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Abstract

The shape evolutions of the pear-shaped nuclei 224Ra and even-even 144−154Ba with temperature

are investigated by the finite temperature relativistic mean field theory with the treatment of

pairing correlations by BCS approach. The free energy surfaces as well as the bulk properties

including deformations, pairing gaps, excitation energy and specific heat for the global minimum

are studied. For 224Ra, three discontinuities found in the specific heat curve indicate the pairing

transition at temperature 0.4 MeV, two shape transitions at temperature 0.9 and 1.0 MeV, namely

one from quadrupole-octupole deformed to quadrupole deformed, and the other from quadrupole

deformed to spherical. Furthermore, the gaps at N =136 and Z =88 are responsible for stabilizing

the octupole-deformed global minimum at low temperatures. Similar pairing transition at T ∼0.5

MeV and shape transitions at T=0.5∼2.2 MeV are found for even-even 144−154Ba. The transition

temperatures are roughly proportional to the corresponding deformations at the ground states.
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I. INTRODUCTION

The shape of atomic nuclei as well as the shape evolution and shape phase transition

between the different shapes have been a hot topic for decades. At medium excitation

energies in the heavy-ion fusion, a completely equilibrated system is formed before the

compound nucleus decays by particle or γ emission [1]. The canonical description of such

system is characterized by the temperature. When temperature rises, the shape deformations

or superfluidity are expected to wash out [2]. Different from the shape evolution or shape

phase transition by changing nucleon numbers, the shape changes may occur at certain

critical temperatures in a single nucleus. Experimental information about nuclear shape

changes can be obtained by means of the giant dipole resonance (GDR) built on excited

states [3]. The theoretical models on GDR in excited nuclei can be found in Ref. [4–6] and

references therein.

For the thermal description, the basic theory is developed by Ref. [7, 8]. The shape tran-

sition at finite temperature is first studied in Ref. [9]. The finite temperature Hartree-Fock

approximation are developed [10, 11] and the dependence of nuclear shape transition on

the volume is studied by taking 24Mg as an example [12]. The finite temperature Hartree-

Fock-Bogoliubov theory is formulated [13] and then applied to the pairing and shape tran-

sitions in rare earth nuclei [14]. Using the finite range density dependent Gogny force and

a large configuration space within the framework of the finite-temperature Hartree-Fock-

Bogoliubov (FTHFB) theory [2], varied nuclei, including well quadrupole deformed nuclei,

superdeformed nucleus, and octupole deformed nucleus, gradually collapse to the spheri-

cal shape at certain critical temperatures ranging from 1.3∼2.7 MeV. Later the statistical

shape fluctuation effects on representative nuclei 164Er, 152Dy, and 192Hg in the quadrupole

degree of freedom are taken into account with the Landau prescription based on the FTHFB

theory [15]. It is found that the deformation parameters start to decrease earlier with tem-

perature as compared with the plain FTHFB prediction, but shape transition signatures

are washed out. The statistical fluctuations can be treated in the spirit of the Landau the-

ory [15, 16], or from a more fundamental point of view by using path integral techniques

like the static path approximation [17, 18], the shell model Monte Carlo [19], the particle

number projected BCS [20–22], or the shell-model-like approach [23]. The temperature also

affects the effective mass and the neutron skin [24].
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In the Ra-Th region, the octupole deformation is involved into shape evolution by sup-

portive experimental evidences [25–27]. A very low-lying negative-parity band, soon merge

with the positive-parity one for J > 5, is observed in nuclei 224Ra and 224Th [25, 26]. In

2013, based on the measured strong electric odd-multipole transitions connecting the low-

lying parity doublets, 224Ra is suggested to be a stable pear-shaped nucleus [27]. Since the

nuclear Schiff moment (the electric-dipole distribution weighted by radius squared) and its

resulting atomic electric dipole moment are signatures of time-reversal and parity violation,

and they are expected to be amplified in octupole deformed nuclei, 224Ra and its neighbor

225Ra are of great importance for physics beyond the Standard Model [28].

