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Abstract
We extend our previous study of elastic pion-nucleon scattering in the framework of chiral pertur-

bation theory by performing a combined analysis of the reactions πN → πN and πN → ππN . The

calculation is carried out to fourth order in the chiral expansion using the heavy baryon approach

and the covariant formulation supplemented with a modified version of the extended on-mass-shell

renormalization scheme. We demonstrate that a combined fit to experimental data in both chan-

nels leads to a reduced amount of correlations between the low-energy constants. A satisfactory

description of the experimental data in both channels is obtained, which is further improved upon

including tree-level contributions of the ∆(1232) resonance. We also explore a possibility of using

the empirical information about πN subthreshold parameters obtained recently by means of the

Roy-Steiner equations to stabilize the fits.
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I. INTRODUCTION

In recent years, there has been a revival of interest in theoretical studies of elastic pion-
nucleon scattering. One important milestone is a new partial-wave analysis in the framework
of the Roy-Steiner equations [1, 2], which incorporates the fundamental principles of analyt-
icity, crossing symmetry and unitarity. Using the empirical information about high-energy
πN and ππ scattering, the authors of Ref. [2] have performed error propagation of all in-
put quantities to finally determine pion-nucleon S- and P-wave phase shifts with quantified
uncertainties, see the review [3] for more details.

Considerable progress has also been made toward the understanding of elastic pion-
nucleon scattering in the framework of chiral perturbation theory (χPT), an effective field
theory of the strong interactions that allows one to perform a systematic expansion of low-
energy hadronic observables in powers of the soft scales such as the pion mass Mπ and/or
external three-momenta of the interacting particles pi. Here and in what follows, we restrict
ourselves to the two-flavor case of the light up- and down-quarks. Throughout, we work in
the isospin limit mu = md. In the single-nucleon sector, special care is required to maintain
the chiral power counting in the presence of the nucleon mass mN . This can be achieved
using the heavy-baryon scheme or, alternatively, by exploiting the freedom in the choice of
renormalization conditions in the covariant framework.

In the heavy-baryon approach, one performs a 1/mN expansion at the level of the effective
Lagrangian [4, 5]. As a result, the nucleon mass only enters the heavy-baryon Lagrangian in
the form of 1/mN -corrections to the vertices so that no positive powers of mN can emerge
when calculating the corresponding Feynman diagrams. In the single-nucleon sector, the
nucleon mass is counted as a quantity of the order of the breakdown scale of the chiral
expansion Λb, i.e. mN ∼ Λb. Here and in what follows, we denote the resulting approach as
HB-πN. In contrast, in few-nucleon calculations one usually treats the nucleon mass as an
even larger scale via the assignment mN ∼ Λ2

b/Mπ [6, 7]. This approach, which we refer to as
HB-NN, leads to a stronger suppression of relativistic corrections as compared to the HB-πN
scheme. Note that in all our estimates we adopt the conservative value of Λb ∼ 600 MeV as
in Ref. [8].

For a covariant formulation of baryon χPT, the chiral power counting can be maintained
employing the so-called infrared renormalization scheme [9, 10] or, alternatively, by using the
extended on-mass-shell scheme (EOMS) [11, 12]. Here and in what follows, we will employ
the EOMS approach in a slightly different form as compared with its original formulation.
In particular, we require the 1/mN -expansion of our results to match exactly the heavy-
baryon expansion which can be achieved via performing additional finite renormalization of
the low-energy constants (LECs), see Ref. [8] for details.

In Ref. [8], we have studied elastic pion-nucleon scattering to fourth order in the chiral
expansion within both the HB and covariant formulations. Differently to the previous χPT
studies of this reaction [5, 13–22], we have directly used the available experimental data
taken from the GWU-SAID data base [23] rather than the partial wave analyses such as
e.g. the ones performed by the Karlsruhe-Helsinki [24] and GWU (SAID) [25] groups to
determine the values of the various LECs, see also Ref. [26] for a recent work following the
same strategy (where only the HB-NN version of χPT was considered and no theoretical
errors were taken into account). In addition, we have carried out a detailed estimation
of theoretical uncertainties from the truncation of the chiral expansion by employing the
algorithm formulated in Ref. [27]. These two features have allowed us to directly translate the
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experimental errors into the statistical uncertainties of the extracted LECs and correlations
among them. The predicted phase shifts were found to be in good agreement with the ones
of Ref. [2]. Finally, elastic pion-nucleon scattering has also been analyzed at the leading one-
loop order in a covariant formulation of χPT with explicit ∆-resonance degrees of freedom
[28]. In that work, the LECs have been determined from fits to phase shifts determined in
the Roy-Steiner equation analysis of Ref. [2].

There is a fair number of unknown LECs that need to be determined from the fit, namely 8
(13) LECs at order Q3 (Q4) with Q ∈ {|pi|/Λb, Mπ/Λb} denoting the expansion parameter
in χPT. This results in sizeable uncertainties and large correlations among some of the
LECs. It is, therefore, desirable to incorporate additional empirical information when doing
the fits in order to further constrain the values of the LECs. χPT provides a suitable tool to
achieve this goal as it allows one to apply the same effective Lagrangian to different processes
and kinematical regions as long as one stays within the applicability domain of the chiral
expansion.

In the present study we explore two possibilities for further constraining the fits. First,
we employ the information on the so-called subthreshold πN parameters, which have been
extracted recently with high accuracy by means of the Roy-Steiner equation [3]. Secondly,
we perform combined fits of the experimental data in elastic pion-nucleon scattering and the
inelastic reaction πN → ππN . The corresponding scattering amplitude has been calculated
up to the leading one-loop order (i.e. Q3) in HB formulation of χPT in Refs. [29, 30], see
Refs. [31–33] for related earlier studies. Furthermore, single pion production off nucleons
was also analyzed at tree level in the covariant χPT framework with an implicit [34] and
explicit [35] treatment of effects due to ∆-resonance. A covariant tree-level investigation
including both the ∆ and the Roper resonances was presented in Ref. [36]. In this work,
we extend these calculations by performing, for the first time, a complete analysis of the
reaction πN → ππN at the full one-loop order (i.e. Q4) using both the HB and covariant
formulations of χPT.

Our paper is organized as follows. In section II, we give the definition of the pion-nucleon
subthreshold coefficients while section III contains the basic definitions and formalism for the
reaction πN → ππN . The details of the fitting procedure can be found in section IV. The
discussion of the naturalness of the extracted low-energy constants is presented in section V,
where we also discuss the lowest-order contributions of the ∆- and Roper-resonances to
these LECs. Our predictions for various observables are collected in section VI, where we
also discuss the obtained results. Finally, the main results of our study are summarized
in section VII. The appendix contains explicit expressions for the resonance saturation of
LECs due to the explicit inclusion of lowest-order ∆(1232)- and Roper-resonance.

II. PION-NUCLEON SUBTHRESHOLD PARAMETERS

As already pointed out in the introduction, this work provides an extension of the previous
analysis of the reaction πN → πN in [8]. In particular, we explore the possibility to improve
the extraction of the πN LECs by incorporating additional constraints from the subthreshold
kinematical region by including the leading subthreshold parameters in our fitting procedure.
In the following, we provide the basic definitions of the subthreshold parameters. A detailed
discussion of our calculation of the πN scattering amplitude including the definitions of
observables and kinematics as well as the details concerning renormalization up to order Q4

can be found in Ref. [8].
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The T -matrix for the process πa(q)N(p) → πb(q′)N ′(p′) can be conveniently expressed
in the form

T ba = χ†N ′

(
δabT+ + iεbacτcT

−)χN , T± = ū(s′)

(
D± − 1

4mN

[/q
′, /q]B

±
)
u(s) , (1)

where the amplitudes D± and B± depend on the quantities t and ν = (s − u)/4mN , with
the Mandelstam variables defined as

s = (p+ q)2 , t = (q − q′)2 , u = (p′ − q)2 , s+ t+ u = 2m2
N + 2M2

π . (2)

The subthreshold parameters are defined by an expansion of the amplitudes in powers of ν
and t via [18, 37]

D± =

(
1
ν

) ∞∑
n,m=0

dmnν
2mtn +D±pv , B± =

(
ν
1

) ∞∑
n,m=0

bmnν
2mtn +B±pv , (3)

where B±pv and D±pv refer to the subtracted pseudovector Born-term contributions given by

B±pv = g2
πNN

(
1

m2
N − s

∓ 1

m2
N − u

)
− g2

πNN

2m2
N

(
0
1

)
, D±pv =

g2
πNN

mN

(
0
1

)
+ νB±pv . (4)

III. THE REACTION πN → ππN

We now turn to the reaction πN → ππN and mainly focus on the renormalization of the
amplitude. To be more precise, we follow the same procedure as for the elastic channel in
Ref. [8] and only present in the following the new features appearing in the pion production
process. More details on the studied observables, in particular the relations to the amplitude,
can be found in Ref. [35].

The T -matrix for the reaction πa(q1)N(p) → πb(q2) πc(q3)N ′(p′) can be expressed in
terms of four invariant amplitudes

T abc = iū(s′)γ5

(
F abc

1 + (/q2
+ /q3

)F̃ abc
2 + (/q2

− /q3
)F̃ abc

3 + /q1
(/q2/q3

− /q3/q2
)F̃ abc

4

)
u(s) , (5)

which depend on the five Mandelstam variables

s = (p+ q1)2 , s1 = (q2 + p′)2 , s2 = (q3 + p′)2 , t1 = (q2 − q1)2 , t2 = (q3 − q1)2 . (6)

Notice that in Ref. [35], a different basis was chosen to decompose the amplitude. The
amplitudes F̃ abc

i are related to the ones F abc
i used in Ref. [35] via

F̃1 = F1 ,

F̃2 = F2 −
1

2mN

(s1 − s2 + t1 − t2)F4 ,

F̃3 = F3 −
1

2mN

(4M2
π +m2

N − s− t1 − t2)F4 ,

F̃4 = − 1

2mN

F4 .

(7)
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The isospin decomposition of the invariant amplitudes reads

F abc
i = χ†N ′

(
τaδbcB1

i + τ bδacB2
i + τ cδabB3

i + iεabcB4
i

)
χN . (8)

The basis in Eq. (5) is better suited for the renormalization procedure, because each spin
structure fulfills the power-counting on its own. Like in the case of πN -scattering, the
individual spin structures are expanded in small parameters,

Mπ ∼ O(Q1) , s−m2
N ∼ O(Q1) , s1 −m2

N ∼ O(Q1) , s2 −m2
N ∼ O(Q1) ,

t ∼ O(Q2) , t1 ∼ O(Q2) , t2 ∼ O(Q2) ,
(9)

which allows one to identify the power-counting breaking terms. The linear combination
s− s1− s2 +m2

N counts, according to the above rules, as a quantity of order Q1 but actually
starts contributing at order Q2. It is, therefore, advantageous to express the invariant
amplitudes as functions of e.g. s1, s2, t, t1 and t2. In the following, all LECs should be
understood as renormalized quantities and the explicit shifts used for the renormalization
can be found in Ref. [8].

