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This paper discusses the impact of finite particle losses associated with instrumental effects in
measurements of moments of produced multiplicities with the Identity Method towards the evalu-
ation of fluctuation measures such as νdyn. One finds that the identity method remains applicable
provided it is modified to determine factorial moments 〈N(N − 1)〉, rather than moments 〈N2〉.
It is further demonstrated that νdyn remains robust if detection efficiencies are uniform across the
measurement’s acceptance. The robustness is lost, however, if detection efficiencies are momentum
dependent, although the identity method remains applicable provided detection efficiencies can be
determined with sufficient accuracy.
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I. INTRODUCTION

Studies of fluctuations of the relative yield of produced particles in high-energy nucleus-nucleus collisions provide
valuable information on the particle production dynamics, the collision system evolution, and might also enable the
identification of anomalous behavior signaling deconfinement or the existence of critical behavior [1–3]. Measure-
ments of integral correlations based on the νdyn fluctuation measure [4, 5], in particular, have received a growing
level of interest because this observable provides several advantages experimentally and phenomenologically. It is
indeed straightforward to measure thanks to its rather simple definition based on a combination of ratios of sec-
ond factorial moments to the square of inclusive averages, and because it is nominally robust against particle losses
due to instrumental effects. It is also relatively insensitive to collision volume uncertainties and fluctuations and its
phenomenological interpretation is thus relatively straightforward.
The νdyn fluctuation measure has been used to study net-charge fluctuations [6–8] as well as fluctuations of the

relative yield of different particle species [9, 10]. Measurements of relative species yield fluctuations typically utilize
conventional particle selection techniques based on measurements of specific energy loss and time-of-flight measure-
ments. In the context of this technique, particles must be identified and counted event-by-event to determine the
number (multiplicity) of particles of each species of interest, and calculate their first and second factorial moments
within the collision dataset. Evidently, measurements of specific energy loss or time-of-flight provide unambiguous
particle identification capabilities only across a rather limited kinematic range. Beyond such a range, considerable
PID ambiguity typically arises. Ambiguity and signal contamination may be suppressed by using narrower selection
cuts but these usually imply significant reductions in detection efficiency. In an effort to avoid signal contamination,
ambiguities, and efficiency losses implied by narrow PID selection criteria, authors of Refs. [11–13] have developed a
technique known as identity method which relies on the probability that a given particle might be of a given type or
species based on the value of the PID signal and the estimated probability distribution, hereafter referred to as line
shape, of such signal for distinct particle species. The method is straightforward for measurements of single particle
spectra but becomes significantly more complicated for the evaluation of second or higher moments of multiplicities.
Be that as it may, Ref. [13] presents a well defined and relatively straightforward method for the evaluation of second
moments and covariances. The method is quite elegant but unfortunately neglects effects associated with particle
losses. It is the purpose of this work to investigate the impact of such losses and whether the method can be modified
to account for them.
The impact of particle losses on integral fluctuation measures (i.e., cumulants) has been discussed by several

authors and correction formula to account for such losses, with fixed and momentum dependent efficiencies, have been
developed [14–17]. It should be pointed out that such corrections are unnecessary in the context of νdyn analyses
provided the detection efficiency is constant (i.e., uniform across the experimental acceptance) and the identification
of particle species unambiguous. In this work, however, I shall consider the application of the identity method in
cases where the unambiguous identification of species is not possible and for detection systems in which the efficiency
might exhibit a complicated dependence on the particle species, their momentum, azimuth angle, and rapidity. I will
show that with sufficient statistics and provided the efficiency can be reliably estimated across the acceptance, the
νdyn observable, though not robust, can be reliably corrected for particle losses and particle identification ambiguities.
This paper is divided as follows. Section II presents a brief review of the impact of uncorrelated efficiency losses

in cases where particle counting is unambiguous and exact. Section III builds on the identity method described in
Refs. [11, 13] and presents a discussion of the impact of uncorrelated particle losses on the calculation of the moments of
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the event-wise identity variables Wp. The method is further expanded in sec. IV to account for momentum dependent
efficiencies. This work is summarized in sec. V.