It is interesting to explore the thermal properties of the octupole-deformed 224Ra. In this

work, we aim to investigate the shape evolution when the temperature rises for 224Ra in

the relativistic mean field (RMF) framework. The RMF theory, which has achieved great

success in describing ground-state properties of both spherical and deformed nuclei all over

the nuclear chart [29–31], is also applied to study the shape evolution and phase transitions

with temperature. The finite-temperature relativistic Hartree-Bogoliubov theory [32] and

relativistic Hartree-Fock-Bogoliubov theory [33] for spherical nuclei are formulated, and

used to study the pairing transitions in hot nuclei. The relativistic Hartree-BCS theory

is applied to study the temperature dependence of shapes and pairing gaps for 166,170Er

and rare-earth nuclei [34, 35]. A shape phase transition from prolate to spherical shapes

is found at temperatures ranging 1.0∼2.7 MeV. Taking into account the unbound nucleon

states, the temperature dependence of the pairing gaps, nuclear deformation, radii, binding

energies, entropy are studied in the Dirac-Hartree-Bogoliubov (DHB) calculations [36, 37].

It is found the nuclear deformation disappears at temperatures T = 2.0 ∼ 4.0 MeV. When

the temperature T > 4 MeV, the effects of the vapor phase that take into account the

unbound nucleon states become important. Considering different shape phase transition

temperatures are found for varied nuclei in the covariant density functional framework, it

is timely to discuss the transition temperatures for this typical octupole deformed nucleus

224Ra with a novel point-coupling parameter set PC-PK1.

The paper will be organized as follows. The self-consistent finite-temperature RMF the-

ory with BCS approach for axially deformed nuclei based on the point-coupling density

functional will be briefly presented. After that, the free energy surface, the quadrupole

and octupole deformations, the excitation energy, and the specific heat as functions of the
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temperature will be discussed. Finally the evolution of the single-particle spectra will be

shown.

II. THEORETICAL FRAMEWORK

The starting point of the RMF theory is an effective Lagrangian density with zero-range

point-coupling interaction between nucleons:

L = ψ̄(iγµ∂
µ −m)ψ

−
1

2
αS(ψ̄ψ)(ψ̄ψ)−

1

2
αV (ψ̄γµψ)(ψ̄γ

µψ)−
1

2
αTV (ψ̄~τγµψ) · (ψ̄~τγ

µψ)

−
1

3
βS(ψ̄ψ)

3 −
1

4
γS(ψ̄ψ)

4 −
1

4
γV [(ψ̄γµψ)(ψ̄γ

µψ)]2

−
1

2
δS∂ν(ψ̄ψ)∂

ν(ψ̄ψ)−
1

2
δV ∂ν(ψ̄γµψ)∂

ν(ψ̄γµψ)

−
1

2
δTV ∂ν(ψ̄~τγµψ) · ∂

ν(ψ̄~τγµψ)

−
1

4
F µνFµν − eψ̄γµ

1− τ3
2

ψAµ, (1)

which includes the free nucleons term, the four-fermion point-coupling terms, the higher-

order terms which are responsible for the effects of medium dependence, the gradient terms

which are included to simulate the effects of finite range, and the electromagnetic interaction

terms. The isovector-scalar channel is neglected. The Dirac spinor field of the nucleon is

denoted by ψ, and the nucleon mass is m. ~τ is the isospin Pauli matrix, and Γ generally

denotes the 4×4 Dirac matrices including γµ, σµν while Greek indices µ and ν run over the

Minkowski indices 0, 1, 2, and 3. α, β, γ, and δ with subscripts S (scalar),V (vector),TV

(isovector) are coupling constants (adjustable parameters) in which α refers to the four-

fermion term, β and γ respectively to the third- and fourth-order terms, δ the derivative

couplings.