The relevant tree-level diagrams for the reaction πN → ππN to order Q4 are shown in
Fig. 1 while the leading-order loop diagrams at order Q3 are visualized in Figs. 2 and 3.
The subleading one-loop diagrams at order Q4 are not shown explicitly, but can be easily
generated by replacing each leading-order vertex with an even number of pions from the

Lagrangian L(1)
πN with a subleading one from L(2)

πN as visualized in Fig. 4. Notice that there

are no vertices with an odd number of pions in the Lagrangian L(2)
πN . We also do not show

here the Feynman diagrams contributing to πN -scattering, which can be easily identified by
observing that πN → πN is a subprocess of πN → ππN (see Fig. 5), see also Ref. [17].

The leading-order tree-level diagrams are constructed solely from the lowest-order vertices
and thus depend only on the well-known LECs Fπ and gA. The higher-order tree-level

graphs involve insertions of the LECs ci from L(2)
πN , di from L(3)

πN , ei from L(4)
πN and the purely

mesonic LECs li from L(4)
ππ , which are known from ππ-scattering and other pion observables.

Specifically, the πN -scattering amplitudes depend on the LECs c1,2,3,4, d1+2,3,5,14−15 and
e14,15,16,17,18. These LECs also enter the πN → ππN amplitudes. Notice that due to crossing
symmetry, the contributions proportional to the LECs e14,15,16 count as order-Q5 and for this
reason are set to zero. Finally, the πN → ππN scattering amplitude depends on additional

LECs accompanying the πN -vertices with three pions, namely d4,10,11,12,13,16,18 from L(3)
πN and

e10,11,12,13,34 from L(4)
πN . Note that the LECs d4 and e11,12,13,34 only contribute to the channels

π+p → π+π0p and π−p → π0π−p. The other LECs contribute to all channels. Finally, we
neglect the contributions proportional to the LEC e35, which appear in the amplitudes of
both reactions since the corresponding terms actually count as order-Q5.

IV. FIT PROCEDURE

The amplitudes for the reactions πN → πN and πN → ππN depend on several LECs as
explained in the previous section. To extract the LECs ci, di and ei from the data, we follow
the same fit procedure to the available pion-nucleon scattering data up to T < 100 MeV as
in Ref. [8] but employ two kinds of additional constraints as discussed below.
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A. Constraints from subthreshold parameters

As a first approach, we consider elastic pion-nucleon scattering but, differently to our
previous study in Ref. [8], include in the fitting procedure additional constraints from the
subthreshold region. Specifically, we minimize the quantity

χ2 = χ2
πN + χ2

RS , (10)

where χ2
πN is the standard sum of squares

χ2
πN =

∑
i

(
Oexpi −NiO(n)

i

δOi

)2

with δOi =

√
(δOexpi )2 + (δO(n)

i )2 . (11)

The experimental data Oexpi , experimental errors δOexpi and normalization factors Ni are

taken from the GWU-SAID data base [23]. The quantity O(n)
i labels the corresponding

observable calculated to chiral order n, whereas the theoretical error δO(n)
i is based on the

truncation of the chiral expansion [8, 27]. In addition, the quantity χ2
RS is defined in analogy

to Eq. (11) as the standard sum of squares, which includes the eight leading πN scattering
subthreshold parameters given by the Roy-Steiner analysis [3], namely d±00, d±10, d±01 and b±00.
The Roy-Steiner analysis uses as an input data on the t-channel reactions (corresponding to
the ππ, K̄K, N̄N and other channels), the πN scattering lengths obtained from the analysis
of pionic atoms, the values of the πN S- and P -wave phase shifts at higher energies, and the
values of the πN phase shifts for higher partial waves. Implementing the principles of ana-
lyticity and unitarity the πN scattering amplitude is continued to the subthreshold region.
Therefore, the subthreshold parameters obtained this way contain complementary informa-
tion to the low-energy πN data. Among the above-mentioned sources of input information
only the πN phase shifts for higher partial waves could cause some small amount of double
counting of near-threshold data. The weights in both sums of squares in Eq. (10) include
the experimental error as well as an estimated theoretical error based on the truncation of
the chiral series. The interested reader is referred to Ref. [8] for more details on the fitting
procedure. Notice that we choose the values of the LECs determined by the subthreshold co-
efficients alone, see Ref. [38], as a starting point in our iterative fitting procedure. However,
we checked that the final minimum is independent of the starting point.

One should mention here that adding a theoretical uncertainty in quadrature as in
Eq. (11) is an approximation because of correlations of theoretical errors at different data
points (see e.g. Refs. [39, 40]). We will also make use of the quantity

χ̄2
πN =

∑
i

(
Oexpi −NiO(n)

i

δOexpi

)2

, (12)

where theoretical errors are not taken into account.
The extracted values of the LECs at orders Q2, Q3, Q4 are listed in Table I for the heavy-

baryon and covariant schemes along with the corresponding values of the reduced χ2
πN (χ̄2

πN)
with (without) theoretical error. For the sake of compactness, we restrict ourselves, following
Ref. [8], to the fits with Tπ < 100 MeV that correspond to 1704 πN experimental data points.
The number of degrees of freedom (dof) is equal to the number of data points minus the
number of fitted parameters. Note that the relative weight of the χ2

RS in the total minimal
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χ2, e.g. for the fits at order Q4, does not exceed 2%. Nevertheless, due to small uncertainties
of the subthreshold parameters given by the Roy-Steiner analysis (typically of the order of
a few percent), it’s statistical importance is sufficient to influence the fit. To have a simpler
comparison, we also show the values of the LECs extracted in Ref. [8] and the corresponding
reduced χ2

πN( χ̄2
πN).

As can be seen from Table I, imposing constraints from subthreshold parameters does
not lead to a qualitative improvement of the statistical uncertainties in the determination
of the LECs. However, strong correlations present in the pure πN fit (see Ref. [8]) are
weakened. In a combined fit, no correlation coefficient among the LECs exceeds (by absolute
value) 0.9. Instead of showing the full covariance/correlation matrix, we prefer to only
discuss the strongly correlated LECs in the pure πN fit (at highest considered order–Q4).
In particular, in the HB-NN counting scheme one observes strong (anti-)correlations between
c1 and c2 (0.90), between c2 and e16 (−0.94) and between c2 and d1+2 (0.94), which in the fits
including the constraints from the subthreshold region are reduced to (0.73), (−0.62) and
(0.87), respectively. In the HB-πN scheme, one has a similar situation regarding correlations
between the same set of LECs, which are reduced from (0.93), (−0.93) and (0.94) to (0.86),
(−0.59) and (0.88), respectively. In the covariant approach, one only has a strong correlation
between c1 and c2 (0.92), which is reduced to (0.81). The inclusion of the information about
the subthreshold coefficients in the fits could result in deteriorating the description of the
pion-nucleon scattering data in the physical region. By comparing the corresponding χ̄2

πN

values listed in Table I at order Q4, we indeed observe this to be the case in the HB-
πN approach.1 This can be viewed as an indication that the HB χPT fails to provide
simultaneous description of the pion-nucleon scattering amplitude both in the physical and
subthreshold regions which is consistent with the findings of Refs. [8, 38, 41]. The smallest
change in χ̄2

πN and in the values of the LECs upon including the information about the
subthreshold coefficients in the fit is observed in the covariant approach. This should not
come as a surprise given the superior description of the subthreshold coefficients based on
the LECs determined from πN scattering data alone in this formulation.

B. Constraints from the reaction πN → ππN

In the second approach, we include additional constraints from the reaction πN → ππN
such that we minimize

χ2 = χ2
πN + χ2

ππN + χ2
ππ , (13)

where χ2
πN is defined as in Eq. (11), χ2

ππN is defined analogously and includes the pion-
production total cross section data up to the maximal energy of Tπ < 350 MeV as well as
double differential cross section data at Tπ = 200 MeV and Tπ = 230 MeV. The total cross
sections are taken from the compilation [42] and from [43], [44] and [45], whereas the double-
differential cross sections with respect to Ω2 and the pion kinetic energy T2 = ω2 −Mπ in
the channel π−p → π+π−n are reported in [46]. The information about ππ scattering data
is included indirectly in χ2

ππ by using the extracted LECs li including uncertainties as a sum

1 It is more difficult to interpret the results at lower orders due to the dependence of the employed theoretical

uncertainties on the fit results at subsequent chiral orders as explained in detail in [8].

7



of squares

χ2
ππ =

4∑
i

(
li − l̄i
∆l̄i

)2

, (14)

where we used the values for the relevant LECs from L(4)
ππ summarized in [47] 2

l̄1 = −0.4± 0.6 , l̄2 = 4.3± 0.1 , l̄3 = 2.9± 2.4 , l̄4 = 4.4± 0.2 . (15)

Note that ∆l̄i denotes the statistical error such that we do not employ a theoretical error in
χ2
ππ.

As was seen in the analysis of [8], the ∆ pole at Tπ ' 190 MeV and the strong coupling
of the ∆ to the πN sector prevents one from using elastic pion-nucleon scattering data at
energies higher than Tπ ∼ 100 MeV when extracting the LECs using ∆-less formulations
of χPT. The situation in the reaction πN → ππN is somewhat different in the sense that
the coupling of the ∆ to the ππN sector is very weak as compared to the coupling to the
πN sector. This can be seen in the data on decay channels of the ∆ [49], where ∆ → πN
contributes to∼ 100%, while the channel ∆→ ππN is not even listed in Particle Data Group
[49]. Also, the observables such as the total cross sections do not show any pronounced
structure in the energy region of the ∆ pole. Notice further that in the reaction γN → ππN
at threshold one also expects an overwhelming contribution from the ∆. However, it was
shown in Ref. [50] that there are exact cancellations in the single and double-∆ tree graphs
at threshold that suppress the dangerous denominator 1/(m∆ −mn − 2Mπ). Thus, it does
not appear to be a priori unreasonable to perform fits to πN → ππN experimental data
in the ∆ region using deltaless formulations of χPT. It should, however, be emphasized
that the reaction πN → ππN has an additional subdecay channel ∆→ πN (via πN → π∆
channel) for Tπ & 380 MeV, which might lead to further limitations on the theory. Moreover,
the influence of the Roper resonance may become significant when the energy increases.
Although its nominal position corresponds to the laboratory energy of Tπ ≈ 490 MeV, the
Roper resonance has a rather large width and a fairly strong coupling to the ππN channel
[49]. According to the covariant tree-level study in [36], the Roper indeed plays a visible
role in some channels. For other studies of the effects of the ∆ and the Roper resonance in
the considered energy region, see e.g. Refs. [51, 52].