II. MEASURING MULTIPLICITY MOMENTS IN THE PRESENCE OF EFFICIENCY LOSSES

The discussion is formulated in the context of a measurement of the νdyn observable but the results presented can be
straightforwardly extended to other fluctuation observables. The observable νdyn and its properties were introduced
and discussed in detail in Ref. [5]:

νdyn(Np, Nq) =
〈Np (Np − 1)〉

〈Np〉2
+

〈Nq (Nq − 1)〉

〈Nq〉2
− 2

〈NpNq〉

〈Np〉〈Nq〉
, (1)

The variables Np and Nq represent the multiplicities of produced particles, of species of type p and q, respectively,
measured event-by-event, within the fiducial volume Ω of the experiment. More generally, one is interested in mea-
suring factorial and cross moments of multiplicities Np and Nq of particle species p and q, with p, q = 1, . . . ,K
denoting K distinct particle species (e.g., 1 =pion, 2 =kaon, 3 =proton), observable and countable event-by-event.
These moments are determined by the true (T) joint probability of the K particle species and are herein denoted
PT(N1, N2, . . . , NK):

〈Np〉 ≡

∞
∑

N1,...,Np,...,NK=0

PT(N1, . . . , Np, . . . , NK)Np,

〈N2
p 〉 ≡

∞
∑

N1,...,Np,...,NK=0

PT(N1, . . . , Np, . . . , NK)N2
p , (2)

〈NpNq〉 ≡
∞
∑

N1,...,Np,...,Nq,...,NK=0

PT(N1, . . . , Np, . . . , Nq, . . . , NK)NpNq.

Evidently, not all produced particles are properly counted given there are instrumental losses. The multiplicities of
measured (M) particles (i.e., actually detected and counted) are denoted using lower case letters, np. The instrumental
losses are modeled with independent binomial distributions, B(np|Np, εp), p = 1, . . . ,K, defined as

B(np|Np, εp) =
Np!

np!(Np − np)!
εnp (1− εp)

Np−np , (3)

where εp represent the detection efficiency of particle species p. In general, the efficiencies εp differ for species
p = 1, . . . ,K. The joint probability PM(n1, n2, . . . , nK) of the number of observed particles is obtained by summing
over all multiplicities the product of the joint probability of produced multiplicities PT(N1, N2, . . . , NK) by the
probabilities of observing the multiplicities np given the produced multiplicities Np.

PM(n1, n2, . . . , nK) =
∞
∑

N1,N2,...,NK=0

PT(N1, N2, . . . , NK)B(n1|N1, ε1)B(n2|N2, ε2)× · · · ×B(nK |NK , εK). (4)

The moments of the observed multiplicities are then calculated similarly as those of the produced multiplicities and
one gets

〈np〉 ≡

∞
∑

n1,...,np,...,nK=0

PM(n1, . . . , np, . . . , nK)np,

〈n2
p〉 ≡

∞
∑

n1,...,np,...,nK=0

PM(n1, . . . , np, . . . , nK)n2
p, (5)

〈npnq〉 ≡

∞
∑

n1,...,np,...,nq,...,nK=0

PM(n1 . . . , np, . . . , nq, . . . , nK)npnq.
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It is then straightforward to verify (see for instance Ref. [5]) that the moments of the observed multiplicities (measured)
are related to those of the produced multiplicities (true) according to

〈np〉 = εp〈Np〉

〈n2
p〉 = εp (1− εp) 〈Np〉+ ε2p〈N

2
p 〉 (6)

〈npnq〉 = εpεq〈NpNq〉.

and the measured factorial moments 〈np (np − 1)〉 are then related to the true factorial moments according to

〈np (np − 1)〉 = ε2p〈Np (Np − 1)〉. (7)

The observable νdyn is thus considered robust because efficiencies for species p and q cancel out of each of the three
terms of Eq. 1.
The neglect of particle losses can have a significant impact on measurements of the variance of fluctuations (See

also Refs [14, 15] for extensive discussions of the impact on cumulants). To illustrate this impact, consider a system
with an average multiplicity of species p of order 〈Np〉 = 100 and a variance 〈∆N2

p 〉 = 90. The second moment of

Np is thus 〈N2
p 〉 = 10, 090, and 〈∆N2

p 〉/〈Np〉
2 = 0.009. Assuming the efficiency is εp = 0.8, one finds, using Eq. (6),

〈np〉 = 80, 〈n2
p〉 = 6, 473.6, and 〈∆n2

p〉/〈np〉
2 = 0.0115, which amounts to a 28% error. However, one verifies that

〈n(n − 1)〉/〈np〉
2 = 〈N(N − 1)〉/〈Np〉

2 holds perfectly. One thus expect that to the extent that the identity method
enables proper unfolding of the PID signal line shape, the moments 〈n〉 and 〈n2〉 shall then be heavily biased by
particle losses, but quantities such as 〈n(n − 1)〉/〈np〉

2 shall remain robust and unbiased, that is, independent of
particle detection efficiencies. This conclusion is shown to hold, in the next section, if the efficiencies are momentum
independent.

