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The delta-shell representation of the nuclear force allows a simplified treatment of nuclear correlations. We

show how this applies to the Bethe-Goldstone equation as an integral equation in coordinate space with a few

mesh points, which is solved by inversion of a 5-dimensional square matrix in the single channel cases and a

10×10 matrix for the tensor-coupled channels. This allows us to readily obtain the high momentum distribution,

for all partial waves, of a back-to-back correlated nucleon pair in nuclear matter. We find that the probability

of finding a high-momentum correlated neutron-proton pair is about 18 times that of a proton-proton one, as a

result of the strong tensor force, thus confirming in an independent way previous results and measurements.
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I. INTRODUCTION

Nuclear correlations have been a topic of discussion in nu-

clear matter and finite nuclei calculations for a long time. The

starting point is the fundamental Nucleon-Nucleon (NN) in-

teraction, which has been determined from the available NN

scattering data. Most local interactions which have been pro-

posed so far retain in common a short distance repulsion,

a feature discovered by Jastrow in 1950 when he analyzed

proton-proton (pp) scattering at intermediate laboratory (Lab.)

energies [1, 2]. Its main natural consequence is the presence

of short-distance correlations, which invalidates perturbation

theory based on a mean field approach. There have been pro-

posed many ways to conveniently address these short distance

features. Historically the Bethe-Goldstone (BG) equation [3]

was the first proposal with consequences for the nuclear wave

functions [4, 5] (see e.g. [6] for a modern review).

When two nucleons in a nuclear medium approach each

other the relative wave function is less sensitive to the partic-

ular long-range details of the nucleus where they are embed-

ded. Hence one expects the medium effects at short distances

to be mainly driven on average by the Pauli principle, forbid-

ding the two nucleons to scatter below some typical Fermi

momentum. The effect of the interaction will produce a slight

but rapid —high momentum— vibration in the relative wave

function at short distances. This distortion of the unperturbed

wave function at mid and short ranges induces naturally an

universal behavior at high momenta [7–9].

From the theoretical point of view, the short-range nucleon-

nucleon correlations (SRC) are ubiquitous, appearing in dif-

ferent contexts ranging from fundamental to applied Nuclear

Physics: properties of nuclear matter [10–12], high momen-

tum components in the nuclear wave function [13–17], nu-
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clear astrophysics [18], calculations of symmetry energy and

pairing gaps in nuclear and neutron matter [19–21], equa-

tion of state of nuclear matter [22, 23], models of relativistic

heavy-ion collisions [24], calculations of nuclear matrix ele-

ments for neutrino-less double beta decay [25, 26], descrip-

tion of (e,e′), (e,e′N) and (e,e′NN) reactions [27–31], just to

highlight some of them.

From the experimental side, the insight into the mass and

isospin dependence of SRC is field of active research [32–

41]. For example, by measuring the ratio of neutron-proton

(np) and proton-proton (pp) pairs in a relative high momen-

tum state, a value of np/pp = 18± 5 was reported in [32],

providing strong evidence of the crucial impact of the tensor

force in the SRC. This suggest a non-trivial dependence of

SRC on the N −Z asymmetry, with repercussions on the nu-

clear equation of state for high densities, which is essential for

the understanding of neutron stars [42, 43].

In order to justify our approach to SRC to be detailed below

it is important to remind some relevant features. The standard

approach for ab initio calculations since the benchmarking

analysis of the Nijmegen group has been based on a two-step

process. In a first step, a partial wave analysis to NN scat-

tering data was carried out [44] and a selection of consistent

data was implemented on the basis of statistical significance.

The Nijmegen NN database had 4313 pp+np selected scat-

tering data for TLAB ≤ 350 MeV improving on previous ap-

proaches [45, 46] due to the incorporation of small but crucial

long distance effects, such as Charge-dependent One-Pion-

Exchange (CD-OPE), vacuum polarization, Coulomb, rela-

tivistic and magnetic moments interactions. Unfortunately,

the energy dependence of the potential is hard to implement

in nuclear structure calculations. Therefore, in a second step

an energy independent potential often tailored to a particu-

lar solution method of the nuclear many-body problem, was

constructed and fitted to the database. In this way a set of

high quality statistically equivalent potentials have been de-

signed [47–50]. This may introduce a bias and hence a source

of systematic error in the design of the starting nuclear force,

and in particular into its short distance structure. Thus, it
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would be desirable that the potential represents as closely as

possible the scattering data used for its construction.

In the present work we deepen our investigation into the

basic theoretical understanding of SRC by employing the

coarse-grained Granada potential (GR) in our analysis. In

common with the Nijmegen analysis, this potential contains

all long-distance effects such as CD-OPE, Coulomb, vacuum

polarization relativistic and magnetic moments effects above

a separation distance of rc = 3 fm, and a sum of equidis-

tant Dirac δ -shells below that distance. The complete poten-

tial has been used to generate the Granada-2013 database, a

3σ self-consistent selection of 6173-NN scattering data out

of the about 8000 collected between 1950 and 2013 at about

pion production threshold, TLAB ≤ 350 MeV with a reduced

χ2/ν ∼ 1.04 [51–53]. This representation of the NN in-

teraction is very convenient not only because it samples di-

rectly the interaction at the physically significant resolution

∆r ∼ 1/pCM ∼ 0.6 fm associated with a maximum fitting mo-

mentum pCM .
√

MNmπ , but also because it implies a great

simplification of the nuclear problem in terms of few grid

points in coordinate space located at δ -shells whose strengths

correspond to the fitting parameters. This way, we short-

circuit the two-step process mentioned above. The bias in-

duced by different representations using different potential

tails or short range representations has been illustrated with 6

different statistically equivalent Granada potentials fitting the

same database [54].

Of course, this simplification is not for free, as new compu-

tational methods need to be developed to handle this success-

ful but unconventional δ -shell representation of the nuclear

force. As a rewarding consequence, it allows to a deeper un-

derstanding of the role of the short and mid range part of the

NN interaction in the SRC. The present study of the coarse-

grained Bethe-Goldstone equation was initiated in our recent

work [55] for the 1S0 partial wave. Here we extended it to all

the partial waves and analyze the consequences. We study the

problem from an integral equation point of view in coordinate

space. This approach has clear advantages compared to the

integro-differential formulation of our previous work [55]. In

particular the boundary conditions for the scattering problem

in the nuclear medium are automatically incorporated into the

integral equation. In addition, we shall show that the imple-

mentation of coupled channels is rather straightforward.

