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The dependence of multi-proton correlation functions and cumulants on the acceptance
in rapidity and transverse momentum is studied. We find that the preliminary data of
various cumulant ratios is consistent, within errors, with rapidity and transverse momentum
independent correlation functions. However, rapidity correlations which moderately increase
with rapidity separation between protons are slightly favored. We propose to further explore
the rapidity dependence of multi-particle correlation functions by measuring the dependence
of the integrated reduced correlation functions as a function of the size of the rapidity window.

I. INTRODUCTION

One of the central goals in strong interaction research is to explore the phase diagram of QCD.
Of particular interest is the search for a possible first order phase coexistence region and its as-
sociated critical point. A significant effort in this search, experimentally as well as theoretically,
is concentrating on the measurement and calculations of correlations and cumulants of conserved
charges. A particular emphasis has been put on the cumulants of the baryon number [1–6], see
also [7–20] (see, e.g., [21] for an overview). Interpreting these higher order cumulants and their
measurement, however, is not a straightforward exercise as discussed, e.g., in [22–35]. Also, differ-
ent, though related, ideas, based on an intermittency analysis in the transverse momentum phase
space have been explored [36–38].

Recently, it has been pointed out [39, 40], (see also [20, 41]), that it may be more instructive
to study (integrated) multi-particle correlations instead of cumulants. In the limit when anti-
particles can be ignored, which is the case for anti-protons at low beam energies, the integrated
multi-particle correlations are linear combinations of the various cumulants and thus can be easily
extracted from the measured cumulants. This has been done on the basis of preliminary data on
proton cumulants from the STAR collaboration [42]. It was found that the systems created at low
beam energies (7.7− 11.5 GeV) exhibit sizable three- and strong four-proton correlations [40, 43].
Indeed, as pointed out in [44], in order to reproduce the observed magnitude of these correlations
one has, for example, to assume a strong presence of eight-nucleon (or four-proton) clusters in
the system. In addition to the sheer magnitude of the correlations, the centrality and rapidity
dependence of these correlations give additional insights into properties of the systems created in
these collisions [40].

In this paper we will explore the rapidity and to some extent transverse momentum dependence
of multi-particle correlations in more detail. One of our motivations is a recent preliminary ob-
servation by the STAR collaboration [45, 46] regarding the rapidity dependence of the two-proton
correlation function. Within the rapidity window |y| < 0.8, STAR finds that across all RHIC ener-
gies the two proton reduced correlation function (see the definition in section II) in central Au+Au
collisions is strongly increasing with the rapidity separation, y1−y2, between the two protons. The
shape of the correlation function can be approximately described by

c2(y1 − y2) = c0
2 + γ2 (y1 − y2)2 , γ2 > 0, (1)
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where c0
2 is the value at y1−y2 = 0, and γ2 is a positive number, with γ2 ∼ 2×10−2 at

√
s = 7.7 GeV

[45].1 Taking such a correlation at face value, one would conclude that protons prefer to be
separated in rapidity, or, in other words, they seem to repel each other. The shape of the correlation
function is roughly energy independent, which is rather surprising since protons at, say, 7.7 GeV,
originate almost exclusively from the target and projectile nuclei whereas at 200 GeV, the protons
at mid-rapidity are mostly produced.

The apparent anti-correlation between two protons was first observed in e+e−collisions at
√
s =

29 GeV [48]. Recently an analogous observation was made by the ALICE collaboration in the
context of the two-baryon azimuthal correlations [49]. This measurement also found similar anti-
correlations between protons and lambdas, suggesting that the observed effects are not due to
the Pauli exclusion principle or electromagnetic interactions. To our knowledge, the origin of this
effect remains an open question, which is important to resolve. Formation of clusters, as suggested
in [44], and as expected close to a critical point and a phase transition, would naively lead to
attractive correlations in rapidity (i.e., protons would prefer to have similar rapidity) and not
anti-correlations. However, we should keep in mind that these correlations are in rapidity and
not in configuration space. Also, one should note that this effect, which, so far, is only observed
for two-particle correlations, may not be inconsistent with the negative value for the integrated
two-particle correlations extracted from the cumulant measurements [40, 43]. In general, the sign
of an integrated multi-particle correlation is also driven by a pedestal. For example, in case of two
protons, c0

2 in Eq. (1) may depend on fluctuations of the volume, or rather the number of wounded
nucleons [23, 31, 44, 50], and is not necessarily related to a possible repulsion or attraction in
rapidity between protons.

