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Many radiative capture reactions of astrophysical interest occur at such low energies that their
direct measurement is hardly possible. Until now the only indirect method, which was used to
determine the astrophysical factor of the astrophysical radiative capture process, was the Coulomb
dissociation. In this paper we address another indirect method, which can provide information
about resonant radiative capture reactions at astrophysically relevant energies. This method can be
considered as an extension of the Trojan Horse method for resonant radiative capture reactions. The
idea of the suggested indirect method is to use the indirect reaction A(a, s γ)F to obtain information
about the radiative capture reaction A(x, γ)F , where a = (s x) and F = (xA). The main advantage
of using the indirect reactions is the absence of the penetrability factor in the channel x+A, which
suppresses the low-energy cross sections of the A(x, γ)F reactions and does not allow to measure
these reactions at astrophysical energies. A general formalism to treat indirect resonant radiative
capture reactions is developed when only a few intermediate states do contribute and statistical
approach cannot be applied. The indirect method requires coincidence measurements of the triple
differential cross section, which is a function of the photon scattering angle, energy and a scattering
angle of the outgoing spectator-particle s. Angular dependence of the triple differential cross section
at fixed scattering angle of the spectator s is the angular γ − s correlation function. Using indirect
resonant radiative capture reactions one can obtain the information about important astrophysical
resonant radiative capture reactions, like (p, γ), (α, γ) and (n, γ) on stable and unstable isotopes.
The indirect technique makes accessible low-lying resonances, which are close to the threshold,
and even subthreshold bound states located at negative energies. In this paper, after developing
the general formalism, we demonstrated the application of the indirect reaction 12C(6Li, d γ)16O
proceeding through 1− and 2+ subthreshold bound states and resonances to obtain the information
about the 12C(α, γ)16O radiative capture at astrophysically most effective energy 0.3 MeV what is
impossible using standard direct measurements. Feasibility of the suggested approach is discussed.

PACS numbers: 26.20.Fj,26.20.Np, 25.60.Tv, 25.70.Ef

I. INTRODUCTION

Understanding the origin of the elements and stellar
evolution is one of the important contemporary scientific
questions in nuclear physics and astrophysics. Over 70
years ago, the concept that hydrogen and helium burning
are the sources for energy production in stars was postu-
lated in [1]. A byproduct of this burning process is the
production of new elements.

It is well known today that a large number of
different reactions are involved in element produc-
tion. Many of these reactions take place on rather
short-lived nuclei during explosive processes occurring
in the cosmos. For over 50 years, experimentalists
have worked to determine stellar reaction rates on
systems involving stable beams and stable targets.
Until recently, very little experimental information
was available for reaction rates on radioactive nuclei.
This is now changing with the development of new
indirect techniques to determine these rates and new
radioactive beam facilities that are expanding the
possibilities for both direct and indirect studies. Nucle-
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osynthesis in the Universe, i.e. the cooking processes
that produce the elements of the periodic chart, pro-
ceeds through a variety of reactions and decays such as
(p, γ), (n, γ), (3He, γ), (α, γ), (p, α), (α, p), (n, α), (α, n),
beta decays, reactions induced by gamma-quanta (pho-
todisintegration), and neutrinos [2]. Determining the
rates of these processes at stellar energies is the major
part of the subject of nuclear astrophysics.
The conditions under which the majority of astrophys-

ical reactions proceed in stellar environments make it dif-
ficult or impossible to measure them under the same con-
ditions in the laboratory. For example, the astrophysical
reactions between charged nuclei occur at energies much
lower than the Coulomb barrier, which often makes the
cross section of the reaction too small to measure. This
is due to the very small barrier penetration factor from
the Coulomb force, which produces an exponential fall off
of the cross section as a function of energy. Many years
ago, the astrophysical S-factor was adopted as a way to
characterize cross sections by removing the Coulomb pen-
etration factor based on an s-wave, or zero angular mo-
mentum capture. The S-factor, S(E), is defined through
the relationship

σ(E) =
e−2π η

S
(E). (1)

Here, σ(E) is the energy-dependent cross section, η is the
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Coulomb parameter of two interacting nuclei. Typically,
the S-factor is the quantity that is used to extrapolate to
low energies.

Indirect techniques have been developed over the past
several decades to provide ways to determine reaction
rates that cannot be measured in the lab. Applica-
tions of indirect methods have been undertaken with
both stable and radioactive beams. There are three dif-
ferent commonly used indirect techniques to obtain the
information about astrophysical reactions, the asymp-
totic normalization coefficient (ANC) approach, the Tro-
jan Horse method (THM), and the Coulomb dissociation
(CD) technique. The review of these methods is given in
[3].