In this first exploring work we avoid the problem related

with inelasticities, which are expected to become important

at relative momenta above the ∆ production threshold. The

high quality NN interactions traditionally used to deal with

SRC, as is also the case of the coarse-grained potential used

in this paper, have been fitted to NN elastic scattering about

pion emission. This imposes limits for the maximum value of

the high momentum components and the meaning of the pre-

dictions for high-momentum components above 2–3 kF with

a real potential should be taken with care. In a recent paper

coarse graining has been shown to work nicely up to scattering

LAB energies of 3 GeV [56], in this case including inelasticity

effects. However, the analysis of the Bethe-Goldstone equa-

tion including inelasticities through a complex potential will

be postponed for a future work.

The outline of the paper is as follows: In section II we re-

view the partial-wave (PW) integral equations formalism of

the scattering problem before introducing in sect. III the the

BG equation in coordinate space. We particularize to the

case of a coarse grained potential with δ -shells, where the

equations can be discretized and solved by inversion of low-

dimension matrices. Next we proceed to momentum space

and get the expressions for the high-momentum components

of the BG solution for a correlated pair in the PW expansion.

In Sect. IV we apply the formalism to the coarse-grained

Granada potential, obtained in a recent partial-wave analy-

sis of a large, consistent database of NN scattering data with

χ2/ν ∼ 1 [51, 52]. The BG equation in nuclear matter is

solved for the first partial waves up to the 3F2 and the solu-

tions are analyzed both in coordinate and momentum space,

which allows us to obtain the high-momentum distribution of

np and pp correlated pairs. Finally we draw our conclusions

in section V and discuss future applications of this approach.

II. THE INTEGRAL SCATTERING EQUATION

Before introducing the BG equation, it is instructive to re-

view the particular case of the scattering equation in the vac-

uum in the partial waves representation (see also Appendices

of Ref. [57] for more details). The Schroedinger equation for

the reduced relative wave function of a pair of nucleons inter-

acting through a two-body potential can be written for coupled

channels (and therefore for total spin S = 1)

u′′k,l(r)−
(

l(l + 1)

r2
− k2

)
uk,l(r) = ∑

l′
Ul,l′(r)uk,l′(r) , (1)

where l is the orbital angular momentum quantum number,

Ul,l′(r) is the, in general, non-diagonal reduced potential and

the sum has to be carried out over all partial waves coupled by

the interaction.

These equations are subjected to the usual scattering

asymptotic boundary conditions and can equivalently be writ-

ten as a system of integral equations

uk,l(r) = ĵl(kr)+
∫ ∞

0
dr′ Gk,l(r,r

′)∑
l′

Ul,l′(r
′)uk,l′(r

′) , (2)

where ĵl(x) = x jl(x) is a reduced spherical Bessel function of

the first kind and Gk,l(r,r
′) is the Green’s function satisfying

[
∂ 2

∂ r2
−
(

l(l + 1)

r2
− k2

)]
Gk,l(r,r

′) = δ (r− r′) . (3)

The normalization chosen in Eq. (2) implies that the re-

duced wave function uk,l(r) is dimensionless. This normal-

ization for the relative wave functions is consistent with that

employed in our previous work [55] for the uncoupled 1S0

channel.

An analytic expression for the Green’s function Gk,l(r,r
′)

can be written as

Gk,l(r,r
′) = u(r)v(r′)θ (r− r′)+ u(r′)v(r)θ (r′− r) . (4)
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Inserting this in Eq. (3) it follows that u(r) and v(r) are solu-

tions of the homogeneous equation with unit Wronskian, i.e.,

[
∂ 2

∂ r2
−
(

l(l + 1)

r2
− k2

)]
u(r) = 0 (5)

[
∂ 2

∂ r2
−
(

l(l + 1)

r2
− k2

)]
v(r) = 0 (6)

u′(r)v(r)− u(r)v′(r) = 1 . (7)

We choose one of the two solutions to be proportional to the

regular solution, ĵl(kr). Then the other linearly independent

solution with the desired Wronskian has to be proportional to

ŷl(kr) = kr yl(kr) —the reduced spherical Bessel function of

the second kind. Therefore the Green’s function of the ordi-

nary differential equation with the proper normalization can

be written as

Gk,l(r,r
′) =

1

k
ĵl(kr<) ŷl(kr>) , (8)

where r< = min{r,r′} and r> = max{r,r′}.

Alternatively, one can also write the following integral rep-

resentation for the Green’s function

Gk,l(r,r
′) =

2

π
−
∫ ∞

0
dq

ĵl(qr) ĵl(qr′)
k2 − q2

, (9)

which can be proven to fulfill Eq. (3) by direct substitution

and using the ordinary differential equation satisfied by the

spherical Bessel functions jl(qr). To furnish the proof one has

to apply the integral representation of the Dirac δ -function

δ (r− r′) =
2

π

∫ ∞

0
dq ĵl(qr) ĵl(qr′) . (10)

Notice in Eq. (9) the symbol −
∫

, denoting the Cauchy principal

value of the integral, needed because of the simple pole at

q = k in the integrand.

III. GENERAL FORMALISM OF THE

BETHE-GOLDSTONE EQUATION

The BG equation is also known as the in-medium scattering

equation. It describes the quantum-mechanical state of two

particles (fermions) interacting through a potential V when

they are immersed in a medium. The medium prevents them

from being scattered into filled levels below the Fermi mo-

mentum kF , thus fulfilling the Pauli exclusion principle.

In operator form the BG equation reads,

G(E) =V +V
Q

E −H0

G(E) , (11)

where G(E) is the G-matrix, H0 is the unperturbed Hamil-

tonian of the problem, E is the energy of the correlated pair

and Q is the Pauli-blocking operator, which projects out of the

Fermi sphere.

In the case of nuclear matter, the unperturbed Hamiltonian

H0 corresponds to the kinetic energy and its eigenfunctions

are the single-particle plane-wave solutions with definite mo-

mentum, |p1p2〉.
If we take matrix elements between pairs of plane-wave

states in Eq. (11), and factor out the c.m., we obtain

〈k′|G(E)|k〉= 〈k′|V |k〉+
∫

d3q

(2π)3
〈k′|V |q〉 Q(q,P)

E −q2/(2µ)

× 〈q|G(E)|k〉, (12)

where k is the relative momentum of the pair and µ = MN
2

is

the reduced mass of the NN pair. The Pauli-blocking operator

Q(q,P) = θ (|P/2+q|− kF)θ (|P/2−q|− kF), depends on

the total momentum of the pair, P, and it breaks the rotational

invariance of the BG equation, with an explicit dependence on

the angle between the total momentum, P, and the relative mo-

mentum, q. This is known to generate a mixing among all par-

tial waves [58]. Since the early days, Brueckner proposed the

so-called averaging procedure [59]. An exact treatment of the

Pauli operator was discussed in Refs. [60, 61], bringing about

non-negligible and attractive contributions to the binding en-

ergy. Recently, a three-dimensional approach was proposed to

deal with the problem [62] and the implications for in-medium

nucleon-nucleon cross sections were analyzed [63].