Clearly the rapidity dependence of the proton correlations need to be studied to gain further
insight into the aforementioned sizable three- and strong four-proton correlations observed at low
energies. It is the purpose of this paper to start exploring this issue. To this end we study
the dependence of the multi-proton correlation functions on rapidity, and, to some extent, on
the transverse momentum. We show that the preliminary STAR data [42] are consistent with
constant multi-proton correlation functions and slightly favor multi-proton anti-correlations in
rapidity. We also demonstrate that these correlations can be further constrained by measuring
integrated reduced or normalized correlation functions as a function of the rapidity window ∆y.

This paper is organized as follows. In the next section we introduce the notation and discuss the
behavior of cumulants and correlation functions in the limits of small and large acceptance. Next
we analyze the preliminary STAR data and extract some trends about the rapidity dependence of
three- and four-proton correlations. We will also propose a means to extract more detailed infor-
mation about the multi-particle correlations. In the last section we conclude with the discussion
of the essential results.

II. NOTATION AND COMMENTS

In this paper we focus on protons only and in the following we denote the proton number by
N and its deviation from the mean by δN = N − 〈N〉. Here 〈N〉 is the mean number of protons
at a given centrality. The cumulants of the proton distribution function as measured by STAR are
then given by

K1 ≡ 〈N〉; K2 ≡ 〈(δN)2〉; K3 ≡ 〈(δN)3〉; K4 ≡ 〈(δN)4〉 − 3〈(δN)2〉2, (2)

1 At the recent CPOD conference STAR reported [47] that the rapidity dependence of the two-proton correlation
function depends considerably on method employed to subtract the uncorrelated single particle contribution from
the data. Thus the value for γ2 quoted here may still change and should only be taken as a rough guidance.
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As already eluded to in the Introduction, the cumulants can be expressed in terms of the multi-
particle integrated correlation functions [40], which are also known as factorial cumulants [39]

K2 = 〈N〉+ C2, (3)

K3 = 〈N〉+ 3C2 + C3, (4)

K4 = 〈N〉+ 7C2 + 6C3 + C4, (5)

where

C2 =

ˆ
dy1dy2C2(y1, y2)

=

ˆ
dy1dy2 [ρ2(y1, y2)− ρ(y1)ρ(y2)] , (6)

and similar for higher order correlation functions. See, e.g., Ref. [51] for explicit definitions of
the correlation functions up to the sixth order. In Eq. (6) C2(y1, y2) is the two-particle rapidity
correlation function, ρ2(y1, y2) is the two-particle rapidity density, and ρ(y) is the single-particle
rapidity distribution. The generalization of Eqs. (3-5) to two species of particles can be found in
the appendix of Ref. [40]. Here and in the following yi denotes rapidity or in general, a set of
variables under consideration (yi, pt,i, ϕi).

It is convenient and common practice to define the reduced correlation function

cn (y1, ..., yn) =
Cn (y1, ..., yn)

ρ (y1) · · · ρ (yn)
, (7)

The integral of the reduced correlation function over some given acceptance range, we subsequently
will call, for a lack of a better term, “coupling”

cn =
Cn

〈N〉n
=

´
ρ (y1) · · · ρ (yn) cn (y1, ..., yn) dy1 · · · dyn´

ρ (y1) · · · ρ (yn) dy1 · · · dyn
. (8)

The cumulants Kn may then expressed in term of the couplings cn,

K2 = 〈N〉+ 〈N〉2 c2, (9)

K3 = 〈N〉+ 3 〈N〉2 c2 + 〈N〉3 c3, (10)

K4 = 〈N〉+ 7 〈N〉2 c2 + 6 〈N〉3 c3 + 〈N〉4 c4. (11)

Of course, mathematically, the cumulants K1 = 〈N〉, K2, K3, and K4 carry exactly the same
information as [C2, C3, C4] or [c2, c3, c4]. However, as already discussed in [40], studying cumulants
may not be the best way to extract information about the dynamics of the system, since (i)
cumulants mix the correlation functions of different orders and (ii) they might be dominated by a
trivial term 〈N〉 even in the presence of interesting dynamics.

One such example, where the trivial term 〈N〉 dominates and thus hides the interesting physics
is the limit of small acceptance, as we shall discuss next.

