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The γ rays following radiative neutron capture on 161,163Dy targets were measured with the
highly-segmented γ-ray calorimeter Detector for Advanced Neutron Capture Experiments at the
Los Alamos Neutron Science Center. The γ-ray energy spectra for different multiplicities were
gathered for tens of s-wave resonances of both possible spins in each nucleus. Analysis of these
spectra within the statistical model enabled us to draw conclusions about dipole photon strength
functions with emphasis on the scissors mode. The photon strength functions best describing Dy
data are very similar to previously published results on even-even Gd isotopes. It was shown that
the scissors mode plays a significant role in the decay of highly excited states up to the neutron
separation energy. Measurement of multiple resonances allowed us to assess the fluctuations of
experimental spectra and to compare the fluctuations with simulated ones. The size of measured
fluctuations is on average smaller than predicted from simulations. However, the results are puzzling
as the difference between simulations within the statistical model and experiment is not consistent
for both nuclei.

I. INTRODUCTION

Detailed information about nuclear levels and transi-
tions between them usually exists in a rather restricted
range of excitation energy just above the ground state
in medium and heavy mass nuclei. Properties of the nu-
cleus at higher excitation energies are then described by
the statistical model in terms of the level density (LD)
and a set of photon strength functions (PSFs) for differ-
ent transition types. These quantities are necessary for
calculations of reaction rates in many different reactions
and are important especially in nuclear astrophysics [1, 2]
and in the development of advanced nuclear reactors [3].

One way to learn about the PSFs and LD is through
the spectral analysis of coincident γ rays from neutron
capture at isolated neutron resonances, the so-called
multistep cascade (MSCs) spectra. In this paper we
present results from the analysis of these spectra in
well-deformed even-even 162,164Dy isotopes. The spec-
tra from 161,163Dy(n,γ) reaction were measured with the
Detector for Advanced Neutron Capture Experiments
(DANCE) [4, 5]. This highly segmented, highly efficient
γ calorimeter is installed at the pulsed neutron beam at
the Los Alamos Neutron Science Center (LANSCE) at
Los Alamos National Laboratory.
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Special interest is paid to the role and properties of
the scissors mode (SM). The SM as a concentration of
the ground-state M1 strength was envisaged from the-
ory [6–8] and discovered in (e,e′) measurements [9]. A
wealth of information about the SM was gathered in nu-
clear resonance fluorescence (NRF) experiments [10–14].
In contrast to the NRF experiments, the manifestation of
the SM in the decay of excited states, more precisely the
character of the SM as a resonance in the magnetic dipole
(M1) PSF obeying the Brink hypothesis [15], was iden-
tified in two-step γ cascade (TSC) experiment [16, 17].
This finding was confirmed by charged particle induced
experiments from the Oslo Cyclotron Laboratory [18–
22] and analyses of coincidence spectra from (n,γ) re-
actions [23–26]. Unfortunately, the strength of the SM
in well-deformed even-even nuclei reported from these
experimental techniques is not always consistent – see
Sec. V C for a detailed discussion. 162,164Dy are the
first even-even rare-earth nuclei where data from all three
mentioned experimental techniques are available.

In addition, a strong low-energy PSF enhancement
– reported before only in lighter nuclei – was recently
observed also in heavier nuclei, including rare-earth
ones [27], in Oslo-type experiments. A possible influence
of this phenomenon was tested as well.

In Sec. II we describe the experimental technique to
measure the γ spectra with the DANCE calorimeter.
The modeling of the statistical γ cascades is discussed in
Sec. III. Sec. IV presents information about the PSFs and
LD that can be extracted from the measured MSC spec-
tra. A comparison with other available data is given in
Sec. V and consistency of observed fluctuations with pre-
dictions of the statistical model is presented in Sec. VI.
A summary is provided in Sec. VII.
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II. EXPERIMENT

A comprehensive description of the experimental setup
and data processing can be found in Refs. [4, 5, 28, 29].
Here we restrict ourselves to cover only the basic features
and details specific to the Dy capture measurements.

A. Experimental setup

The experiment was performed at the moderated spal-
lation neutron source LANSCE [30], which produces a
white spectrum of neutrons with energies ranging from
sub-thermal to hundreds of MeV with a repetition rate
of 20 Hz. The neutrons enter the flight path 14 at the
Manuel Lujan Jr. Neutron Scattering Center and at 20 m
from the spallation target they impinge on the Dy sample
located inside the DANCE detector [4, 5], an array of 160
BaF2 scintillation crystals, which covers a solid angle of
' 3.5π. Each crystal serves as a γ spectrometer. A 6-cm
thick 6LiH shell is placed between the sample and the
BaF2 crystals in order to reduce the scattered neutron
flux striking the crystals.

In addition to the BaF2 crystals, the experimental
setup includes three other detectors that are used to mon-
itor the neutron flux – a proportional counter filled with
BF3+Ar gas, an n-type surface barrier Si detector, which
views a thin 6LiF deposit, and a 235U fission chamber.

Both enriched Dy targets were prepared at the Oak
Ridge National Laboratory as self-supporting metal foils
with an area S = 6.45 cm2, their masses and isotopic
compositions are specified in Tab. I. Data were accumu-
lated for one week for each target.

B. Data processing

The DANCE acquisition system [28] is based on digiti-
zation of signals from all 160 BaF2 detectors using four-
channel Acqiris DC265 digitizers with a sampling rate
of 500 mega samples per second. Intensities of the fast
(decay time ≈ 600 ps) and slow (decay time ≈ 600 ns)
components of the scintillation signal from each BaF2

detector are collected independently. The ratio of these
two components of the signal is then used for discrimina-
tion against the α-background from natural radioactivity
of Ra in the BaF2 crystals [5]. A precise timestamp of
γ-ray arrival is also stored and all signals are considered
to belong to the same event if they arrive within 10 ns.

The energy calibration of the individual DANCE crys-
tals was performed with a combination of γ-ray sources
(137Cs, 88Y, 22Na) and the intrinsic radioactivity in the
BaF2 crystals due to 226Ra and its daughters. The lat-
ter calibration was conducted on a run-by-run basis to
provide the energy alignment of all crystals in the off-
line analysis. The detection efficiency of the DANCE
detector array for a 1 MeV γ ray is 86% and the total

efficiency for detection of a photon from a cascade ex-
ceeds 95%. The energy resolution is about 16% and 7%
for 1 and 6 MeV γ rays, respectively.

An emitted γ ray does not necessarily deposit its full
energy in a single crystal, but rather several, often neigh-
boring, BaF2 crystals [29]. The number of crystals that
fire during γ-ray cascade detection is thus usually higher
than the true multiplicity. To bring the detected multi-
plicity closer to the real one we combined all contiguous
crystals that have fired during an event into clusters and
considered each cluster as the response of the detector
array to a single γ ray. The number of clusters observed
in a capture event is called the cluster multiplicity M .
Although we use the cluster multiplicity, the conclusions
presented in this paper do not change whether the crystal
or the cluster multiplicity is used.

Only events corresponding to strong, well-resolved res-
onances with sufficient statistics and unambiguous spin
were analysed. These resonances were easily identified
from the time-of-flight spectrum. A part of this spec-
trum for 161Dy(n,γ) reaction after its transformation to
neutron-energy scale is shown in Fig. 1. Spectra of sums
of deposited γ-ray energies, hereafter called sum-energy
spectra, are for M = 2−4 shown in Fig. 2 for a few strong
resonances in each isotope. The spectra are normalized
to the same total number of events for M ≥ 2 in the
sum-energy range (EΣ) listed in Tab. I.

As only s-wave neutron capture plays a role at low
neutron energies in this mass region, observed resonances
have Jπ = 2+ or 3+ in 162Dy and Jπ = 2− or 3− in 164Dy
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FIG. 1: Time-of-flight spectrum for 161Dy(n,γ) reaction af-
ter its transformation to neutron-energy scale. Only events
corresponding to multiplicities M ≥ 2 and detected energy
sum EΣ = 7.6 − 8.4 MeV were considered. Energies and Jπ

assignments of resonances are specified. The lines show the
ranges of neutron energies used to construct the sum-energy
and experimental MSC spectra.
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Target Mass Isotope abundance (%) Sn EΣ Ecrit

(mg) 160Dy 161Dy 162Dy 163Dy 164Dy (MeV) (MeV) (MeV)
161Dy 31 0.33(2) 95.69(37) 2.52(13) 0.90(8) 0.56(5) 8.197 7.6 – 8.4 1.87
163Dy 32 0.03(1) 0.36(1) 1.23(2) 96.86(4) 1.52(2) 7.658 7.0 – 7.8 1.70

TABLE I: Mass and isotopic composition of the measured Dy targets. Also listed are the neutron separation energy Sn of the
product nucleus, the range of sum energies used in the data processing (EΣ) and the critical energy Ecrit used in simulations.

product nuclei. Resonances of different spins have differ-
ent observed distributions of detected multiplicities M .
This fact was exploited to check the spins of resonances
in measured nuclei using the method from [31]. Spins of
the majority of strong, well-resolved resonances – which
are used in our present analysis – are consistent with val-
ues listed in [32]. A detailed analysis of resonance spins
is planned to be published elsewhere.
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FIG. 2: (Color online) Examples of sum-energy spectra for
individual cluster multiplicities M ; left column - 162Dy, right
column - 164Dy. Resonance energies and Jπ assignments are
indicated. The shaded areas represent the EΣ intervals as
specified in Tab. I. All spectra are normalized as described in
Sec. II B. Resonance from 160Dy at 10.45 eV contributes to
the sum-energy spectrum of 10.26 eV resonance in 161Dy. The
cut on EΣ eliminates the contribution of the 160Dy resonance
to the MSC spectra completely.