In the independent pair approximation [64] the BG equa-

tion provides a well defined way to compute the effective two-

body operator, the G-matrix, which is appropriate to be used

in perturbation theory instead of the bare NN interaction. In

this work we solve the BG equation in the simplest case, i.e,

for total momentum P = 0, corresponding to a pair of back-

to-back nucleons interacting in the medium. In this case the

influence of SRC in the nuclear dynamics is expected to be

the largest. The general case of the P 6= 0 will be discussed in

future work.

A. Bethe-Goldstone equation in integral form

The advantage of the integral representation of the scatter-

ing problem sketched in Sect. II is that the BG equation for

a back-to-back correlated pair is straightforwardly obtained.

In fact we just replace the lower limit in the Green’s function

integral representation, Eq. (9), by the Fermi momentum kF ,

Gk,l(r,r
′)→ G̃k,l(r,r

′) =
2

π

∫ ∞

kF

dq
ĵl(qr) ĵl(qr′)

k2 − q2
. (13)

This kernel integral could be computed analytically in terms

of the integral cosine and sine functions, Ci(x) and Si(x), but

the expressions are a bit cumbersome for practical work. On

the other hand this integral is poorly converging numerically,

although it can be handled with quadrature rules of Levin’s

type [65, 66]. A convenient, alternative approach requires

transforming the above integral as follows

G̃k,l(r,r
′) =

2

π
−
∫ ∞

0
dq

ĵl(qr) ĵl(qr′)
k2 − q2

− 2

π
−
∫ kF

0
dq

ĵl(qr) ĵl(qr′)
k2 − q2

=
1

k
ĵl(kr<)ŷl(kr>)−

2

π
−
∫ kF

0
dq

ĵl(qr) ĵl(qr′)
k2 − q2

. (14)
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Note that in the first line of the above equation both integrals

contain the Cauchy principal value so that the singularity at

the pole q = k cancels exactly. Thus, we are left with an in-

tegral with bounded limits, 0 and kF . The Cauchy principal

value can be implemented by splitting the whole integral into

different intervals, below and above the pole at q = k, and in-

tegrating symmetrically around this pole with a finite ε-width,

and finally ensuring numerical convergence while taking the

limit ε → 0. We have checked that both procedures yield nu-

merically compatible results.

The analogous equation to Eq. (2) for the BG problem in

the coupled-channels case amounts to replace the free Green’s

function by the medium one, G → G̃, thus giving

ũk,l(r) = ĵl(kr)+

∫ ∞

0
dr′ G̃k,l(r,r

′)∑
l′

Ul,l′(r
′) ũk,l′(r

′) , (15)

where the symbol ũk,l(r) stands for the reduced relative wave

function of a correlated nucleon pair.

For example, if we write eq. (15) for the 3S1-3D1 coupled-

channel case (the deuteron-like configuration) we have to

solve the system of two integral equations

ũk,0(r) = ĵ0(kr)+
∫ ∞

0
dr′ G̃k,0(r,r

′)
[
U0,0(r

′) ũk,0(r
′)

+ U0,2(r
′) ũk,2(r

′)
]

(16)

ũk,2(r) = ĵ2(kr)+
∫ ∞

0
dr′ G̃k,2(r,r

′)
[
U2,0(r

′) ũk,0(r
′)

+ U2,2(r
′) ũk,2(r

′)
]
, (17)

with analogous expressions for the other coupled partial

waves.

B. The coarse-grained Bethe-Goldstone equation

In this section we specify a particular high-quality represen-

tation of the NN potential. For the purposes of this work, we

consider the coarse-grained δ -shell Granada potential of Refs.

[51, 52]. We remind that the parameters of this δ -shell poten-

tial were fitted to reproduce a statistically significant selection

of 6713 np and pp scattering data for TLAB ≤ 350 MeV with

χ2/ν = 1.04, and providing the most accurate description of

NN scattering to date 1. In a first approximation we will dis-

card all long-distance effects, such as CD-OPE or Coulomb,

which in the Granada potential start at 3 fm. These are crucial

for the scattering data analysis but will have little influence on

the SRC 2.

1 We have recently improved the description in Ref. [67] χ2/ν = 1.025 by

fitting also the pion-nucleon coupling constants. We will not consider this

new fit in this work.
2 In fact, in the 1S0 channel both effects are comparable since VC(rc) =

e2/rc ∼ 0.5 MeV and VOPE(rc) = − f 2e−mπ rc/rc ∼ −0.5 MeV for f 2 =
0.0763(1) [67].

In the δ -shell representation, the reduced NN potential is

written as a sum of Dirac deltas sampled at discrete points

Ul,l′(r) = 2µVl,l′(r) =
Nδ

∑
i=1

(λi)
SJ
l,l′ δ (r− ri) , (18)

where the strengths (λi)
SJ
l,l′ depend on the total spin (S) and

total angular momentum (J) of each (coupled or not) partial

wave 2S+1LJ . For subsequent discussions in this paper we la-

bel the reduced wave function, ũk,l(r), also with the SJ quan-

tum numbers that unambiguously identify the partial wave. In

this work we use the values of the parameters (λi)
SJ
l,l′ quoted

in Table I of Ref. [51], with Nδ = 5, and ri = ∆r i = 0.6i fm.

With the coarse-grained potential of eq. (18), the integra-

tions in Eq. (15) can be immediately performed, resulting in

ũSJ
k,l (r) = ĵl(kr)+

Nδ

∑
i=1

G̃k,l(r,ri)∑
l′
(λi)

SJ
l,l′ ũ

SJ
k,l′(ri) . (19)

To solve the BG equation in this representation we write

the above equation for the grid points, r = r j ( j = 1,2, ...,Nδ ),

obtaining a linear system of Nδ equations where the unknowns

correspond to the reduced wave functions at the grid points,

ũSJ
k,l (ri).

ũSJ
k,l (r j) = ĵl(kr j)+

Nδ

∑
i=1

G̃k,l(r j ,ri)∑
l′
(λi)

SJ
l,l′ ũ

SJ
k,l′(ri) . (20)

In this way we have reduced the BG problem from an integral

equation (15) to a linear system of algebraic equations (20).

This linear system can be easily solved by standard matrix

inversion methods. Once we know the solutions at the grid

points, ũSJ
k,l (ri), we can determine the wave function at any

other point, r, by using Eq. (19). Note that the very nature

of the potential does imply a wave function with “spikes” in

between the grid points, with no physical consequences, as it

will be shown below.