A. Effective Poisson limit

Before we discuss the rapidity and transverse momentum dependence of the various cumulants
and correlations, let us briefly remind ourselves what happens if one considers the limit of small
or vanishing acceptance. Here, we will restrict ourselves to correlations in rapidity, however our
arguments will be general and apply to any variables. Suppose that particles are measured in a
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rapidity interval y0 ≤ y ≤ y0 +∆y and that ∆y → 0. Let us first consider two-particle correlations.
For sufficiently small ∆y any reasonable correlation function c2(y1, y2) may be approximated by a
constant.2 As a consequence, for sufficiently small ∆y, the coupling, c2, is independent of ∆y, as
can be seen from Eq. (8). In other words, suppose that c2(y1, y2) ' c0

2 for very small ∆y, then

c2 =

´
∆y ρ(y1)ρ(y2)c2(y1, y2)dy1dy2´

∆y ρ(y1)ρ(y2)dy1dy2
' c0

2. (12)

We emphasize that c0
2 may assume any value. However, whatever the value of c0

2, in the limit of
∆y → 0 we have 〈N〉 → 0 and K2 ' 〈N〉 (see Eq. (9)). Exactly the same argument holds for any
Kn and we obtain Kn ' 〈N〉 and consequently all cumulant ratios equal to unity, Kn/Km ' 1.

Therefore, even in the presence of sizable correlations, their effect on the cumulants are sup-
pressed for small acceptance. Actually, as can be seen from Eqs. (9)-(11), it is the number of
particles which determines if the cumulants are dominated by 〈N〉 and, thus, their ratios are close
to unity. For example, if 〈N〉4c4 << 〈N〉, the fourth order cumulant, K4, is practically not sen-
sitive to four-proton correlations even if c4 is different from zero and may carry some interesting
information. Therefore, even for large acceptance the cumulants are close to the Poisson limit if
one is dealing with rare particles. This may very well be the reason that for low energies STAR
observes a cumulant ratio of K4/K2 ' 1 for anti-protons, and it would be interesting to measure
the couplings, cn, for anti-protons in order to see if anti-protons exhibit the same correlations as
protons at low energies.

Clearly measuring cumulants and looking for the deviation from the Poisson limit is not the
most optimal way to extract possible non-trivial correlations resulting from criticality etc. Instead,
one either should directly measure the differential multi-particle correlation (Eq. (7)) or, at the
very least, extract the couplings, cn, Eq. (8). Their dependence on the acceptance does reflect a
change in physics and is not simply a consequence of a change in the number of particles.3

After having investigated the case of small acceptance let us next turn to the opposite limit of
(nearly) full acceptance.

B. Full acceptance

Let us next study what happens in the situation when all baryons, including the spectators, are
detected. In this case (again, we consider low energies and neglect anti-baryons) N = 〈N〉 = B,
where B is the total baryon number of the entire system. Therefore, δN = 0 and obviously Kn = 0
for n ≥ 2. Using Eqs. (3-5) and (9-11) we obtain

C2 = −B, C3 = 2B, C4 = −6B, (13)

and

c2 = − 1

B
, c3 =

2

B2
, c4 = − 6

B3
. (14)

We note that this is a general result and it is insensitive to the presence of any dynamics other
than global baryon number conservation.

Finally let us note that K3/K2 → −1 and K4/K2 → 1 when we approach the limit of full
acceptance. To see this let us consider a region in phase space, denoted by (a), and the remaining

2 For the extreme case of c2(y1, y2) ∼ δ(y1 − y2), c2, given by Eq. (8), depends on the acceptance window even for
very small rapidity intervals and our argument does not apply. However a Dirac delta correlation function is of no
interest in any practical situation.

3 An additional advantage of the couplings is that they are independent of the efficiency of the detector as long as
the efficiency follows a binomial distribution and is phase space independent [24, 30, 41].
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phase space, or complement, which we denote by (b). Since baryon number is conserved, having
N(a) baryons in region (a) implies N(b) = B −N(a) baryons in the complement, (b). Since δB = 0
we have

δN(b) = δ(B −N(a)) = −δN(a), (15)

and consequently

Kn,(a) = Kn,(b) n = 2, 4, 6, ...,

Kn,(a) = −Kn,(b) n = 3, 5, 7, .... (16)

Here Kn,(a) is the cumulant measured in region (a) and Kn,(b) is the cumulant in a remaining
part of the full phase space, (b). This is a rather nontrivial and general consequence of baryon
conservation. A more rigorous derivation is presented in the Appendix.