Each sum-energy spectrum consists of (i) a peak near
the neutron separation energy Sn, see Tab. I, which cor-
responds to detection of all γ-ray energy emitted in a
cascade, and (ii) a low-energy tail, which is formed by
events where a part of the emitted γ-ray energy escapes
the detection. For low multiplicities, M < 3, there is
also a strong contribution from background which dom-
inantly comes from natural β radioactivity in the BaF2

crystals at EΣ < 3 MeV. Sometimes resonances in dif-
ferent isotopes have very similar energies to those under
study. If there is a strong resonance in an even-mass Dy
impurity of the target, a peak at Sn from the product
nucleus appears in the spectrum. Such a “parasitic” res-
onance (from 160Dy target) is clearly visible in the sum-
energy spectrum for the 10.26 eV resonance in 162Dy at
≈ 6 MeV, see Fig. 2.

Events with deposited sum energy falling into regions
EΣ listed in Tab. I (and depicted as shaded areas in
Fig. 2) were used to construct the experimental MSC
spectra. For a given resonance, an experimental MSC
spectrum for multiplicity M was constructed by incre-
menting counts in M bins corresponding to the γ en-
ergies deposited in the M individual clusters within an
event. The bin width of 100 keV, which is close to energy
resolution of crystals for low energies, was chosen. The
experimental MSC spectra inherit the normalization of
sum-energy spectra.

The intervals of EΣ are chosen partly arbitrarily. One
of the reasons to use the relatively narrow range of
EΣ when constructing the experimental MSC spectra is
to avoid the above-mentioned background contributions.
The other reason is that interesting structures observed
in the spectra are more pronounced if only cascades de-
positing all their energies in the detector are considered.
Further narrowing of the intervals has minimal impact on
the MSC spectral shape and only reduces the statistical
precision. Their widening would improve the counting
statistics of the experimental MSC spectra but would
lead to smearing of the observed structures.

A small background contribution to experimental MSC
spectra persists for a given resonance after applying the
EΣ cut. It comes from a contribution of off-resonance
capture on target and capture of scattered neutrons in
BaF2 crystals. This contribution can be easily subtracted
using experimental MSC spectra from neighboring off-
resonance regions on both sides of a resonance.

In total we obtained experimental MSC spectra for
Lexp = 25 resonances with Jπ = 2+ and 22 resonances
with Jπ = 3+ from 161Dy(n,γ) reaction and 14 reso-
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nances with Jπ = 2− and 26 resonances with Jπ = 3−

from 163Dy(n,γ) reaction. Examples of a few experimen-
tal MSC spectra for resonances with both possible spins
are plotted in Fig. 3. The spectral shapes are discussed
in detail in Sec. IV C.

Uncertainty due to the counting statistics and the
background subtraction is usually of the order of a few
percent in the midpart of M = 2 experimental MSC spec-
tra, for the weakest resonances not exceeding 20%, and
even smaller for M = 3− 6. Spectra for M = 1 were not
considered in the data analysis as they are often strongly
dominated by background. The experimental spectra for
M > 4 are not shown in the paper as their shape is anal-
ogous to M = 4 spectra and they do not provide any
additional restrictions on the PSFs models apart from
reflecting the multiplicity distribution. The multiplicity
distribution is in some cases used when discussing ac-
ceptability of models in Sec. IV. There are virtually no
events with M > 7.
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FIG. 3: (Color online) Examples of experimental MSC spec-
tra for individual cluster multiplicities M ; left column - 162Dy,
right column - 164Dy. Resonance energies (in eV) and Jπ as-
signments are specified. All spectra inherit the normalization
as described in Sec. II B.

To facilitate the comparison of experimental data with
model predictions, we constructed the mean experimen-

tal MSC spectra for each isotope and each group of res-
onance spins. For a given bin we computed the mean
experimental MSC intensity Iexp and the fluctuation of
experimental MSC intensities σexp using a maximum like-
lihood fit of the set of experimental MSC intensities and

their uncertainties {Iλ,∆λ}
Lexp

λ=1 of measured individual
resonances λ = 1, ..., Lexp. The presence of residual fluc-
tuations σexp, which is expected due to fluctuations of
intensities of primary transitions, is evident from the be-

havior of the sets {Iλ,∆λ}
Lexp

λ=1 . We assumed that the
probability density function describing the distribution
of experimental MSC intensities Iλ is a normal distribu-
tion. Hence the likelihood function L was defined as:

L =

Lexp∏
λ=1

1√
2π
(
σ2

exp + ∆2
λ

)exp

(
− (Iλ − Iexp)

2

2
(
σ2

exp + ∆2
λ

))h (∆λ) ,

(1)
where h (∆λ) is the error distribution.

The resulting mean experimental MSC intensities Iexp

coincide within uncertainties with the averages of the sets

{Iλ}
Lexp

λ=1 and have uncertainties of the order of a few per-
cent, not exceeding 10% in any relevant part of spec-
tra. The fluctuations σexp in general reach ≈ 80% of the

standard deviations of the sets {Iλ}
Lexp

λ=1 , however they
are determined less precisely, typically with 30 − 80%
uncertainty. The mean experimental MSC spectra for
M = 2−4 are shown in Fig. 4. The uncertainty of Iexp as
determined from the maximum likelihood fit is displayed
as full rectangle in Fig. 4 and Figs. 7-11, while the error
bar represents the width of distribution of experimental
MSC intensities and is drawn as Iexp ± σexp.

III. SIMULATION OF MSC SPECTRA

The experimental MSC spectra, the main observables
of our analysis, are products of a complex interplay be-
tween the PSFs, LD and a complicated detector response.
As a result, the PSFs and the LD cannot be directly ex-
tracted from the experimental MSC spectra. Therefore
we adopted a trial-and-error approach to get information
on these quantities – the simulated MSC spectra calcu-
lated using various PSFs and LD models are compared
with their experimental counterparts. The comparison
between the experimental and simulated spectra, as pre-
sented in Sec. IV, allowed us to reject many model com-
binations and choose those most likely to be valid.

A. Algorithms

Utilizing the Monte-Carlo dicebox algorithm [33], the
γ cascades following resonance neutron capture were gen-
erated under various assumptions about the LD and
PSFs. The response of the DANCE detector, calculated
using the Monte-Carlo code geant4 [29], was subse-
quently applied to simulated γ cascades.
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In the dicebox algorithm, below some critical energy,
Ecrit, the complete decay scheme is taken from existing
experimental data as given in Refs. [34] and [35] for 162Dy
and 164Dy, respectively. The values of Ecrit (see Tab. I)
were carefully adjusted to ensure that the information
about the energies, spins, parities and decay properties
of levels below Ecrit is complete.

Above Ecrit up to the capturing state c individual levels
and their decay properties are generated using an a priori
chosen LD function ρ(E, J, π) and PSFs S(XL), where X
denotes the type (electric, X ≡ E, or magnetic, X ≡M)
and L the multipolarity of the transition, XL = E1, M1,
and E2. A contribution of higher multipolarities was
neglected. A partial radiation width Γiγf for a transition
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FIG. 4: (Color online) Mean experimental MSC spectra for
individual cluster multiplicities M ; left column - J = 2 reso-
nances, right column - J = 3 resonances. The product isotope
is specified. The full rectangles show the mean experimen-
tal MSC intensities Iexp with their uncertainties coming from
the maximum likelihood fit. The error bars represent the
width of distribution of experimental MSC intensities, drawn
as Iexp ± σexp. The spectra inherit the normalization as de-
scribed in Sec. II B.

between an initial level i and a final level f is given by

Γiγf =
∑
XL

ξ2
XLS

(XL)(Eγ , T )E2L+1
γ

ρ(Ei, Ji, πi)
, (2)

where ξXL is a random number drawn from a normal dis-
tribution with zero mean and unit variance. This ensures
that the individual widths Γiγf fluctuate according to the
Porter-Thomas (PT) distribution [36]. ρ(Ei, Ji, πi) is the
level density for levels with a given spin Ji and parity πi
at energy Ei of the initial level i. T is the nuclear tem-
perature corresponding to the energy of the final level
f , which is a parameter of some of the PSFs models (see
Sec. III B). The sum in Eq. (2) goes over all allowed types
and multipolarities of transitions, i.e. the mixing of M1
and E2 is correctly included when permitted. Further-
more, the internal electron conversion plays a noticeable
role, especially in the decay of certain low-lying levels.
For the transitions above Ecrit and for those transitions
below Ecrit where the experimental information about in-
ternal electron conversion is lacking dicebox computes
the contribution of internal electron conversion using pa-
rameters from the BrIcc database [37].