C. NN high-momentum components

In the last section we have solved the BG equation in coor-

dinate space through a partial wave expansion of the relative

wave function for total momentum of the nucleon pair P = 0.

This provides the spatial wave function of a correlated two-

nucleon pair in back-to-back configuration for initial relative

momentum of the pair equal to k. The BG equation naturally

introduces high momentum components with p > kF in this

solution. In this section we will compute these components

by Fourier transform.

The spins of the nucleon pair can be coupled to total spin

S = 0,1. We start with the well-known expression for a spin-

less plane wave (Rayleigh expansion),

eik·x = 4π ∑
l,m

il jl(kr)Y ∗
l,m(k̂)Yl,m(x̂), with r = |x|. (21)
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Its generalization to the spin-S case is

eik·xχ
SMs

= 4π ∑
l,m

il jl(kr)Y ∗
l,m(k̂)∑

J,M

〈lmSMs|JM〉YlSJM(x̂) ,

(22)

where χ
SMs

is an eigenspinor with spin quantum numbers

(S,Ms), and the functions YlSJM(x̂) are the couplings of the

the spherical harmonics with the spinors χ
SMs

to total angular

momentum J,

YlSJM(p̂) = ∑
m′,M′

s

〈lm′SM′
s|JM〉Yl,m′(p̂)χ

SM′
s
. (23)

The boundary conditions of the BG equation imply that,

asymptotically, the BG wave function converges to the free

plane wave. Therefore we perform a partial wave expansion

similar to Eq. (22),

ΨBG
k,SMs

(x) = 4π ∑
lmJM

il
ũSJ

k,l (r)

kr
Y ∗

l,m(k̂)〈lmSMs|JM〉YlSJM(x̂) .

(24)

The normalization for the reduced wave function chosen in

Eqs. (15) and (19) automatically ensures that Eq. (24) ap-

proaches to Eq. (22) when r → ∞. The labels (k,SMs) on the

BG wave function indicate that, asymptotically, this correlated

relative wave function converges to a free plane wave with the

nucleons spins coupled to total spin S and third-component

Ms.

To describe the high momentum components of the corre-

lated NN pair, we calculate the Fourier transform of Eq. (24)

ΦBG
k,SMs

(p) =

∫
d3x

(2π)3
e−ip·x ΨBG

k,SMs
(x) . (25)

By expanding the complex exponential with the complex con-

jugate of Eq. (21), and after substitution of Eq. (24) into (25),

one can integrate over the angular variables of d3x with the

aid of the identity

∫
dΩx̂ Y ∗

l′,m′(x̂)YlSJM(x̂) = δl,l′ ∑
M′

s

〈lm′SM′
s|JM〉χ

SM′
s
. (26)

The Kronecker delta, δl,l′ , allows to perform one of the partial

sums implicit in Eq. (25), producing as final result

ΦBG
k,SMs

(p) = ∑
lm

∑
JM

φk,lSJ(p)Y ∗
l,m(k̂)〈lmSMs|JM〉YlSJM(p̂) ,

(27)

where

φk,lSJ(p)≡ 2

π

∫ ∞

0
dr r2 jl(pr)

ũSJ
k,l (r)

(kr)
, (28)

is the ”radial” wave function in momentum space for the par-

tial wave 2S+1LJ . This ”radial” function is proportional to the

probability amplitude of finding a correlated two-nucleon pair,

with initial relative momentum k, having relative momentum

p in each partial wave.

To perform the integral in expression (28) we note that the

reduced wave function, ũSJ
k,l (r), fulfills equation (19). There-

fore, upon substituting Eq. (19) into Eq. (28) and by using

the analogous expression to Eq. (10) in momentum space, we

obtain

φk,lSJ(p) =
2

π

{
π

2pk
δ (p− k)+

1

k

Nδ

∑
i=1

∑
l′
(λi)

SJ
l,l′ ũSJ

k,l′(ri)

×
∫ ∞

0
dr r jl(pr)G̃k,l(r,ri)

}
. (29)

Finally, substituting Eq. (13) into the above expression (29),

permuting the order of the integrations between r and q vari-

ables, and using again the orthogonality relation, Eq. (10), of

the spherical Bessel functions, we obtain the result

φk,lSJ(p) =
1

pk
δ (p− k)+

2

π k

θ (p− kF)

k2 − p2

×
Nδ

∑
i=1

ri jl(pri)∑
l′
(λi)

SJ
l,l′ ũSJ

k,l′(ri), (30)

where the first term corresponds to the low-momentum com-

ponent of the correlated two-nucleon state, while the second

term explicitly incorporates the condition p > kF through the

step function. Therefore, it is the high-momentum component

of the correlated two-nucleon system. An expression similar

to Eq. (30), was provided in Eq. (44) of Ref. [55] for the

high momentum components of the 1S0 partial wave, except

for an overall normalization factor. Its origin has to be traced

back to the different normalizations used in the partial wave

expansions of the BG wave function. Here we have devel-

oped the general proof for all partial waves using a different

representation of the BG equation.

Eq. (30) is the main formula of this work. The high-

momentum components of the partial wave functions contain

a common factor k2 − p2 in the denominator, modulated by

a linear combination of spherical Bessel functions evaluated

at the points pri. This simple, analytical dependence repre-

sents an important, universal feature of the SRC. The infor-

mation of the NN interaction is encoded here in the quanti-

ties ∑l′(λi)
SJ
l,l′ ũ

SJ
k,l′(ri). Another feature of the SRC is that the

NN potential parameters always appear multiplied by the BG

wave function evaluated at the grid points.

In the next section we will present numerical results for the

BG partial wave functions and for the high-momentum distri-

bution. This distribution is proportional to the probability den-

sity for an initial pair with relative momentum k and total spin

|S,Ms〉 of being found after the interaction in a state of relative

momentum p in any direction. This is obtained by taking the

squared modulus of the BG wave function ΦBG
k,SMs

(p), given

by Eq. (27), and integrating over all the directions of p̂,
∫

dΩp̂

∣∣ΦBG
k,SMs

(p)
∣∣2 = ∑

l

∑
m,m′

∑
J,M

∣∣φk,lSJ(p)
∣∣2 Yl,m′(k̂)Y ∗

l,m(k̂)

×〈lm′SMs|JM〉〈lmSMs|JM〉 , (31)

where we have exploited the orthonormal properties of the

spin spherical harmonics

∫
dΩp̂ Y∗

l′S′J′M′(p̂)YlSJM (p̂) = δl′,l δS′,S δJ′ ,J δM′,M . (32)
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Notice that Eq. (31) still depends on the angles of k̂. No

further simplification is possible in expression (31) unless we

average it over all the possible directions of k̂. This average

provides the probability density of a correlated nucleon pair

with initial relative momentum k (in any direction) and to-

tal spin |S,Ms〉 to be found after the interaction in a state of

relative motion with momentum p (in any direction) as well.

