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Chiral effective field theory is a framework to derive systematic nuclear interactions. It is based on
the symmetries of quantum chromodynamics and includes long-range pion physics explicitly, while
shorter-range physics is expanded in a general operator basis. The number of low-energy couplings
at a particular order in the expansion can be reduced by exploiting the fact that nucleons are
fermions and therefore obey the Pauli exclusion principle. The antisymmetry permits the selection
of a subset of the allowed contact operators at a given order. When local regulators are used for
these short-range interactions, however, this “Fierz rearrangement freedom” is violated. In this
paper, we investigate the impact of this violation at leading order (LO) in the chiral expansion.
We construct LO and next-to-leading order (NLO) potentials for all possible LO-operator pairs
and study their reproduction of phase shifts, the 4He ground-state energy, and the neutron-matter
energy at different densities. We demonstrate that the Fierz rearrangement freedom is partially
restored at NLO where subleading contact interactions enter. We also discuss implications for local
chiral three-nucleon interactions.

I. INTRODUCTION

Chiral effective field theory (EFT) [1, 2] is a powerful
framework to derive nuclear interactions. It is connected
to the symmetries of quantum chromodynamics (QCD)
and provides a systematic expansion for nuclear forces,
including two-nucleon (NN) and many-nucleon interac-
tions, which enables calculations with controlled theoret-
ical uncertainties. Chiral EFT explicitly includes long-
range pion-exchange physics and parametrizes shorter-
range physics by the most general set of contact opera-
tors that is permitted by all symmetries of QCD. Thus,
in chiral EFT, NN interactions are given by the sum of
pionic and short-range contributions,

VNN (Q,Λ, C
(π)
i ) = Vπ(Q,Λ, Cπi ) + Vcont(Q,Λ, Ci) , (1)

where Q denotes the momenta involved or the pion mass
and Λ is a regularization or cutoff scale. Furthermore, Vπ
stands for the contribution to the interaction from long-
range pion exchanges, while Vcont contains all of the con-
tributions from short-range contact operators. The long-
range pion exchanges depend on a set of pion-nucleon
couplings, Cπi , and the short-range interactions depend
on a set of low-energy couplings (LECs), Ci, that are
typically fit to experimental data. Considerable effort
has been invested recently into the improvement of chi-
ral interactions; see, e.g., Refs. [3–7].

The most general set of NN contact operators at a
particular order in the chiral expansion is given by all
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combinations of spin, isospin, and momentum operators
that are permitted by the symmetries at this order. In
addition to the spin and isospin of the two nucleons, these
operators depend on two momenta that can be chosen to
be the momentum transfer q = p′−p with the incoming
and outgoing relative momenta p = (p1−p2)/2 and p′ =
(p′1−p′2)/2, respectively, and the momentum transfer in
the exchange channel k = 1

2 (p′ + p). Interactions that
depend only on q are local, i.e., they depend only on
the relative distance r upon Fourier transformation to
coordinate space, while k dependencies lead to nonlocal
interactions.

The number of contact operators at each order in the
chiral expansion can be reduced (by a factor of two
for NN interactions), due to the fact that nucleons are
fermions and therefore obey the Pauli exclusion princi-
ple. As a result of the antisymmetry, only a subset of the
allowed contact operators at a given order is linearly in-
dependent. Generally only the linearly independent con-
tact operators are therefore included. While several sub-
sets can be chosen at each order, they all lead to the
same predictions for physical observables. This property
is known as Fierz rearrangement freedom or Fierz ambi-
guity, given the analogy to Fierz identities in four-fermion
interactions [8].

Recently, local chiral interactions have been developed
that can be used in quantum Monte Carlo (QMC) meth-
ods [9–13]. This has led to the first investigations of light
nuclei and neutron matter using QMC methods in com-
bination with chiral EFT interactions [13–20]. However,
it has been found that local regulator functions introduce
sizable regulator artifacts in the three-nucleon (3N) sec-
tor [11, 15, 21]: First, one finds less repulsion from the
3N two-pion-exchange interaction than for typical non-
local regulators, and second, there is a violation of the
Fierz rearrangement freedom for the short-range 3N con-
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tact interactions, i.e., calculations depend on the choice
of the short-range operators; see also Ref. [22]. While
it is true that all regulator functions introduce regulator
artifacts at finite cutoffs, the effects of the violation of
the Fierz ambiguity have been found to be larger than
or comparable to other sources of uncertainty, as demon-
strated in Refs. [15, 21]. This additional regulator arti-
fact is present for local short-range regulators [11, 23],
but not for typical nonlocal short-range regulators used
in previously derived nonlocal 3N interactions [24, 25].

A similar violation of the Fierz ambiguity due to lo-
cal regulators also appears in the NN sector. Based on
power counting arguments, one would expect these ef-
fects to be even larger in the NN than in the 3N sector.
Thus, it is important to study how physical observables
are affected by the violation of the Fierz ambiguity inNN
interactions. Moreover, the NN sector provides an ideal
testing ground for understanding this additional regula-
tor artifact.

In this paper, we explore the violation of the Fierz am-
biguity at leading order (LO) in the NN sector and inves-
tigate the effects of this violation on the local coordinate-
space interactions of Refs. [9, 10]. We study phase shifts,
the ground-state energy of 4He using the Green’s function
Monte Carlo (GFMC) method [26], and the energy per
particle of neutron matter using the auxiliary-field dif-
fusion Monte Carlo (AFDMC) method [26] for different
short-range operator combinations. After investigating
this regulator artifact at LO, we show that at next-to-
leading order (NLO) the Fierz rearrangement freedom is
partially restored and the remaining violation is smaller
than typical chiral uncertainty estimates. We emphasize
that this effect is not present in nonlocal NN interac-
tions [5–7, 27, 28] or semilocal interactions [3, 4].