In the previous subsection we argued that for very small acceptance the cumulant ratio goes to 1
and thus the cumulant ratio for the full acceptance goes to −1 for K3/K2 and to 1 for K4/K2. The
integrated correlation functions and the couplings, on the other hand do not show such a symmetry
between a given region of phase space and its compliment. This is shown in detail in the Appendix
but can already be inferred from the fact that in the limit of full acceptance the couplings are
entirely determined by the total baryon number B. In the limit of vanishing acceptance, however,
other physics also affects the value of the couplings, as discussed in Section II A.

Having discussed the limits of small and full acceptance we now turn to the rapidity dependence
of the cumulants and correlation functions.

III. RESULTS

In this section we discuss in detail the rapidity and, to some extent, transverse momentum
dependence of multi-proton cumulants and correlation functions. We will first explore the limit
of rapidity and transverse momentum independent correlations. Next we will discuss to which
extent the present preliminary STAR data allow us to set limits on the rapidity dependence of the
underlying correlations.

A. Constant correlation

Let us start with the simplest assumption namely that the reduced correlation function does
not depend on rapidity and transverse momentum, i.e.,

cn(y1, pt1, ..., yn, ptn) = const = c0
n. (17)

This rather extreme assumption, however, is, as we will show below, consistent with the preliminary
STAR data at 7.7 GeV (see also [40]). In addition, in this case the couplings cn do not depend on
rapidity and transverse momentum either, as can be seen from Eq. (8)

cn = c0
n. (18)

The multi-particle integrated correlation functions, Cn = 〈N〉ncn, and cumulants, Kn, in turn
depend on the acceptance only through their dependence on the number of protons 〈N〉, see Eqs.
(9-11). Therefore, in Fig. 1 we plot K4/K2 as measured by STAR as a function of 〈N〉 for different
rapidity and transverse momentum intervals.
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FIG. 1. The cumulant ratio K4/K2 in central 0−5% Au+Au collisions at
√
s = 7.7 GeV as a function of the

number of measured protons, 〈N〉, for different acceptance windows in rapidity and transverse momentum
(in the units of GeV). For all data points pt > 0.4 GeV. The black solid line represents a prediction based on
a constant correlation function, see Eq. (17). The shaded band is mostly driven by the large experimental
uncertainty of K4. Based on preliminary STAR data [42].

The black solid line in Fig. 1 represents a prediction based on a constant correlation function.
In this calculation we have three unknown parameters, c0

2, c
0
3 and c0

4. Since these numbers do not
depend on acceptance we determine them from the preliminary data for |y| < 0.5 (∆y = 1) and
0.4 < pt < 2 GeV, that is, from the maximal acceptance currently available. Here we use Eqs.
(9-11) and the values for 〈N〉, K2, K3 and K4 shown in Ref. [42].4 To determine 〈N〉 at a given
acceptance region we assume the single proton rapidity distribution to be flat as a function of
rapidity, i.e., 〈N〉 = 〈N∆y=1〉∆y and for the transverse momentum single proton distribution we
take ρ(pt) ∼ pt exp(−mt/T ) with T = 0.27 GeV and mt = (m2 + p2

t )
1/2 with m = 0.94 GeV. Both

these assumptions are well supported by experimental data [52, 53]. Having c0
n, we can predict

the cumulants or the correlation functions for any acceptance characterized by 〈N〉, whether in
transverse momentum or in rapidity.5

Interestingly we find that except for one point at |y| < 0.5 and 0.4 < pt < 1.2 GeV all the
points follow, within the admittedly large experimental error bars, one universal curve consistent
with a constant correlation function. The fact that the rapidity dependence of the cumulant ratio
K4/K2 is consistent with long-range rapidity correlations has already been found in [40]. That
the transverse momentum dependence is also consistent with long-range correlations is new. If
correct, it would for example imply that the cumulant ratio K4/K2 has roughly the same value
(close to unity) for a transverse momentum range of 0.8 GeV < pt < 2 GeV as the for the range
0.4 GeV < pt < 0.8 GeV, since in both pt windows, 〈N〉 is approximately the same. The result for
the pt-range of 0.4 GeV < pt < 0.8 GeV has been published by the STAR collaboration in [5].