The ANC method in nuclear astrophysics was pro-
posed in [4] and is based on the fact that many direct
astrophysical radiative capture reactions are peripheral.
Their astrophysical factor is proportional to the square of
the amplitude of the overlap function. This amplitude is
the ANC. The ANC method focuses on determining the
normalization of the tail of the overlap function from pe-
ripheral transfer reactions whose cross sections are signif-
icantly higher than the cross sections at astrophysically
relevant. Using the determined ANC one can calculate
the astrophysical factor of the direct radiative capture
process. Including both direct and resonant capture in a
consistent framework can be done through an R-matrix
analysis [5] if the relevant information is available.

The second indirect method, THM, was suggested in
[6] and was modified in [7] to make it workable. It pro-
vides a powerful tool to determine the reaction rate for
resonant rearrangement reactions by obtaining the cross
section for a binary resonant process through the use of a
surrogate Trojan Horse particle. The THM allows one to
obtain the astrophysical factors of low-lying resonances
which are not available by direct methods because of the
absence of the penetrability factor in the entry channel of
the binary sub-reaction. The theory of the THM based
on the surface integral formalism [8] was presented in [3].
In [9] the combination of the ANC method and THM was
applied.

The third powerful indirect technique to obtain the as-
trophysical factors for the radiative capture processes is
the CD. The Coulomb dissociation method for nuclear
astrophysics was proposed by [10] and has been tested
successfully in many reactions of interest to astrophysics.
The most celebrated case is the reaction 7Be(p, γ)8B,
first studied in [11], followed by numerous experiments in
the last two decades [3]. The CD technique uses the vir-
tual photon flux from the interaction of a high-energy ion
with a very heavy target to dissociate the heavy ion. The
dissociation is an inverse process to a capture-gamma re-
action that takes place in a stellar environment. Mea-
surements of the dissociation cross section can be used
to infer the reaction rate of radiative capture processes
at stellar energies. All three of these methods provide
information on stellar reaction rates at very low energy
without requiring an extrapolation of data from higher
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FIG. 1: Pole diagram describing the indirect radiative capture
reaction proceeding through the intermediate excited state
F ∗.

energies. The details of all three techniques and more
references can be found in the review paper [3].

In this paper, the idea of the THM is extended for
the resonant radiative capture reactions. To determine
the cross section for the resonant radiative capture reac-
tion A(x, γ)F we propose to use the two-step transfer re-
actions A(a, s γ)F , proceeding through the intermediate
subthreshold bound states or resonances F ∗ = (xA)∗,
with the subsequent decay of the excited state F ∗ →
F + γ. This approach provides a powerful indirect tech-
nique to study radiative capture processes A(s, γ)F and,
in particular, the astrophysical radiative capture reac-
tions. The mechanism of such processes is shown in Fig.
1, where a = (s x) and F = (xA) are the ground bound
states of a and F . Note that diagram in Fig. 1 can be
obtained from the similar diagram in the THM (see Fig.
2 [3]) by replacing the particle’s line b by the photon’s
line γ.

Such indirect reactions allow one to invade into the re-
gion previously unthinkable if we would rely only on di-
rect measurements. Among of the important reactions,
which require a broader approach than only direct mea-
surements, are low-energy astrophysical radiative capture
processes, such as (p, γ), (α, γ) and (n, γ) [2] on stable
and unstable isotopes performed in direct and inverse
kinematics. Among these reactions, without any doubt,
is the most important one, the so-called, ”holy grail” re-
action 12C + α → 16O(0+, Ex = 0.0MeV) + γ, which
dominates the helium burning in red giants [2]. The in-
direct reactions provide a perfect tool to study radiative
capture reactions at astrophysically relevant energies.

We present the theory of the indirect method to treat
the resonant radiative capture processes when only a few
subthreshold bound states and resonances are involved,
and statistical methods cannot be applied. The devel-
oped formalism is based on the generalized multi-level
R-matrix approach and surface integral formulation of
the transfer reactions, which are the first stage of the in-
direct reaction mechanism described by the diagram in
Fig. 1 [3]. By the generalized R-matrix approach we
mean the R -matrix method applied for 2 → 3 particle
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reactions rather than to binary 2 → 2 particle reactions.
We also describe the methodology of the indirect radia-
tive capture experiment. There are many papers devoted
to the angular correlation of the photons emitted in nu-
clear transfer reactions with final nuclei, see, for example,
[12] and references therein. Here we apply the general-
ized R-matrix to develop the formalism allowing one to
study the photon’s angular distribution correlated with
the scattering angle of one of the final nuclei formed in
the transfer reaction.