This paper is structured as follows. In Sec. II we ex-
plain in more detail the Fierz rearrangement freedom and
its relation to different regulator choices. In Sec. III we
study the consequences of the violation of the Fierz ambi-
guity for local chiral LO interactions and then investigate
“complete” LO interactions in Sec. IV. In Sec. V we study
the effects of the inclusion of NLO corrections. Finally,
we summarize in Sec. VI.

II. FIERZ REARRANGEMENT FREEDOM

The NN interaction at LO (Q0) in Weinberg
power counting has two contributions: The local
one-pion–exchange (OPE) interaction and momentum-
independent contact interactions. The general set of LO
contact interactions consistent with the symmetries is
given by the spin-isospin operators 1, σ12 = σ1 ·σ2, τ12 =
τ 1 · τ 2, and σ12τ12.

V
(0)
cont = C1 + Cσσ12 + Cττ12 + Cστσ12τ12 . (2)

Even though antisymmetry is a basic symmetry only of
the many-body states, in the following we study the an-

tisymmetrized potential to explain the origin of the Fierz
rearrangement freedom. The interaction after antisym-
metrization, Vas, is given by

Vas(q,k) =
1

2
(V (q,k)−A[V (q,k)]) , (3)

with the antisymmetrizer A defined via

A[V (q,k)] =
1

4
(1 + σ12)(1 + τ12)

× V
(
q→ −2k,k→ −1

2
q

)
. (4)

Performing the antisymmetrization for the LO contact
interaction explicitly, we find [10]

V
(0)
cont,as =

1

2

(
1− 1

4
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)
V
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=
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1

+
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Cτ +
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+
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8
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Cτ +

3

8
Cστ

)
τ12

+

(
−1

8
C1 +

1

8
Cσ +

1

8
Cτ +

3

8
Cστ

)
σ12τ12

= C̃S + C̃Tσ12 +

(
−2

3
C̃S − C̃T

)
τ12

+

(
−1

3
C̃S

)
σ12τ12 . (5)

As can be seen, there are only two independent cou-
plings at LO after antisymmetrization, and these two
couplings contribute to the two possible S-wave scatter-
ing channels. Thus, only two out of the four operator
structures are necessary to describe the contact physics
at LO while the remaining operator structures are recov-
ered after antisymmetrization. In principle, any linearly
independent combination of two out of the four contact
interactions can be chosen, which is used to reduce the
number of LECs when constructing chiral NN interac-
tions.

Chiral EFT is a low-momentum theory and, thus,
when using chiral interactions in few- and many-body cal-
culations, it is necessary to apply momentum-dependent
regulator functions to cut off high-momentum modes that
would otherwise lead to divergences. In general, the reg-
ulator function can depend on both momentum scales,
fR(q,k). Let us now consider the preceding argument
with a regulator for the short-range potential included.
The Fierz ambiguity is preserved if the regulator com-
mutes with the antisymmetrizer, i.e., when

fR(q,k) = fR

(
−2k,−1

2
q

)
. (6)
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In this case the regulator is just a prefactor in Eqs. (3)
and (5) and does not affect the antisymmetrization pro-
cedure: There are still only two independent contact op-
erators at LO. The condition Eq. (6) is fulfilled only when
the regulator is a symmetric and even function of q and
2k. This is equivalent to regulating the short-range con-
tact interactions with symmetric and even functions of
p and p′, as has been done for previously derived nonlo-
cal [5–7, 27, 28] and semilocal interactions [3, 4], which

use the functional form

fR(p,p′) = exp

[
−
(
p

Λ

)2n
]

exp

[
−
(
p′

Λ

)2n
]
, (7)

where n takes integer values.
In contrast, local regulators fR(q) violate the Fierz re-

arrangement freedom, because they do not commute with
the antisymmetrizer. Introducing the momentum ex-
change operator Pm, where Pmf(q,k) = f(−2k,− 1

2q),
the antisymmetrized interaction with local regulators is
given by

V
(0,loc)
cont,as =

1

2

(
1− P

m

4
(1 + σ12)(1 + τ12)

)
V

(0)
contfR(q)

= 1

(
C1
2
fR(q)− 1

8
(C1 + 3Cσ + 3Cτ + 9Cστ ) fR(2k)

)
+ σ12

(
Cσ
2
fR(q)− 1

8
(C1 − Cσ + 3Cτ − 3Cστ ) fR(2k)

)
+ τ12

(
Cτ
2
fR(q)− 1

8
(C1 + 3Cσ − Cτ − 3Cστ ) fR(2k)

)
+ σ12τ12

(
Cστ

2
fR(q)− 1

8
(C1 − Cσ − Cτ + Cστ ) fR(2k)

)
,

(8)

where fR(q) 6= fR(2k). All of the above combina-
tions of LECs are linearly independent and, thus, the
Fierz rearrangement freedom is violated. This viola-
tion of the Fierz ambiguity is a manifestation of the
fact that introducing a regulator function affects terms
beyond the order at which one is working, and should
be corrected when subleading contact operators are in-
cluded. Here we illustrate this explicitly by using a Gaus-
sian local regulator, fR(q) = exp(−(q/Λ)2), such that
PmfR(q) = fR(2k) = exp(−4(k/Λ)2). Expressing k in
terms of q, p, and p′, we can write

PmfR(q) = exp

(
− q

2

Λ2

)
exp

(
−4p · p′

Λ2

)
= fR(q)

(
1− 4p · p′

Λ2
+O

(
(Q/Λ)4

))
.