III. THE IDENTITY METHOD

The identity method was introduced in Ref. [11] for two species, p = 1, 2, and extended in Ref. [12, 13] for K > 2
species, i.e., for p, q = 1, . . . ,K > 2, and the determination of higher moments. It is based on the realization that
it is often not possible, experimentally, to uniquely identify a particle species based on observables such as average
energy loss in the gas of a Time Projection Chamber, time-of-flight measurement, or any other techniques aiming at
the determination of the mass of measured particles. Indeed, one finds, in general, that there are limited kinematic
regimes in which different species can be unambiguously identified (i.e., identified with perfect certainty) based on a
particle identification (PID) observable, s. In most situations and kinematic ranges, however, there remains varying
degrees of ambiguity. For instance, a given particle might likely be a pion, but there might be a finite probability
that it is a kaon or a proton instead. This leads to contamination of the moments 〈Nq〉 and 〈Nq(Nq − 1)〉 which
may have a rather detrimental impact on the evaluations of correlation observables such as νdyn. Within the identity
method, rather than summing integer counts (e.g., increasing a counter by one unit if the particle is a pion, and
zero, otherwise) and neglecting such contaminations, one accounts for ambiguities by summing weights ωp(s) for each
PID hypothesis. The weights are determined particle-by-particle, and for each hypothesis p, according to the relative
frequency of particles of type p for a signal of amplitude s, that is, in the range [s, s+ ds],

ωp(s) ≡
ρp(s)

ρ(s)
, (8)

where

ρ(s) ≡

K
∑

p=1

ρp(s). (9)

By construction, the sum of the weights of all particles, at a given signal amplitude s, equal unity:

K
∑

p=1

ωp(s) = 1. (10)

The functions ρp(s) represent the line shapes of the PID signal s for species p = 1, . . . ,K, determined from an
average over a large ensemble of events. As per Eq. (1), in Ref.[12], their normalization is defined according to

∫

ρp(s)ds = 〈Np〉, (11)



4

where 〈Np〉 represents the mean multiplicity of the particle type p. Accordingly, one can also write

ρp(s) = 〈Np〉pp(s), (12)

with
∫

pp(s)ds = 1, (13)

in which the function pp(s) is a probability density function (p.d.f) representing the probability density that particles
of type p produce a signal of amplitude s in the detector (formally in the range [s, s+ ds]).
Several types of PID signal s may be used, including the average energy loss of a particle determined in an ionization

chamber (e.g., a Time Projection Chamber), a particle’s time of flight or mass determined from a combination of
other observables, etc.
One defines an event-by-event variable Wp, hereafter called event-wise identity variable for species p, as the sum of

the weights ωp(si) calculated for all M particles of an event:

Wp =

M
∑

i=1

ωp(si). (14)

In this context, and for notational brevity in the following, it is convenient to introduce a vector notation ~W =

(W1,W2, . . . ,WK) to succinctly represent the K event-wise identity variables Wp. The vector ~W can then be viewed
as a particle identity vector measured event-by-event. The identity method involves the calculation of moments of
this vector and its components. In this work, the discussion is limited to moments 〈Wp〉, 〈W

2
p 〉, and 〈WpWq〉, for all

relevant species p and q. These moments may be used towards the determination of the moments 〈Np〉, 〈N
2
p 〉, and

〈NpNq〉 by solving a linear equation similar to that derived in Ref. [13]. However, note that the identity method as
outlined in Ref. [13] neglects the detector response and does not account for particle losses. Extracted multiplicity
moments 〈Np〉 and 〈N2

p 〉 are consequently potentially biased and the results obtained may thus be unreliable. This
oversight is easily remedied and I derive, in this and following section, formula for the extraction of moments that
include effects associated with efficiency losses.
Toward this end, one calculates the expectation value of the moments 〈Wp〉, 〈W

2
p 〉, and 〈WpWq〉 and show they can

be related to the expectation value of the moments 〈Np〉, 〈N
2
p 〉, and 〈NpNq〉 even in the presence of particles losses.

However, efficiencies, εp, defined by Eq. (3), are needed for each of the particle species p of interest. In general, in a
given event, there shall be n1 particles of type 1, n2 particles of type 2, and so forth. Assuming there are K species
of interest, the variable Wp may then be written

Wp =

n1
∑

i1=1

ωp(s
(1)
i1

) +

n2
∑

i2=1

ωp(s
(2)
i2

) + · · ·+

nK
∑

iK=1

ωp(s
(K)
iK

), (15)

=
K
∑

j=1

nj
∑

ij=1

ωp(s
(j)
ij

), (16)

which includes K distinct sums consisting of n1, n2, . . ., and nK terms. The variables s
(j)
ij

represent the PID variables

that might be observed for particles of species j. In order to calculate the moments, one must sum over all permissible

permutations of the multiplicities n1, n2, . . ., and nK and all possible values of the variables s
(j)
ij

. Expressing the joint

probability PM(n1, n2, . . . , nK) according to Eq. (4), the expectation value of 〈Wp〉 may then be written

〈Wp〉 =

N1
∑

n1=0

N2
∑

n2=0

· · ·

NK
∑

nK=0

∞
∑

N1=0

∞
∑

N2=0

· · ·

∞
∑

NK=0

PT(N1, N2, . . . , NK) (17)