Decay branching intensities, Ii→f = Γiγf/Γiγ , for tran-
sitions from any given initial level i below the capturing
state c to various final levels f are calculated from a full
set of partial radiation widths of given initial level i simu-
lated according to Eq. (2) using the total radiation width
of i, Γiγ =

∑
f Γiγf . Hereafter, the simulated system of

all levels below the capturing state c and their branching
intensities is referred to as a nuclear realization (NR).

In reality, decays of various neutron resonances of the
same spin and parity differ only in intensities of primary
transitions. To mimic this behavior we randomly gener-
ate the intensities of primary transitions within a given
NR. Each set of primary decay branching intensities Ic→f
within a given NR is denoted as a nuclear subrealization.

Due to the PT fluctuations of partial widths Γcγf ,
there is an enormous number of nuclear subrealizations
within a fixed nuclear realization that differ from each
other even for fixed PSF and LD models. In addition,
for fixed PSF and LD models there is also an enormous
number of nuclear realizations as the levels below the
capturing state and their partial widths are generated
randomly. Therefore any simulated observable is subject
to inherent, irreducible uncertainties originating from PT
fluctuations of the partial radiation widths of randomly
generated levels.

Each simulated cascade was processed through a
geant4 detector response simulation. Different types
of information can be obtained from these simulations.

In general, from the simulation of λ = 1, ..., L nuclear
subrealizations within each of ν = 1, ..., N NRs we de-
fine, for any given observable Oλν , these measures: (i)
a as the mean value, (ii) aν′ as the mean over nuclear
subrealizations within given NR ν′, (iii) Σ2 as the fluc-
tuation of means aν over NRs, (iv) σ2

ν′ as the fluctuation
of Oλν′ over subrealizations in given NR ν′, (v) σ2 as
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the average of σ2
ν over all NRs ν, and (vi) ∆MC

λν as the
counting uncertainty of Oλν′ due to a finite number of
simulated cascades. There are different ways to compute
these measures, e.g. simple averaging or maximum like-

lihood fit on the set {Oλν ,∆MC
λν }

L,N
λ=1,ν=1.

During the search for appropriate models of PSFs and
LD in Sec. IV we typically simulated N = 20 independent
NRs with L = 1 subrealization for each model combina-
tion. Note that in all our previous works, e.g. [23–25], we
have always and only used L = 1. Usually 105 γ cascades
were randomly generated for each nuclear subrealization.
In this case the above mentioned quantities are simplified
and we compute a as the average value a = 1

N

∑
ν O1ν

and the overall fluctuation as the standard deviation of
the set {O1ν}Nν=1. The observables of interest in this
search are mainly the MSC intensities in individual bins
of MSC spectra. The simulated ones were constructed
in the same way as their experimental counterparts, i.e.
if the total deposited energy of simulated γ cascade fell
into the EΣ range from Tab. I, the event was added to
the corresponding simulated MSC spectrum.

Another simulated quantity, which can be compared to
its experimental counterpart, is the total radiation width
of s-wave neutron resonances Γγ . The quantity comes
directly from dicebox simulations and is discussed in
Sec. V B.

In the extended simulations of N = 50 NRs with L =
50 subrealizations, presented in Sec. VI, the quantities aν
and σν are computed from the set {Oλν ,∆MC

λν }Lλ=1 using
a maximum likelihood fit analogously to experimental
data processing, see Eq. (1) in Sec. II B. With access to
all quantities (i)-(vi) defined above and to fluctuations
of experimental MSC intensities σexp we can draw some
conclusions not only about the models of PSFs and LD
but also about fluctuations of MSC spectra, see Sec. VI.

B. Photon Strength Functions Models

1. Electric-dipole transitions

It is well known that the electric-dipole (E1) transi-
tions play a dominant role in the decay of compound nu-
clei at excitations above the neutron separation energy
due to the presence of the Giant Electric Dipole Reso-
nance (GEDR). The PSF at these energies in axially de-
formed nuclei seems to be fully consistent with the sum
of two Lorentzian terms

S
(E1)
SLO (Eγ) =

1

3(πh̄c)2

2∑
i=1

σGiEγΓ2
Gi

(E2
γ − E2

Gi
)2 + E2

γΓ2
Gi

. (3)

This model is usually denoted as the Brink-Axel or stan-
dard Lorentzian (SLO) model [38]. EGi

, ΓGi
, and σGi

are the energy, width and the maximum cross section of
the GEDR. We used values of these parameters based on
the fit of (γ,xn) experimental data.

Because no (γ,xn) data are available for Dy isotopes,
the GEDR parameters from nearby nucleus 160Gd [39]
were used. This seems to be fully justified as the GEDR
parameters are expected to vary smoothly with A for nu-
clei with similar deformation. Furthermore, the shape of
S(E1) at Eγ <∼ 9 MeV, i.e. in the region of our interest,
is, within uncertainties of the GEDR parameters, almost
indistinguishable when the GEDR parameters are taken
from the fit of 154Sm, 156Gd, 160Gd or 168Er (γ,xn) ex-
perimental data [39].

Although there is a common agreement on the E1 PSF
shape at energies above Sn, the shape of the E1 PSF
below Sn is not precisely known. Many E1 PSF models
exist which aim to modify the Lorentzian shape of the
low-energy tail of GEDR.

A description of the E1 PSF at low Eγ in spherical
or weakly deformed nuclei was proposed by Kadmenskij,
Markushev and Furman [40] (KMF model). The model
introduced dependence of PSF on nuclear temperature T .
Despite the fact that there is no theoretical justification
to apply this model in well-deformed nuclei, it is also
often adopted.

A modification of the KMF model, in which
the T (∼ 0.3 MeV) is considered to be constant, was
used for description of PSFs in Dy isotopes extracted
from data on the 3He-induced reaction using the Oslo
method [20, 21]. Authors of these works argue that for
their experimental conditions the excitation energy is rel-
atively low and T is virtually constant in the region of
interest. This model, labeled as KMF-T, was found to
reasonably reproduce also MSC and TSC spectra of even-
even Gd isotopes with T = 0.3−0.35 MeV [24, 26] and of
several odd Gd isotopes with T = 0.25− 0.40 MeV [25].

Another commonly used model was proposed for spher-
ical nuclei by Chrien [41] in order to match the behav-
ior of the SLO model at energies near the GEDR max-
ima and that of the KMF model at very low energies.
This phenomenological model was later generalized for
deformed nuclei [42] by introducing an ad hoc param-
eter k. The systematics of this parameter in Ref. [38]
was mainly based on a requirement to reproduce the to-
tal radiation widths, Γγ . Since Γγ strongly depends on
the LD below Sn, as well as the PSFs for other transi-
tion types, we considered the parameter k to be a free
parameter in our simulations. This model is known as
the Enhanced Generalized Lorentzian (EGLO) model.
The EGLO model is very similar to the KMF model for
k ∼ 1.5 and strongly enhances low-energy transitions at
higher k for decays from highly-excited states.

The Modified Generalized Lorentzian (MGLO) model,
introduced in [25] as an alternative to the EGLO model,
makes use of the same parameter k. This model exhibits
a significantly smaller preference of low-energy transi-
tions. It was shown that it successfully describes the
MSC spectra measured at DANCE in the chain of Gd
isotopes [23–25]. The parameter k is considered to be
a free parameter in simulations with the MGLO model.
For k ∼ 1.5−2 the E1 PSF is rather similar to the KMF
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model prediction.

In addition, many other models of the E1 PSF can
be found in the literature. The RIPL-3 database [38]
– probably the most widely used database by experi-
mentalists – lists several additional closed-form models.
These include the hybrid model (GH) [43], the gener-
alized Fermi Liquid (GFL) model [44], and a family of
modified Lorentzian (MLO) models [45]. For a compre-
hensive description of all these models, the reader is re-
ferred to Ref. [38]. Further, a PSF model originating from
Hartree-Fock-Bogoljubov (HFB) calculations is listed in
RIPL-3. All of these models have been tested in our anal-
ysis. Many of them use values of EGi

, ΓGi
, and σGi

as
parameters – the same values of these parameters as in
the case of the SLO model were adopted.

For a complete description of γ decay one needs infor-
mation on the PSFs at all excitation energies. In some
models, the dependence on any quantity other than Eγ
is neglected. This assumption is known as the Brink hy-
pothesis [15] and was originally formulated for the GEDR
E1 transitions. Experimental data from average reso-
nance capture [46] and from the 3He-induced reaction [21]
do not show any significant deviation from the validity of
the hypothesis in the region of excitation energies below
Sn. MSC and TSC data are so far inconclusive for E1
transitions.