(9)

Inserting Eq. (9) into Eq. (8), we find

V
(0,loc)
cont,as =

(
C̃S + C̃Tσ12 +

(
−2

3
C̃S − C̃T

)
τ12 (10)

+

(
−1

3
C̃S

)
σ12τ12

)
fR(q) + V fcorr(p · p′) ,

where V fcorr(p · p′) captures the higher-order effects
∼ 4p · p′/Λ2 + O((Q/Λ)4) in Eq. (9). Reexpressing p
and p′ in terms of q and k, the first correction term in
Eq. (9) can be rewritten as

−4p · p′
Λ2

= − 4

Λ2
k2+

1

Λ2
q2 . (11)

These operators will be introduced at NLO in chi-
ral EFT, and, analogously, the higher-order corrections

O((Q/Λ)4) will be included at next-to-next-to-next-to-
leading order (N3LO) and beyond.

The higher-order terms V fcorr(p · p′) depend on both
the explicit form of the chosen regulator and on the order
at which one is working. Because the correction terms
depend on the angles between the nucleons, they con-
tribute to higher partial waves (nonlocal regulators only
depend on the magnitudes p and p′). As a consequence,
while, e.g., the LO contact interactions only describe the
two S-wave channels, the use of local regulators leads to
a mixing of these contributions into higher partial waves.

More generally, every regulator that respects the Fierz
rearrangement freedom is an even function of p and p′.
Then, every regulator that mixes LO physics into partial
waves with odd l, e.g., P waves, and as a consequence
contains terms of the form (p ·p′)2n+1, violates the Fierz
rearrangement freedom. Thus, it follows that a viola-
tion of the Fierz rearrangement freedom is equivalent to
a mixing of the S-wave contact interactions into odd-l
partial waves. In contrast, mixing of LO contact physics
into partial waves with the same S and T (∆l = 2n) is
compatible with the Fierz rearrangement freedom.

Let us consider the violation of the Fierz ambiguity at
LO from the point of view of a partial-wave decomposi-
tion. We again consider a Gaussian regulator in q. This
regulator can be rewritten as

exp

(
−p2 + p′2

Λ2

)
exp

(
i
(−2ip · p′)

Λ2

)
, (12)

where the first factor is a typical nonlocal Gaussian regu-
lator. The second factor, however, depends on the angle
between p and p′. Expanding this second exponential
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function in partial waves, we find

exp

(
i
(−2ip · p′)

Λ2

)
= 4π

∑
lm

iljl

(−2ipp′

Λ2

)
× Y ∗lm(Ωp′)Ylm(Ωp) , (13)

with jl a spherical Bessel function, and Ylm a spherical
harmonic. We can now compare the radial part for this
local regulator to a nonlocal LO contact interaction with
a Gaussian regulator in a partial-wave basis. The nonlo-
cal potential leads to

〈plm|Vnonloc
LO (p,p′)|p′l′m′〉 = 4πCδl0δl′0δm0δm′0

× fR(p, p′) , (14)

while the local version takes the form

〈plm|Vloc
LO(p,p′)|p′l′m′〉 = 4πCδll′δmm′

×iljl
(−2ipp′

Λ2

)
fR(p, p′) (15)

with C a constant and fR(p, p′) = exp
(
−(p2+p′2)

Λ2

)
. One

can easily see that the nonlocal LO interaction in Eq. (14)
only contributes for l = l′ = 0 (S waves). The local
interaction of Eq. (15), on the other hand, contributes to
each partial wave with l = l′.

The regulator-induced contribution to all partial waves
complicates fitting procedures and leads to increased the-
oretical uncertainties. The interaction is, however, ac-
companied by a Bessel function in p and p′ that, for in-
creasing orbital angular momentum l, shifts the mixed
contributions to larger momenta, where they are sup-
pressed by the regulator fR(p, p′) itself. Though the pre-
ceding argument was for a specific regulator function,
we expect that the violation of the Fierz rearrangement
freedom has the largest effect for partial waves with small
orbital angular momenta, while large-l partial waves are
protected by the angular momentum barrier.

III. LOCAL CHIRAL POTENTIALS

We now investigate the impact of the violation of Fierz
ambiguity on the recently developed local chiral NN po-
tentials of Refs. [9, 10, 12, 13].

In coordinate space, the LO potential is defined by

V LO
NN (r,RL, RS) = V LO

OPE(r,RL) + V LO
cont(r,RS) , (16)

with the long- and short-range coordinate-space cutoffs
RL and RS , respectively. The OPE interaction has the
form

V LO
OPE(r,RL) =

m3
π

12π

(
gA

2Fπ

)2

τ12
e−mπr

mπr

×
[
σ12 +

(
1 +

3

mπr
+

3

(mπr)2

)
S12

]
flong(r,RL) ,

(17)
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FIG. 1. Phase shifts for the 1S0, 3S1, and 3D1 channels and
the J = 1 mixing angle ε1 for R0 = 1.0 fm at LO and NLO.
The S-wave phase shifts are fit and independent of the choice
of the LO short-range operators. The lines for different oper-
ator choices overlap except in the case of the mixing angle ε1
and the 3D1 partial wave at NLO.

with the pion mass mπ = 138.03 MeV, the axial cou-
pling constant gA = 1.29, the pion-decay constant Fπ =
92.4 MeV, and the tensor operator S12 = 3σ1·r̂σ2·r̂−σ12.
Taking the general set of momentum-independent short-
range contact operators, we have

V LO
cont(r,RS) = (C1 + Cσσ12 + Cττ12 (18)

+Cστσ12τ12) fshort(r,RS) .