Following the prescription in Ref. [13] where the BCS limit of finite-temperature Hartree-

Fock Bogoliubov equations is derived, we obtain the finite-temperature RMF + BCS equa-

tion. The finite-temperature Dirac equation for single nucleons reads [38]

[γµ(i∂
µ − V µ)− (m+ S)]ψk = 0, (2)
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where m is the nucleon mass. ψk(r) denotes the Dirac spinor field of a nucleon. The scalar

S(r) and vector potential V µ(r) are

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δS△ρS, (3)

V µ(r) = αV j
µ
V + γV (j

µ
V )

3 + δV△j
µ
V

+τ3αTV
~jµTV + τ3δTV△~j

µ
TV + eAµ (4)

respectively. The isoscalar density ρS, isoscalar current jµV and isovector current ~jµTV are

represented by,

ρS(r) =
∑

k

ψ̄k(r)ψk(r)[v
2
k(1− 2fk) + fk], (5)

jµV (r) =
∑

k

ψ̄k(r)γ
µψk(r)[v

2
k(1− 2fk) + fk], (6)

~jµTV (r) =
∑

k

ψ̄k(r)~τγ
µψk(r)[v

2
k(1− 2fk) + fk]. (7)

where the thermal occupation probability of quasiparticle states fk is directly related to the

temperature T by fk = 1/(1 + eEk/kBT ). Ek is the quasiparticle energy for single particle

(s.p.) state k, Ek = [(ǫk−λq)
2+(∆k)

2]
1

2 . In these Eq. (5-7), the BCS occupation probabilities

v2k and associated u2k = 1− v2k are obtained by

v2k =
1

2
(1−

ǫk − λq
Ek

), (8)

u2k =
1

2
(1 +

ǫk − λq
Ek

). (9)

∆k is the pairing gap parameter, which satisfies the gap equation at finite temperature.

∆k = −
1

2

∑

k′>0

V pp

kk̄k′k̄′

∆k′

Ek′
(1− 2fk′). (10)

The particle number Nq is restricted by Nq = 2
∑
k>0

[v2k(1− 2fk) + fk].

Here we take the δ pairing force V (r) = Vqδ(r), where Vq is the pairing strength parameter

for neutrons or protons. A smooth energy-dependent cutoff weights gk having the form

{1 + exp[(ǫk − λq − Ec)/(Ec/10)]}
−1, where Ec is the cutoff parameter, is introduced to
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simulate the effect of finite range in the evaluation of local pair density. The cutoff parameter

is determined by an approximate condition
∑
k

2gk = Nq + 1.65N
2/3
q related to the particle

number Nq where q can refer to neutron or proton [39].

The internal binding energies E at different axial-symmetric shapes can be obtained by

applying constraints with quadrupole deformation β2 and octupole deformation β3 together.

In the mean-field level, the binding energy with a given deformation β2 can be obtained by

minimizing

〈H ′〉 = 〈H〉+
1

2
C(〈Q̂2〉 − µ2)

2, (11)

where C is a spring constant, µ2 =
3AR2

4π
β2 is the given quadrupole moment, and 〈Q̂2〉 is the

expectation value of qudrupole moment operator Q̂2 = 2r2P2(cos θ). The octupole moment

constraint can also be applied similarly with Q̂3 = 2r3P3(cos θ) and µ3 =
3AR3

4π
β3.

The free energy for the system is F = E − TS where the entropy S is evaluated from

S = −kB
∑

k

[fklnfk + (1− fk)ln(1− fk)]. (12)

For convenience, the temperature used is kBT in units of MeV and the entropy used is S/kB

and is unitless. The free energy surface in the (β2, β3) plane is obtained by plotting the free

energy E(β2, β3)− TS(β2, β3) on a mesh with equidistant β2 and β3.

The specific heat is defined by the relation

Cv = ∂E∗/∂T (13)

where E∗(T ) = E(T )−E(T = 0) is the internal excitation energy, and E(T ) is the internal

binding energy for the global minimum state in the free energy surface at certain temperature

T .

III. RESULTS AND DISCUSSION

The point-coupling density functional parameter set PC-PK1 is used in our calculation

due to its success in the description of finite nuclei for both ground state and low-lying

excited states [40]. The pairing correlations are taken into account by BCS method with a

δ pairing force. The value of the pairing strength for neutrons (protons) Vq is taken from
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Ref. [40], that is, -349.5 (-330.0) MeV fm3. A set of axial harmonic oscillator basis functions

with 20 major shells is used.