Specifically, from the above-given list of closed-form
models, the SLO and KMF-T models are assumed to
follow the strict form of the Brink hypothesis. In addi-
tion, the hypothesis must be invoked for the description
of transitions between excited states in combination with
the E1 PSF from HFB calculations. All remaining mod-
els predict a weak dependence of the PSF on the nuclear
temperature T .

The γ-ray energy dependence of the E1 PSF for sev-
eral models is shown in Fig. 5. Two curves of the
KMF, MGLO and MLO models represent how the mod-
els change as a function of nuclear temperature – the
lower curve corresponds to T = 0, i.e. to transi-
tions to the ground state, while the upper one to T =√

(Sn − Eγ −∆)/ac, i.e. to primary transitions. Here ac
is the LD parameter and ∆ is the deuteron pairing energy.
The values of ac and ∆ were taken from Refs. [47, 48] in
conjunction with the corresponding LD model. For the
sake of clarity only a representative sample of the models
is drawn in Fig. 5.

The pygmy dipole resonance is observed in several
mass regions in the energy range from 6 to 9 MeV [49].
As our data are not very sensitive to this energy range
and there is no source of the pygmy dipole resonance pa-
rameters in well-deformed rare-earth nuclei, we are not
testing for its possible influence. We note that tested
E1 PSF models might reflect the presence of the pygmy
dipole resonance in their shape just below the neutron
separation energies of the isotopes studied in this work.

2. Magnetic-dipole transitions

The decay of highly excited nuclear states below Sn of
deformed rare-earth nuclei is heavily influenced by mag-
netic dipole (M1) transitions. The commonly used mod-
els to describe the M1 PSF are the single-particle (SP)
model, the spin-flip (SF) resonance model and the scis-
sors mode (SM) model.
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FIG. 5: (Color online) Photon strength functions as a func-
tion of γ-ray energy for some of the models used in our sim-
ulations. The upper panel displays the commonly used E1
models as well as the M1 model consisting of the SM and
SF modes and the SP model. The M1 PSF parameters are
ESM = 2.8 MeV, ΓSM = 1.4 MeV, and σSM = 0.25 mb, and

S
(M1)
SP = 2 × 10−9 MeV−3. There are two curves for the

KMF, MGLO and MLO2 models of the E1 PSF. They indi-
cate how these models change as a function of temperature
- the lower curve corresponds to T = 0 while the upper one

to T =
√

(Sn − Eγ −∆)/ac. The HFB calculation is taken
from Ref. [38]. The lower panel shows the sum of E1 and M1
PSF models from the upper panel as indicated by the labels.
The experimental data from 3He-induced and 152,4Sm(p,dγ)
reactions are from Refs. [20] and [27], respectively.
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In the SP model the PSF S
(M1)
SP is a constant indepen-

dent of γ-ray energy, while in the SF resonance model

the S
(M1)
SF (Eγ) is usually assumed to have a Lorentzian

shape with a centroid at about 7 MeV and a width of
4 MeV [38]. Experimentally, the M1 strength corre-
sponding to the SF mode was measured for several rare-
earth nuclei using inelastic proton scattering [50]. A
double-humped structure was observed between 5 and
10 MeV. We adopted a double-resonance Lorentzian
parametrization of the SF resonance in our simulations.
In our previous MSC and TSC studies [23–26] we suc-
cessfully represented the M1 PSF by a sum of two
(SM+SF) models or by the composite M1 PSF model as

the sum S(M1) = S
(M1)
SM + S

(M1)
SF + S

(M1)
SP , which might

mimic even more complicated behavior of the M1 PSF.
The composite M1 PSF model was used in the present
work unless specified otherwise.

We usually adjusted the absolute value of the M1 PSF
to reproduce a ratio of S(E1)/S(M1) ≈ 7 at 7 MeV, ob-
served in several rare-earth nuclei in average resonance
capture experiments [46]. If not specifically mentioned,
the strict validity of the Brink hypothesis is assumed for
all M1 models.

In 1976, Hilton [6] and later Lo Iudice and Palumbo [7],
using the geometrical two rigid rotors model, and
Iachello [8], using the proton-neutron interacting boson
model, predicted an isovector M1 collective vibrational
mode in deformed nuclei – the scissors mode. The first
experimental observation of the mode for ground-state
transitions was made in high-resolution electron inelastic
scattering at low momentum transfer in 156Gd [9] and
164Dy [51]; in Dy the M1 excitation at 3.1 MeV revealed
a transition strength of 1.5(3) µ2

N .
A systematic study of the mode for the ground-state

transitions in rare-earth nuclei was performed with help
of the NRF experiments [13, 14]. Experimental data in-
dicated that the total observed M1 strength in even-even
nuclei in the energy range Eγ ≈ 2.5 − 4.0 MeV is frag-
mented into several transitions and is proportional to the
square of the nuclear deformation [52]. For well deformed
nuclei the total M1 strength reaches

∑
B(M1) ≈ 3 µ2

N
and the centroid of the strength is located near 3 MeV,
almost independent of A [53]; in even-even Dy nuclei
the centroids are at 2.870(5) MeV, 2.956(4) MeV and
3.143(2) MeV while summed M1 strengths in energy
range 2.7 − 3.7 MeV are 2.42(18) µ2

N , 2.49(13) µ2
N and

3.18(15) µ2
N for 160Dy, 162Dy and 164Dy, respectively [10–

12].
The experimental PSFs and LDs were obtained for

the chain of Dy isotopes from measurements using 3He-
induced reactions in Oslo Cyclotron Laboratory [18–
22]. The extracted SM was represented by a Lorentzian
term in the M1 PSF obeying the Brink hypothesis.
The determined centroids of the mode are ≈ 2.65 MeV
and 2.81(6) MeV and the total strengths of 6.8(8)µ2

n in
162Dy [20] and 5.3(10)µ2

n in 164Dy [21], respectively; the
width of the Lorentzian curve is ≈ 1 MeV.

The SM parameters of neighboring nuclei 156,158Gd

were extracted from analysis of MSCs from resonance
neutron capture. Experimental data allow for a SM po-
sition of 2.7−3.1 MeV in 156Gd [24] and 2.8−3.1 MeV in
158Gd [23]. The width of the mode is ≈ 1 MeV, while the
allowed total SM strengths are comparable to the NRF
data and 2− 3× lower compared to the Dy Oslo results,
specifically 1.9 − 3.5µ2

n in 156Gd [24] and 1.4 − 2.8µ2
n in

158Gd [23]. The TSC data from thermal neutron cap-
ture in the same Gd isotopes [26] were found to be less
sensitive to the parameters of SM allowing wider, yet
compatible intervals. Data from both MSC and TSC ex-
periments were fully compatible with the SM represented
by a single-Lorentzian term following the Brink hypoth-
esis.

Recently, the PSF extracted from the measurement of
152,154Sm(p,dγ) reactions with Ge clover detectors using
the Oslo method revealed a strong low-energy PSF en-
hancement [27]. Similar, albeit stronger, enhancement
was reported earlier in lighter nuclei. The shell model
calculations for lighter nuclei [54–57] indicate the M1 na-
ture of a low-energy enhancement with the exponentially
decreasing dependence on the γ-ray energy. Particularly,
Sieja [57] calculated both the E1 and the M1 PSFs in
lighter nuclei resulting in the M1 low-energy PSF en-
hancement and a flat, non-zero E1 PSF for Eγ → 0.
The analysis of the M1 strength in Ref. [56] shows that
the sum of the low-energy PSF enhancement and the SM
strength does not significantly vary throughout the chain
of Fe isotopes. While these calculations deal with lighter
nuclei, authors of Ref. [55] argue that the M1 low-energy
enhancement is expected in nuclei throughout the nu-
clear chart. There are also calculations suggesting the E1
character of the low-energy enhancement, e.g. Ref. [58].
We made several tests of a possible influence of the low-
energy enhancement on the decay of 162,164Dy. The M1
as well as the E1 character of the enhancement follow-
ing the Brink hypothesis was checked. For details see
Sec. IV C.

3. Electric-quadrupole transitions

In addition to dipole transitions, electric quadrupole
(E2) transitions might also play a role in the cascade
decay of neutron resonances. If E2 transitions are not
extremely strong, any effect of them is similar to that
of M1 transitions due to the same parity selection rules.
The use of the giant quadrupole resonance model is rec-
ommended in Ref. [38]. Nonetheless, we adopted a simple

single-particle model (S
(E2)
SP = constant) in the majority

of our simulations. S
(E2)
SP was adjusted to reproduce the

ratio of partial radiation widths at about 7 MeV mea-
sured in average resonance capture experiments in de-
formed nuclei (Γ(E1)/Γ(E2) >∼ 100) [46]. Under these
conditions our results do not depend on the choice of the
E2 PSF model.
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C. Level Density Models

There are many models and calculations of LD avail-
able in the literature. We tested two different models for
the energy dependence of the LD given by closed-form
formulas: (i) the Back-Shifted Fermi Gas (BSFG), and
(ii) the Constant-Temperature (CT) model [47]. There
are two adjustable parameters in each of these models.
Two different parameter sets were tested for each of these
LD models [47, 48]. The spin dependence of the LD was
adopted in the standard form [59], with the spin-cutoff
parameter given by corresponding parametrizations from
Refs. [47, 48].