Using the orthogonality property of the spherical harmonics,

we can perform the angular integration, obtaining

1

4π

∫
dΩk̂

∫
dΩp̂

∣∣ΦBG
k,SMs

(p)
∣∣2 = 1

4π ∑
l,J

∣∣φk,lSJ(p)
∣∣2

× ∑
m,M

〈lmSMs|JM〉〈lmSMs|JM〉 (33)

=
1

4π

1

2S+ 1
∑
l,J

(2J+ 1)
∣∣φk,lSJ(p)

∣∣2 (34)

where we have used the symmetry property of the Clebsch-

Gordan coefficients

〈lmSMs|JM〉= (−1)l−m

√
2J+ 1

2S+ 1
〈lmJ−M|S−Ms〉 . (35)

It is worth noting that the sum over (l,J) quantum numbers

in expression (34) is not truly independent, as it only runs

over the pairs of values compatible with the coupling of angu-

lar momenta [l ⊗ S]J , and with the antisymmetry of the whole

wave function for a system of two identical nucleons, as in pp

or nn configurations.

It should also be remarked that expression (34) does not

depend at all on the spin third-component quantum number

Ms. Therefore, if we sum Eq. (34) over all possible Ms-values,

the factor (2S+ 1) in the denominator of the right-hand side

of Eq. (34) cancels out.

To get rid of the low-momentum component (the piece with

the δ -function) in Eq. (30), when applying Eq. (34) we re-

strict the relative momentum p to be greater than the Fermi

momentum kF . With this restriction we avoid bothering about

the treatment of the square of a δ -function distribution, be-

cause the initial relative momentum k is always below kF

(k < kF ).

Using the results discussed above one can compute the BG

wave function corresponding to a nucleon pair with initial rel-

ative momentum k and spin components m1,m2. This is ob-

tained as an expansion in terms of BG wave functions of cou-

pled pairs

Φ̃BG
k,m1m2

(p) = ∑
S,Ms

〈1

2
m1

1

2
m2|SMs〉ΦBG

k,SMs
(p) . (36)

Note that the probability averaged over spins verifies

1

4
∑

m1,m2

∣∣∣Φ̃BG
k,m1m2

(p)
∣∣∣
2

=
1

4
∑

S,Ms

∣∣ΦBG
k,SMs

(p)
∣∣2 , (37)

where the factor 1
4

reflects the two possible spin states for each

nucleon.

IV. NUMERICAL RESULTS

In this section we provide results for the solution of the BG

equation of a nucleon pair in nuclear matter. All the calcu-

lations have been done for a Fermi momentum of kF = 250

MeV. Unless otherwise specified, we will show results for a

fixed value k = 140 MeV/c of the relative momentum of the

pair. The reason to choose this specific value for the relative

momentum of the nucleon pair is twofold: firstly, it repre-

sents an intermediate value for the allowed relative momenta

between 0 and kF ; and, secondly, it is also one of the values

considered in our previous work [55], where we only treated

the 1S0 partial wave. In this way, it will provide a more direct

comparison with the results already obtained in Ref. [55], at

least for the 1S0 channel.

Finally, it is worth warning the reader that the GR potential

is determined by the strengths at the grid points (λi)
SJ
l,l′ for all

the partial waves appearing in Table I of Ref. [51].

A. BG solutions on the grid points

In the case of total spin S = 0 we solve the linear system

(20). The unknowns are the values of the wave function at the

grid points ũSJ
k,l (ri) for J = l, and l = 0,1,2,3. Note that our

grid consist simply in the five points ri = 0.6,1.2,1.8,2.4 and

3 fm. Thus the solution of the BG in this case only requires

to invert a 5× 5 real matrix. In the case S = 1, the l = J

partial waves are uncoupled so they also require to invert a

5× 5 matrix. However the l = J − 1 and l = J + 1 multipoles

are coupled and this implies to solve a system of ten linear

equations.

Thus the GR potential allows to solve the BG equation at

minor computational cost. The only difficulties are to perform

numerically the one-dimensional integral in Eq (14) to com-

pute the Green’s function, and to invert at most a 10×10 ma-

trix for each pair of coupled multipoles. Note that this extreme

simplification appears only because we have coarse-grained

the potential with a few grid points. Using instead a more

general local NN potential would require to use a very fine

grain, with Nδ > 100 points, increasing the dimensionality of

the matrices to invert. To solve the BG equation with more

than 100 grid points would require highly intensive computa-

tion, thus loosing the practical advantages of the GR potential.

In figure 1 we show the correlated reduced wave functions

ũSJ
k,l (ri) on the grid points (dots on the plot) used in the matrix

inversion and for each one of the uncoupled channels appear-

ing in Table I of Ref. [51].

B. BG wave functions in coordinate space

As discussed above, knowledge of the wave function at the

grid points allow to reconstruct the full wave function using

the BG equation. In the figure 1 the correlated wave function

is compared with the free solution ĵl(kr). We also show the

defect wave function, defined as the difference between cor-
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related and uncorrelated waves,

∆ũSJ
k,l (r)≡ ũSJ

k,l(r)− ĵl(kr). (38)

As we see the effect of the interaction is to modify the rel-

ative wave function of the pair for short to intermediate dis-

tances. For large distances the wave function becomes equal

to the free one without any phase-shift. The SRC effects are

more prominent for the low-L partial waves, S, P and D es-

pecially. The interaction effect is largest for the S-wave and

decreases with the relative angular momentum. For l = 3 the

defect wave function is very small and cannot be seen in the

scale of the figure. When the angular momentum increases

the nucleons are far apart and the SRC effects go away. This

is due to the centrifugal barrier, which is more repulsive for

peripheral partial waves and prevents the two nucleons to ap-

proach each other at short distances, where the short-range

potential is noticeable. Besides, direct inspection of Table I of

Ref. [51] reveals that for growing angular momentum the in-

ner delta-shells (below the centrifugal barrier) are vanishing.

The results for the 1S0 (np) partial wave can be compared

to those corresponding to Fig. 3(d) of Ref. [55]. They are

similar but not equal because the δ -shell parameters used in

ref. [55] are not the same as here. Indeed, in Ref. [55], the

strengths of the δ -shells in this partial wave were adjusted to

reproduce the same phase-shifts as the AV18 potential [48] up

to a certain energy. The strengths used in the present work

were simultaneously fitted in a PWA to NN scattering data

[51–53]. In addition, here we consider five δ -shells, while

Fig. 3(d) of Ref. [55] was done with seven δ -shells.