We performed fits to the discussed πN → ππN data with incoming pion kinetic energy
Tπ,ππN < {250, 275, 300, 325, 350} MeV, which corresponds to {87, 101, 122, 132, 140} data
points, respectively. Note that the energy range for calculating χ2

πN (χ̄2
πN) is always taken

to be Tπ < 100 MeV. The fitted LECs as functions of the maximal fitting energy Tπ,ππN are
shown in Figs. 8, 9 and 10 while the reduced χ2

πN (χ̄2
πN) and χ2

ππN (χ̄2
ππN) with (without)

theoretical errors as a function of Tπ,ππN is plotted in Fig. 7. Here, the number of degrees of
freedom (dof) for the πN → ππN reaction is defined as the number of the data points for
this reaction minus the number of additional parameters not appearing in the πN scattering
amplitude. We interpret the stability of the fit against the maximum fitted energy as an
indicator of convergence of the chiral expansion in the considered energy region and of the
correct choice of the breakdown scale Λb (a similar strategy was introduced in Ref. [40]).
We do not employ here more sophisticated methods based on the Bayesian approach as it
was done e.g. in Refs. [53, 54]. While the fits at Q3 exhibit a plateau-like behaviour of the

2 A recent compilation of the various results from the lattice simulations can be found in [48].
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extracted LECs as well as of the χ2
πN/dof and χ2

ππN/dof with regard to the maximal energy
of the πN → ππN data, the χ2

ππN/dof and the extracted LECs at Q4 deviate rather strongly
from a constant behaviour when the energy is increased. Optimistically, only the fit results
up to 275 MeV may be regarded as reasonably stable. Moreover, as shown in the lowest
row of Fig. 7, the description of the πN → ππN data actually deteriorates at order Q4 as
compared to the order Q3 except for the results within the covariant approach at energies
below 300 MeV. The problem can be traced back to the large values of some of the di, which
are preferred by the πN scattering data at order Q4 and seem to be in conflict with the
πN → ππN data. This especially applies to the linear combination d14−15, which changes
its value from d14−15 ∼ −6 GeV−2 at Q3 to d14−15 ∼ −10 GeV−2 at Q4 in the covariant
approach. We, however, found that the magnitude of the linear combination d14−15 at Q4

has to be much smaller in order to improve the convergence pattern of the chiral expansion
in the single-pion production. Notice that the low-energy constants contributing to elastic
pion-nucleon scattering are known to become significantly smaller in magnitude upon explicit
treatment of the ∆-resonance. This effect of resonance saturation was observed, in particular,
in Ref. [8], where the leading-order ∆-contributions have been included. Unfortunately, as
will be discussed in section V, the analogous simplified inclusion of the ∆-resonance in
the πN → ππN reaction is less straightforward due to the appearance of a number of
additional free parameters. Moreover, as already mentioned above, one cannot a priori
exclude the possibility that the Roper-resonance provides significant contributions to some
of the 3πNN LECs as well, while its contribution to the leading 2πNN LECs c1,2,3,4 is
known to be marginal [55]. A consistent inclusion of the ∆ and Roper resonances in the
framework of χPT, which may be needed to increase the applicability range of the theory,
is, however, beyond the scope of this paper.

The values of the LECs extracted at orders Q2, Q3, Q4 are collected in Tables II and
III for all considered approaches along with the corresponding values of the reduced χ2

πN

and χ2
ππN . To demonstrate the impact of the constraints from the reaction πN → ππN , we

restrict ourselves to the fits with Tπ,ππN < 275 MeV where our results are fairly stable.
In general, the change of the LECs as compared to the pure πN fit appears to be small.

This can be traced back to the almost complete decoupling of the πN → ππN component
of the χ2 from the πN → πN one caused by the large theoretical uncertainties in the
πN → ππN sector. Also the statistical errors and correlations of the LECs remain almost
unchanged. In addition, we observe strong anticorrelations between the LECs d10, d12 and
d11,d13, see Table IV for the results in the covariant approach.

V. NATURALNESS OF THE LECS

Let us comment on the extracted numerical values of the 3πNN LECs given in Table III.
Indeed at first sight they appear to be rather large if we would be using the very naive
estimation based on the naturalness assumption,

ci ∼
1

Λb

∼ 2 GeV−1 , di ∼
1

Λ2
b

∼ 3 GeV−2 , ei ∼
1

Λ3
b

∼ 5 GeV−3 , (16)

where Λb = 600 MeV is used to estimate the breakdown scale of the chiral expansion. For
the unnaturally large 2πNN LECs, the origin of their enhancement can be traced back to
the implicit treatment of the ∆ resonance [55]. As shown in [8, 56], the explicit inclusion
of the leading ∆-pole diagrams leads to natural values for all LECs. Following the same
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strategy, we have repeated the fits including the leading ∆-pole diagrams in the reaction
πN → ππN while setting the additional LECs from the ∆ sector to their large-Nc values,
namely hA = 1.35 and g1 = 2.29. The results for the 3πNN LECs at order Q4 + δ1 are
given in Table IV, whereas the 2πNN LECs are not given explicitly but are in very good
agreement with the ones determined in [8]. As can be seen from the table, the LECs di
still remain large whereas the LECs ei do indeed become more natural as compared to the
deltaless fits. Notice further that the statistical errors and the correlations among the LECs
d10,11,12,13 get enhanced (see Table IV) upon including the δ1-contributions.

To get further insights into the observed pattern, it is instructive to consider the NLO
contributions of the ∆ and Roper resonances to the relevant LECs, which are explicitly given
in appendix A. These expressions are based on the effective Lagrangian

L(1)
π∆ = −Ψ̄µ

i

[
(i /D

ij −m∆δ
ij)gµν − i(γµD

ij
ν + γνD

ij
ν ) + iγµ /D

ij
γν +m∆δ

ijγµγν

+
g1

2
gµν/u

ijγ5

]
Ψν
j ,

L(1)
πN∆ = hA Ψ̄i

µΘµα(z0)wiαΨ + h.c. ,

L(2)
πN∆ = Ψ̄i

µΘµα(z1)
[b4

2
wiαw

j
βγ

βγ5τ
j +

b5

2
wjαw

i
βγ

βγ5τ
j
]
Ψ + h.c. ,

L(1)
πR = Ψ̄R

[
i /D −mR +

gRR
2
/uγ5

]
ΨR ,

L(2)
πR = Ψ̄R

[
cR1 〈χ+〉+

cR2
8m2

(−〈uµuν〉Dµν + h.c.) +
cR3
2
〈u ·u〉 − cR4

2
σµν [uµ, uν ]

]
ΨR ,

L(1)
πRN = Ψ̄R

[gRN
2
/uγ5

]
Ψ + h.c. ,

L(1)
πR∆ = gR∆ Ψ̄i

µΘµα(z2)wiαΨR + h.c. ,

(17)

where the Roper contributions are introduced in a close analogy with the pion-nucleon
Lagrangian in Ref. [16], as first done in [57] , and the pion-nucleon-∆ Lagrangian is taken
from Refs. [58, 59]. Details on the notation used in Eq. (17) can be found in Refs. [16,
35, 58, 59]. Note that we set the off-shell parameters zi = 0 in the explicit expressions.
The numerical contributions of the ∆ and Roper resonances to the considered LECs are
summarized in Table V. The numerical values are obtained by assuming natural values
for the unknown LECs entering these expressions. In the ∆-sector, we fix hA = 1.35 and
g1 = ±2.29 to their large NC values and employ b4 = b5 = ±1. In the Roper sector, we fix
gRN = 0.35 as determined by the decay width of R→ πN [57] and assume gRR = gR∆ = cRi =
±1. As can be seen, the contributions to the LECs from the leading-order ∆-pole diagrams
employed in our fits (g1 = 2.29) are relatively small for the large LECs d10,11,12,13 while quite
substantial for the large LECs e10,11,12,13. This pattern is consistent with the Q4 + δ1 values
of the LECs listed in Table IV. Concerning the higher-order contributions, we find some
potentially large terms proportional to b4, b5 as well as to gR∆. The remaining contributions
of the Roper resonance are rather small and can be neglected. Note that the LECs ci were
redefined to absorb redundant contributions proportional to certain linear combinations of
ei [8], which induces the explicit µ-dependence of ci even in the HB approach.

Having established that the large values of the 3πNN LECs di cannot be explained by
means of resonance saturation, it is instructive to address their sensitivity to the choice of
the renormalization scale µ. To be specific, we consider the changes in the values of the
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LECs by changing the renormalization scale µ from Mπ to mN ,

∆x ≡ x
∣∣
µ=mN

− x
∣∣
µ=Mπ

, ∆x =
x(µ = Mπ)

∆x
, (18)

where x ∈ {ci, di, ei}. The quantity ∆x gives the absolute change of a LEC x, whereas ∆x is
a measure of its relative change. Notice that throughout this work, we follow the convention
by choosing µ = Mπ. The renormalization-group (RG) flow of the LECs is determined by
the corresponding dimensionless β-functions. At one-loop level, one finds

∆x =
βx

32π2F 2
π

log
(M2

π

m2
N

)
, (19)

and the β-functions can be found in [8] for both the covariant and heavy-baryon approaches.
As can be seen from Table V, the shifts in the 3πNN LECs under the considered change
of the renormalization point appear to be much larger than the ones in the 2πNN LECs
and are, in most cases, of the same order of magnitude as the LECs themselves. This pro-
vides yet another indication that the observed large size of these LECs is not related to
the implicit treatment of the ∆ and Roper resonances but is rather caused by the corre-
sponding dimensionless β-functions being numerically large. While such enhancement of the
β-functions may emerge due to combinatorial reasons such as the products of spin and/or
isospin matrices or powers of gA, which could affect the convergence pattern of the chiral
expansion, it could also come from the adopted form of the effective Lagrangian which is a
matter of convention. Thus, one cannot a priori exclude the possibility that the large val-
ues of the LECs simply reflect the convention employed in the effective Lagrangian. More
precisely, the vertices with many pions contain factorial factors that are not reflected in the
corresponding terms in the effective Lagrangian. Another interesting observation is that the
LECs ci decrease in magnitude when the renormalization scale is increased, while the LECs
di show the opposite behaviour and grow in magnitude when increasing the renormalization
scale. For the LECs ei one has a mixed pattern, where the 2πNN LECs increase and the
3πNN LECs decrease in magnitude.