The effect of even-odd spin staggering in the spin dis-
tribution [60–62] was tested in a few simulations and
found to have no or little impact on the results. In
these tests the staggering of [48] was assumed to lin-
early decrease with excitation energy and to disappear
at 3.9 MeV in agreement with Shell Model Monte Carlo
(SMMC) calculations [63]. The parity dependence of the
LD was neglected in the majority of simulations above
Ecrit. However the influence of possible parity depen-
dence was also tested using the formula from Ref. [64]
– parameters of the formula were adjusted to reproduce
the SMMC calculation [63], where the parity asymmetry
disappears near E = 3 MeV.

From the “microscopic” calculations of LD we consid-
ered two in particular. The authors in Refs. [38, 65, 66]
used Hartree-Fock-Bogoljubov (HFB) plus a combinato-
rial method to obtain the tabulated LD as a function
of energy for levels with each spin and parity, hereafter
denoted as HFB LD. These calculated level densities usu-
ally suffer from difficulties in reproducing the cumulative
number of observed low-lying levels as well as the av-
erage neutron resonance spacing. In order to bring the
calculations into agreement with experimental data, the
HFB LD was suggested to be renormalized [65]. We used
the renormalized version. The HFB LD exhibits a much
wider spin distribution than all above-discussed models
with persisting even-odd spin staggering at practically
all excitation energies below Sn. The excess of positive
parity levels in this model is seen up to about 4 MeV.

The energy dependence of LD SMMC calculation in
162Dy by Alhassid et al. [63] is claimed to be compatible
with the BSFG formula from [62] between Ecrit and Sn.
As a result, the simulations using this calculation with
the above mentioned SMMC spin- and parity-dependence
of LD are practically identical to simulations with the
BSFG model [48].

The spin- and parity-summed LD, given by the above-
mentioned models, in 162Dy is shown in Fig. 6 together
with data from 162Dy(3He,3He′γ) reaction [20]. The en-
ergy dependence of the Oslo experimental data was re-
produced by the BSFG model [48] in our analysis.
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FIG. 6: (Color online) Spin- and parity-summed level den-
sity for 162Dy according to the CT and BSFG models and
the HFB calculations. The parameters of the CT and BSFG
LDs were taken from Refs. [47] and [48], denoted as (vEB06)
and (vEB09) respectively. The experimental data from the
Oslo method [18] are also shown. Different predicted abso-
lute values at Sn = 8.197 MeV originate from different spin
distributions in the models. The point corresponding to the
s-wave resonance spacing [32] was converted to the summed
LD using the spin distribution with the spin-cutoff parameter
from [48].

IV. RESULTS

Almost all possible combinations of PSF and LD mod-
els introduced in Secs. III B – III C were tested in simu-
lations and compared with the experimental spectra. A
search for the appropriate M1 PSF was performed by
sampling the SM and SP parameters within reasonable
ranges. All together several thousands of individual sim-
ulations were computed.

To quantify the degree of agreement between the sim-
ulated and experimental MSC spectra, enormously time-
consuming simulations with extremely large number of
NRs would be needed as the contents of individual bins
in MSC spectra are mutually correlated in a complicated
fashion and the corresponding correlation matrix is a pri-
ori not known. As a consequence, within the search for
suitable PSF and LD models, the degree of agreement
was checked only visually.

As mentioned in Sec. III A we simulated N = 20 NRs
with L = 1 subrealization for each PSF and LD model
combination. As will become evident from the discussion
in Sec. VI, use of simulations with L = 1 turns out to be
well justified for simple search of appropriate PSF and
LD models.

The results of simulations, plotted as a gray band,
are compared in Figs. 7-11 with the mean experimen-
tal MSC spectra. The gray band is centered at the av-
erage of the set of simulated MSC intensities {I1ν}Nν=1

and has a width of two standard deviations of the set.
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These fluctuation corridors from simulations should be,
in general, broader than those for experimental spectra
– the experimental ones rather correspond to the fluc-
tuations obtained from simulations of different subreal-
izations. However, results on fluctuation properties dis-
cussed in Sec. VI indicate that the difference in the width
of fluctuation corridors from various subrealizations and
from simulations checked in this section should be rather
small for the majority of bins.

We should stress that within the enormous domain
of PSFs and LD functions the adopted trial-and-error
method does not guarantee finding a fully correct model
combination. Nevertheless, we did find several combina-
tions of PSF and LD models which lead to a reasonable
reproduction of the experimental MSC spectra – see be-
low. As the influence of the E2 PSF on the shape of
simulated MSC spectra is negligible, we restrict our dis-
cussion only to the LD, E1 and M1 PSFs.

A. Level density

From LD models introduced in Sec. III C the best de-
scription of experimental MSC spectra was obtained us-
ing the BSFG model. The older parametrization [47]
yields a good agreement for both isotopes. Employing the
newer parametrization [48] with even-odd spin staggering
and parity asymmetry described in accord with SMMC
calculations [63] does not significantly change the results
but some differences are observed in higher (M ≥ 3) mul-
tiplicities.

The CT model, when used in either isotope, has
huge difficulties to simultaneously reproduce intensities
in M = 2 spectra for both capturing spins with the same
PSF models. Furthermore, in 164Dy we failed to repro-
duce the multiplicity distribution with any tested PSF
model combination. Despite the fact that we cannot def-
initely reject the validity of the CT model as we tested
only a finite number of PSF models, our findings together
with low predicted values of the total radiation width
with the CT model (see Sec. V B) strongly indicate that
this LD model is inadequate for even-even Dy isotopes.

Problems with reproduction of multiplicity distribu-
tion also appears for the HFB LD calculation [65]. In
this case the simulations give a high average multiplicity,
very likely as a result of significantly higher fraction of
levels with high spins in this LD calculation.

B. Electric dipole PSF

All E1 PSF models introduced in Sec. III B were tested
with the M1 strength parameters adjusted separately for
each model. We were able to reasonably reproduce ex-
perimental MSC spectra for both isotopes when using
the KMF, KMF-T (with T ≈ 0.3 MeV), GH and MGLO
models, see examples with the MGLO model in Figs. 7
and 8. The simultaneous success of the KMF and GH

models is expected as their shapes are very similar in the
energy region Eγ ≤ Sn. In case of the MGLO model the
value of k parameter to be used is between about 2 and
4 for 162Dy and between about 2 and 5 for 164Dy. The
value of the k parameter can be further restricted by the
total radiation width, see Sec. V B.
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FIG. 7: (Color online) Comparison of 162Dy mean experi-
mental MSC spectra with simulations using MGLO E1 PSF
model and the composite M1 PSF model. The k, SM and
SP parameters were adjusted to best describe the mean ex-
perimental MSC spectra. The full red rectangles show the
mean experimental MSC intensities Iexp with their uncertain-
ties coming from the maximum likelihood fit. The red error
bars represent the width of distribution of experimental MSC
intensities, drawn as Iexp±σexp, see Sec. II B. The gray band
corresponds to the result of simulations drawn as a two stan-
dard deviation corridor centered at the average MSC intensity,
for details see Sec. III A.

No simulation performed with the rest of the E1 PSF
models, namely the SLO, EGLO, GFL, MLO models and
the HFB calculation, is able to reproduce experimental
MSC spectra of either isotope. Every S(E1) model that
shows an increase with Eγ similar to the SLO model at
Eγ <∼ 5− 6 MeV generates more transitions with higher
energies. This leads to a multiplicity distribution shifted
to smaller values than observed experimentally. We can
conclude that E1 PSF (at least for transitions between
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FIG. 8: (Color online) Comparison of 164Dy mean experi-
mental MSC spectra with simulations using MGLO E1 PSF
model and the composite M1 PSF model. The k, SM and SP
parameters were adjusted to best describe the mean experi-
mental MSC spectra. For additional details see Fig. 7.

excited states) is relatively flat at relevant γ energies. We
should note that there is only a limited number of pri-
mary transitions to levels at very low excitation energies,
which makes the analysis almost insensitive to Eγ >∼ 6−7
MeV.

A reasonable description of the MSC spectra was
achieved also with the KMF-T model with T restricted
to be between about 0.30 and 0.35 MeV. This result in-
dicates that the question whether the E1 PSF depends
on excitation energy for energies at the low-energy tail
of GEDR cannot be unambiguously answered from the
present study of resonant neutron capture.

C. Magnetic dipole PSF

The presence of a resonance in the M1 PSF at energy
just below 3 MeV can be deduced by inspection of exper-
imental MSC spectra without the need of simulations.

The experimental MSC spectra of multiplicity M = 2
exhibit considerably different shapes in the two isotopes,

see Fig. 4. The spectra in 162Dy display a rather flat
mid part between energies Eγ ≈ 2.5− 5.5 MeV, while in
164Dy there are two distinct bumps at Eγ ≈ 2.8 MeV and
≈ 4.5 MeV for spectra of both possible spins of capturing
states.