Below we use the long- and short-range local regulator
functions

flong(r,R0) = 1− e−(r/R0)4 , (19a)
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fshort(r,R0) =
e−(r/R0)4

πΓ(3/4)R3
0

, (19b)

with a single cutoff scale RL = RS = R0 as in Refs. [9,
10]. Our conclusions apply equally well to the long- and
short-range local regulator functions of Refs. [12, 13].

If the Fierz rearrangement freedom is respected, phys-
ical observables are independent of the choice of any lin-
early independent set of two out of the four operators in
Eq. (18). For local regulators, this is not the case and
we investigate this effect by constructing LO potentials
for all possible pairs of contact operators. In each case,
we fit the two LECs to phase shifts in the two S-wave
channels. More precisely, we fit the spin-isospin LECs to
these phase shifts, which we label according to the spin
and isospin quantum numbers, CST , instead of using the
standard partial-wave notation, C2S+1LJ . We reconstruct
the operator LECs of Eq. (18) according toC00

C01

C10

C11

 =

1 −3 −3 9
1 −3 1 −3
1 1 −3 −3
1 1 1 1


C1CσCτ
Cστ

 . (20)

Note that we exclude the pair 1, σ12τ12 from considera-
tion, because the operators of this pair are linearly de-
pendent in the two S-wave channels.

We fit the LECs C01 and C10 to the 1S0 and 3S1

neutron-proton phase shifts from the partial-wave anal-
ysis of Ref. [29] (PWA) for cutoffs in the range R0 =
1.0−1.2 fm. While fitting to phase shifts contains inher-
ent drawbacks, our goal in this work is not to produce
high-precision potentials. Nevertheless, we plan to fit
to scattering data in future work. We use an existing
automatic differentiation package [30] for Python to ob-
tain numerical gradients for the fits, and feed these into
Python’s BFGS minimization routine. This algorithm is
a quasi-Newton method, named after its founders Broy-
den, Fletcher, Goldfarb, and Shanno [31]. We perform
least-square optimizations to minimize a χ2 value with
respect to the LECs. The χ2 value is defined by

χ2 =

data set∑
i

(
δPWA
i − δtheo

i

∆δi

)2

, (21)

where the uncertainty ∆δi is given by

∆δ2
i = (∆δPWA

i )2 + (∆δtheo
i )2 + (∆δnum

i )2 . (22)

Here ∆δPWA
i is the uncertainty from the PWA, ∆δtheo

i

is the theoretical model uncertainty for the chiral inter-
actions, and ∆δnum

i is due to numerical errors. For the
theoretical uncertainty we use the relative uncertainty
and multiply it with a constant C to obtain a dimension-
less χ2. This is similar to the proposed uncertainty of
Ref. [6]. We use Q = max (mπ, P ), where P is a typical
momentum scale of the system, and obtain for the LO
and NLO uncertainties

∆δtheo,LO
i =

(
Q

Λ

)2

C , (23)
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FIG. 2. Phase shifts for the 1P1 and triplet 3PJ waves for
R0 = 1.0 fm. The legend is as in Fig. 1.

∆δtheo,NLO
i =

(
Q

Λ

)3

C , (24)

where we take Λ = 500 MeV (400 MeV) for R0 = 1.0 fm
(1.2 fm) (see Ref. [20]) and C = 1°. When studying
4He, we choose the momentum scale associated with the
average density in 4He, P ≈ 290 MeV, and when study-
ing neutron matter, we choose P to be the average mo-
mentum in a Fermi gas, P =

√
3/5kF , with the Fermi

momentum kF . The PWA and numerical uncertainties
in ∆δi are negligible compared to this theoretical model
uncertainty.

We fit the interactions up to energies of 50 MeV at LO
and up to 150 MeV at NLO. In particular, we fit to the
energy points:
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TABLE I. Operator LECs and spin-isospin LECs C00 and C11 for all investigated LO operator combinations. The cutoff R0 is
given in fm and the LEC values are given in fm2. The spin-isospin LECs C01 (C10) are −1.831 fm2 (−0.317 fm2) for R0 = 1.0 fm
and −2.216 fm2 (−1.579 fm2) for R0 = 1.2 fm.