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
-0.1

0.0

0.1

0.2

0.3

0.4

PC-PK1

 3

2

224Ra,T=0MeV (a)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
-0.1

0.0

0.1

0.2

0.3

0.4
(b)

PC-PK1

 3

2

224Ra,T=0.5MeV

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
-0.1

0.0

0.1

0.2

0.3

0.4
(c)

PC-PK1

 3

2

224Ra,T=0.8MeV

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
-0.1

0.0

0.1

0.2

0.3

0.4
(d)

PC-PK1

 3

2

224Ra,T=0.9MeV

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
-0.1

0.0

0.1

0.2

0.3

0.4
(e)

PC-PK1

 3

2

224Ra,T=1.0MeV

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
-0.1

0.0

0.1

0.2

0.3

0.4
(f)

PC-PK1

 3

2

224Ra,T=1.5MeV

FIG. 1. (Color online) The free energy surfaces in the (β2, β3) plane at temperature T=0(a), 0.5(b),

0.8(c), 0.9(d), 1.0(e), and 1.5(f) MeV for 224Ra obtained by the finite-temperature RMF+BCS

calculations using PC-PK1 energy density functional. The global minima are indicated by the

solid squares. The energy separation between contour lines is 0.5 MeV.

The free energies in the (β2, β3) plane at temperature T =0, 0.5, 0.8, 0.9, 1.0, and 1.5

MeV for 224Ra are plotted in Fig. 1. For zero temperature in Fig. 1(a), the free energy for the

global minimum at zero temperature, which equals the internal binding energy for the ground

state, is close to the experimental binding energy for 224Ra within 0.1%. The corresponding

deformations β2=0.184, β3=0.133 are slightly bigger than the experimental data β2=0.154,

β3=0.097 in Ref. [27]. Such result is also in consistency with other theoretical calculations,
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e.g., β2=0.179, β3=0.125 for parameter set PC-PK1 in Ref. [41] and β2=0.177, β3=0.125 for

parameter set DD-PC1, β2=0.178, β3=0.124 for parameter set NL3* in Ref. [42]. The saddle

point is purely quadrupole deformed, about 1.1 MeV higher than the global minimum. When

the temperature rises up to 0.5 MeV, the deformations of the global minimum changes little.

In the temperature range 0.5 6 T 6 1.0MeV, the energy surfaces change dramatically. The

energy difference between the saddle point and global minimum gradually decreases, finally

drops to zero. At T ∼ 0.9 MeV, the saddle point and global minimum merge together at

β2=0.12, and β3=0, and the shape phase transition from octupole deformed to quadrupole

deformed occurs. For 0.8 6 T 6 1.0 MeV, a relatively soft area near the global minimum

is composed, e.g. at T = 0.9MeV the states with −0.04 6 β2 6 0.18, β3 = 0, or β2 = 0.19,

β3 = 0.14 are no more than 0.5 MeV higher than the global minimum. At T ∼ 1.0 MeV,

the global minimum moves to a spheroidal shape at β2=0.02, and β3=0, and the nucleus

has another shape phase transition from quadrupole deformed to spherical shape. When the

temperature continues rising above 1.5 MeV, the energy surfaces evolves little with a single

minimum near spherical.

To see the properties of the nuclei as functions of temperatures in more detail, the evolu-

tion of deformations, pairing gaps, the excitation energy as well as the specific heat for 224Ra

using PC-PK1 energy density functional are shown in Fig. 2. In Fig. 2(a), the global mini-

mum deformations are almost constant for T 6 0.5MeV. At temperatures 0.9 and 1.0 MeV,

the quadrupole and octupole deformation quickly drop to zero respectively. The hexade-

capole deformation behaves similar to the quadrupole deformation. So the nucleus first goes

through a shape transition from octupole to quadrupole, and then another shape transition

from quadrupole and hexadecapole deformed to spherical one. The vanishing of octupole

deformation also interplays with quadrupole and hexadecapole deformations, which cause

sudden decrease in the quadrupole and hexadecaple deformations. In Fig. 2(c), the neutron

pairing gap at zero temperature is ∆n(0) = 0.63 MeV, and it decreases to zero at a critical

temperature Tc = 0.40MeV, which shows a pairing phase transition. The critical temper-

ature for pairing phase transition in the case of deformed nuclei basically follows the rule