C. Correlation functions

In figure 2 we plot the results for the correlation function,

defined as the ratio between the BG and the free wave func-

tions,

fcorr(r)≡
ũSJ

k,l (r)

ĵl(kr)
, (39)

for each one of the uncoupled NN partial waves shown in Fig.

1, with the same choice for the relative momentum k = 140

MeV. The correlation function approaches unity, after a few

oscillations, at long distances (r & 3 fm) where the effects of

the short-range NN potential are becoming more and more

negligible. The significant deviation from unity for the corre-

lation function occurs at short distances, where the NN poten-

tial is present.

An important feature that can be observed from Fig. 2 is

that the correlation function is quite constant for the shortest

distances, below the range of the first non-vanishing delta-

shell strength (λi)
SJ
l,l , which occurs at different distances for

each partial wave, as can be seen from the values quoted in

Table I of Ref. [51]. Additionally, the sign of the first non-

vanishing strength λi in each partial wave determines if the

correlation function is larger or smaller than unity at the short-

est distances, thus reflecting the attractive or repulsive nature

of the potential in each channel, and the probability for the

two correlated nucleons of being closer or farther relative to

the uncorrelated situation. The first non-vanishing δ -shell

strengths are positive in the S, P and F channels of Fig. 2,

while they are negative in the D partial waves. The correla-

tion function is especially large at short distances for the 3D2

channel as compared to the 1D2 case, due to the much stronger

attractive character of the first λ at 1.2 fm in the 3D2 partial

wave (cfr. Table I of Ref. [51]).

Finally, if one compares the first panel of Fig. 2, corre-

sponding to the 1S0 (np) channel, with Fig. 4(b) of the analysis

made in Ref. [55], one can observe that the tails of the cor-

relation function for distances larger than 2 fm are extremely

similar. However, the detailed structure of the inner region

(below 2 fm) strongly depends on the strengths of the delta-

shells, which are different in both analyses. Notice that the

correlation function below 0.5 fm in Fig 4(b) of Ref. [55] is

much more suppressed than here, indicating a harder core in

the GR7 potential used there. That hardness in the potential

produces appreciable differences in the description of the very

high-momentum components in the NN wave function [55].

D. Coupled channels

In figure 3 we show the analogous results to figure 1 for the

coupled 3S1-3D1 and 3P2-3F2 partial waves. The correspond-

ing strengths for the delta-shells are taken from Table I in Ref.

[51], where the non-diagonal strengths (λi)
SJ
l,l′ with l 6= l′ are

labelled by εJ . These results have been obtained by solving

Eqs. (19) and (20) for relative momentum k = 140 MeV.

By comparing these coupled partial waves with their un-

coupled counterparts (Fig. 1) we can observe that the short-

distance distortion of the wave function is larger for coupled

than for uncoupled channels, especially for the case L = J+1,

i.e, the 3D1 and 3F2 waves. Notice that the effect of SRC is

less important for the L = J−1 waves, 3S1 and 3P2, which are

much more similar to their uncoupled counterparts (the 1S0

and the P-waves shown in Fig. 1). This very large effect of

SRC in the coupled waves is produced to a large extent by the

mixing of the l = J−1,J+1 partial waves by the tensor force

operator appearing in the NN interaction. This makes sense,

first, because we have seen in the uncoupled waves that the

SRC effects are more important for low-L. Since the tensor

force is also present in the uncoupled waves through its diag-

onal part, we conclude that the strong correlations seen in the
3D1 channel must be due to its mixing with the 3S1 channel

via the non-diagonal matrix elements of the Hamiltonian.

The same kind of conclusions can be drawn from observing

the results of figure 4 for the correlation functions of the cou-

pled waves. The 3S1 correlation function is similar in magni-

tude to the 1S0 one. The 3P2 correlation function is larger than

one for short distances, reflecting an attractive force at short

distances, similar in magnitude to the repulsion seen in the

uncoupled P-waves. The correlation functions of the coupled

waves 3D1 and 3F2 show the largest distortion of the wave

function at short distances. The SRC effect is especially large

in the 3D1 wave. Notice that fcorr(r)≈ 14 for distances below

1.2 fm. For the 3F2 channel we have fcorr(r)≈−2. The huge
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FIG. 1. BG wave functions ũSJ
k,l (r) for the uncoupled NN partial waves. We also display the free solution ĵl(kr) in dashed style, and the defect

wave function ∆ũSJ
k,l (r)≡ ũSJ

k,l (r)− ĵl(kr) as dotted lines. The calculations have been done for a relative momentum of the pair k = 140 MeV.

SRC effect seen in the coupled waves 3D1 and 3F2 is in con-

trast to the much softer effect found for the D and F uncoupled

partial waves seen in figure 2.

In order to understand the importance of the mixing be-

tween coupled partial waves, we switch off the non-diagonal

delta-shell strengths, (λi)
SJ
l,l′ = 0 for l 6= l′. With this trick,

the BG equations in Eq. (20) get effectively uncoupled, and

all partial waves can be solved separately. Note that with this

trick we are artificially “amputating” the NN potential by ne-

glecting the non diagonal part of the tensor force but leaving
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FIG. 2. Correlation function fcorr(r)≡
ũSJ

k,l (r)

ĵl(kr)
for each uncoupled NN partial wave. The calculations have been done for k = 140 MeV.

intact its diagonal part. So, the diagonal part of the tensor

force is still present in this calculation.

The results for the “uncoupled” 3S1 and 3D1 waves are

shown in figure 5, where we plot the reduced wave function

and the correlation function. By comparing this figure with

the coupled case of Fig. 3 we observe that the distortion in the

wave function due to the SRC almost disappears in the 3D1

partial wave and gets much quenched in the 3S1 channel. This
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FIG. 3. BG wave functions ũSJ
k,l (r) for the coupled NN partial waves 3S1-3D1 and 3P2-3F2. We also display the free solution ĵl(kr) in dashed

style, and the defect wave function ∆ũSJ
k,l (r) as dotted lines. The calculations have been done for a relative momentum of the pair k = 140 MeV.

is another clear evidence on the importance of mixing and,

therefore, of the tensor force in the modification of the wave

function at short distances (SRCs). The same conclusion can

be drawn from the correlation function shown in the lower

panel of Fig. 5: when the partial waves get uncoupled, the

correlation functions at short distances are much closer to one

than in the coupled case, where the full interaction is used.

Although not shown in this work, similar effects to those

shown in Fig. 5 are observed in the J = 2 coupled channel if

we switch off the non-diagonal delta-shell strengths and the

linear system becomes uncoupled. The effects are relatively

more significant in the 3F2 wave, because it corresponds to the

member of the coupled pair of partial waves with L = J + 1,

as we already mentioned when discussing Fig. 3.