Operators R0 C1 Cσ Cτ Cστ C00 C11

1, σ12
1.0 −0.696 0.378 0.000 0.000 −1.831 −0.317

1.2 −1.738 0.159 0.000 0.000 −2.216 −1.579

1, τ12
1.0 −1.452 0.000 −0.378 0.000 −0.317 −1.831

1.2 −2.057 0.000 −0.159 0.000 −1.579 −2.216

σ12, τ12
1.0 0.000 0.726 0.348 0.000 −3.222 1.074

1.2 0.000 1.028 0.869 0.000 −5.693 1.898

σ12, σ12τ12
1.0 0.000 0.378 0.000 0.232 0.951 0.610

1.2 0.000 0.159 0.000 0.579 4.737 0.739

τ12, σ12τ12
1.0 0.000 0.000 −0.378 0.484 5.492 0.106

1.2 0.000 0.000 −0.159 0.686 6.649 0.526

LOP
1.0 −1.980 −0.415 −0.793 0.101 2.548 −3.087

1.2 −2.208 −0.346 −0.505 0.180 1.962 −2.879

LOnP
1.0 −0.403 0.323 −0.055 0.134 0.000 0.000

1.2 −0.712 0.317 0.158 0.237 0.000 0.000

TABLE II. Operator LECs for all investigated NLO operator combinations. The cutoff R0 is given in fm and the LEC values
are given in fm2 for C1, Cσ, Cτ , and, Cστ and in fm4 for C1 – C7.

Operators R0 C1 Cσ Cτ Cστ C1 C2 C3 C4 C5 C6 C7

1, σ12
1.0 2.080 1.036 0.000 0.000 0.285 0.184 −0.120 0.063 −2.241 0.304 −0.286
1.2 0.080 0.729 0.000 0.000 0.212 0.209 −0.156 0.092 −2.112 0.343 −0.376

1, τ12
1.0 −0.830 0.000 −0.192 0.000 0.102 −0.000 −0.149 −0.049 −1.373 0.171 −0.102
1.2 −1.489 0.000 −0.613 0.000 −0.104 0.051 −0.298 0.035 −1.285 0.391 −0.293

σ12, τ12
1.0 0.000 0.296 −0.144 0.000 0.174 0.061 −0.131 −0.012 −1.698 0.205 −0.161
1.2 0.000 0.518 −0.562 0.000 0.076 0.216 −0.255 0.139 −1.923 0.443 −0.461

σ12, σ12τ12
1.0 0.000 −0.133 0.000 0.477 0.280 −0.027 −0.109 −0.026 −1.743 0.093 −0.052
1.2 0.000 0.054 0.000 0.651 0.381 0.028 −0.131 0.058 −2.079 0.149 −0.179

τ12, σ12τ12
1.0 0.000 0.000 0.173 0.402 0.292 −0.016 −0.091 −0.036 −1.792 0.083 −0.045
1.2 0.000 0.000 −0.071 0.681 0.373 0.023 −0.142 0.064 −2.059 0.155 −0.183

LOP
1.0 3.517 0.409 0.414 1.246 0.562 0.053 −0.059 0.054 −2.524 0.113 −0.101
1.2 0.843 −0.236 −0.364 1.101 0.473 0.024 −0.159 0.118 −2.201 0.168 −0.206

LOnP
1.0 −0.254 0.173 −0.004 0.085 0.191 0.027 −0.116 −0.032 −1.667 0.156 −0.111
1.2 −0.717 0.290 0.189 0.239 0.234 0.067 −0.109 −0.004 −1.927 0.170 −0.187

LO: 1, 5, 10, 25, 50 MeV ,

NLO: 1, 5, 10, 25, 50, 100, 150 MeV .

For all operator pairs, we present the fitted operator
LECs, as well as the spin-isospin LECs C00 and C11 in
Table I and show the phase shifts at LO in the left panels
of Figs. 1–3. The NLO results shown in the right panels
will be discussed in Sec. V.

We begin by examining the 1S0, 3S1, and 3D1 phase
shifts as well as the J = 1 mixing angle in Fig. 1 for
R0 = 1.0 fm, in comparison to the PWA. The results for
R0 = 1.2 fm are qualitatively similar; see Fig. 4 for an
example for the 1P1 wave. The spin-isospin LECs C01

and C10 are fit and, thus, independent of the operator

choice. Because these LECs enter the two S-wave and
the 3D1 phase shifts, we do not observe any dependence
on the operator choice. The lines for all operator pairs
overlap for the 1S0, 3S1, and 3D1 channels and the mixing
angle. The obtained phase shifts are very close to the
corresponding phase shifts of Ref. [10]. Furthermore, for
all potentials we find the same deuteron binding energy
of Ed = 1.942 MeV (1.949 MeV) for R0 = 1.0 fm (1.2 fm).

While C01 and C10 do not depend on the chosen oper-
ator structure, it is immediately clear from Eq. (20) that
the operator LECs as well as the spin-isospin LECs C00

and C11 do. When comparing the C00 and C11 values for
two different operator combinations in Table I, one can
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FIG. 3. Phase shifts for the 1D2, 3D2, 1F3, and 3F3 partial
waves for R0 = 1.0 fm. The legend is as in Fig. 1.

see that the Fierz rearrangement freedom is violated for
local regulators. Considering, e.g., the operator combi-
nation 1, σ12 one obtains C00 = C01 and C11 = C10. For
the combination 1, τ12, instead, one finds C00 = C10 and
C11 = C01. As a consequence, the phase shifts in the
corresponding spin-isospin channels are not independent
of the operator choice when local regulators are used.

We show the phase shifts in the 1P1 (determined by
C00) and in the 3PJ (determined by C11) partial waves
at LO in the upper panels of Fig. 2 for R0 = 1.0 fm. At
low energies, the results agree very well with the PWA,
and different choices for the operator pair lead to the
same phase shifts, as expected. At higher energies, how-
ever, the subleading corrections become more important
and the phase shifts begin to disagree considerably with
the PWA as well as with each other. For all P waves, at

energies above ≈ 20 MeV, the choice of the operator pair
clearly affects the phase-shift prediction and we observe
a large variation for the resulting phase shifts. This vari-
ation follows the ordering expected from Table I. In the
1P1 partial wave, e.g., the variation ranges from results
for the τ12, σ12τ12 interaction, which describe the PWA
results very well, to results for the σ12, τ12 interaction
that even change sign at 130 MeV.

