III. LECs used in the NLO contact term contribution
to J0

+(t), Eq. (A15). The values were determined according
to the procedure described in Sec. II C.

The contribution to J0
+(t) arising from the NLO con-

tact terms in the πN amplitude is

J0
+(t)[NLO, contact] = − p̃2

cm

12πf2
πm

2
NM

2
π

×
(
12c1M

2
πm

2
N + 2c2p̃

2
cmk

2
cm + 6c3m

2
NAN

)
, (A15)

cf. Eqs. (A1) and (A4). The values of the LECs ci (i =
1, 2, 3), determined according to the procedure described
in Sec. II C, are listed in Table III.
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