Tc = 0.6∆n(0), which was discovered for spherical nuclei [32]. Since the global minimum

deformation for T 6 Tc changes little, as seen in Fig. 2(a), the single particle levels, which

are sensitive to the deformation but insensitive to the temperature are barely altered for

T 6 Tc. It is speculated that the rule Tc = 0.6∆(0) is kept for a fixed single particle level
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FIG. 2. (Color online) The global minima deformations β2, β3, β4 (a), excitation energies E∗

(in MeV) (b), pairing gaps ∆n, ∆p (in MeV) (c), and the specific heat Cv (d) as functions of

temperature (in MeV) for 224Ra, obtained by the finite-temperature RMF+BCS calculations using

PC-PK1 energy density functional.

structure, no matter the nucleus prefers spherical, oblate or prolate minimum. Such rule

may not hold for gradually changing minimum or oscillating minimum. In Fig. 2(c), the

proton pairing gap is zero. Such a proton pairing collapse is caused by larger gap near

the Fermi surface and weaker pairing strength compared with the neutron counterpart. At

zero temperature, the proton shell gap near the Fermi surface is about 1.7 MeV while the

corresponding neutron shell gap is 1 MeV (cf. Fig. 3). Moreover, for PC-PK1 parameter

set, the proton pairing strength -330 MeV fm3 is about 5.6% weaker than the corresponding

neutron pairing strength -349.5 MeV fm3. Compared with Ref. [2], where the proton pairing

energy is a nonzero value -2 MeV, our pairing strength is in general smaller, which we could

see by comparing the neutron pairing energy. In Ref. [2] the neutron pairing energy at zero

temperature is -5 MeV, while it is -3.2 MeV in our calculation.

For the relative excitation energy E∗ in Fig. 2(b), one inappreciable kink at low tempera-

tures and two noticeable kinks at medium temperatures can be found. Its derivative, namely
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the specific heat is plotted in Fig. 2(d). Three discontinuities in Fig. 2(d) correspond to three

kinks in Fig. 2(b). It is well-known that the appearance of discontinuities in this quantity

is customarily interpreted as a signature of transitions. The discontinuity at Tc = 0.4 MeV

indicates the transition from the superfluid to the normal phase. Two peaks at 0.9 and

1.0 MeV indicate two shape transitions, namely one from quadrupole-octupole deformed

to quadrupole deformed (octupole transition for short), and the other from quadrupole

deformed to spherical (quadrupole transition for short). However, in experiment the spe-

cific heat usually exhibits a more smooth behavior as compared to the sharp discontinuity

obtained here. This is attributed to the finite size of the nucleus and, therefore, realistic

description of statistical and quantal fluctuations. The two adjacent shape transitions would

be smeared into one. In the finite-temperature HFB theory [2], 224Ra experiences similar

transitions, first a pairing transition at T = 0.5 MeV, and after that, the octupole deforma-

tion continuously decreases, and finally becomes zero at T = 1.3 MeV together with abrupt

changes in quadrupole and hexadecapole deformations [2]. The signature of such transition

at T = 1.3 MeV can also be found in the corresponding specific heat. It is found that

for 224Ra, the proton single-particle gap of Z=88 at the deformed equilibrium in the RMF

calculation is relatively smaller than that of the corresponding Gogny D1S calculation [43].

With smaller shell gap, the shape transition can be achieved at a lower temperature, which is

1.0 MeV in RMF calculation compared to 1.3 MeV in Gogny calculation [2]. Such a smaller

shell gap near Z=88 is related to the artificial shell closure Z=92 (above 1h9/2) at spherical

state, which is commonly found in RMF calculations, and can be cured by the presence of

the degree of freedom associated with Lorentz tensor ρ-field [44, 45].