If we assume that the dipole transitions dominate the
decay, then the difference of spectral shapes likely re-
flects the different composition of the cascades. Due to
the opposite parity of neutron resonances of the studied
nuclei and the EΣ cut selecting the cascades which termi-
nate at the levels of the ground state rotational band, the
M = 2 spectra are almost exclusively formed by E1− E1
and M1−M1 cascades in 162Dy while by E1−M1 and
M1− E1 cascades in 164Dy.

The bumps in 164Dy M = 2 spectra and the flatness
of those spectra of 162Dy point to the presence of M1
resonance at ESM ≈ 2.8 MeV. The absence of the bumps
in the 162Dy M = 2 spectra reflects the fact that the
position of the resonance energetically forbids two-step
M1 cascades from reaching the low-lying levels.

The M1 character of the resonance seems to be also
nicely compatible with the shape of M = 3 spectra –
the bump just below 3 MeV in 162Dy is rather strong
(compared to other multiplicities) indicating a strong
contribution of the M1−M1−M1 cascades while a
bump near 1.8 MeV in 164Dy perfectly corresponds
to the picture of the strong M1−M1− E1 cascades
through the negative-parity levels near the excitation en-
ergy of 1.8 MeV, that is, via states at excitation energy
Sn − 2× ESM .

Indeed, simulations without any resonance near 3 MeV
in the PSFs yield unacceptable results for all E1 mod-
els introduced in Sec. III B. In particular, using combina-
tions of the E1 and the M1 PSF models as recommended
in RIPL [38] yield unsatisfactory description of the mean
experimental MSC spectra. The change of simulations
induced by removing the SM from the M1 PSF used in
Fig. 7 is shown in Fig. 9.

We have also confirmed that this resonance structure
can not be of E1 type. See Fig. 10 showing simulations
for 164Dy. Convincing disagreement is also achieved for
162Dy. The possibility to reproduce the mean experimen-
tal MSC spectra with the resonance in the E2 PSF was
tested as well. The discrepancies are smaller than in the
case of the E1 resonance. Nevertheless the M1 character
is favored. We identify the M1 resonance as the scissors
mode.

Assuming that the SM consists of a single-Lorentzian
term, see Eq. (3), we found that the mean experimental
MSC spectra are rather sensitive to the resonance param-
eters. The common result for both isotopes is that the ac-
ceptable description of experiment was found for simula-
tions with the SM position ESM = 2.8−3.0 MeV and the
damping width of the scissors mode ΓSM = 1.0−1.4 MeV.
This result is almost independent on the choice of the ac-
cepted E1 PSF models.

On the other hand, the optimal value of the maximum
cross section of the scissors mode, σSM, is strongly corre-
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FIG. 9: (Color online) Comparison of 162Dy mean experi-
mental MSC spectra with simulations without any resonance
structure near 3 MeV. The MGLO E1 PSF model and the
SP+SF models of M1 PSF were used with parameters iden-
tical to those of simulations in Fig. 7. For additional details
see Fig. 7.

lated with a choice of the E1 PSF model and its parame-
ters: the higher the value of S(E1), the stronger σSM. We
found that acceptable values of σSM range from about 0.2
mb for KMF and MGLO(k = 2) models to about 0.6 mb
for MGLO(k = 4). We should mention that the allowed
value of σSM is coupled to values of ESM and ΓSM as well.

We also performed some tests related to possible vio-
lation of the Brink hypothesis for the SM. We performed
simple test where the mode is built only on states below
certain excitation energy Etr and vanished completely
above this excitation energy. Sizable discrepancies be-
tween experiment and predictions were observed up to
Etr ≈ 5.5 MeV in both nuclei. Although we can not guar-
antee exact validity of the Brink hypothesis for the SM,
the data indicates that the SM plays a role in primary
transitions in agreement with findings on neighbouring
Gd nuclei [23–26].

In order to achieve a satisfactory agreement of simula-
tions with the 162Dy experimental data, comparable to
that shown in Fig. 7, it is necessary to combine the SM
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FIG. 10: (Color online) Comparison of 164Dy mean experi-
mental MSC spectra with simulations having a resonance near
3 MeV in E1 PSF. This resonance in the SLO form was added
to the MGLO E1 PSF model with the M1 PSF containing
the SF resonance. For additional details see Fig. 7.

and SF also with the SP model. The optimal S
(M1)
SP value

again depends on the absolute values of the SM and E1

PSF: S
(M1)
SP = 2− 4× 10−9 MeV−3 is required in combi-

nation with the KMF and MGLO(k = 2) models while

S
(M1)
SP ≈ 8× 10−9 MeV−3 with the MGLO(k = 4). We

should stress that the SP part of the M1 PSF is crucial
for reproduction of experimental spectra. The simula-
tions without the SP model predict correct shapes of the
spectra but clearly underestimate intensities in M = 2
spectra and overestimate intensities in M ≥ 4 spectra.

On the other hand, the best descriptions of 164Dy
mean experimental MSC spectra were found without us-
ing the single particle model. Within the sensitivity of
our data, we can not completely rule out the presence
of a weak SP part in M1 PSF, but its strength has to

be S
(M1)
SP < 1× 10−9 MeV−3 for all model combinations

which are able to describe the experimental data in this
nucleus.

The influence of the PSF enhancement at very low
(Eγ < 2 MeV) energies was tested. Our data are in
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striking disagreement to simulations using the M1 PSF
including a low-energy enhancement of the form proposed
in Refs. [27, 54], see Fig. 11. Such enhancement produces
excessive intensity of low-energy transitions leading to
unrealistic preference of high (M ≥ 5) multiplicities.

We also tried to invoke a more “conservative” descrip-
tion of the 152,4Sm(p,dγ) data [27] – the low-energy en-
hancement was replaced by a low-lying Lorentzian res-
onance similarly as in Ref. [67]. The parameters of
this resonance were adjusted to match the shape of
the 152,4Sm(p,dγ) data and scaled down to the data from
the 3He-induced reactions [20, 21]. For the simulations
in Fig. 11 we used 0.55 MeV, 0.45 MeV and 0.20 mb
for the energy, width and maximum cross section of this
low-energy resonance, respectively. In general, any sup-
pression of the low-energy enhancement with respect to
the form proposed in Ref. [27] leads to a relative suppres-
sion of the low-energy transitions and lowers the differ-
ences from the mean experimental MSC spectra as can
be seen in Fig. 11. However, even simulations with this
“restricted low-energy enhancement” do not match the
experiment and still display a strong, unrealistic prefer-
ence of high (M ≥ 5) multiplicities.

This kind of disagreement is consistently observed also
in combinations with other standard E1 PSF and LD
models. Further, we note that simulations with a part or
even all of the low-energy enhancement strength moved
to the E1 PSF give similarly unacceptable results.

V. COMPARISON WITH OTHER DATA

A. Available data

Relevant experimental information about the PSFs in
the region of the SM in well-deformed even-even rare-
earth nuclei comes from several sources. The PSFs were
obtained from analyses of (n,γ) reactions, specifically the
MSC and TSC measurements of 156,158Gd [23, 24, 26].
Data on mixed dipole, S(E1) + S(M1), PSFs came from
measurements of the 3He-induced reactions by the Oslo
group for 160,162,164Dy [19–21]. The ground state tran-
sitions were studied in NRF experiments for all stable
even-even rare-earth nuclei including 162,164Dy [11, 12].
In addition, the total radiation widths of s-wave neutron
resonances are available for all stable nuclei [32, 38].

B. Total radiation width

The total radiation width of s-wave neutron reso-
nances, Γγ , is in general the only quantity simulated with
the dicebox code that depends on the absolute values
of the PSFs. As such it can be used to further restrict
the acceptability of the model combinations found from
the comparison of simulated MSC spectra with their ex-
perimental counterparts.
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FIG. 11: (Color online) Comparison of the mean experimen-
tal MSC spectra of 164Dy with simulations (i) (blue hatched
bands) using the PSF models, including the M1 low-energy
enhancement in the exponential form, deduced in Ref. [27]
and scaled down to the Oslo data [21], (ii) (gray full bands)
utilizing a low-energy resonance based on the data from
the 152,4Sm(p,dγ) experiment [27]. The parameters of the
low-energy resonance are specified in the text of Sec. IV C.
The GLO model for the E1 PSF and the SM+SF resonances
for the M1 PSF were used in accordance with Ref. [27]. For
additional details see Fig. 7.

Although the majority of LD and E1 PSF models can
be rejected just from the comparison of mean experi-
mental and simulated MSC spectra, the resulting Γγ can
provide additional support for such conclusions. The sim-
ulations using the CT LD model give a Γγ comparable
with the experimental value only when the SLO model
of E1 PSF is used. However, for this combination of LD
and E1 PSF models we were unable to adjust the M1
PSF to reproduce the mean experimental MSC spectra.

