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Spectroscopic factors, extracted from one-neutron knockout and Coulomb dissociation reactions,
for transitions from the ground state of 33Mg to the ground-state rotational band in 32Mg, and
from 32Mg to low-lying negative parity states in 31Mg, are interpreted within the rotational model.
Associating the ground state of 33Mg and the negative parity states in 31Mg with the 3

2
[321] Nilsson

level, the strong coupling limit gives simple expressions that relate the amplitudes (Cj`) of this
wavefunction with the measured cross-sections and derived spectroscopic factors (Sj`). To obtain
a consistent agreement with the data within this framework, we find that one requires a modified
3
2
[321] wavefunction with an increased contribution from the spherical 2p3/2 orbit as compared

to a standard Nilsson calculation. This is consistent with the findings of large scale Shell Model
calculations and can be traced to weak binding effects that lower the energy of low-` orbitals.

PACS numbers: 21.10.Jx, 25.55.Hp, 27.30.+t

I. INTRODUCTION

Understanding the so-called “Islands of Inversion”
has been the subject of intense work, both experimen-
tally and theoretically [1–3]. As a clear manifesta-
tion of the universal phenomenon of shape-coexistence,
found in several regions of the nuclear chart, its driv-
ing mechanism is now rather well understood. The
“inversion” found in neutron-rich nuclei with N = 8,
20, and 40 originates from the removal of protons from
the corresponding spherical doubly-magic nuclei, 16O8,
40Ca20, and 68Ni40, which induces changes in the effec-
tive single-particle energies (ESPEs), largely due to the
monopole average of the central and spin-isospin com-
ponents of the nuclear force [4]. The delicate balance
between the monopole effects, the residual pairing, and
quadrupole interactions leads to a competition between
spherical and deformed configurations. At some point,
the quadrupole correlations dominate over pairing and
erode the shell gaps, leading to deformed ground states
in nuclei expected, a-priori, to be semi-magic and spher-
ical.

Perhaps the best known example is at N = 20, where
the nucleus 32Mg takes center stage. Deformed intruder
configurations, with neutron pairs promoted from the
sd to the fp shell across the narrowed N=20 gap, are
energetically favored [5–8], leading to a well-developed
deformation in the ground states of the affected nuclei.

The use of knock-out reactions (KO), combined with
structure input from state-of-the-art Shell Model cal-
culations has proven a powerful tool to elucidate the
mechanism discussed above [9]. However, based on the
fact that nuclei inside the islands are well deformed, it is
of interest to consider the description of these reactions
in a rotational framework. Indeed, the single-particle
levels at N = 20 give rise to underlying symmetries –
quasi-SU(3) for neutrons in the pf -shell, pseudo-SU(3)
for neutron holes in the sd-shell and quasi-SU(3) for pro-

tons in the sd-shell [10] – that make a natural connec-
tion between the spherical shell model and the deformed
mean-field of the Nilsson model [11].

In the odd-A nuclei surrounding 32Mg, energy levels,
electromagnetic transitions and magnetic moments [12–
16] can be described in leading-order rotational motion
within the Nilsson scheme. These observables are sensi-
tive to the intrinsic wave-functions, and it is naturally of
interest to map directly the amplitudes of the relevant
Nilsson levels. Such mapping will specifically provide
unique insight on the underlying deformed mean-field
far from stability, where the effects of weak binding are
important [17], and are not captured in the modified-
harmonic-oscillator (MHO) potential used in standard
Nilsson calculations.

We discuss here the description and interpretation
of one neutron removal in the Nilsson strong coupling
limit, applying the formalism developed for transfer re-
actions (see Ref. [18] for a review). Within this ap-
proach, we view the 1n-removal reactions as a proxy for
the (p, d) reaction, and relate measured spectroscopic
factors directly to Nilsson wavefunction amplitudes.

II. THE METHOD

Making the well justified assumption of deformed
ground states, the Nilsson strong-coupling limit cap-
tures the main ingredients to describe nuclei in the
N=20 Island of Inversion, and results in simple relations
from which the underlying physics emerges naturally,
providing a complementary, and perhaps even more in-
tuitive, alternative to the spherical shell model. For
an application to the study of deformed states around
20Ne and 24Mg see for example Refs. [19, 20]. Let us
consider the case of the 3

2 [321] level near the neutron
Fermi surface at N=20 and of particular relevance to
both 31,33Mg. In the |j, `〉 basis, the wavefunction for
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this Nilsson level is of the form:

| 32 [321]〉 = C3/2,1|p3/2〉+C5/2,3|f5/2〉+C7/2,3|f7/2〉 (1)

where Cj,l are the Nilsson wavefunction amplitudes de-
scribing the expansion of the deformed wavefunction in
the spherical basis.