We now further elaborate on the possibility that the large numerical values of the 3πNN
LECs are caused by the convention employed in the effective Lagrangian as explained before.
Due to the complexity of the πN → ππN amplitudes involving several energy scales, it is,
however, difficult to estimate the contributions from each individual LEC and to identify
possible numerical enhancements of this sort. One simple approach is to perform an expan-
sion around the threshold point ω2 = ω3 = Mπ and q1 · q2 = q1 · q3 = q2 · q3 = 0, such that
each Taylor coefficient of that series only involves the scales Mπ and mN . In the following we
will consider one representative example. A threshold expansion of the HB-NN amplitude
for the channel π+p→ π+π−n denoted by III gives

TIII '
[
− 4i

F 3
π

(
2(d10 + d12) + d11 + d13 + 6gA(d1+2 + d3 + d5))

)
M2

π+

+
2i

F 3
π

(
2d10 + d11 + 3gA(2d1+2 − d14−15)

)
q1 · q3 + . . .

]
S · q2 + . . . ,

(20)

where we only display contributions proportional to the di. As can be seen, the contribution
from the 3πNN LECs, namely d10, d11, d12 and d13, is suppressed by large numerical factors
relative to the one of the 2πNN LECs. This is an indication that the large numerical
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values of the 3πNN LECs resulting from our fits merely reflect the chosen normalization in
the effective Lagrangian. Also, one should keep in mind that only combinations of these
LECs show up. Given that there are some non-negligible correlations between these LECs,
looking at the individual values might be misleading. Similar observations can be made for
the 3πNN LECs ei. All this requires more detailed studies that go beyond the scope of this
work. However, we would like to stress that especially in the nucleon sector where multiple
powers of the axial coupling constant enter, the usage of the very naive assumption about
the natural size of the LECs, Eq. (16) when increasing the order one is working with, should
be taken with a grain of salt.

VI. PREDICTIONS

Based on the LECs extracted in the previous section, we are now in the position to make
predictions for various observables. In particular, we focus on the threshold and subthreshold
πN coefficients. The relation of the πN amplitude to the subthreshold parameters is given
in section II. The threshold expansion of the amplitudes

ReD± =
∞∑

n,m=0

D±mnq
2mtn , ReB± =

∞∑
n,m=0

B±mnq
2mtn (21)

is related to the threshold parameters via the expansion of the partial wave amplitude

ReTl± = q2l+1(al± + bl±q
2 + . . . ) (22)

such that the parameters of interest are given by

a±0+ =
D±00

4π(1 + α)
, b±0+ = −(2− α)D±00 + 8D±01m

2
Nα− 4D10m

2
Nα− 2B00mNα

2

16πm2
nα(1 + α)

,

a±1+ = −B
±
00 − 4D±01mN

24πmN(1 + α)
, a±1− = −3D±00 − 8D±01m

2
N −B±00mN(4 + 6α)

48πm2
N(1 + α)

,

(23)

with α = Mπ/mN .
Our results for the sub- and threshold parameters based on the different fit approaches

are collected in Table VI and VII, respectively. As one would expect, the description of the
subthreshold parameters improves when using them as an additional constraint and remains
similar in quality to the pure πN fit when performing a combined fit with πN → ππN
reaction. In general, the agreement with the subthreshold and threshold parameters obtained
from the Roy-Steiner (RS) equations is better in the covariant approach. This scheme also
yields results which are more stable against introducing additional constraints as compared
with the HB χPT formulations.

Next, our predictions for the πN phase shifts in S and P partial waves up to pion energies
of 100 MeV are given in Figs. 11 and 12 for the two different fit strategies in comparison
with the RS results of Ref. [3]. A comparison of Fig. 11 and Fig. 9 of Ref. [8] reveals that
the additional constraints from the subthreshold coefficients have little impact on the phase
shifts in the physical region when using the covariant χPT formulation, while the changes
are more visible in the two considered HB approaches. These observations are in line with
the conclusions of section IV A. Further, as already pointed out above, using the additional
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constraints from the reaction πN → ππN has almost no effect on the description of πN
scattering in the physical region within the employed fitting procedure. As a consequence,
the predictions for the phase shifts in Fig. 12 are almost identical to the ones shown in Fig. 9
of Ref. [8] for all considered counting schemes.

We now turn to the reaction πN → ππN . As explained in section IV B, we are unable
to obtain simultaneously a good description of both the πN → πN and πN → ππN data
at order Q4, which is mainly due to the large values of some of the 2πNN LECs di preferred
by the elastic scattering data being seemingly incompatible with the single pion production
data. Here and in what follows, we, therefore, show only a few representative examples for
observables. Our results for the total cross section in five channels are shown in Fig. 13.
While the description of the data at low energies used in the fit is fairly good, one observes a
strong overestimation of the cross section at higher energies, which is particularly pronounced
in the π+p→ π+π+n and π−p→ π0π−p channels. While the covariant approach shows the
smallest deviations from the data, one observes no improvement (at both orders Q3 and
Q4) as compared with the tree-level calculations of Ref. [35]. In Figs. 14-17, we also show
selected observables in the channel π−p → π+π+n which may be viewed as representative
examples. Specifically, the angular correlation function W is shown as a function of the
final dipion mass squared M2

ππ for fixed angles θ1 and θ2 (θ1 and φ2) in Figs. 14 and 15
(Figs. 16 and 17) in comparison with the data from Ref. [60]. Further, our predictions for
the single-differential cross sections with respect to M2

ππ and t are plotted in Figs. 18 and
19 in comparison with the data from Ref. [43]. We refer the reader to Ref. [35] for details
on the kinematics and for the definitions of various observables in this reaction. Comparing
our predictions with the tree-level calculations reported in Ref. [35], we observe a clear
improvement for the angular correlation at θ1 = 76◦ and θ2 = 66.7◦, θ2 = 39.7◦ as well as
at θ1 = 71◦ and θ2 = 69.4◦, θ2 = 41.5◦, see the lower two panels of Figs. 14 and 15. In all
remaining cases shown in Figs. 14-19, the description of the data appears to be comparable
to the one reported in Ref. [35].

As already mentioned in section IV, the most probable reason for a slower convergence
of the chiral expansion at higher energies are the missing contributions of the ∆ and Roper
resonances. A full-fledged inclusion of the ∆ and Roper resonances would require calculating
a number of tree-level and loop diagrams and adjusting many additional parameters, which
goes beyond the scope of this work. Instead, we perform here a simplified partial inclusion
of the ∆ resonance by taking into account the leading ∆-pole diagrams in the πN elastic
channel (as was done in Ref. [8]) and in the πN → ππN . To avoid the introduction of
additional parameters, we set the constants hA and g1 to their large-Nc values, see section V.
Note that although the sign of g1 can be fixed by large-Nc constraints, we also checked that
using the opposite sign, g1 = −2.29, has no substantial effects on the results because the
∆-pole contribution to the πN → ππN amplitude appears to be rather small, consistent
with the findings in Ref. [50] for the reaction γN → ππN . On the other hand, the inclusion
of the leading ∆-pole diagrams in the πN → πN channel influences indirectly the results in
the πN → ππN channel since the obtained LECs (in particular di) become smaller in line
with the resonance saturation, see the discussion in section V. As a result, the description of
the πN → ππN data improves significantly. This is illustrated with the example of the total
cross sections for all five channels in Fig. 20. The χ2 (χ̄2) also show a dramatic improvement
for both πN → πN and πN → ππN reactions, and their dependence on a maximum energy
in the ππN channel becomes much more flat (cf. Fig. 21). This indicates a potentially
better convergence of the chiral expansion in the presence of explicit ∆ degrees of freedom.
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The fact that the χ̄2
ππN slightly increases at higher energy could signal the importance of

the Roper resonance, which we do not take into account explicitly.
We have reached the values of reduced χ̄2 around 2(3) for the χ̄2

πN/dof (χ̄2
ππN/dof) at

order Q4 +δ1. To obtain the values of reduced χ̄2 even closer to 1 it would likely be necessary
to refine the existing data base by rejecting inconsistent data sets as it is commonly done
in the nucleon-nucleon sector [61, 62]. Consider a more established case of the πN data.
In this case our χ̄2

πN does not differ much from the χ2
πN , which indicates that the errors

are dominated by the experimental uncertainties. On the other hand, we utilize the GWU-
SAID data base [23] without change, and the reduced χ2 of the GWU-SAID partial-wave
analysis [25] (for the same data base and the energy region relevant for our study) is equal to
χ2/dof ≈ 1.8. Clearly, we will not be able to obtain χ2/dof smaller than this value without
modifying the data base by means of rejecting some inconsistent data. This goes, however,
beyond the scope of the present work.

VII. SUMMARY AND OUTLOOK

The main results of our paper can be summarized as follows:

• We have extended our analysis of pion-nucleon scattering in chiral perturbation theory
to the full one-loop order (Q3 and Q4) reported in Ref. [8] by imposing additional
constraints from the subthreshold parameters calculated by means of the Roy-Steiner
equations in Ref. [3] and from the combined fit with the πN → ππN reaction at
low energies. We have considered all three formulations of χPT , namely the heavy-
baryon schemes HB-NN, HB-πN and the covariant version. For the first time, the
πN → ππN scattering amplitude has been calculated at the chiral order Q4. The
fits to the combined data sets were performed employing the approach for estimating
the theoretical uncertainty from the truncation of the chiral expansion introduced in
Ref. [27].

• For the combined fit with the Roy-Steiner subthreshold parameters the extracted low-
energy constants are found to have similar statistical uncertainties as in the fit to
πN scattering data alone. However, we found that taking into account the additional
constraints in the subthreshold region allows to strongly suppress the amount of corre-
lations between some of the LECs. The description of the subthreshold parameters in
the combined fit is obviously improved whereas the πN data in the physical region are
reproduced slightly worse. The smallest change in the χ̄2 (without theoretical errors)
and in the values of LECs is observed for the covariant formulation of χPT.