Developing quite a general formalism we keep in mind,
in particular, the application of the method for the
12C(6Li, d γ)16O reaction, which can provide important
information about the astrophysical 12C(α, γ)16O pro-
cess. This astrophysical reaction is contributed by two
interfering subthreshold resonances ([2], sect. 4.5). We
note that a bound state, which is close to the thresh-
old, is also called a subthreshold resonance. The elastic
scattering cross section in the presence of subthreshold
bound states has a peak at zero energy, that is, it behaves
like a resonance cross section with a resonance close to
the threshold. Also, the subthreshold bound state may
reveal itself as a resonance in the case of the radiative
capture, which can occur to the wing of the subthreshold
state at positive energy forming the intermediate excited
state.

Subthreshold resonances play an important role in
many astrophysical processes. Often, using direct mea-
surements, it is quite difficult or impossible to reach
the astrophysically relevant energy region where the sub-
threshold resonances manifest themselves. However, the
region, where the contribution of the subthreshold res-
onances is important, can be reached using indirect re-
actions [3, 13]. For more details regarding subthreshold
resonances and how they are handled in the R-matrix
approach see [13]. The excited bound state subsequently
decays to lower lying states by emitting a photon. In this
case, the subthreshold bound state is characterized by a
resonance width in complete analogy with the real reso-
nance [51]. Besides the subthreshold resonances, we also
take into account the real resonances located at positive
energies.

Numerous attempts to obtain the astrophysical fac-
tor of the 12C(α, γ)16O reaction, both experimental and
theoretical, have been made for almost 50 years [14–50].
This reaction is contributed by interfering E1 and E2
transitions. The E1 transition is complicated by the in-
terference of the capture through the wing of the sub-
threshold 1− resonance at −0.045 MeV with the low-
energy tail of the resonance 1−, Eα 12C = 2.423 MeV,
where Eα 12C is the α− 12C relative kinetic energy. The
E2 transition is dominated by the capture to the ground
state of 16O through the wing of the subthreshold bound
state 2+, Eα 12C = −0.245 MeV. In addition, to fit the ex-
perimental data, usually a few artificial levels are added
to fit E1 and E2 data [24, 27]. The difficulty of the
direct measurements of the E1 transition can be eas-
ily understood if even in the peak of the resonance at

1−, Eα 12C = 2.423 MeV the cross section is only about
40 − 50 nb [44–46] . Moreover , the E1 transition from
1− states to the ground state of 16O is isospin forbidden
for T = 0 components and is possible only due to the
small admixture of the T = 1 components.
Extremely small penetrability factor at Eα 12C ≤ 1

MeV makes it impossible or very difficult to measure the
astrophysical factor for the 12C(α, γ)16O reaction at en-
ergies Eα 12C ≤ 1 MeV with reasonable accuracy. For the
sensitivity of the extracted astrophysical factor from the
existing data, see works [37, 39, 41]. Note that from the
astrophysical point of view the required uncertainty of
this astrophysical factor at Eα 12C ∼ 0.3 MeV should be
≤ 10%. New gamma-ray facilities, an upgraded gamma-
source (HIGS2) [47] in USA and Compton gamma-ray
source of Eli-NP [48] in Romania, are supposed to mea-
sure the astrophysical factor for the 12C(α, γ)16O reac-
tion down to 1 MeV.
In this paper we discuss a completely new method

of measuring the astrophysical factor S(Eα 12C) for the
12C(α, γ)16O reaction down to astrophysical energies
∼ 300 keV. This method is based on the coincidence mea-
surements of the deuterons and the photons from the in-
direct reaction 12C(6Li, d γ)16O. In the indirect method
the absolute value of the triple differential cross section
is determined by its normalization to the available direct
data at higher energies.
The suggested technique allows one not only to de-

termine the astrophysical S factor down to energies
Eα 12C ∼ 0.3 MeV but also the interference pattern be-
tween the subthreshold bound state and higher resonance
for the E1 transition. We use the surface-integral for-
malism [8] in which the matrix elements are expressed
in terms of the external radial overlap functions and do
not depend on the R-matrix hard-sphere scattering phase
shifts. Hence, when considering the interference of the
E1 and E2 matrix elements, the R-matrix hard-sphere
phase shifts do not appear. The method, which we ad-
dress here, can be used for a broader type of radiative
capture experiments A(a, s γ)F proceeding through the
subthreshold and real resonances.