E. NN high-momentum components

In figure 6 we show the high-momentum components of the

NN correlated wave function, given by the modulus squared

of Eq. (30) for p > kF . The panel (a) corresponds to the

uncoupled channels already shown in Fig. 1 (except for the
1P1 wave, which is very similar to 3P1 and not shown), while

in the panel (b) we show the coupled partial waves depicted in

Fig. 3.

Generally, in the uncoupled sector, the partial waves with

higher probability of having high-momentum components are

those of Fig. 1 that present the largest distortions (or defect

wave functions) at short distances. Note that, for instance, for

the 1D2 and 1F3 waves, the distortion effects are really small

in Fig. 1, thus resulting in almost negligible contributions in

the high-momentum tail of Fig. 6.

In the coupled sector, corresponding to panel (b) of Fig. 6,

the most important high-momentum contributions are those of

the 3S1-3D1 coupled channels, which already showed the most

prominent distortions at short distances in Fig. 3. Note the

typical diffractive nodes appearing in the 1S0 and 3S1 partial

waves for p≈ 400 MeV. The minimum of the 3S1 wave will be

highly suppressed by the addition of the relatively large mo-

mentum distribution of the 3D1 wave. The minimum of the

S wave momentum distribution is well known from previous

studies [15, 68] to appear for zero total momentum of the nu-

cleon pair, as in the present work. In these other studies, this

minimum was observed in the momentum distribution of pp

pairs because these are predominantly found in a relative 1S0

state (the 3S1 is forbidden for pp pairs due to the Pauli princi-

ple restriction that the global wave function of the pair has to

be antisymmetric). Notice that, although we have not shown

here results for the 1S0-pp channel, their delta-shell strengths

are very similar to those of the 1S0-np channel, and therefore

the corresponding momentum distribution of the pair is very

similar to that presented in the panel (a) of Fig. 6 for the 1S0-

np state.

In order to understand in more depth the origin of the node

in the 3S1 partial wave and the effect of the mixing in the

coupled 3S1-3D1 channel, we show the results of Fig. 7. To

properly apprehend the meaning of the different pieces con-

tributing to the total high-momentum distribution of the 3S1
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FIG. 4. Correlation function fcorr(r) for the coupled NN partial waves 3S1-3D1 and 3P2-3F2. The calculations have been done for k = 140

MeV.

and 3D1 coupled partial waves, it is convenient to explicitly

split the sum over l′ in Eq. (30) in its diagonal part (with

l′ = l) and its off-diagonal part (with l′ 6= l), for each one of

these coupled partial waves, thus obtaining:

φk,3S1
(p > kF) =

2

π k

1

k2 − p2





Nδ

∑
i=1

{
ri j0(pri)(λi)SS

ũk,3S1
(ri)

}

︸ ︷︷ ︸
SS

+
Nδ

∑
i=1

{
ri j0(pri)(λi)SD

ũk,3D1
(ri)

}

︸ ︷︷ ︸
SD





(40)

= SS+SD ,

and

φk,3D1
(p > kF) =

2

π k

1

k2 − p2





Nδ

∑
i=1

{
ri j2(pri)(λi)DS

ũk,3S1
(ri)

}

︸ ︷︷ ︸
DS

+
Nδ

∑
i=1

{
ri j2(pri)(λi)DD

ũk,3D1
(ri)

}

︸ ︷︷ ︸
DD





(41)

= DS+DD ,

where the SS term is the contribution of the 3S1 wave to the

high-momentum distribution of the 3S1 wave (diagonal term),

while the SD term is the contribution of the 3D1 wave to the

high-momentum distribution of the 3S1 partial wave (mixing

term). The DS and DD terms have an analogous meaning for

the 3D1 high-momentum distribution. Note that, although the

delta-shell strengths are symmetric (λi)SD
= (λi)DS

, the SD

and DS terms of Eqs. (40) and (41) are not equal. Now taking

the module squared of Eqs. (40) and (41), three contributions

come out for each partial wave
∣∣∣φk,3S1

(p > kF)
∣∣∣
2

= |SS+SD|2

= |SS|2 + |SD|2 + 2Re [SS∗×SD] ,(42)

and a similar expression for the 3D1 case. These three sep-

arated contributions are plotted in Fig. 7. What can be ob-



12

0 2 3 4 5

-0.4

-0.2

0.0

0.2

0.4

0.8

r[fm]

ũ
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FIG. 5. Upper figures: BG wave functions ũSJ
k,l (r) for the NN partial waves 3S1-3D1 treating them as fully uncoupled by switching off the

non-diagonal strengths, (λi)
SJ
l,l′ with l 6= l′. Lines have the same meaning as in Figs 1 and 3. Lower figures: Correlation function fcorr(r) for

the same partial waves assuming no mixing between them. The calculations have been done for a relative momentum of the pair k = 140 MeV.

served in this figure is that the mixing terms (SD and DS) are

generally the most important pieces contributing to the high-

momentum distribution of the pair in this coupled channel. In

fact, in the 3S1 wave the SD-piece is dominant in the range

below 400 MeV, while in the 3D1 wave the DS-piece domi-

nates in almost the full range of high momenta. From these

results we conclude that the largest contribution to the high

momentum distribution tail of a nucleon pair in the deuteron

channel comes from the mixing produced by the non-diagonal

part of the NN interaction mixing the S and D waves, that is,

by the tensor force again. If we set to zero this mixing (by

setting SD = DS = 0), this large tail is considerably reduced

in magnitude, because only the SS and DD terms survive, as

can be seen in Fig. 7.

Notice that the interferences SS-SD and DS-DD can be neg-

ative for some ranges in the p variable. In fact, they are for

sure at the nodes of the total (solid red line) curve, because

the other contributions are always positive by construction. To

represent all the components in the same logarithmic scale, we

have plotted the absolute value of the interferences.