In Fig. 3, we plot the single-particle (s.p.) levels of neutrons and protons at the global

minimum as a function of temperature for 224Ra. Normally the octupole interaction couples

the pairs of orbital with ∆N = 1,∆l = 3, and ∆j = 3 near the Fermi surface. The regions of

nuclei with strong octupole correlations correspond to either the proton or neutron numbers

close to 34 (1g9/2 ↔ 2p3/2 coupling), 56 (1h11/2 ↔ 2d5/2 coupling), 88 (1i13/2 ↔ 2f7/2

coupling), and 134 (1j15/2 ↔ 2g9/2 coupling) [49]. A gap at N =136, together with another

gap at N =132 for T < 1 MeV and a big gap at N =126 for T >1 MeV can be found in

Fig. 3(a) while a gap at Z =88 for T < 1 MeV and a big gap at Z =82 for T > 1 MeV can

be found in Fig. 3(b). Since the s.p. levels are sensitive to the slight deformations, for the

spheroidal global minimum when T > 1 MeV, the s.p. levels constituting ν2g9/2, ν1i11/2 and
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FIG. 3. (Color online) Neutron (a) and proton (b) single-particle levels as a function of temperature

(in MeV) for the nucleus 224Ra, obtained by the constrained RMF+BCS calculations using PC-PK1

energy density functional. The dash-dot lines denote the corresponding Fermi surfaces. The levels

near the Fermi surface are labeled by Nilsson notations Ωπ[Nnzml] of the first leading component.

π1h9/2 doesn’t degenerate rigorously. The gaps at N =136 and Z =88 are responsible to

the octupole-deformed global minimum at low temperatures. With temperature increasing,

more and more nucleons are thermally excited to s.p. levels above the shell gaps, so the

shell effect becomes weaker and disappears eventually. As a result, the shape of the nucleus

becomes spherical at high temperature.
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FIG. 4. (Color online) Same as Fig. 1, but at temperature T=0(a), 0.4(b), 0.8(c), 1.2(d), 1.4(e),

1.6(f) MeV for 144Ba.
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FIG. 5. (Color online) Same as Fig. 1, but at temperature T=0(a), 0.4(b), 0.9(c), 1.4(d), 1.7(e),

2.0(f) MeV for 146Ba.

Additionally, we focus on neutron-rich 144Ba and 146Ba where direct experimental evi-

dence of octupole deformation is found recently [46, 47]. The free energies in the (β2, β3)

plane at different temperatures for 144,146Ba are plotted in Fig. 4 and 5 respectively. At

zero temperature in Fig. 4(a)-5(a), the octupole-deformed ground states of both 144Ba and

146Ba are about 0.6 MeV lower than the quadrupole-deformed saddle points. The calcu-

lated ground state quadrupole and octupole deformations are in good agreements with the

experimental data. For 144Ba, the experimental data are β2=0.18, β3=0.11-0.21[46] while

the calculated ones are β2=0.22, β3=0.13. With increasing temperature before the octupole

transition temperature in Fig. 4(b)-5(b), the energy differences between the global minimum

and the saddle points become shallower. At the octupole transition temperature in Fig. 4(c)-

5(c), the energy surface in the β3 direction is softer than in the β2 direction. Note the oblate

minima continuously become shallower in Fig. 4(b,c)-5(b,c). At temperature higher than

the octupole transition temperature in Fig. 4(d)-5(d), a soft deformation area around the

spherical state is developed with the disappearance of the oblate minima. The transition

from quadrupole deformed to spherical phase occurs in Fig. 4(e)-5(e), while the spherical

states are kept as the global minima in Fig. 4(f)-5(f). It should be noted that the free

energy surfaces near or at the transitions are very similar for 144,146Ba, but the transition

temperatures vary, e.g., in Fig. 4(e)-5(e) the quadrupole transition temperature for 144,146Ba

are 1.4 and 1.7 MeV respectively.

Moreover, even-even 144−154Ba isotopes are studied using the same method, and their
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FIG. 6. (Color online) Same as Fig. 2, but for 144Ba.
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FIG. 7. (Color online) Same as Fig. 2, but for 146Ba.
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FIG. 8. (Color online) Same as Fig. 2, but for 148Ba.
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FIG. 9. (Color online) Same as Fig. 2, but for 150Ba.
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FIG. 10. (Color online) Same as Fig. 2, but for 152Ba.
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FIG. 11. (Color online) Same as Fig. 2, but for 154Ba.
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TABLE I. The quadrupole and octupole transition temperatures T2 and T3 (in MeV), together with

the quadrupole and octupole deformations β2 and β3 at the ground states for even-even 144−154Ba,

obtained by the constrained RMF+BCS calculations using PC-PK1 energy density functional.