The Γγ for the model combinations which provide ac-
ceptable descriptions of mean experimental MSC spectra
are listed in Tab. II. The comparison to experimental val-
ues indicates that the combination with the KMF model
is likely rejected, at least for 164Dy. In addition, there is
a value of the MGLO parameter k that perfectly repro-
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Γγ (meV) 162Dy 164Dy
PSF \ LD BSFG CT BSFG CT
KMF 92(2) 43(1) 69(2) 38(1)
MGLO(k = 2) 105(2) 51(2) 80(2) 45(1)
MGLO(k = 4) 176(3) 85(1) 114(3) 61(2)
Experiment 107(3) 105(8)

TABLE II: Total radiation width of s-wave neutron reso-
nances. The simulations are labeled with the used LD and
E1 PSF model, the M1 PSF was adjusted as described
in Sec. IV C. The experimental values are taken from [32, 38].

duces the experimental Γγ for each isotope. However, the
required values of the parameter are different – slightly
higher than k = 2 for 162Dy while just below k = 4 for
164Dy. Suitability of the MGLO model is achieved by a
change of the k parameter with the mass number.

In the rest of the discussion we will consider only the
PSF models reproducing both mean experimental MSC
spectra and Γγ . Assuming the MGLO model for E1 PSF,
this restriction means k ≈ 2 and σSM = 0.2 − 0.3 mb

and S
(M1)
SP = 2− 4× 10−9 MeV−3 for 162Dy and value

of k ≈ 4 and σSM = 0.5− 0.6 mb for 164Dy; no SP model
was allowed for 164Dy, see Sec. IV C. The SM parameters
allowing simultaneous reproduction of both discussed ob-
servables are summarized in Tab. III.

Isotope ESM (MeV) ΓSM (MeV)
∑

B(SM) (µ2
N )

162Dy 2.8 - 3.0 1.0 - 1.4 2.3 - 4.3
164Dy 2.8 - 3.0 1.0 - 1.4 5.3 - 7.5

TABLE III: The parameters of the scissors mode reproduc-
ing both the mean experimental MSC spectra and the total
radiation width as deduced in our analysis.

C. Scissors Mode

1. Comparison with NRF data

To compare our results with the summed M1 strength
as determined in NRF experiments we have integrated
all M1 strength in the energy range 2.7− 3.7 MeV.

The value obtained for 162Dy using the composite

model of M1 PSF S(M1) = S
(M1)
SM + S

(M1)
SF + S

(M1)
SP is

2.4(4) µ2
N in an excellent agreement with the summed

M1 strength of 2.49(13) µ2
N [11]. We should note here

that in our model the SM contributes roughly 60% of the
strength. The tail of SF resonances and especially the
SP strength are responsible for the rest of this summed
M1 strength. The centroid value of 2.956(4) MeV from
NRF data [11] agrees with our findings.

Our integrated M1 strength for 164Dy∑
B(M1) = 3.8(7) µ2

N is compatible with the strength
3.18(15) µ2

N observed in the NRF experiment [12]. The
centroid of the M1 strength from the NRF data was
determined to be 3.143(2) MeV, in contrast to our result

of ESM = 2.8 − 3.0 MeV. However, these numbers are
not directly comparable because the centroid from NRF
is distorted from the ESM as all observed M1 transitions
in the restricted energy range Eγ = 2.7 − 3.7 MeV were
used in the NRF calculation. Thus the agreement of the
centroid position in 162Dy might be coincidental.

2. Comparison with Oslo results

The SM parameters from the 3He-induced reaction in
162Dy are ESM = 2.6 − 2.7 MeV, ΓSM = 0.8 − 1.3 MeV,
and σSM = 0.3 − 0.4 mb [20]. Our simulations require
higher ESM = 2.8− 3.0 MeV with ΓSM = 1.0− 1.4 MeV
and σSM = 0.2− 0.3 mb. The parameters from these two
sources are not fully compatible, especially for the ESM.

In the case of 164Dy the authors of Ref. [21] determined
the position ESM = 2.81(6) MeV, which is in agreement
with our result. Their result of σSM = 0.53(6) mb also
nicely agrees with our accepted interval of σSM = 0.5 −
0.6 mb. However, the value of ΓSM = 0.80(12) MeV
from Ref. [21] is slightly lower compared to our interval
of ΓSM = 1.0− 1.4 MeV.

Contrary to the restricted energy range used to com-
pare all M1 strength with the NRF data, the total
SM strength can be compared to the Oslo results. In
162Dy the total SM strength given by our best mod-
els
∑
B(SM) = 2.3− 4.3 µ2

N is significantly lower than
the strength of 6.8(8) µ2

N corresponding to PSFs in
Ref. [20]. For 164Dy our determined SM strength
is
∑
B(SM) = 5.3− 7.5 µ2

N , which is comparable to
5.4(10) µ2

N from Ref. [21].

One should keep in mind that the comparison of the
SM parameters is not as straightforward as it might
seem. The parameters from Refs. [20, 21] depend on
the exact choice of the E1 PSF model. For instance,
significant influence of the nuclear temperature T in
the KMF-T model on the SM parameters was shown
in Ref. [20]. Moreover, we have to assume a significant

SP contribution in 162Dy S
(M1)
SP = 2− 4× 10−9 MeV−3.

The possible contribution of S
(M1)
SP is not accounted for

in Refs. [20, 21].

3. Comparison with Gd MSC results

The allowed intervals of SM and SP parameters de-
duced from analyses of MSC spectra in even-even Gd
isotopes [23, 24] are fully compatible with our 162Dy re-
sults. Contrary to this, the total SM strength in 164Dy
from our analysis is 2 − 3× higher when compared to
156,158Gd and 162Dy. Moreover, the highest allowed SP

strength in 164Dy is at least 2 − 3× lower than S
(M1)
SP

in 156,8Gd and 162Dy, being compatible in these three
nuclei.
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VI. FLUCTUATION PROPERTIES OF MSC
SPECTRA

The experimental MSC spectra were obtained for tens
of resonances of both spins for each nucleus. This number
of resonances should allow us, contrary to our previous
works [23, 24], to draw some conclusions about observed
fluctuations of MSC intensities.

A. Extended simulations of MSC intensities

As mentioned in Sec. III A we have extended the dice-
box algorithm by introducing nuclear subrealizations to
access different sources of fluctuations. For a couple of
combinations of PSF and LD models we have performed
extended simulations with L = 50 nuclear subrealizations
within each of N = 50 nuclear realizations. We chose
model combinations providing a satisfactory description
of the mean experimental MSC spectra and total radi-
ation width as given in Secs. IV and V B including the
model combinations presented in Figs. 7 and 8.

It turns out that for the MSC intensity Iλν the count-
ing uncertainty ∆MC

λν reached in our simulations is low
enough that it does not have any influence on computed
measures of distributions introduced in Sec. III A. This
statement is based on the fact that for any given NR ν′

the realization mean aν′ and the fluctuation of subreal-
izations σν′ obtained from a maximum likelihood fit of
the set {Iλν′ ,∆MC

λν′ }Lλ=1 are virtually equal to the average
and standard deviation of the set {Iλν′}Lλ=1, respectively.

When using the maximum likelihood fit as introduced
in Eq. (1) it was assumed that the MSC intensities
are normally distributed. To justify this assumption
we tested whether the sets of simulated MSC intensi-
ties {Iλν′}Lλ=1 for all NRs ν′ = 1, ..., N are normally dis-
tributed with means aν′ and a common variance σ2 us-
ing the properly adjusted testing statistics proposed by
Zhang in Ref. [68]. Thanks to a superior power of used
testing statistics, minor deviations from the normal dis-
tribution were detected. However, we can claim that in
energy bins between Ecrit and Sn−Ecrit in M = 2 spectra
and in all bins with the MSC intensity significantly higher
than zero in M ≥ 3 spectra the distribution of MSC in-
tensities is so close to the normal distribution that the
form of the likelihood function as defined in Eq. (1) is a
well justified approximation.

We checked several other features of simulations. We
tested whether the sets {σ2

ν}Nν=1 display a ν-dependence
throughout energy bins, i.e. whether σν′ is systemati-
cally lower or higher than the average σ throughout dif-
ferent energy bins for a fixed realization ν′. For all of the
tested PSF and LD model combinations we observe no
ν-dependence of σ2

ν between Ecrit and Sn−Ecrit in M = 2
spectra and in all bins with MSC intensity significantly
higher than zero in multiplicities M ≥ 3. In addition to
that the distribution of the set {σν}Nν=1 is rather narrow
with 90% falling into σ±20% interval in all these energy

bins. As a result it seems appropriate to use the value of
σ instead of the distribution of σν when comparing with
experimental fluctuations.

Moreover, we have not observed any correlation be-
tween fluctuations due to NRs and fluctuations due to
nuclear subrealizations, i.e. the fluctuation of means, Σ,
and the average fluctuation over subrealizations within
realizations, σ, are statistically independent. From these
findings it follows that Σ, as the standard deviation of
the set {aν}Nν=1, and σ can be extracted separately from
our extended simulations.