Because the 1P1 phase shift experiences a sizable ef-
fect, we show it again in Fig. 4 for the two operator pairs
that give the extreme results and for both cutoffs. For
R0 = 1.0 fm, we additionally show the uncertainties ac-
cording to the prescription of Ref. [3] (EKM uncertain-
ties) at LO. We observe that the violation of the Fierz
ambiguity is slightly worse for R0 = 1.2 fm, which is ex-
pected based on the corresponding smaller momentum-
space cutoff and, thus, larger correction terms. We also
find, that the uncertainty due to the violation of the Fierz
ambiguity is probed neither by varying the cutoff, which
has been regarded as a tool for assessing the uncertainty
due to neglecting higher-order contact operators, nor by
the EKM uncertainties.

In Fig. 3 we show phase shifts for the 1D2, 3D2, 1F3,
and 3F3 partial waves for R0 = 1.0 fm. For the D waves,
only the S-wave spin-isospin LECs enter, and, thus, the
LO phase shifts are independent of the short-range op-
erators. For the F -wave phase shifts, the dependence on
the short-range operator structure is nonnegligible only
at energies larger than 200 MeV, because the higher-l
phase shifts are protected by the angular-momentum bar-
rier. These findings are consistent with our expectations
based on the discussion around Eqs. (14) and (15).

In addition to NN scattering phase shifts, we inves-
tigate the impact of different operator choices on other
physical observables. In particular, we study the 4He
ground-state energy E using the GFMC method, and the
neutron-matter energy per particle E/N at different den-
sities using the AFDMC method. The results are shown
in Fig. 5 for all operator combinations, together with the
corresponding EKM uncertainties as error bars. We also
show the spread of all operator pairs as shaded regions.
If the Fierz rearrangement freedom were respected, the
spread would vanish.

For the 4He ground-state energy, we observe a sizable
dependence on the LO operator choice. The 4He ground-
state energy varies between −35.4 MeV and −44.1 MeV,
the 1, τ12 interaction being an outlier due to strong
P -wave attraction (excluding this operator choice, the
ground-state energy only varies between −35.4 MeV and
−38.8 MeV.) The spread for the different operator com-
binations is ∼ 9 MeV and comparable to the EKM un-
certainties at this order.

In the case of neutron matter, the energy per neu-
tron at half saturation density n0/2 (at n0), with n0 =
0.16 fm−3, ranges between 11.2 (16.3) MeV for the pair
1, σ12 and 13.3 (22.1) MeV for the pair σ12, τ12. The
spread due to the violation of Fierz rearrangement free-
dom is again comparable to the size of the EKM uncer-
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solid lines. The color scheme is as in Fig. 1.

tainties for these interactions, which has also been ob-
served for the leading 3N contact interactions [15]. Fur-
thermore, it is important to note that the operator choice
1, τ12 leads to bound neutron matter for both densities.
This can be easily understood from Table I: the spin-
isospin LEC entering the triplet P waves is of the same
size as the S-wave LEC and attractive for these opera-
tors. We exclude this interaction when showing the hor-
izontal band.

IV. “COMPLETE” LO POTENTIALS

As we have seen in the previous section, the choice of
the LO operators clearly impacts the results for phase
shifts and the energies of nuclei and neutron matter, and
leads to a range of results that is not covered by typi-
cal uncertainty estimates. To correct for this regulator
artifact already at LO one could also explicitly compute
the correction terms and include these in the calculation.
Because it is nontrivial to include nonlocal terms in QMC
simulations, we will not pursue this approach here.

Instead, we follow an idea similar to the one used in
Ref. [15] and construct a LO potential with a projector
on S 6= T partial waves. To implement this projector, we
construct a complete LO potential, i.e., a potential that
includes all four LO contact operators. In addition to
fitting the 1S0 and 3S1 phase shifts (fitting C01 and C10),

we enforce that the contribution of V LO
cont(r,R0) vanishes

in the partial waves with T = S, i.e.,

C00 = C1 − 3Cσ − 3Cτ + 9Cστ = 0 , (25)

C11 = C1 + Cσ + Cτ + Cστ = 0 ,

where we have used Eq. (20). Enforcing the two con-
ditions in Eq. (25) eliminates the mixing into P waves.
In the following, we call this interaction LOnP , for “no
P -wave” mixing. This potential eliminates the regulator
artifacts in odd-l partial waves and, hence, is closest to
an LO potential that respects the Fierz rearrangement
freedom. Furthermore, it simplifies the fitting procedure
for local chiral interactions at higher orders in the chiral
expansion. This potential leads to a good reproduction
of the P -wave phase shifts, and, for R0 = 1.0 fm, gives a
4He ground-state energy of −37.6 MeV, and a neutron-
matter energy of 11.8 (17.8) MeV at n0/2 (n0). Results
for this potential are also shown in Figs. 1–3 and 5.