Nucleus β2 T2(MeV) β3 T3(MeV)
144Ba 0.22 1.45 0.13 0.85
146Ba 0.23 1.70 0.13 0.95
148Ba 0.25 1.90 0.14 0.95
150Ba 0.27 2.05 0.15 0.95
152Ba 0.29 2.15 0.12 0.75
154Ba 0.30 2.20 0.09 0.50

properties are shown in Fig. 6-11. The quadrupole deformation for 144−154Ba ground states

is increasing since the neutron number is approaching the middle of a shell between the

closures 82 and 126, while the corresponding octupole deformation is decreasing as the

neutron number is departing from 88 where the strong octupole correlation is believed [49].

The results are also consistent with calculations of parameter sets PK1 [48], DD-PC1 [42],

and NL3* [42]. For each isotope, when the temperature rises, similar to 224Ra, the global

minima quadrupole and octupole deformations evolve with the temperature similarly, where

they change slowly for temperatures below the transition temperature and then quickly drop

to zero approaching the transition temperature. Note the quadrupole and octupole transition

temperatures for each isotope are separated. The hexadecapole deformation drops little at

the octupole transition temperature and vanishes at the quadrupole transition temperature.

Concerning the transition temperatures as functions of neutron number, it is observed that

the quadrupole transition temperature increases when the nuclei become heavier while the

octupole transition temperature keeps nearly constant and finally decreases in Fig. 6(a) -

11(a). For the clarity, the quadrupole and octupole transition temperatures together with the

quadrupole and octupole deformations at the ground states are listed in Table I. It is found

that for even-even 144−154Ba isotopes, the quadrupole and octupole transition temperatures

are roughly linearly proportional to the quadrupole and octupole deformations at the ground

states. Similar to the above discussion on 224Ra, 144−154Ba may suffer from neutron artificial

shell N=92, getting lower transition temperatures.

For the pairing correlations in Fig. 6(c) -11(c), only neutron pairing gaps of around 0.8

MeV survive except pairing collapse in 144Ba. All critical temperatures for pairing phase

transition follow the rule Tc = 0.6∆n(0). For the relative excitation energies in each subfigure

16



Fig. 6(b)-11(b), some inappreciable kinks corresponding to the pairing and shape transitions

can be found. These kinks are manifested more clearly in the specific heat in each subfigure

Fig. 6(d)-11(d), where three discontinuities corresponding to one pairing transition and two

shape transition temperatures are found except 144,154Ba. For 144Ba, the pairing transition is

absent as a direct result of pairing collapse. For 154Ba, the pairing transition coincides with

the octupole shape transition. The discontinuities of the specific heat in Fig. 6(d)-11(d) are

consistent with transition temperatures in Fig. 6(a)-11(a).

IV. SUMMARY

In summary, the finite-temperature deformed RMF + BCS theory based on the relativis-

tic point-coupling density functional is applied to the shape evolution study of 224Ra and

even-even 144−154Ba with temperature. The free energy surfaces as well as the bulk properties

including deformations, pairing gaps, excitation energy and specific heat for the global min-

imum are investigated. For 224Ra, three discontinuities are found in the specific heat curve,

indicating the pairing transition at temperature 0.4 MeV, two shape transitions at tem-

perature 0.9 and 1.0 MeV, namely one from quadrupole-octupole deformed to quadrupole

deformed, and the other from quadrupole deformed to spherical. Furthermore, the single

particle levels as functions of the temperature are analyzed. The gaps at N =136 and Z =88

are responsible for stabilizing the octupole-deformed global minimum at low temperatures.

With rising temperature, the shell effects disappear. Similar pairing transition at T ∼0.5

MeV and shape transitions at T=0.5∼2.2 MeV are found for even-even 144−154Ba. Roughly

there is a simple proportional relation between the quadrupole and octupole transition tem-

peratures and the quadrupole and octupole deformations at the ground states. The realistic

description of statistical and quantal fluctuations are under considerations.
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