Of course, the error bars in the preliminary STAR data are rather sizable and, therefore, a mild
dependence of the correlation function on rapidity (and transverse momentum) cannot be ruled
out. In addition, as already mentioned in the Introduction, the preliminary, explicit measurement
of the two-proton correlation function [45, 46] does exhibit an increase with increasing rapidity
difference of a proton pair, y1 − y2. To explore this further we next will allow for some mild
rapidity dependence of the correlation function.

4 We determine c0n from the proton cumulants but compare to y and pt dependence of the net-proton cumulants,
which are the only data currently available. While at 7.7 GeV the number of anti-protons is practically negligible,
it results in a slight disagreement of the black solid line with the blue star in Fig. 1.

5 Based on the preliminary STAR data for the cumulants [42] we obtain c02 ≈ −1.1 × 10−3, c03 ≈ −1.7 × 10−4 and
c04 ≈ 7.3 × 10−5.
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FIG. 2. The cumulant ratio K3/K2 in central Au+Au collisions at
√
s = 7.7 GeV as a function of the

rapidity acceptance ∆y, |y| < ∆y/2, for (a) γ2 = 0 and different values of γ3 from Eq. (19) and (b) γ3 = 0
and different values of γ2. Based on preliminary STAR data [42].

B. Rapidity dependent correlation

In the previous subsection we demonstrated that the STAR data for K4/K2 at 7.7 GeV are
consistent with a constant multi-proton correlation function. Here we study how sensitive the
cumulant ratios and correlations are to a certain (weak) rapidity dependence. To this end we
consider the leading correction to a constant correlation function, which should be even in yi− yk.
Thus we explore the following ansätze for the reduced correlation functions

c2(y1, y2) = c0
2 + γ2 (y1 − y2)2 ,

c3(y1, y2, y3) = c0
3 + γ3

1
3

[
(y1 − y2)2 + (y1 − y3)2 + (y2 − y3)2

]
,

c4(y1, y2, y3, y4) = c0
4 + γ4

1
6

[
(y1 − y2)2 + (y1 − y3)2 + (y1 − y4)2

+ (y2 − y3)2 + (y2 − y4)2 + (y3 − y4)2
]
, (19)

where γn measures the deviation from cn(y1, ..., yn) = const. Note that we have constructed the
correlation function such that positive values of γn result in growing correlations with rapidity
separation between particles. We further note that the above form for the two-proton reduced
correlation function, c2(y1, y2), is supported by the preliminary STAR data [45, 46] where γ2 > 0,
that is, two protons do not want to occupy the same rapidity. Our simple formulas for c3 and
c4 are not supported by any known data, however, we believe they should serve as a reasonable
representation for the correlation if the distance in rapidity between protons is not too large. Within
the region of validity of our simple ansatz, the coefficients γn have clear physical interpretation and
here we will constrain their values or at least their signs. To this end we will use the preliminary
STAR data for K3/K2 and K4/K2. While, as already pointed out, the rapidity dependence of
these cumulant ratios is consistent with constant correlations we will see that the data allow to
exclude certain values for γn and possibly even determine their sign.

Taking above relations and integrating in Eq. (8) over |yi| < ∆y/2 we obtain for the couplings

cn(∆y) =
Cn

〈N〉n
= c0

n + γn
1

6
(∆y)2. (20)

The couplings, cn(∆y), which depend on the region of acceptance, ∆y (|yi| < ∆y/2), should not
be confused with the reduced correlation function, cn(y1, ..., yn), which depend on the rapidities
of the individual particles. As before, for a given γn the constant term, c0

n is extracted from the
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FIG. 3. The cumulant ratio K4/K2 in central Au+Au collisions at
√
s = 7.7 GeV as a function of the

rapidity acceptance ∆y, |y| < ∆y/2, for (a) different values of γ4, (b) γ3 and (c) γ2 from Eq. (19). Based
on preliminary STAR data [42].