In addition to the LOnP potential, we also investigated
a second complete LO potential, where we fit the addi-
tional couplings to the 1P1 and 3P2 partial waves. We call
this interaction LOP . In contrast to the LOnP potential,
the LOP potential does not eliminate any regulator arti-
facts at LO but instead matches them to reproduce two
P -wave phase shifts. This potential, however, is too at-
tractive in the triplet P waves, see Table I, and performs
worst in the 3P0 and 3P1 partial waves. We also investi-
gated the alternatives of fitting this potential to the 1P1

and one of the other 3PJ partial waves. These lead to
an excellent description of the 3PJ wave under consider-
ation, but an even worse reproduction of the other two
triplet P waves, with, for example, C11 ≈ 5C01 in the fit
to the 1P1 and 3P2 partial waves.

Due to the strong attraction in the triplet P waves, we
find a large 4He ground-state energy of ∼ −51 MeV for
the LOP interaction. Furthermore, this potential leads
to bound neutron matter. The LOP potential, thus, per-
forms worst in all systems that we studied. Again, results
for this potential are shown in Figs. 1–3 and 5.

V. NEXT-TO-LEADING ORDER

As stated above, the violation of the Fierz rearrange-
ment freedom due to the local regulator will be corrected
by higher-order terms. The first correction is of the or-
der (Q/Λ)2 and appears at NLO in chiral EFT. In the
following, we investigate to what extent the subleading
NLO short-range operators restore the Fierz rearrange-
ment freedom at LO.

At NLO, the interactions include momentum-
dependent short-range contact interactions and two-
pion–exchange interactions. For the contact interactions,
the most general set of operators in momentum space is
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given by 14 different terms,

V
(2)
cont = γ1q

2 + γ2q
2σ12 + γ3q

2τ12 + γ4q
2σ12τ12

+ γ5k
2 + γ6k

2σ12 + γ7k
2τ12 + γ8k

2σ12τ12

+ γ9(σ1 + σ2) · (q× k) + γ10(σ1 + σ2) · (q× k)τ12

+ γ11(σ1 · q)(σ2 · q) + γ12(σ1 · q)(σ2 · q)τ12

+ γ13(σ1 · k)(σ2 · k) + γ14(σ1 · k)(σ2 · k)τ12 .

(26)

As before, only 7 out of these 14 operators are indepen-
dent for reasons of antisymmetry if no regulator is in-
cluded. We use the same local regulators at NLO as
we did at LO. Then, the Fierz rearrangement freedom
is again violated at NLO. In the following, however, we
neglect the new regulator artifacts that originate at NLO
and instead focus only on the LO regulator artifacts be-
cause they are the largest in size: The corrections to the
NLO violation appear only at N3LO. Furthermore, the
NLO regulator artifacts in S and P waves can be ab-
sorbed into the LECs and the first artifacts then appear
in D waves, where they are additionally suppressed by
the angular momentum barrier.

In the following, we construct NLO interactions for
all possible pairs of LO operators, as well as the two
potentials with the complete set of LO operators (LOnP

and LOP ). We fix the NLO operators to be the six local
operators and the spin-orbit operator, as in Refs. [9, 10]:
{1, σ12, τ12, σ12τ12, (σ1 ·q)(σ2 ·q), (σ1 ·q)(σ2 ·q)τ12} and
(σ1 + σ2) · (q× k).

In addition to the S-wave phase shifts, we fit the LECs
to the J = 1 mixing angle ε1 and the 1P1 and 3PJ partial
waves. We give the NLO LECs for all interactions in
Table II.

We present the NLO phase shifts in the right panels

in Figs. 1–3. Regarding the S-wave phase shifts, we find
a good description of the PWA results. Again, all seven
interactions produce the same phase shifts. In the cou-
pled channel, for the J = 1 mixing angle and the 3D1

phase shift, we observe a dependence on the operator
choice. The reason is that the LECs describing the NLO
tensor-contact interactions are different for all operator
pairs in order to reproduce the P -wave phase shifts. The
different tensor interactions then lead to differences in
the 3D1 coupled channel, which affects the mixing an-
gle. For the deuteron binding energy, we find an (al-
most) operator independent result of Ed = 2.113− 2.134
(2.107 − 2.162) MeV for R0 = 1.0 fm (1.2 fm), where
the range is again due to the somewhat different tensor
interactions.

Turning to the P waves in Fig. 2, we observe two ef-
fects at NLO. First, the reproduction of the PWA values
is much better for both the singlet and triplet partial
waves. Second, we find that the effects of the violation
of the Fierz rearrangement freedom are considerably re-
duced. At LO, we found a sizable spread of the descrip-
tion of the P -wave phase shifts already at energies around
20 MeV. At NLO, all interactions lead to similar phase
shifts up to energies of ∼ 100 MeV, but sizable regulator
artifacts remain at higher laboratory energies. The im-
pact of the violation of the Fierz ambiguity is worst in
the 3P2 wave where the spin-orbit interaction is attractive
and the tensor is weakest. Finally, for the higher-l par-
tial waves in Fig. 3, we find similar results for the phase
shifts as at LO: These phase shifts are already well de-
scribed by the OPE interaction at LO and improvements
with the chiral order are counteracted by the different
tensor interactions. However, the violation of the Fierz
rearrangement freedom has only a small impact on these
partial waves.
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We now discuss the effects on the many-body observ-
ables. For the 4He ground-state energy we find that the
spread for different LO operator pairs reduces consider-
ably: from 8.7 MeV at LO to 3.8 MeV at NLO, ranging
from 22.4 MeV for the 1, σ12 interaction to 26.2 MeV for
the τ12, σ12τ12 interaction. The spread is considerably
smaller than the EKM uncertainties of at least 7 MeV,
in contrast to the results at LO.