• For the combined fit with the πN → ππN reaction, the extracted low-energy constants
already contributing to the elastic πN amplitude and their statistical uncertainties
remain nearly unchanged. As in the case of the constraints from the subthreshold
region, strong correlations among LECs are found to be reduced. Some of the new
LECs that give contributions to the πN → ππN amplitude appear to be “unnaturally”
large in magnitude. However, our analysis shows that the corresponding LECs appear
in the scattering amplitudes in linear combinations, which are suppressed by large
numerical factors as compared to the other LECs. As a result, we do not observe any
unnatural enhancement of their contributions to the scattering observables.
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• Using the results of the combined fit to the πN → πN and πN → ππN reactions,
we confront the results of our calculations with the experimental data for various
πN → ππN observables as well as for the πN phase shifts. For all three formulations
of χPT, we obtain a satisfactory description of the experimental/empirical data and a
reasonable convergence pattern. The agreement with the data becomes worse as the
energy rises. This most probably indicates the importance of the π∆ channel and the
Roper pole, which we do not take into account explicitly. A simplified, partial inclusion
of the ∆ resonance via tree-level pole diagrams leads to a significant improvement in
the description of the data in both πN → πN and πN → ππN channels in accordance
with this assumption. We anticipate that a rigorous treatment of the ∆ and Roper
resonances as explicit degrees of freedom within χPT, extending the tree-level study
of Ref. [36], will improve convergence of the theory and agreement with the data for
two considered reactions and will make it possible to extend the energy region of
applicability of chiral perturbation theory, see also Ref. [41]. Work along these lines
is in progress.
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Appendix A: Resonance saturation of the LECs

Below, we give the explicit expressions for resonance contributions to the various LECs.
The contributions of the ∆ degrees of freedom to the πN LECs read:

c1,∆ = 0 ,

c2,∆ =
4h2

Am
2
N

9(mN −m∆)m2
∆

,

c3,∆ = − 4h2
A

9(mN −m∆)
,

c4,∆ =
2h2

A

9(mN −m∆)
,

d1+2,∆ = −h
2
A (2m2

N − 3mNm∆ + 3m2
∆)

18(mN −m∆)2m2
∆

,

d3,∆ =
h2
Am

2
N

9(mN −m∆)2m2
∆

,

d4,∆ = − gAh
2
A

36(mN −m∆)2
− 5g1h

2
A (m2

N − 2mNm∆ − 4m2
∆)

324(mN −m∆)2m2
∆

− hAb4

18(mN −m∆)
+

hAb5

18(mN −m∆)
,

d5,∆ = − h2
A(2mN +m∆)

36(mN −m∆)m2
∆

,

d10,∆ = − gAh
2
A

3(mN −m∆)2
+
g1h

2
A (m2

N − 2mNm∆ + 4m2
∆)

27(mN −m∆)2m2
∆

− 2hAb4

3(mN −m∆)
− 5hAb5

9(mN −m∆)
,

d11,∆ =
hAb5

9mN − 9m∆

− g1h
2
A (4m2

N − 8mNm∆ + 11m2
∆)

81(mN −m∆)2m2
∆

+
gAh

2
A

9(mN −m∆)2
+

2hAb4

9(mN −m∆)
,

d12,∆ =
gAh

2
AmN(2mN +m∆)

9(mN −m∆)2m2
∆

+
g1h

2
Am

2
N (8m2

N + 2mNm∆ − 19m2
∆)

81(mN −m∆)2m4
∆

+
2hAb4mN(2mN +m∆)

9(mN −m∆)m2
∆

+
hAb5mN(2mN + 3m∆)

9(mN −m∆)m2
∆

,

d13,∆ =
hAb5mN(2mN − 3m∆)

9(mN −m∆)m2
∆

− g1h
2
Am

2
N (4m2

N + 6mNm∆ − 17m2
∆)

81(mN −m∆)2m4
∆

− 2hAb4mN

9mNm∆ − 9m2
∆

− gAh
2
AmN

9(mN −m∆)2m∆

,

d14−15,∆ =
2h2

AmN

9(mN −m∆)2m∆

d16,∆ = 0 ,

(A1)
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e10,∆ =
gAh

2
A(3mN −m∆)

72m∆(−mN +m∆)3
+

5g1h
2
AmN (2m2

N − 9mNm∆ + 17m2
∆)

648(mN −m∆)3m3
∆

− hAb5(mN − 3m∆)

72(mN −m∆)2m∆

+
hAb4(−2mN +m∆)

36(mN −m∆)2m∆

,

e11,∆ =
gAh

2
A (m2

N +mNm∆ − 6m2
∆)

72mN(mN −m∆)2m∆(mN +m∆)

− 5g1h
2
A (4m5

N + 4m4
Nm∆ + 7m3

Nm
2
∆ − 5m2

Nm
3
∆ + 18mNm

4
∆ − 12m5

∆)

648mN(mN −m∆)2m4
∆(mN +m∆)

+
b4 (hAm

2
N + hAmNm∆ − 3hAm

2
∆)

36m3
Nm∆ − 36mNm3

∆

− b5 (hAm
2
N + hAmNm∆ − 3hAm

2
∆)

36m3
Nm∆ − 36mNm3

∆

,

e12,∆ =
gAh

2
A (2m3

N − 7m2
Nm∆ + 13mNm

2
∆ − 6m3

∆)

72mN(mN −m∆)3m2
∆

+
5g1h

2
A (4m5

N + 4m4
Nm∆ − 33m3

Nm
2
∆ + 45m2

Nm
3
∆ − 42mNm

4
∆ + 12m5

∆)

648mN(mN −m∆)3m4
∆

+
hAb4 (2m3

N − 5m2
Nm∆ + 7mNm

2
∆ − 3m3

∆)

36mN(mN −m∆)2m2
∆

− hAb5 (2m3
N − 5m2

Nm∆ + 7mNm
2
∆ − 3m3

∆)

36mN(mN −m∆)2m2
∆

,

e13,∆ =
gAh

2
AmN (−3m2

N +m2
∆)

36(mN −m∆)3m2
∆(mN +m∆)

+
5g1h

2
Am

2
N (4m2

N − 6mNm∆ − 3m2
∆)

162m3
∆(−mN +m∆)3(mN +m∆)

− hAb4m
3
N

18(mN −m∆)2m2
∆(mN +m∆)

+
hAb5m

3
N

18(mN −m∆)2m2
∆(mN +m∆)

,

e14,∆ =
h2
A (2m2

N −mNm∆ + 3m2
∆)

72(mN −m∆)2m2
∆(mN +m∆)

,

e15,∆ =
h2
AmN (m2

N −mNm∆ +m2
∆)

9m2
∆(−mN +m∆)3(mN +m∆)

,

e16,∆ =
h2
Am

3
N

9(mN −m∆)3m2
∆(mN +m∆)

,

e17,∆ = − h2
A (m2

N − 2mNm∆ + 3m2
∆)

72mN(mN −m∆)2m∆(mN +m∆)
,

e18,∆ =
h2
AmN (m2

N − 4mNm∆ +m2
∆)

36m2
∆(−mN +m∆)3(mN +m∆)

,

e34,∆ = − gAh
2
A (2m2

N + 6mNm∆ + 5m2
∆)

72mN(mN −m∆)m2
∆(mN +m∆)

− 5g1h
2
A (4m5

N + 8m4
Nm∆ − 11m3

Nm
2
∆ − 19m2

Nm
3
∆ − 6mNm

4
∆ + 12m5

∆)

648mN(mN −m∆)2m4
∆(mN +m∆)

+
hAb4 (−2m3

N − 3m2
Nm∆ +mNm

2
∆ + 3m3

∆)

36m2
∆ (m3

N −mNm2
∆)

+
hAb5 (2m3

N + 3m2
Nm∆ −mNm

2
∆ − 3m3

∆)

36m2
∆ (m3

N −mNm2
∆)

,

(A2)
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and
2e19,∆ − e22,∆ − ê36,∆ = 0 ,

e20,∆ + e35,∆ = − h2
AmN(mN + 2m∆)

18(mN −m∆)2m2
∆(mN +m∆)

,

2e21,∆ − e37,∆ = − h2
A

36m2
Nm∆ − 36mNm2

∆

,

e22,∆ − 4e38,∆ =
h2
A(2mN + 3m∆)

36m2
∆ (m2

N −m2
∆)

.

(A3)

Whereas the contributions of the explicit Roper resonance have the form

c1,R = 0 ,

c2,R =
g2
RNmN

2m2
N − 2m2

R

,

c3,R = − g2
RN

4(mN −mR)
,

c4,R =
g2
RN

2mN − 2mR

,

d1+2,R =
g2
RN(3mN −mR)

8(mN −mR)2(mN +mR)
,

d3,R = − g2
RNm

2
N

2(mN −mR)2(mN +mR)2
,

d4,R = − gAg
2
RN

16(mN −mR)2
+

gR∆gRNhA
18(mN −mR)(mN −m∆)

+
g2
RNgRR

16(mN −mR)2
− gRNc

R
4

4(mN −mR)
,

d5,R = 0 ,

d10,R = − 3gAg
2
RN

8(mN −mR)2
+

2gR∆gRNhA
3(mN −mR)(mN −m∆)

+
3g2

RNgRR
8(mN −mR)2

+
gRNc

R
3

mN −mR

− gRNc
R
4

mN −mR

,

d11,R =
gAg

2
RN

4(mN −mR)2
− 2gR∆gRNhA

9(mN −mR)(mN −m∆)

− g2
RNgRR

4(mN −mR)2
+

gRNc
R
4

mN −mR

,

d12,R =
gAg

2
RN (5m2

N + 2mNmR −m2
R)

4 (m2
N −m2

R)
2

− 2gR∆gRNhAmN (2m2
N +mN(2mR −m∆) +m∆(mR + 2m∆))

9 (m2
N −m2

R) (mN −m∆)m2
∆

− g2
RNgRRmN(mN + 2mR)

2 (m2
N −m2

R)
2 +

gRNc
R
2

mN −mR

+
2gRNc

R
4 mN

m2
N −m2

R

,

(A4)
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d13,R = − gAg
2
RN(3mN −mR)

4(mN −mR)2(mN +mR)
− 2gR∆gRNhAmN(mN −mR − 2m∆)

9 (m2
N −m2

R) (mN −m∆)m∆

+
g2
RNgRRmNmR

(m2
N −m2

R)
2 −

2gRNc
R
4 mN

m2
N −m2

R

,

d14−15,R = − g2
RN

4(mN −mR)2
,

d16,R =
2gRNc

R
1

mN −mR

,

e10,R = − g2
RNgRR

8(mN −mR)3

+
gR∆gRNhA (2m2

N +m∆(mR + 2m∆)−mN(2mR + 3m∆))

36(mN −mR)2(mN −m∆)2m∆

+
gAg

2
RN(5mN −mR)

32mN(mN −mR)3
+

gRNc
R
4

4(mN −mR)2
,

e11,R = − gAg
2
RNmR

8mN(mN −mR)2(mN +mR)

+
gR∆gRNhA (m3

N −m2
N(mR − 5m∆) + 3mRm

2
∆ +mNm∆(−mR +m∆))

36mN (m2
N −m2

R)m∆ (m2
N −m2

∆)

+
g2
RNgRR (3m2

N + 2mNmR + 3m2
R)

32mN (m2
N −m2

R)
2 − gRNc

R
4 (mN + 3mR)

8 (m3
N −mNm2

R)
,

e12,R = −gRNc
R
4 (3m2

N − 2mNmR + 3m2
R)

8mN(mN −mR)2(mN +mR)