×B(n1|N1, ε1)B(n2|N2, ε2)× · · · ×B(nK |NK , εK)

×

n1
∏

i1=1

∫

p1(s
(1)
i1

)ds
(1)
i1

×

n2
∏

i2=1

∫

p2(s
(2)
i2

)ds
(2)
i2

× · · · ×

nK
∏

iK=1

∫

pK(s
(K)
iK

)ds
(K)
iK

×





K
∑

j=1

nj
∑

i′
j
=1

ωp(s
(j)
i′
j

)



 ,
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where the functions pp(s
(p)
ip

) ≡ ρp(s
(p)
ip

)/〈np〉 represent the probability density of observing PID variable values s
(p)
ip

.

Evaluation of the above expression is accomplished by distributing the K terms of Wp and changing the order of the
sums. This yields an expression consisting of K distinct sums, i.e., one for each particle species considered in the
analysis, as follows:

〈Wp〉 =

n1
∑

i′
1
=1

∞
∑

N1=0

∞
∑

N2=0

· · ·
∞
∑

NK=0

N1
∑

n1=0

N2
∑

n2=0

· · ·

NK
∑

nK=0

PT(N1, N2, . . . , NK) (18)

×B(n1|N1, ε1)B(n2|N2, ε2)× · · · ×B(nK |NK , εK)

×

n1
∏

i1=1

∫

p1(s
(1)
i1

)ds
(1)
i1

×

n2
∏

i2=1

∫

p2(s
(2)
i2

)ds
(2)
i2

× · · · ×

nK
∏

iK=1

∫

pK(s
(K)
iK

)ds
(K)
iK

× ωp(s
(1)
i′
1

)

+

n2
∑

i′
2
=1

∞
∑

N1=0

∞
∑

N2=0

· · ·
∞
∑

NK=0

N1
∑

n1=0

N2
∑

n2=0

· · ·

NK
∑

nK=0

PT(N1, N2, . . . , NK)

×B(n1|N1, ε1)B(n2|N2, ε2)× · · · ×B(nK |NK , εK)

×

n1
∏

i1=1

∫

p1(s
(1)
i1

)ds
(1)
i1

×

n2
∏

i2=1

∫

p2(s
(2)
i2

)ds
(2)
i2

× · · · ×

nK
∏

iK=1

∫

pK(s
(K)
iK

)ds
(K)
iK

× ωp(s
2
i′
2

)

· · ·

+

nk
∑

i′
K
=1

∞
∑

N1=0

∞
∑

N2=0

· · ·
∞
∑

NK=0

N1
∑

n1=0

N2
∑

n2=0

· · ·

NK
∑

nK=0

PT(N1, N2, . . . , NK)

×B(n1|N1, ε1)B(n2|N2, ε2)× · · · ×B(nK |NK , εK)

×

n1
∏

i1=1

∫

p1(s
(1)
i1

)ds
(1)
i1

×

n2
∏

i2=1

∫

p2(s
(2)
i2

)ds
(2)
i2

× · · · ×

nK
∏

iK=1

∫

pK(s
(K)
iK

)ds
(K)
iK

× ωp(s
(K)
i′
K

).

Integrals of the form
∫

pp(s)ds yield unity by definition, Eq. (13). Introducing upq coefficients defined as

upq =

∫

ωp(s)pq(s)ds, (19)

and carrying first the sums on observed multiplicities and next those on produced multiplicities, one gets

〈Wp〉 =

∞
∑

N1=0

∞
∑

N2=0

· · ·

∞
∑

NK=0

PT(N1, N2, . . . , NK) [up1ε1N1 + up2ε2N2 + · · ·+ upKεKNK ] , (20)

=

K
∑

i=1

upiεi〈Ni〉. (21)

The coefficient products upiεi nominally form a K ×K square matrix that can be inverted to solve for the moments
〈Ni〉. However, this requires a priori knowledge of the efficiencies εi. It is thus more convenient to factor the efficiencies
out of the matrix and define uncorrected multiplicities N ′

p = εpNp. Defining a matrix U with elements Uij = uij ,
these uncorrected moments 〈Ni〉 are obtained by inversion of the matrix U:

〈N ′
i〉 =

K
∑

j=1

(

U−1
)

ij
〈Wj〉. (22)

Dividing by the efficiency of detection of each species, one gets:

〈Ni〉 =
〈N ′

i〉

εi
=

(

U−1〈 ~W 〉
)

i

εi
. (23)

Calculation of the second moments 〈W 2
p 〉 proceeds similarly but one must expand the square of Wp in terms of
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sums over single particle particle species and pairs of species:

〈W 2
p 〉 =

N1
∑

n1=0

N2
∑

n2=0

· · ·

NK
∑

nK=0

∞
∑

N1=0

∞
∑

N2=0

· · ·

∞
∑

NK=0

PT(N1, N2, . . . , NK) (24)

×B(n1|N1, ε1)B(n2|N2, ε2)× · · · ×B(nK |NK , εK)

×

n1
∏

i1=1

∫

p1(s
(1)
i1

)ds
(1)
i1

×

n2
∏

i2=1

∫

p2(s
(2)
i2

)ds
(2)
i2

× · · · ×

nK
∏

iK=1

∫

pK(s
(K)
iK

)ds
(K)
iK

×





K
∑

j=1

nj
∑

i′j=1

ωp(s
(j)
i′
j

)





2

,

=

N1
∑

n1=0

N2
∑

n2=0

· · ·

NK
∑

nK=0

∞
∑

N1=0

∞
∑

N2=0

· · ·

∞
∑

NK=0

pT(N1, N2, . . . , NK) (25)

×B(n1|N1, ε1)B(n2|N2, ε2)× · · · ×B(nK |NK , εK)

×

n1
∏

i1=1

∫

p1(s
(1)
i1

)ds1i1 ×

n2
∏

i2=1

∫

p2(s
(2)
i2

)ds
(2)
i2

× · · · ×

nK
∏

iK=1

∫

pK(s
(K)
iK

)ds
(K)
iK

×







K
∑

j=1

nj
∑

i′
j
=1

[

ωp(s
(j)
i′
j

)
]2

+

K
∑

j=1

nj
∑

i′
1
6=i′′1=1

ωp(s
(j)
i′
j

)ωp(s
(j)
i′′j

) +

K
∑

j 6=j′=1

nj
∑

i′
j
=1

nj′
∑

i′′j′=1

ωp(s
(j)
i′
j

)ωp(s
(j′)
i′′j′

)







.

Introducing the coefficients u
(2)
pj defined as

u
(2)
pj =

∫

ω2
p(s)pj(s)ds, (26)

the integrals and sums of Eq. (25) reduce to

〈W 2
p 〉 =

K
∑

j=1

〈Nj〉εju
(2)
pj +

K
∑

j=1

〈Nj(Nj − 1)〉ε2j (upj)
2
+

K
∑

j 6=j′=1

〈NjNj′〉εjεj′upjupj′ . (27)

Note that if terms in equal powers of Nj are regrouped, as in Ref. [13], one ends up with a term in 〈Nj〉 with a
coefficient proportional to a sum of linear and quadratic powers of the efficiency. It is thus more appropriate to keep
the above expression as is, given it is the factorial moments that are required for the calculation of νdyn and they
feature a simple square dependence on the detection efficiency.
The calculation of the covariance 〈WpWq〉 proceeds in a similar fashion. Introducing functions, upqj , defined as

upqj =

∫

ωp(s)ωq(s)pj(s)ds, (28)

one obtains

〈WpWq〉 =

K
∑

j=1

〈Nj〉εjupqj +

K
∑

j=1

〈Nj(Nj − 1)〉upjuqjε
2
j +

K
∑

j 6=j′=1

〈NjNj′〉εjεj′upjuqj′ . (29)

Equations (27,29) express the second moments 〈W 2
p 〉 and cross-moments 〈WpWq〉 in terms of the moments 〈Np〉,

〈Np(Np−1)〉, and 〈NpNq)〉 in the presence of particle losses with efficiencies εp and εq. Next, one seeks to invert these
expressions to obtain formula for the moments 〈Np(Np − 1)〉 and 〈NpNq)〉 in terms of 〈W 2

p 〉 and 〈WpWq〉. Proceeding
as in Eq. (23), one can absorb the efficiencies into the first moments, second order factorial moments, and covariance
by defining

〈N ′
p〉 ≡ 〈Np〉εp,

〈Np(Np − 1)′〉 ≡ 〈Np(Np − 1)〉ε2p,

〈N ′
pN

′
q〉 ≡ 〈NpNq〉ε

2
p. (30)
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Expressions for the moments 〈W 2
p 〉 and 〈WpWq〉 thus reduce to

〈W 2
p 〉 =

K
∑

j=1

〈N ′
j〉u

(2)
pj +

K
∑

i=1

〈Nj(Nj − 1)′〉 (upj)
2 +

K
∑

j 6=j′=1

〈N ′
jN

′
j′〉upjupj′ , (31)