STAR data at ∆y = 1 (|y| < 0.5) and 0.4 < pt < 2 GeV. Consequently, c0
n will depend on the

choice of γn.
In Fig. 2 we show K3/K2 for different values of γ3 in panel (a) and γ2 in panel (b). We

observe that, as already discussed before, the preliminary STAR data is consistent with a constant
correlation function in rapidity (γ2 = γ3 = 0). However, a small positive value of γ2 ∼ 10−2

or γ3 ∼ 10−3 would actually improve the agreement slightly. The negative values for γ2 and γ3,
on the other hand appear to be disfavored so are large positive values. The same is true for
the comparison with the K4/K2 cumulant ratio, which we show in Fig. 3. Again, the data are
consistent with constant rapidity correlation functions or perhaps slightly positive values for γ2,
γ3, or γ4, whereas negative values for γn seem to be disfavored.6

Also, the overall picture of slightly “repulsive” corrections to the constant correlation functions,
i.e., γn ≥ 0 is consistent with the preliminary STAR data on the two-proton rapidity correlation
function, which, as discussed in the Introduction, indicates a peculiar repulsion between protons in
rapidity. As these new STAR measurements only address two proton correlations, the most direct
test would be a comparison of the rapidity dependence of the second order cumulant or integrated
correlation. This is shown in Fig. 4. Unfortunately, at present there is no data available for rapidity
intervals other than ∆y = 1, and since this point is used for the determination of the overall
constant, c0

2, no constraint can be made at this time. However, we wish to emphasize the strong
dependence compared to the size of the error bar. Indeed, the increase of the correlation exhibited
in the preliminary STAR data for the differential correlation functions [45, 46] is consistent with
γ2 ∼ 2 × 10−2, which would correspond to the red dashed curve in Fig. 4. Given the size of the

6 Specifically we find the following values for c0n and γn for the blue lines in Figs. 2 and 3: γ2 = 10−2, c02 ≈ −2.8×10−3,
γ3 = 10−3, c03 ≈ −3.4 × 10−4, and γ4 = 2 × 10−4, c04 ≈ 3.9 × 10−5.
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FIG. 4. The cumulant ratio K2/K1 in central Au+Au collisions at
√
s = 7.7 GeV as a function of the

rapidity acceptance ∆y, |y| < ∆y/2, for different values of γ2. Based on preliminary STAR data [42].

error bar at ∆y = 1, it should be possible to discriminate from a constant correlation function,
shown by the green solid line. Needless to say, such a measurement of the rapidity dependence of
the K2/K1 would be very valuable to ensure the consistency of the cumulant measurement with
that of the differential correlation function.7

Of course it would be even more valuable to have information about the differential three- and
four-particle correlation functions. Therefore, we propose, as a first step, to measure the rapidity
dependence of the couplings, cn(∆y). This will allow for a direct determination of the coefficients,
γn, as we demonstrate in Fig. 5, where we plot cn(∆y)/c0

n − 1 for γ2 = 10−2, γ3 = 10−3 and
γ4 = 2× 10−4. We note that cn(∆y) is rather sensitive to γn.

In principle it would also be interesting to measure cn(∆y) for higher n such as n = 5 and 6.
In this case

c5(y1, ..., y5) = c0
5 + γ5

1
10

∑5

i,k=1; i<k
(yi − yk)2 ,

c6(y1, ..., y6) = c0
6 + γ6

1
15

∑6

i,k=1; i<k
(yi − yk)2 , (21)

and cn(∆y) is given by Eq. (20).

IV. DISCUSSION AND CONCLUSIONS

Before we conclude let us discuss the main findings of this paper.

• The preliminary data for the proton cumulant ratio K4/K2 obtained by the STAR collab-
oration at

√
s = 7.7 GeV are consistent with long-range correlations in both rapidity and

transverse momentum. As a result the cumulants effectively depend only on the number
of protons 〈N〉 in the acceptance. Therefore, we predict that new measurements with in-
creased acceptance will lead to even large values for the K4/K2. Naturally this increase will
be limited eventually by global charge conservation as discussed in [22], and the ansatz for
the correlation function, Eq. (17) will have its limitation for large ∆y. Consequently our
present prediction for large ∆y > 1 need to be taken with a grain of salt.

7 We note that the preliminary measurements of c2(y1, y2) and Kn use different centrality selections, which does
affect the value of c0n and possibly γn. Therefore, a direct comparison of the values for γ2 needs to be done with
some care.
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FIG. 5. The ratio of the couplings cn(∆y)/c0n−1, see Eqs. (8,20) for γ2 = 10−2, γ3 = 10−3 and γ4 = 2×10−4.
∆y denotes the size of the rapidity window, |y| < ∆y/2, which the reduced correlation functions are
integrated over.