We show the neutron-matter energy at n0/2 in the
middle panel of Fig. 5. In contrast to the results at
LO, we now find all interactions produce unbound neu-
tron matter at roughly the same energy in the range of
9.1−9.7 MeV. Thus, for neutron matter at n0/2 the Fierz
ambiguity is almost completely restored and the uncer-
tainty from choosing different operator pairs is smaller
than the EKM uncertainties. At higher density, n0, the
spread between different interactions remains larger at
3.0 MeV, ranging from 11.6 MeV for the 1, τ12 interac-
tion up to 14.6 MeV for the 1, σ12 interaction; see the
right panel of Fig. 5. This is to be expected, as the reg-
ulator artifacts increase with momentum or density (see
also Refs. [11, 21]).

Considering only the interactions that gave reasonable
results already at LO, the spread reduces to 1.5 MeV
and is, thus, only 1/4 of the spread at LO (5.8 MeV) and
smaller than the EKM uncertainties of ≈ 2 MeV. The
ordering of the NLO results closely follows the ordering
of the description of the triplet P waves, with the 1, τ12

interaction being the biggest outlier.

In summary, we find that the violation of the Fierz
ambiguity in the NN sector is considerably reduced at
NLO, and always covered by the EKM uncertainties, in
contrast to the results at LO. The violation of the Fierz
ambiguity will remain of similar size at N2LO because
no new contact terms are introduced, but we expect that
it should be almost completely removed at N3LO. As a
consequence of these findings, recently derived local NN
potentials at N2LO can be used with confidence within
their uncertainties.

Finally, we discuss implications for 3N interactions.
We found that the spread induced by different opera-
tor choices is sizable for the leading NN interactions.
This is also the case for the leading 3N interactions as
shown in Refs. [15, 21]. Our results demonstrate that
the subleading contact interactions are necessary to re-
duce this spread. While in the NN sector they appear
already at NLO in chiral power counting, the subleading
3N contact interactions only enter at N4LO. The imple-
mentation of the N4LO 3N forces is certainly challenging.
Therefore, in order to tackle the violation of Fierz rear-
rangement freedom in the 3N sector, other ideas are nec-
essary. These include the choice of the projected VE in-
teraction of Ref. [15] or increasing the (momentum-space)
cutoff for chiral interactions. However, we also note that
we expect the EKM uncertainties to cover this effect for
many (but not all) nuclear systems. In particular, for
nuclear systems with densities (momenta) of the order of
saturation density, we expect the EKM uncertainties to

underestimate the effect coming from the violation of the
Fierz ambiguity.

VI. CONCLUSION AND OUTLOOK

In summary, we investigated the violation of the Fierz
rearrangement freedom that appears when using local
regulators in the NN sector at LO in chiral EFT. We
constructed interactions at LO and NLO in chiral EFT
for all possible pairs of LO operators where we fitted the
LECs to the PWA results for the two S-wave phase-shift
channels. We also constructed two complete LO inter-
actions where we determined the additional two LECs
either by projecting on partial waves with S = T (at-
tempting to restore the Fierz rearrangement freedom),
or by fitting to the 1P1 and 3P2 phase shifts.

We studied phase shifts, the deuteron and 4He bind-
ing energies, as well as the energy of neutron matter at
different densities for all of these interactions. Because
we fitted the LECs to the two S 6= T channels, we found
that all interactions lead to a similar description for these
channels at LO. For the S = T channels, i.e., the 1P1 and
3PJ partial waves, we found instead a strong dependence
on the chosen operator structure for energies of the order
of 20 MeV. At NLO, in addition to an improved descrip-
tion of the phase shifts in general, we found the effect of
the violation of the Fierz rearrangement freedom to be
reduced considerably, having an effect only at energies
larger than 100 MeV.

We then studied the 4He ground-state energy, where
the uncertainty due to the violation of the Fierz ambigu-
ity reduced considerably when going from LO to NLO,
from 8.7 MeV to 3.8 MeV. In neutron matter, we found
a sizable dependence on the chosen operator structure at
LO. In particular, two interactions lead to bound neu-
tron matter. For the five interactions that did not show
a collapse, the spread from choosing different operator
pairs reduced from 2.0 (5.8) MeV to 0.2 (1.5) MeV when
going from LO to NLO for n = n0/2 (n0). At NLO, we
found this spread to be much smaller than the EKM un-
certainties for both densities. Furthermore, at saturation
density, the operator dependence for the leading NN in-
teractions was found to be smaller than that for the lead-
ing 3N forces at N2LO, with the latter being ≈ 4 MeV
for the three different operator choices in Ref. [15].

We found that the violation of the Fierz ambiguity in
the NN sector is sizable at LO but restored to a large
extent by including the subleading contact operators at
NLO. Any remaining violations of the Fierz ambiguity at
higher orders in the NN sector are significantly smaller
than the violation from the leading 3N interaction at
N2LO. The situation will further improve when contact
interactions at N3LO are included because additional cor-
rection terms will absorb the remaining regulator arti-
facts. Local chiral NN interactions, thus, can be used
with confidence even though additional regulator arti-
facts appear.
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[23] P. Navrátil, Few Body Syst. 41, 117 (2007).
[24] U. van Kolck, Phys. Rev. C 49, 2932 (1994).
[25] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-
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