〈WpWq〉 =

K
∑

j=1

〈N ′
j〉upqj +

K
∑

j=1

〈Nj(Nj − 1)′〉upjuqj +

K
∑

j 6=j′=1

〈N ′
jN

′
j′〉upjuqj′ , (32)

which defines a system of (K2 +K)/2 linear equations. Proceeding similarly as in Ref. [13], one first defines two “b”
coefficients

bp = 〈W 2
p 〉 −

K
∑

j=1

u
(2)
pj 〈N

′
j〉, (33)

bpq = 〈WpWq〉 −
K
∑

j=1

upqj〈N
′
j〉, (34)

with p < q, and four sets of “a” coefficients

ajp = (upj)
2 , 1 ≤ p, j ≤ K; (35)

ajj
′

p = 2upjupj′ , 1 ≤ p ≤ K; 1 ≤ j < j′ ≤ K;

ajpq = upjuqj , 1 ≤ p < q ≤ K; 1 ≤ j ≤ K;

ajj
′

pq = upjuqj′ + upj′uqj , 1 ≤ p < q ≤ K; 1 ≤ j < j′ ≤ K.

One next define the K +K(K − 1)/2-vectors N and B as

N =





















〈N1(N1 − 1)′〉
...

〈NK(NK − 1)′〉
〈

N1
′N2

′
〉

...
〈

Nk−1
′NK

′
〉





















, B =





















b1
...
bK
b12
...

b(K−1)K





















(36)

and the (K +K(K − 1)/2)× (K +K(K − 1)/2) matrix A as

A =























a11 · · · aK1 a121 · · · a
(K−1)K
1

...
. . .

...
...

. . .
...

a1K · · · aKK a12K · · · a
(k−1)k
K

a112 · · · aK12 a1212 · · · a
(K−1)K
12

...
. . .

...
...

. . .
...

aK12 · · · aK(K−1)K a12(K−1)K · · · a
(K−1)K
(K−1)K























. (37)

Eqs. (31,32) may then be written AN = B, which is solved by inversion of A:

N = A−1B. (38)

Note that while this expression is of the same form as that obtained in Ref. [13], the definitions of both N and B are
quite different and the procedure outlined in this work is thus distinct from the original identity method.
Three remarks are in order. First, since the calculation of bp and bpq requires knowledge of 〈N ′

j〉, one must first
solve Eq. (21) before attempting the solution of Eq. (38). Second, once the moments 〈Np(Np − 1)′〉 and 〈N ′

pN
′
q〉 are

obtained from Eq. (38), it is then unnecessary to correct them for efficiencies towards the determination of νdyn using

νdyn =
〈Np (Np − 1)′〉

〈N ′
p〉

2
+

〈Nq (Nq − 1)′〉

〈N ′
q〉

2
− 2

〈N ′
pN

′
q〉

〈N ′
p〉〈N

′
q〉
, (39)
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since the efficiencies cancel out term by term in this expression. Finally, it should be clear that for the purpose
of a measurement of νdyn, the identity method as formulated in Ref. [13] shall produce proper results because the
method is linear and thus produces ratios 〈n(n − 1)〉/〈n〉2 that are robust even though the moments 〈n2〉 feature
a non factorizable dependence on the detection efficiency. However, the method outlined in this section presents
the advantage of yielding factorial moments 〈n(n − 1)〉 which have a simpler dependence on the efficiency, and it is
straightforward, as shown in the following section, to extend the method to account for efficiency dependencies on
the particle momentum or direction.

IV. THE IDENTITY METHOD WITH SEVERAL p⊥ BINS

The method outlined in the previous section assumes that the line shape of the PID signal s is independent of the
momentum and direction of the particles. In practice, for instance, the energy loss of a particle does depend on its
momentum and the dE/dx line shape is then a function of the particle momentum. This in turn implies that the
probabilities pp(s) are also dependent on the momentum of the particles. The identity method analysis must then
be carried out in fine bins of momentum and one must also consider how detection efficiencies may change with the
particle momentum and direction (i.e., vs. p⊥, rapidity, and azimuth angle). The calculation technique used in the
previous section remains applicable provided one assumes there is a definite (albeit unknown a priori) probability to
find particles in specific bins of p⊥, rapidity, and azimuth angle. In the following, the calculation is carried with finite
momentum binning exclusively, but the technique can be extended to account for binning in other coordinates.
In order to account for particle production in R momentum bins, one replaces the probability distribution

PM(n1, n2, . . . , nK) by a new function PM(n11, n12, . . . , n1R, n21, . . . , n2R, . . . , nK1, . . . , nKR), in which the variables
niα, with i = 1, . . . ,K, α = 1, . . . , R, denote the number of particles of species i produced in momentum bin α. Here-
after, roman letters index particle species and greek letters index momentum bins. Equations 5 must be extended to
include momentum bin dependencies. Introducing the shorthand

~n ≡ (n11, n12, . . . , n1R, n21, . . . , n2R, . . . , nK1, . . . , nKR), (40)

as well as the sum notation

∑

~n

≡

∞
∑

n11=0

· · ·

∞
∑

n1R=0

∞
∑

n21=0

· · ·

∞
∑

n2R=0

· · ·

∞
∑

nK1=0

· · ·

∞
∑

nKR=0

, (41)

the moments of the multiplicities niα can be calculated for each species p and each p⊥ bin α, according to

〈npα〉 ≡
∑

~n

PM(~n)npα,

〈n2
pα〉 ≡

∑

~n

PM(~n)n2
pα, (42)

〈npαnqβ〉 ≡
∑

~n

PM(~n)npαnqβ .