− gR∆gRNhA
36mN(mN −mR)2(mN +mR)(mN −m∆)2m2

∆

(
2m5

N −m4
Nm∆

+ 3m2
Rm

3
∆ −mNmRm

2
∆(7mR + 2m∆)−m3

N

(
2m2

R + 4mRm∆ + 3m2
∆

)
+m2

Nm∆

(
5m2

R + 6mRm∆ + 3m2
∆

) )
− gAg

2
RN (3m3

N +m3
R)

8mN(mN −mR)3(mN +mR)2
+
g2
RNgRR (5m3

N + 9m2
NmR −mNm

2
R + 3m3

R)

32mN(mN −mR)3(mN +mR)2
,

e13,R =
gAg

2
RNmN (7m2

N + 2mNmR −m2
R)

8 (m2
N −m2

R)
3

+
gR∆gRNhAm

2
N

18 (m2
N −m2

R)
2

(mN −m∆)2m2
∆(mN +m∆)

(
m4
N +m3

N(mR + 3m∆)

+m2
∆

(
m2
R + 2mRm∆ + 4m2

∆

)
−m2

N

(
m2
R + 2mRm∆ + 5m2

∆

)
−mN

(
m3
R +m2

Rm∆ + 2m3
∆

) )
− g2

RNgRRm
2
N(mN + 3mR)

4 (m2
N −m2

R)
3 +

gRNc
R
4 m

2
N

(m2
N −m2

R)
2 ,

(A5)
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e14,R =
g2
RN(3mN −mR)

64mN(mN −mR)2(mN +mR)
,

e15,R = − g2
RNmN(2mN −mR)

8(mN −mR)3(mN +mR)2
,

e16,R =
g2
RNm

3
N

4(mN −mR)3(mN +mR)3
,

e17,R = − g2
RN

32mN(mN −mR)2
,

e18,R =
g2
RNmN

8(mN −mR)3(mN +mR)
,

e34,R =
3gAg

2
RN

32mN(mN −mR)2

+
gR∆gRNhA

36mN(mN −mR)(mN +mR)m2
∆ (m2

N −m2
∆)

(
2m4

N + 3m2
N(mR −m∆)m∆

− 3mRm
3
∆ −mNm

2
∆(mR + 3m∆) +m3

N(2mR + 3m∆)
)

− 3g2
RNgRR

32mN(mN −mR)2
+

3gRNc
R
4

8m2
N − 8mNmR

,

(A6)

and
e20,R + ê35,R = 0 ,

2e21,R − e37,R = 0 ,

2e19,R − e22,R − e36,R = − g2
RN

16 (m3
N −mNm2

R)
,

e22,R − e34,R =
g2
RN

32m3
N − 32mNm2

R

.
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HB-NN HB-πN Cov

Q2 πN πN+RS πN πN+RS πN πN+RS

c1 -1.82(5) -1.69(4) -1.92(5) -1.60(5) -2.16(5) -2.12(5)

c2 2.97(9) 3.17(8) 3.12(9) 3.63(9) 2.55(7) 2.65(7)

c3 -6.08(6) -6.07(5) -6.23(6) -6.24(5) -6.23(5) -6.28(5)

c4 4.19(5) 4.61(2) 4.65(4) 5.22(3) 4.32(2) 4.32(2)

χ2
πN/dof 0.72 0.69 0.69 0.60 0.67 0.69

χ̄2
πN/dof 116 128 98 121 413 402

Q3 πN πN+RS πN πN+RS πN πN+RS

c1 -1.66(3) -1.24(2) -1.62(2) -1.64(2) -1.66(2) -1.55(2)

c2 4.10(5) 4.89(5) 3.42(4) 3.51(3) 3.42(3) 3.60(4)

c3 -7.11(2) -7.25(2) -6.52(2) -6.63(2) -6.51(2) -6.54(2)

c4 4.14(5) 4.74(4) 3.89(4) 4.01(4) 3.78(4) 3.86(3)

d1+2 2.78(5) 3.39(4) 3.89(5) 4.37(4) 4.07(4) 4.09(4)

d3 -1.90(8) -3.47(7) -2.53(9) -3.34(7) -2.43(4) -2.50(4)

d5 -0.64(5) 0.00(4) -0.79(5) -0.56(4) -0.89(4) -0.86(4)

d14−15 -7.41(12) -7.39(13) -6.94(14) -7.49(13) -6.18(10) -6.05(10)

χ2
πN/dof 1.04 1.04 1.03 0.83 0.97 1.05

χ̄2
πN/dof 14.6 14.1 13.0 14.4 13.5 13.0

Q4 πN πN+RS πN πN+RS πN πN+RS

c1 -0.44(4) -1.31(8) 0.12(5) -1.15(8) -0.81(4) -0.82(7)

c2 4.32(9) 1.88(23) 4.99(13) 2.39(22) 3.87(8) 3.56(16)

c3 -4.40(7) -4.43(9) -3.09(9) -4.44(9) -4.91(9) -4.59(9)

c4 4.07(11) 3.24(17) 3.60(12) 3.45(17) 4.06(10) 3.44(13)

d1+2 6.51(6) 5.95(9) 5.54(6) 5.60(9) 5.63(4) 5.43(5)

d3 -6.21(6) -5.64(6) -4.40(4) -3.84(4) -4.75(6) -4.58(8)

d5 -0.07(3) -0.11(4) -0.45(4) -0.89(4) -0.42(3) -0.40(4)

d14−15 -12.08(8) -11.61(9) -9.42(6) -9.45(8) -10.18(6) -9.94(7)

e14 -0.39(24) 0.86(29) -3.23(30) 1.28(32) -0.85(22) -0.63(24)

e15 -6.94(51) -11.36(81) -7.98(53) -13.26(79) -5.60(39) -7.33(45)

e16 1.62(30) 10.73(95) -0.19(24) 8.29(95) 0.39(17) 1.86(37)

e17 0.73(40) -0.66(46) 3.53(41) -0.73(47) -1.15(30) -0.90(32)

e18 -0.17(52) 4.47(87) -0.05(56) 4.17(90) 1.60(35) 3.17(45)

χ2
πN/dof 1.90 1.92 1.83 2.04 1.94 2.07

χ̄2
πN/dof 4.5 4.8 4.1 5.9 4.9 5.1

TABLE I: LECs determined from fits including χ2
RS as additional constraints at orders Q2, Q3, Q4

in comparison with the values given in [8]. The values of the πN LECs at orders Q2, Q3, Q4 are

given in units of GeV−1, GeV−2 and GeV−3, respectively.
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HB-NN HB-πN Cov

Q2 πN πN+ππN πN πN+ππN πN πN+ππN

c1 -1.69(4) -1.69(4) -1.60(5) -1.59(5) -2.19(5) -2.12(5)

c2 3.18(8) 3.17(8) 3.63(9) 3.65(9) 2.52(7) 2.65(7)

c3 -6.08(5) -6.07(5) -6.24(5) -6.25(6) -6.25(6) -6.28(5)

c4 4.61(2) 4.61(2) 5.22(3) 5.27(4) 4.32(2) 4.32(2)

χ2
πN/dof 0.72 0.72 0.69 0.69 0.67 0.67

χ̄2
πN/dof 116 116 98 97 413 415

χ2
ππN/dof - 1.03 - 0.95 - 1.09

χ̄2
ππN/dof - 34 - 27 - 5.5

Q3 πN πN+ππN πN πN+ππN πN πN+ππN

c1 -1.24(2) -1.24(2) -1.64(2) -1.64(2) -1.55(2) -1.55(2)

c2 4.89(5) 4.89(5) 3.51(3) 3.51(3) 3.60(4) 3.60(4)

c3 -7.25(2) -7.26(2) -6.63(2) -6.63(2) -6.54(2) -6.54(2)

c4 4.74(4) 4.74(4) 4.01(4) 4.01(4) 3.86(3) 3.86(3)

d1+2 3.39(4) 3.39(4) 4.37(4) 4.37(4) 4.09(4) 4.09(4)

d3 -3.47(7) -3.44(7) -3.34(7) -3.35(7) -2.50(4) -2.50(4)

d4 - 3.7(2.3) - 3.1(2.2) - 3.3(2.1)

d5 0.00(4) -0.02(4) -0.56(4) -0.56(4) -0.86(4) -0.85(4)

d10 - 10.9(5.6) - -0.8(4.9) - -6.4(4.6)

d11 - -30.9(7.6) - -15.6(6.7) - -1.7(6.6)

d12 - -10.9(6.0) - 5.9(5.4) - 11.6(4.7)

d13 - 27.7(7.7) - 13.6(6.8) - -1.9(6.4)

d14−15 -7.39(13) -7.36(13) -7.49(13) -7.43(13) -6.05(10) -6.02(10)

d16 - -3.0(1.6) - 0.4(1.3) - 0.5(1.1)

l1 - -0.39(60) - -0.39(60) - -0.35(60)

l2 - 4.30(10) - 4.29(10) - 4.30(10)

l3 - 3.0(2.4) - 3.2(2.4) - 3.2(2.4)

l4 - 4.40(20) - 4.41(20) - 4.40(20)

χ2
πN/dof 1.04 1.01 1.03 1.00 0.97 0.97

χ̄2
πN/dof 14.6 14.6 13.0 13.1 13.5 13.6

χ2
ππN/dof - 0.72 - 1.00 - 0.96

χ̄2
ππN/dof - 5.3 - 6.5 - 8.0

TABLE II: LECs determined from fits at orders Q2 and Q3 with additional constraints from the

reaction πN → ππN with Tπ,ππN < 275 MeV. The values of the πN LECs at orders Q2 and Q3

are given in units of GeV−1 and GeV−2, respectively, while the li’s are dimensionless.
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HB-NN HB-πN Cov