For all tested model combinations the fluctuation of
means Σ was found to be about an order of magnitude
lower than σ for almost all energy bins, see Figs. 12 and
13. The only exceptions are bins around Eγ = 2 MeV,
where Σ reaches up to 50% and 80% of σ for 162Dy and
164Dy respectively; the symmetry of M = 2 MSC spec-
tra around the midpoint leads to the same effect also at
Eγ = Sn−2 MeV. These energies correspond to cascades
through levels at excitation energy of about 2 MeV, i.e.
just above Ecrit where the LD is relatively low. The un-
certainty in the level scheme at these energies is expected
to lead to significant fluctuations of predicted realization
means aν , i.e. to a high value of Σ.

Low values of Σ (compared to σ) can be used as a jus-
tification of the assumption, used in the all our previous
works, that the concept of NRs serves as a reasonable
tool to overcome the inability to experimentally retrieve
the level properties above Ecrit without hindering the es-
timation of the mean MSC intensities and their fluctua-
tions. Assuming that the fluctuations are well described
in our simulations, we should not only require the mean
experimental MSC intensity to coincide with the average
coming from simulations when performing a search for
appropriate PSF and LD models as presented in Sec. IV.
At the same time, the estimate of fluctuations from sim-
ulations, represented by gray bands in Figs. 7-11, should
be comparable to the fluctuations of experimental MSC
intensities, depicted as red error bars in Figs. 7-11. How-
ever, we should stress that our findings about the contri-
bution of different sources of fluctuations in simulations
are not necessarily universal for all nuclei and different
behavior could be encountered for nuclei in different mass
regions.

B. Comparison of experimental and simulated
fluctuations

The fluctuations of experimental MSC intensities,
σexp, of 164Dy were found for both resonance spins to
be on average lower by ≈ 30% than σ from simulations
in bins between Ecrit and Sn−Ecrit in M = 2 spectra and
in all bins with MSC intensity significantly higher than
zero in multiplicities M ≥ 3, see Figs. 12 and 14. In real-
ity, as evident from Fig. 14, the σexp exhibits significant
oscillations among different energy regions of MSC spec-
tra. Considering also the relatively high uncertainties of
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σexp it seems very difficult to make any definite conclu-
sions about the agreement of experimental and simulated
fluctuations in this nucleus.
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FIG. 12: (Color online) Comparison of MSC intensities and
their fluctuations from experiment and extended simulations
for 164Dy. Black symbols indicate Iexp ± σexp obtained
from the maximum likelihood fit as described in Sec. II B.
The green band corresponds to a ± σ and the red band to
a±
√
σ2 + Σ2 as deduced from extended simulations with the

BSFG LD model, MGLO E1 PSF model with k = 4 and the
composite M1 PSF model with SM parameters ESM = 3.0
MeV, ΓSM = 1.2 MeV, and σSM = 0.6 mb. The left and right
columns show spectra for J = 2 and 3 resonances, respec-
tively. The multiplicity M is indicated.

The situation for 162Dy was found to be very different,
albeit consistent for both resonance spins. Values of σexp

reach on average only 40% of σ values in the relevant en-
ergy range, see Figs. 13 and 14. This result was obtained
for both tested model combinations, i.e. using KMF and
MGLO(k = 2) models, as could be expected when using
similar E1 PSF models.

The observed differences between σ and σexp (see
Fig. 14) point to an inadequate description of fluctua-
tions of primary transitions in our grand simulations with
the LD and PSF models specified in Figs. 12 and 13.

This conclusion does not necessarily imply invalidity
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FIG. 13: (Color online) The same as in Fig. 12 but for 162Dy.
In this case the BSFG LD model, KMF E1 PSF model and

the composite M1 PSF model with S
(M1)
SP = 3×10−9 MeV−3

and SM parameters ESM = 2.8 MeV, ΓSM = 1.1 MeV, and
σSM = 0.2 mb were used.

of the PT fluctuations. First, tested model combina-
tions do not reproduce experimental spectra perfectly
(see Figs. 12 and 13) and we expect that simulated fluc-
tuations do depend on the adopted model combination.
Moreover, in our trial and error search we have restricted
ourselves to standard models. Specifically, the chosen
LD model displays smooth energy and spin dependence
with no parity asymmetry. It is likely there are model
combinations with more complicated LD behavior that
would provide acceptable description of mean experimen-
tal MSC spectra while significantly changing the pre-
dicted fluctuations of MSC intensities σ. A higher num-
ber of levels at certain energy involved in the decay is
expected to suppress the simulated fluctuations σ, i.e.
the width of the green bands in Figs. 12 and 13.

Furthermore, the decay is described within the statisti-
cal model as implemented in the dicebox code [33]. This
approach relies on a number of assumptions. Among oth-
ers, it is assumed that pairs of partial radiation widths
Γiγf and Γiγf ′ with f 6= f ′ are not correlated and that the
individual widths Γiγf of all states above Ecrit fluctuate
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according to the PT distribution. While these assump-
tions are well justified for highly excited states such as
neutron resonances, there might be additional effects at
energies just above Ecrit. For instance, as we are deal-
ing with a well-deformed nucleus one might think about
some influence of the quantum number K which is not
accounted for in the simulations.
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FIG. 14: (Color online) Comparison of fluctuations of exper-
imental MSC intensities σexp (black dots) with the average
fluctuation over subrealizations within realizations σ (green
line) for resonances with J = 2 in 162Dy (left) and 164Dy
(right). The absolute values of experimental and simulated
fluctuations presented in Figs. 12 and 13 as black error bars
and green bands, respectively, are shown in this figure. The
units on vertical axis correspond to units in Figs. 12 and 13.
The uncertainty of σexp (error bar on the black point) was de-
duced from the maximum likelihood fit to experimental data
as described in Sec. II B.

Naturally a question arises whether the results on LD
and PSF models in Sec. IV would be altered by an univer-
sally different description of the fluctuations. Our initial
tests with fluctuations according to both narrower and
wider distributions of intensities show that influence of
the distribution on the LD and PSF model selection is
negligible.

VII. SUMMARY

A measurement of γ-ray spectra from s-wave neutron
resonances in the 161,163Dy(n,γ) reactions was performed
with isotopically enriched targets at the DANCE de-
tector array at the LANSCE spallation neutron source.
The multi-step cascades spectra for different multiplici-
ties from tens of neutron resonances with different spins
were used to test the validity of various PSF and LD
models. A large number of measured resonances allowed
the first meaningful analysis of observed fluctuations of
MSC intensities.

Based on the comparison of experimental and simu-
lated MSC spectra we can make the following conclusions
about the LD and PSF models. The energy dependence
of the nuclear level density is well described with the
BSFG model, while the dependence predicted by the CT
model is highly improbable.

The allowed E1 PSF at energies below about 7 MeV
has a relatively weak energy dependence similar to the
model of Kadmenskij, Markushev and Furman [40] or the
MGLO model [25]. If the total radiation width of neutron
resonances is taken into account, the best description of
the E1 PSF is given by the MGLO model. However, the
parameter k of the MGLO model reaches different values
in the two studied isotopes. Models of the E1 PSF with
a steep γ-ray energy dependence (similar to a Lorentzian
shape) at energies Eγ <∼ 5− 6 MeV are not acceptable.

The scissors mode, a resonance in the M1 PSF just
below 3 MeV, was found essential when describing radia-
tive decay of neutron resonances in 162,164Dy isotopes.
The scissors mode influences transitions at least up to
the neutron separation energy. Within the sensitivity of
our data we gather that the resonance parameters are
very stable with increasing excitation energy – the scis-
sors mode seems to follow the Brink hypothesis. The pa-
rameters of the SM reproducing mean experimental MSC
spectra and total radiation width are listed in Tab. III
for both isotopes.

The M1 strength below about 4 MeV is consistent with
the NRF data [11, 12] while some deviations are found
if our results are compared to Oslo data in correspond-
ing isotopes [20, 21]. Deduced M1 parameters for 162Dy
are fully consistent with those obtained from the analy-
sis of MSC spectra for well deformed even-even Gd iso-
topes [23, 24]. However, complete agreement with Gd
parameters is not achieved for 164Dy as the required M1
strength is 2 − 3× higher in this nucleus compared to
162Dy.

An overall reasonable reproduction of the mean experi-
mental MSC intensities for both spins of capturing states
in both nuclei indicates that the standard description of
γ decay within the statistical model and the concept of
PSFs is suitable for deformed rare-earth nuclei.

The size of fluctuations of experimental MSC intensi-
ties among different neutron resonances is significantly
smaller than the simulated one in 162Dy for all relevant
γ-ray energies. In 164Dy the size of experimental fluctua-
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tions is on average lower than the simulated one but the
behavior is more complicated with evident γ-ray energy
dependence. This observation may point to invalidity of
the Porter-Thomas distribution assumed for fluctuations
of individual transition intensities, but there are other
possible explanations of the observed disagreement. In
any case, we would be very cautious in making definite
conclusions as the difference in results for the two nu-
clei is rather puzzling and further study of fluctuation
properties is required.
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