• Allowing for small deviation from a constant value we find that a slightly “repulsive” rapidity
dependence is favored by the data. By “repulsive” we mean that the correlation function
increases with increasing rapidity separation between protons. Or in other words, we find
that γn > 0 in Eq. (19) is favored. Perhaps this may be the first evidence for “repulsive”
three- and four-proton correlations.

• Clearly, as demonstrated in Fig. 5, a measurement of the couplings as a function of the
rapidity and transverse momentum windows would be very valuable to shed more light on
the range and detail shape of the correlation functions.

• Finally we want to reiterate that the fact that cumulant ratios for small acceptance or, more
precisely for a small number of particles, are close to unity does not necessarily imply the
absence of correlations. This is demonstrated in Fig. 1 where we actually assume a constant
correlation. In addition, this may also be the reason that anti-protons show a cumulant ratio
of K4/K2 ' 1 at low energies while the protons show a significant deviation from unity.
We further demonstrated that global baryon conservation fully determines the cumulant
ratios, integrated correlation functions, and couplings close to the full acceptance regardless
of any additional dynamics. In addition we showed that, as a result of baryon number
conservation, the cumulants in a given phase-space window and its complement are closely
related, see Eq. (16) and the Appendix.

To summarize, we have studied the rapidity dependence of cumulants, integrated correlation
functions and couplings based on the presently available preliminary STAR data [42]. While we
found that within the present experimental errors the data are consistent with rapidity independent
correlations, a slightly “repulsive” component seems to be favored. This would be consistent with
the preliminary measurement of two-particle differential proton correlations by STAR [45, 46]. To
gain further insight, in particular into the three- and four-proton correlations, we proposed to
measure the dependence of the couplings as a function of the rapidity window.
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Appendix A: Full acceptance

Suppose we divide the full phase space into the two, not necessarily equal sized regions denoted
by the subscripts (a) and (b). Let P(a)(N(a)) be the probability to observe N(a) baryons in phase
space region (a). The probability to have N(b) baryons in the remaining part of the entire phase
space, P(b)(N(b)), is given by P(b)(N(b)) = P(a)(N(a)) = P(a)(B−N(b)) since N(a) = B−N(b), where
B is the conserved number of baryons. Here we assume that we can ignore anti-baryons. The
cumulant generating function for the phase space region (a), h(a)(t) is given by

h(a)(t) = log

[∑
N(a)

P(a)(N(a))e
N(a)t

]
= log

[∑
N(b)

P(a)(B −N(b))e
(B−N(b))t

]
= log

[∑
N(b)

P(b)(N(b))e
(B−N(b))t

]
= h(b)(−t) +Bt (A1)

where h(b)(t) is the cumulant generating function for phase space region (b). The cumulants in the
two regions, (a) and (b), are given by the derivatives at t = 0,

Kn,(a) =
dn

dtn
h(a)(t)|t=0, Kn,(b) =

dn

dtn
h(b)(t)|t=0. (A2)

Thus we get for n = 1 〈
N(a)

〉
= K1,(a) = B −K1,(b) = B −

〈
N(b)

〉
, (A3)

and for n ≥ 2

Kn,(a) = (−1)nKn,(b). (A4)

.
Given this relation between the cumulants of the two regions and using Eqs. (2)-(5) we can also

find the relation between the integrated correlation functions Cn,(a) and Cn,(b) in regions (a) and
(b), respectively.

C2,(a) = −B + 2〈N(b)〉+ C2,(b),

C3,(a) = 2B − 6〈N(b)〉 − 6C2,(b) − C3,(b),

C4,(a) = −6B + 24〈N(b)〉+ 36C2,(b) + 12C3,(b) + C4,(b). (A5)

Clearly, the integrated correlation functions do not show any symmetry between the two com-
plement regions of phase space. The same is also true for the couplings cn. In the limit where〈
N(a)

〉
→ B and thus

〈
N(b)

〉
→ 0 we find, following the above equations, that C2,(a) → −B,

C3,(a) → 2B, and C4,(a) → −6B. In this case, the couplings become c2,(a) → − 1
B , c3,(a) → 2

B2 ,

and c4,(a) → − 6
B3 , and again are entirely determined by the total baryon number B. For the
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complementary region (b), on the other hand, we have the limit of 〈Nb〉 → 0, in which case, as
discussed in Section II A, dynamics beyond baryon number conservation also affects the couplings.
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