Q4 πN πN+ππN πN πN+ππN πN πN+ππN

c1 -1.31(8) -1.06(6) -1.15(8) -1.03(6) -0.82(7) -0.89(6)

c2 1.88(23) 2.44(17) 2.39(22) 2.52(18) 3.56(16) 3.38(15)

c3 -4.43(9) -4.29(9) -4.44(9) -4.24(9) -4.59(9) -4.59(9)

c4 3.24(17) 3.10(15) 3.45(17) 3.03(15) 3.44(13) 3.31(13)

d1+2 5.95(9) 5.85(8) 5.60(9) 5.35(8) 5.43(5) 5.40(5)

d3 -5.64(6) -5.58(6) -3.84(4) -3.76(4) -4.58(8) -4.60(7)

d4 - -1.8(1.5) - -1.5(1.2) - -4.3(1.5)

d5 -0.11(4) -0.08(4) -0.89(4) -0.80(4) -0.40(4) -0.37(4)

d10 - -24.7(3.7) - -29.6(2.2) - -31.9(2.6)

d11 - 2.9(5.0) - 13.1(3.0) - 20.5(3.9)

d12 - 25.2(3.9) - 28.1(2.2) - 34.0(2.7)

d13 - -7.1(5.1) - -16.3(3.0) - -24.2(3.7)

d14−15 -11.61(9) -11.51(9) -9.45(8) -9.24(7) -9.94(7) -9.88(7)

d16 - 4.11(96) - 9.16(85) - 0.82(80)

e10 - -34.4(8.1) - -33.8(7.9) - -22.8(6.3)

e11 - 4.4(4.5) - 13.9(5.2) - 3.6(5.4)

e12 - 56.1(4.3) - 53.2(3.9) - 23.5(3.9)

e13 - -57.5(7.1) - -61.9(7.7) - -19.8(6.4)

e14 0.86(29) 0.81(29) 1.28(32) 1.35(31) -0.63(24) -0.58(24)

e15 -11.36(81) -11.39(78) -13.26(79) -14.11(77) -7.33(45) -7.48(45)

e16 10.73(95) 9.15(78) 8.29(95) 8.38(81) 1.86(37) 2.22(36)

e17 -0.66(46) -0.80(46) -0.73(47) -1.01(47) -0.90(32) -0.83(32)

e18 4.47(87) 5.20(81) 4.17(90) 6.14(82) 3.17(45) 3.49(44)

e34 - -0.9(15.5) - -11.8(18.0) - 3.8(21.6)

l1 - -0.36(60) - -0.40(60) - -0.29(60)

l2 - 4.29(10) - 4.29(10) - 4.29(10)

l3 - 3.1(2.4) - 2.9(2.4) - 3.3(2.4)

l4 - 4.42(20) - 4.42(20) - 4.39(20)

χ2
πN/dof 1.90 1.90 1.83 1.83 1.94 1.90

χ̄2
πN/dof 4.5 4.6 4.1 4.1 4.9 4.9

χ2
ππN/dof - 2.1 - 2.8 - 2.5

χ̄2
ππN/dof - 12 - 17 - 6.3

TABLE III: LECs determined from fits at order Q4 with additional constraints from the reaction

πN → ππN with Tπ,ππN < 275 MeV. The values of the πN LECs at orders Q2, Q3, Q4 are given

in units of GeV−1, GeV−2 and GeV−3, respectively, while the li’s are dimensionless.
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d4 -5.4(1.7) e10 -9.3(8.4)

d10 -33.2(5.8) e11 4.9(6.3)

d11 18.2(8.5) e12 7.3(4.6)

d12 30.8(6.2) e13 -11.4(6.6)

d13 -20.0(8.3) e34 -6.7(20.9)

d16 1.7(1.0)

d10 d11 d12 d13

d10 -70 -97 67

d11 -89 72 -99

d12 -99 88 -73

d13 91 -100 -90

TABLE IV: The left table shows 3πNN LECs determined from covariant fits at order Q4 + δ1 with

Tπ,ππN < 275 MeV. The upper/lower triangle in the right table correspond to a selected part of

the correlation matrix for the covariant fits at Q4/Q4 + δ1. The values of the LECs di and ei are

given in units of GeV−2 and GeV−3, respectively.

Q4 Cov ∆x ∆x x∆(hA ± g1 ± b4 ± b5) xR(gRN ± gR∆ ± gRR ± cR1,2,3,4)

c1 -0.89(6) 0.03 -32 0.01 0

c2 3.38(15) -1.10 -3.1 -1.78 -0.05

c3 -4.59(9) 0.89 -5.2 2.76 0.06

c4 3.31(13) -2.59 -1.3 -1.37 -0.12

d1+2 5.40(5) 1.75 3.1 -2.20 0.04

d3 -4.60(7) -1.36 3.4 1.36 -0.04

d4 -4.3(1.5) - - -0.76 ± 3.71 ± 0.26 ∓ 0.26 -0.04 ± 0.18 ± 0.03 ± 0.17

d5 -0.37(4) -0.55 0.7 0.35 0

d10 -31.9(2.6) -18.6 1.7 -9.08 ± 5.50 ± 3.06 ± 2.55 -0.24 ± 2.14 ± 0.18 ∓ 0.70 ± 0.70

d11 20.5(3.9) 7.01 2.9 3.03 ∓ 4.34 ∓ 1.02 ∓ 0.51 0.16 ∓ 0.71 ∓ 0.12 ∓ 0.70

d12 34.0(2.7) 16.8 2.0 5.81 ∓ 4.47 ∓ 1.96 ∓ 1.76 0.14 ∓ 1.50 ∓ 0.15 ∓ 0.70 ∓ 0.55

d13 -24.2(3.7) -6.41 3.8 -2.30 ± 3.52 ± 0.78 ± 0.57 -0.09 ± 0.68 ± 0.12 ± 0.55

d14−15 -9.88(7) -1.31 7.6 3.57 -0.12

d16 0.82(80) -3.95 -0.2 0 -1.40

e10 -22.8(6.3) 22.2 -1.0 1.65 ∓ 10.99 ∓ 0.23 ± 0.49 -0.14 ± 0.20 ± 0.12 ± 0.35

e11 3.6(5.4) -1.41 -2.6 -1.07 ∓ 0.97 ± 0.13 ∓ 0.13 -0.05 ± 0.17 ± 0.03 ± 0.21

e12 23.5(3.9) -30.7 -0.8 -1.22 ± 10.21 ± 0.18 ∓ 0.18 0.16 ∓ 0.19 ∓ 0.13 ∓ 0.48

e13 -19.8(6.4) 35.4 -0.6 0.82 ∓ 8.82 ∓ 0.22 ± 0.22 -0.07 ± 0.14 ± 0.08 ± 0.22

e14 -0.58(24) -1.88 0.3 0.46 0

e15 -7.48(45) -2.69 2.8 2.83 0

e16 2.22(36) 4.48 0.5 -2.00 -0.01

e17 -0.83(32) -0.29 2.8 -0.37 -0.02

e18 3.49(44) 7.23 0.5 -1.27 -0.05

e34 3.8(21.6) -1.83 -2.1 0.59 ± 1.07 ∓ 0.09 ± 0.09 0.06 ∓ 0.09 ∓ 0.05 ∓ 0.28

TABLE V: LECs determined from fits at order Q4 in the covariant approach with the additional

constraints from the reaction πN → ππN along with the RG-quantities ∆x and ∆x defined

in Eq. (18). x∆ and xR denote the saturations of the LECs by the ∆ and Roper resonances,

respectively, using hA = 1.35, g1 = ±2.29, gRN = 0.35, bi = gR∆ = gRR = cRi = ±1. The values of

the πN LECs at orders Q2, Q3, Q4 are given in units of GeV−1, GeV−2 and GeV−3, respectively.
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Q4 πN πN+RS πN+ππN RS

d+
00[M−1

π ] -0.37(12)(46) -1.60(3)(3) -0.61(10)(40) -1.36(3)

d+
10[M−3

π ] -0.86(20)(71) 1.14(6)(13) -0.51(17)(63) 1.16(2)

d+
01[M−3

π ] 0.79(4)(22) 0.92(3)(18) 0.76(4)(23) 1.16(2)

d+
20[M−5

π ] 1.29(9)(25) 0.39(3)(4) 1.14(8)(21) 0.196(3)

d+
11[M−5

π ] 0.64(4)(13) 0.42(3)(8) 0.64(4)(13) 0.185(3)

d+
02[M−5

π ] 0.033(7)(2) 0.001(6)(8) 0.032(7)(2) 0.0336(6)

b+00[M−3
π ] -5.2(2)(1.1) -4.7(1)(1.3) -5.4(2)(1.1) -3.45(7)

d−00[M−2
π ] 1.15(2)(15) 1.39(1)(2) 1.23(2)(13) 1.41(1)

d−10[M−4
π ] 0.30(3)(23) -0.10(2)(7) 0.16(3)(20) -0.159(4)

d−01[M−4
π ] -0.210(4)(33) -0.22(0)(2) -0.21(0)(3) -0.141(5)

b−00[M−2
π ] 6.4(7)(2.1) 10.4(4)(5) 5.8(7)(2.2) 10.49(11)

b−10[M−4
π ] 5.8(5)(1.1) 3.1(3)(5) 6.2(5)(1.2) 1.00(3)

b−01[M−4
π ] 0.38(16)(4) -0.09(14)(7) 0.43(16)(5) 0.21(2)

d+
00[M−1

π ] -0.48(12)(22) -1.69(3)(7) -0.50(10)(22) -1.36(3)

d+
10[M−3

π ] -0.67(20)(46) 1.17(5)(4) -0.68(17)(46) 1.16(2)

d+
01[M−3

π ] 0.70(4)(20) 0.73(3)(18) 0.63(4)(21) 1.16(2)

d+
20[M−5

π ] 1.30(9)(25) 0.45(2)(5) 1.31(8)(25) 0.196(3)

d+
11[M−5

π ] 0.80(4)(17) 0.54(3)(11) 0.85(4)(18) 0.185(3)

d+
02[M−5

π ] 0.052(8)(4) -0.06(1)(2) 0.055(8)(5) 0.0336(6)

b+00[M−3
π ] -1.44(21)(2.04) -3.0(2)(1.5) -2.0(2)(1.9) -3.45(7)

d−00[M−2
π ] 0.71(2)(24) 1.27(2)(7) 0.79(2)(22) 1.41(1)

d−10[M−4
π ] 0.77(3)(34) -0.08(3)(10) 0.66(3)(31) -0.159(4)

d−01[M−4
π ] -0.060(4)(89) -0.11(0)(7) -0.07(0)(9) -0.141(5)

b−00[M−2
π ] 6.7(8)(1.3) 10.1(5)(6) 4.9(7)(1.7) 10.49(11)

b−10[M−4
π ] 6.3(5)(1.2) 3.6(3)(6) 7.4(5)(1.5) 1.00(3)

b−01[M−4
π ] 0.47(16)(6) -0.96(14)(27) 0.57(16)(9) 0.21(2)

d+
00[M−1

π ] -1.22(9)(12) -1.46(3)(2) -1.12(8)(14) -1.36(3)

d+
10[M−3

π ] 0.75(11)(25) 1.14(4)(13) 0.63(11)(28) 1.16(2)

d+
01[M−3

π ] 0.97(3)(16) 1.10(3)(13) 0.97(3)(17) 1.16(2)

d+
20[M−5

π ] 0.54(4)(11) 0.40(2)(8) 0.58(4)(12) 0.196(3)

d+
11[M−5

π ] 0.43(2)(9) 0.34(2)(7) 0.44(2)(10) 0.185(3)

d+
02[M−5

π ] -0.004(6)(5) -0.012(5)(7) -0.002(6)(5) 0.0336(6)

b+00[M−3
π ] -6.05(10)(0.45) -5.6(1)(6) -6.10(9)(43) -3.45(7)

d−00[M−2
π ] 1.40(1)(3) 1.37(1)(3) 1.41(1)(3) 1.41(1)

d−10[M−4
π ] -0.21(1)(5) -0.18(1)(5) -0.21(1)(5) -0.159(4)

d−01[M−4
π ] -0.247(3)(23) -0.24(0)(2) -0.25(0)(2) -0.141(5)

b−00[M−2
π ] 8.0(5)(1.3) 10.4(4)(7) 7.6(5)(1.5) 10.49(11)

b−10[M−4
π ] 4.13(27)(88) 3.2(2)(7) 4.31(27)(92) 1.00(3)

b−01[M−4
π ] 0.38(11)(7) 0.44(10)(9) 0.36(11)(7) 0.21(2)

TABLE VI: Subthreshold parameters at order Q4 in comparison with the RS analysis values.