Following Ref. [18], the 1n-removal cross-section from
the initial ground state |IiKi〉 of the target, to a final
state |IfKf 〉 in the product nucleus, can be written in
terms of the Nilsson amplitudes:

dσ

dΩ
=
∑
j,`

g2〈IijKi∆K|IfKf 〉2C2
j,`〈φf |φi〉2σ−1n`

=
∑
j,`

Sj,` × σ−1n` (2)

where σ−1n` is the 1n-removal single-particle cross-
section for a given orbital angular momentum transfer
(`), and Sj,` is the spectroscopic factor for a given or-
bital. The factor g2 is related to the symmetry of the
collective wavefunction, g2 = 2 if Ii = 0 or Kf = 0;
otherwise g2 = 1. The core overlap between the initial
and final states, 〈φf |φi〉, is assumed to be unity.

In Fig. 1 we show schematically the situations we will
consider in our analysis of 33Mg to 32Mg and 32Mg to
31Mg in the N=20 Island of Inversion. The experimen-
tal cross-sections, by way of the spectroscopic factors,
together with the normalization condition of the wave-
function, allow us to directly obtain the three C2

j,` am-
plitudes in Eq. 1 at N=21 and N=20.

FIG. 1: Schematic representation of the possible transitions
for the reactions analyzed in this work. Both ` = 1 and ` = 3
transitions are allowed in both cases considered.

III. RESULTS

A. 33Mg(-1n)32Mg

Ref. [21] reported the results of a neutron-removal
experiment performed at the FRS/GSI, where inclusive
cross-sections and longitudinal momentum distributions
for the reaction 33Mg(-1n)32Mg on a carbon target at
898 MeV/A were measured. More recently, direct exper-
imental evidence of a multiple particle-hole ground state

TABLE I: Experimental spectroscopic factors for 33Mg(-
1n)32Mg compared to the calculations using amplitudes ob-
tained with the standard Nilsson parameters and empirically
adjusted to the data (see text).

Final Energy
`

Experimental Sj,` Calculated Sj,`

State [MeV] [21] [22] Nilsson Empirical

0+ 0.00 1 0.6+0.3
−0.5 0.19±0.1 0.05 0.24

2+ 0.89 1 0.5+0.7
−0.3 0.05 0.24

3 0.5+0.2
−0.5 0.34 0.18

4+ 2.32 3 – – 0.55 0.33

configuration in 33Mg was reported, following an inter-
mediate energy (400 MeV/A) direct Coulomb dissoci-
ation measurement, also performed at GSI [22]. Spec-
troscopic factors, Sj,`, derived from those measurements
and reported in Ref. [21], are summarized in Table I.

For the particular case of a final state with |If ,Kf =
0〉, as is the case for 33Mg(-1n)32Mg, the expression for
the spectroscopic factors entering Eq. (2) is:

Sj,`(−1n) = 2〈3
2
j

3

2
− 3

2
|I 0〉2C2

j,`

As indicated in Fig. 1, the ` = 1 transitions to the 0+

and 2+ states depend only on the p3/2 amplitude, while

the ` = 3 transitions to the 2+ and 4+ states involve
a sum of the f5/2 and f7/2 amplitudes. In comparing
with the experimental data we consider first a Nilsson
calculation with standard input parameters, Ref. [23,
24]. For a deformation of ε2 ≈ 0.4, in line with the
analysis in Ref. [25], such a standard Nilsson description
yields amplitudes: C3/2,1 = -0.32, C7/2,3 = 0.92, and
C5/2,3 = -0.22, which fail to reproduce the measured
spectroscopic factors (see Table I). In particular, we
note the fact that the large amplitude of the f7/2 orbit
would be consistent with a trend favoring the knockout
to the 4+ member of the ground-state rotational band,
clearly not observed in either of the recent experiments.

As discussed earlier, one can reverse the argument and
find the Nilsson amplitudes that provide a more consis-
tent description of the experimental results. We make
an empirical adjustment to reproduce the weighted
mean (0.21 ± 0.1) of the data from [21, 22] for the
ground state and determine C2

3/2,1 = 0.42 ± 0.2. How-

ever, given the uncertainties in the data, it is not pos-
sible to uniquely determine the other amplitudes from
the spectroscopic factors. For this, we also require the
reproduction of the ground state magnetic moment in
33Mg [16], which can be written in terms of the Nilsson
amplitudes in Eq. 1 as:

µ =
3

5
(gs〈s3〉+ gR)
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〈s3〉 =
1

2

(
C2

3/2,1 +
3

7
(C2

7/2,3 − C
2
5/2,3)