For fluctuations analyses, one seeks the moments of multiplicities np consisting of the sum of the npα across all p⊥
bins, i.e.,

np =

R
∑

α=1

npα. (43)

The first moment 〈np〉 is trivially obtained as a sum of the first moments 〈npα〉

〈np〉 =

〈

R
∑

α=1

npα

〉

=

R
∑

α=1

〈npα〉 (44)

Second moments and covariances require one sums all relevant momentum bin combinations

〈n2
p〉 =

〈(

R
∑

α=1

npα

)2〉

=

R
∑

α=1

〈

n2
pα

〉

+

R
∑

α6=α′=1

〈npαnpα′〉 (45)

〈npnq〉 =

〈(

R
∑

α=1

npα

)(

R
∑

α′=1

nqα′

)〉

=
R
∑

α,α′=1

〈npαnqα′〉 . (46)



9

Evidently, our discussion of efficiency losses applies for each momentum bin individually. One can then write

〈npα〉 = εpα〈Npα〉 (47)

〈npα (npα − 1)〉 = ε2pα〈Npα (Npα − 1)〉 (48)

〈npαnqβ〉 = εpαεqβ〈NpαNqβ〉, (49)

where the variables npα and Npα represent the measured and true numbers of particles of species p in momentum bin
α, respectively. A proper calculation of the moments 〈Np〉, 〈Np (Np − 1)〉 and 〈NpNq〉 shall then require efficiency
corrections p⊥-bin by p⊥-bin, if the efficiencies εpα depend on α, i.e., the momentum of the particles.

〈Np〉 =
R
∑

α=1

〈npα〉

εpα
(50)

〈Np (Np − 1)〉 =

R
∑

α=1

〈npα (npα − 1)〉

ε2pα
+

R
∑

α6=α′=1

〈npαnpα′〉

εpαεpα′

(51)

〈NpNq〉 =

R
∑

α,α′=1

〈npαnqα′〉

εpαεqα′

. (52)

Equations (50-52) are general and can be applied to traditional cut analyses or with the p⊥ dependent identity method
discussed next.
To apply the identity method in cases involving multiple p⊥ bins, one must obtain expressions for the moments

〈npα〉, 〈npα (npα − 1)〉, and 〈npαnqα′〉 in terms of identity variables determined for each species and each momentum
bin. One thus defines

Wpα =

n
∑

i=1

ωpα(si)Θα(si), (53)

in which the sum proceeds over all (accepted) particles of an event. The function ωpα(si) represents the probability
of the i-th particle being of species p when observed in p⊥ bin α, and the function Θα(si) is unity if the i-th particle
is within the p⊥ bin α and null otherwise. Calculations of the expectation value of the moments of Wpα proceed as
in sec. III but are carried out for specific p⊥ bins α (β). The first moments are

〈Wpα〉 =
K
∑

j=1

〈npα〉upj,α =
K
∑

j=1

〈Npα〉upj,αεiα, (54)

in which the coefficients upj,α are calculated according to

upj,α =

∫

ωpα(s)pjα(s)ds, (55)

where pjα(s) represents the probability of observing a PID signal s for a particle of species j in momentum bin α.
Four second order moments must be considered. They are denoted 〈W 2

pα〉, 〈WpαWpβ〉, 〈WpαWqα〉, and 〈WpαWqβ〉,
with p < q and α 6= β. Calculation of these moments yields

〈W 2
pα〉 =

K
∑

j=1

〈Njα〉εjαu
(2)
pj,α +

K
∑

j=1

〈Njα(Njα − 1)〉ε2jα (upj,α)
2
+

K
∑

j 6=j′=1

〈NjαNj′α〉εjαεj′βupj,αupj′,α (56)

〈WpαWpβ〉 =

K
∑

j,j′=1

〈NjαNj′β〉εjαεj′βupj,αupj′,β (57)

〈WpαWqα〉 =

K
∑

j=1

〈Njα〉εjαupqj,α +

K
∑

j=1

〈Njα(Njα − 1)〉ε2jαupj,αuqj,α +

K
∑

j 6=j′=1

〈NjαNj′α〉εjαεj′αupj,αuqj′,α (58)

〈WpαWqβ〉 =
K
∑

j,j′=1

〈NjαNj′β〉εjαεj′βupj,αuqj′,β. (59)
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with coefficients

u
(2)
pj,α =

∫

ωpα(s)
2pjα(s)ds, (60)

upqj,α =

∫

ωpα(s)ωqα(s)pjα(s)ds. (61)

By construction, the cross-terms are symmetric under interchanges of the indices p and q and indices α and β:

〈WpαWpβ〉 = 〈WpβWpα〉

〈WpαWqα〉 = 〈WqαWpα〉

〈WpαWqβ〉 = 〈WqβWpα〉.