The upper/middle/lower table refer to results in the HB-NN, HB-πN and covariant counting,

respectively. The statistical and theoretical uncertainties are given in the first and second bracket,

respectively.
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Q4 πN πN+RS πN+ππN RS

a+
0+[M−1

π ] 3.1(9)(10) -6.2(5)(4.5) 0.2(7)(1.1) -0.9(1.4)

a−0+[M−1
π ] 82.8(3)(5) 83.7(2)(1.6) 82.9(3)(5) 85.4(9)

a+
1+[M−3

π ] 136.0(5)(3.9) 137.0(4)(3.2) 135.8(5)(3.9) 131.2(1.7)

a−1+[M−3
π ] -83.9(5)(2.1) -87.0(4)(7) -83.6(5)(2.2) -80.3(1.1)

a+
1−[M−3

π ] -57.9(7)(3.2) -56.2(5)(3.1) -58.7(7)(3.3) -50.9(1.9)

a+
1−[M−3

π ] -11.9(1.3)(1.9) -6.2(8)(1.7) -13.0(1.2)(2.0) -9.9(1.2)

b+0+[M−3
π ] -53.5(3.5)(4.1) -14.4(1.6)(16.4) -42.7(2.6)(4.7) -45.0(1.0)

b−0+[M−3
π ] 17.5(4)(1.2) 15.1(4)(4.0) 17.4(5)(1.2) 4.9(8)

a+
0+[M−1

π ] 2.9(9)(8) -12.1(6)(4.1) 1.3(7)(1.2) -0.9(1.4)

a−0+[M−1
π ] 82.2(3)(2) 85.4(3)(1.3) 82.4(3)(3) 85.4(9)

a+
1+[M−3

π ] 133.1(5)(4.5) 129.6(4)(4.6) 132.6(5)(4.6) 131.2(1.7)

a−1+[M−3
π ] -82.7(5)(2.2) -85.6(4)(9) -81.6(5)(2.5) -80.3(1.1)

a+
1−[M−3

π ] -54.1(7)(2.5) -63.1(6)(2.9) -55.9(7)(2.6) -50.9(1.9)

a+
1−[M−3

π ] -10.9(1.3)(2.3) -10.0(8)(1.8) -14.1(1.2)(2.6) -9.9(1.2)

b+0+[M−3
π ] -52.7(3.5)(2.9) 6.0(2.0)(16.5) -47.9(2.7)(4.0) -45.0(1.0)

b−0+[M−3
π ] 22.4(5)(3) 14.9(4)(2.4) 22.1(4)(2) 4.9(8)

a+
0+[M−1

π ] 0.0(9)(1.7) 0.0(5)(2.4) 0.7(8)(1.5) -0.9(1.4)

a−0+[M−1
π ] 83.3(3)(5) 83.2(2)(5) 83.5(3)(5) 85.4(9)

a+
1+[M−3

π ] 135.8(5)(3.5) 137.4(5)(3.0) 135.6(5)(3.5) 131.2(1.7)

a−1+[M−3
π ] -84.3(5)(1.6) -86.4(4)(1.0) -83.9(5)(1.7) -80.3(1.1)

a+
1−[M−3

π ] -59.6(7)(3.0) -56.2(6)(2.8) -60.0(6)(3.1) -50.9(1.9)

a+
1−[M−3

π ] -13.6(1.2)(2.5) -7.7(9)(2.2) -14.8(1.1)(2.6) -9.9(1.2)

b+0+[M−3
π ] -37.8(3.5)(6.9) -35.3(2.0)(9.4) -41.1(3.2)(6.2) -45.0(1.0)

b−0+[M−3
π ] 16.3(6)(1.6) 15.8(5)(1.9) 16.0(6)(1.7) 4.9(8)

TABLE VII: Threshold parameters at order Q4 in comparison with RS analysis values. The up-

per/middle/lower table refer to results in the HB-NN, HB-πN and covariant counting, respectively.

The statistical and theoretical uncertainties are given in the first and second bracket, respectively.
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FIG. 5: Tree graphs for the reaction ⇡N ! ⇡⇡N . The black/gray/white blob denotes an insertion

of the ci/di/ei- vertices whereas the black diamond denotes an insertion of the li vertices. Crossed

diagrams are not shown.

FIG. 6: Nucleon mass.

FIG. 7: Axial coupling.

3

FIG. 1: Tree-level graphs contributing to the reaction πN → ππN . The black/gray/white blobs

denote insertions of the ci/di/ei- vertices, whereas the black diamonds denote insertions of the li
vertices. Dashed and solid lines refer to pions and nucleons, respectively. Crossed diagrams are

not shown.

FIG. 1: One-loop graphs of the tadpole type. Crossed diagrams are not shown.

1

FIG. 2: One-loop graphs of the tadpole type contributing to the reaction πN → ππN . For notation

see Fig. 1.
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FIG. 2: One-loop graphs of the self-energy type. Crossed diagrams are not shown.

2

FIG. 3: One-loop graphs of the self-energy type contributing to the reaction πN → ππN . For

notation see Fig. 1.
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! + (1)

! (2)

! (3)

FIG. 1: One-loop graphs of the tadpole type. Crossed diagrams are not shown.

1

FIG. 4: Transition from leading to next-to-leading order loop graphs. For notation see Fig. 1.! + (1)

! (2)

! (3)

! (4)

FIG. 1: One-loop graphs of the tadpole type. Crossed diagrams are not shown.

1

FIG. 5: Transition from πN → ππN graphs to πN → πN graphs. The shaded blob denotes any

possible interaction. For notation see Fig. 1.

FIG. 1: LO graphs for the reaction ⇡N ! ⇡⇡N . Nucleons and pions are denoted by solid and

dashed lines, respectively. Delta is denoted by a double solid line. Crossed diagrams are not shown.

FIG. 2: NLO graphs for the reaction ⇡N ! ⇡⇡N . The filled blob (filled square) denotes an

insertion of the ci- (bi-) vertices. Crossed diagrams are not shown.

1

FIG. 6: Leading-order ∆ pole diagrams, where the double solid line refers to the ∆. For notation

see Fig. 1.
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FIG. 7: Reduced χ2
πN/χ2

ππN (with theoretical error) and χ̄2
πN/χ̄2

ππN (without theoretical error) for

fits up to various maximum energies Tπ,ππN . The blue/red/green bars denote the results for the

HB-NN/HB-πN/Cov counting.
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FIG. 8: Change of the LECs at Q3 over the maximum fit energy Tπ,ππN .
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FIG. 9: Change of the LECs at Q4 over the maximum fit energy Tπ,ππN .
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FIG. 10: Change of the LECs at Q4 over the maximum fit energy Tπ,ππN .

35



FIG. 11: Predictions for the πN → πN S and P waves up to Tπ = 100 MeV with the LECs in

Table I taken as input. Columns from left to right correspond to the predictions in the HB-NN,

HB-πN and covariant counting, respectively. The orange, pink and red (dotted, dashed and solid)

bands refer to the Q2, Q3 and Q4 results including theoretical uncertainties, respectively.
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FIG. 12: Predictions for the πN → πN S and P waves up to Tπ = 100 MeV with the LECs in

Tables II and III taken as input. Columns from left to right correspond to the predictions in the

HB-NN, HB-πN and covariant counting, respectively. The orange, pink and red (dotted, dashed

and solid) bands refer to the Q2, Q3 and Q4 results including theoretical uncertainties, respectively.
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FIG. 13: Predictions for the πN → ππN total cross sections up to Tπ = 400 MeV. The energies

used in the fit are on the left of the vertical dotted lines. For remaining notation see the caption

of Fig. 12.
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FIG. 14: Predictions for the angular correlation functions in the π−p → π+π−n channel at fixed

θ1 and θ2 for Tπ = 280 MeV. The lower/middle/upper panel correspond to the HB-NN, HB-πN

and covariant counting. The orange, pink and red (dotted, dashed and solid) bands refer to the

Q2, Q3 and Q4 results including theoretical uncertainties, respectively.
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FIG. 15: Predictions for the angular correlation functions in the π−p → π+π−n channel at fixed

θ1 and θ2 for Tπ = 280 MeV. The lower/middle/upper panel correspond to the HB-NN, HB-πN

and covariant counting. The orange, pink and red (dotted, dashed and solid) bands refer to the

Q2, Q3 and Q4 results including theoretical uncertainties, respectively.
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FIG. 16: Predictions for the angular correlation functions in the π−p → π+π−n channel at fixed

θ1 and φ2 for Tπ = 280 MeV. For remaining notation see Fig. 14.
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FIG. 17: Predictions for the angular correlation functions in the π−p → π+π−n channel at fixed

θ1 and φ2 for Tπ = 280 MeV. For remaining notation see Fig. 14.
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FIG. 18: Predictions for the single-differential cross sections with respect to M2
ππ for the channel

π−p→ π+π−n. For remaining notation see Fig. 12.
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FIG. 19: Predictions for the single-differential cross sections with respect to t for the channel

π−p→ π+π−n. For remaining notation see Fig. 12.
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FIG. 20: Predictions for the πN → ππN total cross sections up to Tπ = 400 MeV. Columns

from left to right correspond to the predictions in the HB-NN, HB-πN and covariant counting,

respectively. The orange, pink and red (dotted, dashed and solid) bands refer to the Q2 + δ1,

Q3 + δ1 and Q4 + δ1 results including theoretical uncertainties, respectively.
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FIG. 21: Reduced χ2
πN/χ2

ππN (with theoretical error) and χ̄2
πN/χ̄2

ππN (without theoretical er-

ror) for fits including leading ∆-pole contributions up to various maximum energy Tπ,ππN . The

blue/red/green bars denote the results for the HB-NN/HB-πN/Cov counting.
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