F. pp versus np high momentum distributions

In figure 8 we compare the high-momentum distributions

(p > kF ) for np and pp correlated pairs coupled to a definite

spin, S = 0,1. The initial relative momentum of the back-

to-back pair is k = 140 MeV. These distributions have been

obtained by integrating

∣∣∣ΦBG
k,SMs

(p)
∣∣∣
2

over the angles of the

initial and final momenta, k̂ and p̂, and summing over all the

Ms spin projections for a given spin S,

∣∣ρk,S(p)
∣∣2 ≡ ∑

Ms

∫
dΩk̂

∫
dΩp̂

∣∣ΦBG
k,SMs

(p)
∣∣2

= ∑
L,J

(2J+ 1)
∣∣φk,LSJ(p)

∣∣2 , (43)

This is proportional to the probability density for a correlated

pair with initial relative momentum k in any direction, and

total spin S with any projection Ms, to be found with high rel-

ative momentum p > kF in any direction as well. Note that

it is given as the sum of the squared of the radial wave func-

tions for all the partial waves, multiplied by its multiplicity

(2J+ 1).
It can be observed from Fig. 8 that the high-momentum dis-

tribution for a np pair is larger than for the pp case, regardless

of the spin. This is generally due to the fact that for np pairs

more partial waves contribute than for a pp pair with a given

total spin. For a pp pair with spin S = 0 only partial waves

with even L contribute, due to the global antisymmetry of the

wave function for two identical fermions. Conversely, for a pp

pair with spin S = 1, only partial waves with an odd value of L

contribute. However, for np pairs all partial waves contribute

because of the presence of two possible isospin combinations,

T = 0,1.

In general, pp high-momentum distributions for S = 0 and
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FIG. 6. NN high momentum components
∣∣φk,lSJ(p)

∣∣2 in the correlated wave function, calculated for relative momentum of the nucleon pair

k = 140 MeV. Panel (a) corresponds to the uncoupled NN partial waves, while panel (b) corresponds to the coupled ones. The high-momentum

plotting region is restricted to p > kF .
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high-momentum plotting region is restricted to p > kF .
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singlet (S = 0) high momentum distribution, while in panel (b) we show the triplet (S = 1) case. The contributions of different partial waves are

accumulatively added in each spin channel. The calculations have been performed for relative momentum of the nucleon pair k = 140 MeV.
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FIG. 10. Panel (a): comparison of high momentum distributions for np and pp pairs for three different values of the initial momentum k. Panel

(b): the same as the panel (a) but with the pp distribution multiplied by a factor 18.

for S= 1 are comparable in magnitude (except for the position

of their minima). However, this is not the case for the np high-

momentum distributions: the triplet (S = 1) distribution is one

order of magnitude larger than the singlet (S = 0). This effect

is mainly due to the tensor force, which is absent in the singlet

channel and is only present in the triplet one. The most impor-

tant contributions to the high-momentum distribution for a np

pair with S = 1 (panel (b) of Fig. 8) are the coupled 3S1-3D1

partial waves. For a pp pair in the triplet channel only partial

waves with odd L are allowed, and this excludes the 3S1-3D1

contribution. There is, of course, the presence of the coupled
3P2-3F2 channel, but its contribution to the high momentum

components is generally small.

These features encountered here for the two-nucleon high-

momentum distributions are in agreement with those found

in other studies of the high-momentum distributions of finite

nuclei and nuclear matter [15, 32, 69–71] for a wide variety

of nuclei. These results provide support for the approach we

have initiated in this work to solve the BG equation with a

coarse-grained potential.

In figure 9 we show the comparison between the high-

momentum distributions of np and pp correlated pairs, for ini-

tial momentum k = 140, regardless of the total spin of the

pair. This amounts to carrying out an additional sum in Eq.

(43) over the two possible total spins, S = 0,1. From the fig-

ure it appears that the high momentum components for corre-

lated np pairs are much larger than for pp pairs. This is a well

known feature of SRC with wide experimental support. In fact

in the recent JLab experiment of ref. [32] a factor 18± 5 was

reported between the np and pp high momentum correlated

pairs in the 12C ground state. This factor is in respectable ac-

cord with the results in Fig. 9. In fact when we multiply the

pp distribution by a factor 18, it is very similar to the np one.

Moreover if we plot the ratio np/pp (lower panel of fig. 9) we

find it to be inside the same interval 18± 5 reported in Ref.

[32]
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Finally in Fig. 10 we make the same np/pp comparison

for three different values of the initial momentum k = 40,140

and 200 MeV. While the high momentum distribution is found

to be dependent on k, the factor 18 between both distribution

is quite stable for the three values of k considered. Therefore,

although it is out of the scope of the present work, one expects

that the same factor be approximately valid also for the total

momentum distribution.

V. CONCLUSIONS

In this work we have obtained the high-momentum distribu-

tions for a correlated nucleon pair in nuclear matter by solv-

ing the Bethe-Goldstone equation in coordinates representa-

tion for the original coarse-grained NN potential used directly

to generate the Granada-2013 database, a 3σ self-consistent

selection of 6173-NN scattering data out of the about 8000

collected since 1950 till 2013 at about pion production thresh-

old, TLAB = 350 MeV with a reduced χ2/ν ∼ 1.04 [51–53].

This calculation has been done without introducing a further

smooth potential, as it has been usually the case in the past

with the so-called high-quality potentials descending from the

benchmarking Nijmegen analysis 25 years ago. This way we

avoid a source of systematic bias.

The method is based on solving the integral Bethe-

Goldstone equation for a nucleon pair with total momentum

of the pair P = 0 and relative momentum k. The applica-

tion of the method for a coarse-grained potential consisting

on delta shells located at some equally spaced concentration

radii below 3 fm is very simple. It only consists on inverting

a 5× 5 linear system of equations for the uncoupled partial

waves, and a 10× 10 matrix for the partial waves coupled by

the tensor force.

The effects of the mixing due to the tensor force in some

partial waves are very important, especially for the 3S1-3D1

channel, which is only present in the neutron-proton high-

momentum distribution and makes it to be much larger than

its proton-proton counterpart. More specifically, we find that

the probability of finding a high-momentum correlated np pair

is about 18 times that of a pp pair, as a result of the strong ten-

sor force, thus confirming in an independent way previous re-

sults and measurements. This important finding is coincident

with those of previous studies carried out for different nuclei

[15, 32, 69–71].

Future extensions of this work include the treatment of the

center-of-mass of the nucleon pair, which will allow us to

widen our calculations for P 6= 0. While it has traditionally

been handled by the averaging method of Brueckner, we ex-

pect it to be manageable by means of perturbative methods. A

more ambitious goal requires considering the mixing among

all partial waves induced by the Pauli-blocking operator. For

the coarse grained potential considered in this work this can

be accomplished in a partial expansion terminating at a maxi-

mum total angular momentum Jmax. This requires inverting, at

most, a 5Jmax- or 10Jmax-dimensional matrices for uncoupled

and coupled channels, respectively.

We also plan to try perturbation theory right from the be-

ginning by adequately renormalizing the wave function in the

first iteration (note that equation (19) can be, in principle, it-

eratively solved). This was found to be possible for the 1S0

case in Ref. [55]. If it were found the same for the other

partial waves calculated in this work, the SRC could be con-

sistently incorporated in our SuSA-MEC (Super-scaling ap-

proach with Meson-Exchange currents) formalism [72, 73]

to calculate multi-nucleon emission in neutrino and electron

scattering.
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