There are thus K×R independent terms of the form 〈W 2
pα〉, K×R(R− 1)/2 of the form 〈WpαWpβ〉, K(K− 1)/2×R

of the form 〈WpαWqα〉, and K(K − 1)/2 × R(R − 1)/2 of the form 〈WpαWqβ〉. The relation between the second
order moments of Wp and the second order moments of the multiplicities Np may then be viewed as a system of
Q = (K +K(K − 1)/2)× (R+R(R− 1)/2) independent linear equations.
Proceeding as in sec. III, one defines “b” coefficients according to

bp,αα = 〈W 2
pα〉 −

K
∑

j=1

〈Npα〉εjαu
2
pj,α, (62)

bp,αβ = 〈WpαWpβ〉, (63)

bpq,αα = 〈WpαWqα〉 −

K
∑

j=1

〈Njα〉εjαupqj,α, (64)

bpq,αβ = 〈WpαWqβ〉, (65)

where p < q and α 6= β. The “a” coefficients are next defined according to

ajp,α = (upj,α)
2
ε2jα (66)

ajj
′

p,α = upj,αupj′,αεjαεj′α (67)

ajpq,α = upj,αuqj,αε
2
jα (68)

ajj
′

pq,α = upj,αuqj′,αεjαεj′α (69)

ajj
′

pq,αβ = upj,αuqj′,βεjαεj′β . (70)

The column vector ~B, matrix ~A, and column vector ~N may then written

B =



















bp,αα

bp,αβ

bpq,αα

bpq,αβ



















A =























ajp,α ajj
′

p,α 0

0 0 ajj
′

p,αβ

ajpq,αα ajj
′

pq,αα 0

0 0 ajj
′

pq,αβ























N =











〈Nj,α(Nj,α − 1)〉

〈Nj,αNj′,α〉

〈Nj,αNj′,β〉











(71)

in which each of the elements are themselves vectors or matrices with indices p, q spanning all values 1 ≤ p < q ≤ K
and indices α and β spanning all values 1 ≤ α 6= β ≤ R. For instance, in the case of bp,α, α spans all values 1 to R
while p spans all values from 1 to K. However, in the case of the other b coefficients, the values spanned should satisfy
α 6= β and p < q. Equations (56-59) may then be written B = AN and can be solved by inversion of the matrix A:

N = A−1B (72)

This equation provides statistical estimates of the p⊥ dependent moments 〈Nj,α(Nj,α − 1)〉, 〈Nj,αNj′,α〉 and
〈Nj,αNj′,β〉. These can then be combined to obtain the integral correlators 〈Nj(Nj − 1)〉 and 〈NjNj′〉 according
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to

〈Np (Np − 1)〉 =

R
∑

α=1

〈Npα (Npα − 1)〉 , (73)

〈NpNq〉 =
R
∑

α,α′=1

〈NpαNqα〉 . (74)

It is important to note that both A and B are now explicitly dependent on the detection efficiencies εjα. Given
the efficiencies are p⊥ dependent, efficiency coefficients must be indeed included explicitly in the expressions of A
and B. The robustness of ratios 〈Nj,α(Nj,α − 1)〉/〈Nj,α〉

2 is thus effectively lost. The identity method remains

nonetheless applicable provided the coefficients upj,α, u
(2)
pj,α, upqj,α, and the efficiencies εjα can be evaluated with

sufficient precision.

V. SUMMARY

I first discussed the impact of finite particle losses associated with instrumental effects in measurements of moments
of produced multiplicities with the Identity Method towards the evaluation of fluctuation measures such as νdyn. The
original identity method produces moments 〈n2〉 with a complicated dependence on the detection efficiency while the
procedure outlined in this work yields factorial moments 〈n(n − 1)〉 that feature a simple square dependence on the
efficiency. However, both the original and modified identity methods shall yield robust, i.e., efficiency independent
results, for the fluctuation observable νdyn as long as particle detection efficiencies are momentum independent. I
further showed that the modified method outlined in this work provides for a straightforward albeit somewhat tedious
extension to experimental cases where detection efficiencies are strongly dependent on the momentum of particles.
The treatment of particle losses discussed in this work can and should be applied to measurements of higher moments

discussed in Ref. [12].
The author thanks colleagues S. Voloshin and A. Rustamov for fruitful discussions and comments.
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