− 4
√

10

7
C7/2,3C5/2,3

)
(3)

where gs and gR the spin and rotational gyromagnetic
factors, and 〈s3〉 the spin projection on the symmetry
axis. Following Ref. [15] we use gs = −3.83 and gR =
0.3. After fixing C3/2,1 to the value determined above we
solve for the values of C7/2,3 and C5/2,3 that reproduce
µ and satisfy the wavefunction normalization condition,
as shown in Fig. 2. We consider only positive values of
C7/2,3, so that the phases follow the signs in the Nilsson
calculations [23, 24]. While there are two possible such
solutions, it is expected that |C7/2,3| > |C5/2,3|. Thus,
we choose the one corresponding to C7/2,3 = 0.75 and

obtain the empirical wavefunction†:

| 32 [321]〉 = (−0.65± 0.15)|p3/2〉+(0.75+0.13
−0.23)|f7/2〉+

(−0.12+0.08
−0.22)|f5/2〉

and the spectroscopic factors shown in the last column
of Table I.
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FIG. 2: Two-dimensional plot showing the possible solutions
of Eqs. 3 that reproduce the experimental magnetic moment
(red line). The intersection with the normalization condition
(black line and blue shaded area reflecting the uncertainty in
C3/2,1) together with the requirement that |C7/2,3| > |C5/2,3|
(shaded grey area) determines our adopted solution (solid
circle).

This result is in agreement with the conclusions of
Refs. [21, 22] where the authors pointed out the in-
creased contribution from the 2p3/2 orbital required to
explain the observations, which is suggestive of its low-
ering compared to existing model predictions. In fact,
the equal amplitudes, C3/2,1 ≈ C7/2,3, needed in our

† The uncertainty is dominated by the error associated with
C2

3/2,1
; the error on the experimental magnetic moment is negli-

gible. Changes to the values of gs and gR will, of course, change
the empirical values of the other two amplitudes but without
affecting the conclusions.

TABLE II: Same as in Table I, experimental spectroscopic
factors for 32Mg(-1n)31Mg to negative parity states are com-
pared to the Nilsson predictions.

Final Energy
`

Sj` Calculated Sj`

State [MeV] [26] Nilsson Empirical

3/2− 0.22 1 0.59+0.11
−0.11 0.2 0.59

7/2− 0.46 3 1.24+0.4
−0.4 1.7 1.2

analysis would suggest that the 2p3/2 and 1f7/2 spheri-
cal orbits get closer in energy, as anticipated in Ref. [17]
due to the weak binding effects expected for the ` = 1
orbits.

We would like to stress the importance of combining
both electromagnetic properties and the spectroscopic
factor measurements to determine the single-particle
wavefunctions in a consistent analysis. In particular, as
several solutions satisfy Eqs. 3, the magnetic moment
alone in 33Mg can be explained with the standard Nils-
son amplitudes mentioned earlier [15]. However, those
amplitudes do not reproduce the results in Table I.

B. 32Mg(-1n)31Mg

The 1n-KO reaction from 32Mg was studied at the
NSCL and spectroscopic factors to the low-lying nega-
tive parity states in 31Mg were extracted [26]. In this
case the final states are assumed to be the two lowest
levels of the rotational band built on the Nilsson 3

2 [321]
level discussed above. Because of the angular momen-
tum selection rules imposed by the Clebsch-Gordan co-
efficients in Eq. 2 the spectroscopic factors in this case
directly project out the amplitudes of the wavefunction,
ie.

S3/2,1(−1n) = 2C2
3/2,1

and

S7/2,3(−1n) = 2C2
7/2,3

In Table II the experimental data are compared with the
Nilsson results. As before, a standard Nilsson wavefunc-
tion does not provide good agreement with the data.
The adjusted amplitudes obtained from the Sj,`, to-
gether with the normalization condition give:

| 32 [321]〉 ≈ (−0.54± 0.05)|p3/2〉+ (0.79± 0.13)|f7/2〉+
(−0.29± 0.36)|f5/2〉

Given the uncertainties in the derived amplitudes, this
is consistent with the wavefunction obtained earlier, re-
quiring the increase of the 2p3/2 component relative to
those of the f orbits.
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IV. CONCLUSION

Guided by the formalism developed for studies of
single-nucleon transfer reactions in deformed nuclei, we
have analyzed recent experimental data on 1n-removal
reactions from 33Mg and 32Mg in the rotational strong-
coupling limit. While a standard 3

2 [321] Nilsson level
wavefunction does not reproduce the measured spec-
troscopic factors, modified amplitudes, with a relative
increase of the 2p3/2 component, provide a reason-
able description of the data. The empirically adjusted
wavefunctions can be understood by a reduction of the
N=28, 1f7/2−2p3/2, gap in the standard Nilsson MHO
potential by ∼ 3 MeV, consistent with the trend of the
ESPEs used in Shell-Model calculations and the more
realistic spherical orbits that originate from a Wood-
Saxon type potential.

Based on the fact that intruder deformed configura-
tions dominate the low-lying structure of nuclei within

the Islands of Inversion, the Nilsson formalism provides
an intuitive and simple approach to obtain important
structure information from direct reactions. As shown
in this work and Ref. [15], the strong coupling limit pro-
vides a complementary view to the shell model calcula-
tions which become more challenging for heavier nuclei.
Applications to other Islands of Inversions will be the
subject of a future publication.
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