II. THEORY

We follow the THM idea and extend it for the radiative
capture reaction. To measure the cross section of the
binary process

x+A → F ∗ → γ + F (2)

proceeding through the intermediate resonance F ∗ at as-
trophysical energies we suggest to measure the surrogate
reaction (two-body to three-body process (2 → 3 parti-
cles)):

a+A → s+ F ∗ → s+ γ + F (3)

in the vicinity of the quasi-free (QF) kinematics [3]. Here
the incident particle, a = (s x), which has a dominant
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cluster structure, is accelerated at energies above the
Coulomb barrier. The reaction (3) is a two-stage process.
On the first stage the transfer reaction a + A → s + F ∗

populating the wing of the subthreshold bound state at
ExA > 0 or the real resonance occurs. On the second
stage, the excited state F ∗ decays to the ground state
F by emitting a photon. From the measured energy
dependence of the cross section of the reaction (3), the
energy dependence of the binary sub-process (2) is de-
termined. By normalizing the measured cross section to
the available direct one(s) measured at higher energies
with better accuracy one can get the absolute value of
the astrophysical S factor at low energies.

The mechanism of the indirect reaction shown
schematically in Fig. (1) gives the dominant contribution
to the cross section in a restricted region of the three-
body phase space when the relative momentum of the
fragments s and x is zero (the quasi-free (QF) kinemati-
cal condition) or less than the wave number of the bound
state a = (s x). Since the transferred particle x is vir-
tual, its energy and momentum are not related by the
on-shell equation, that is, Ex 6= k2x/(2mx).

The main advantage of the indirect method is that the
penetrability factor in the entry channel of the binary
reaction (2) is not present in the expression for the indi-
rect reaction cross section. It allows one to measure the
resonant reaction (2) cross section at astrophysically rel-
evant energies at which direct measurements are impos-
sible or extremely difficult because of the presence of the
penetrability factor in the binary reaction cross section.
Moreover, the indirect method allows one to measure the
cross section of the binary reaction (2) even at negative
ExA owing to the off-shell character of the transferred
particle x in reaction (3).

The expression for the amplitude of the transfer re-
action (3) ( for x = n) in the surface integral approach
and distorted wave Born approximation (DWBA) was
derived in [8]. It is assumed, similar to the THM [3],
that only the energy dependence of the cross section of
the reaction (3) is measured, while its absolute value is
determined by normalizing the cross section of the re-
action (3) to the available direct experimental data at
higher energies. That is why it makes sense to use the
plane wave approximation to get the indirect reaction
amplitude. The comparison of the plane wave impulse
approximation (PWIA) and DWBA has been done in
many THM papers [3, 9, 52–54]. In these papers, the
momentum distribution of the spectator was calculated
in plane wave and DWBA. Both calculations agreed with
each other and experimental data within the range of the
QF peak. The most detailed comparison of the PWIA
and DWBA was done in [54]. It was confirmed again
that the angular distribution of the spectator calculated
in the DWBA and PWIA agree quite well within the QF
peak. A further probe of the reliability of the plane-wave
approach in describing the experimental data came from
the comparison between plane-wave-Born approximation
(PWBA) and DWBA calculations. The differences in

the ratios of the integrated resonance cross sections cal-
culated in plane-wave and DWBA approaches are less
than 19%, compared with the experimental uncertainties.
Therefore, when no absolute values of the cross sections
are extracted, the PWIA description is more preferable
than DWBA because PWBA does not depend on the op-
tical potentials which are not known accurately at low
energies.

In this paper, we, for the first time, present the general
equations of the indirect reaction triple differential and
double cross sections to be used for the analysis of the
radiative reactions proceeding through the subthreshold
and isolated resonances. The system of units in which
~ = c = 1 is being used throughout of the paper.

A. Indirect reaction amplitude for the resonant

radiative capture

Let us consider the radiative capture reaction (2) pro-
ceeding through the wing (at ExA > 0) of the subthresh-
old bound state (aka subthreshold resonance) F ∗ = F (s),
where F (s) = (xA)(s) or real resonance at ExA > 0.
We assume that both can decay to the ground state
F = (xA). To measure the cross section of this reaction
at astrophysically relevant energies where subthreshold
resonances can be important, for the reasons explained
above, we use the indirect reaction (3). First, we derive
the reaction amplitude of the indirect radiative capture
process and then the triple differential cross section of
reaction (3). After that, by integrating over the angles of
the emitted photons, we get the double differential cross
section. The interference of the subthreshold bound state
and the resonance, which both decay to the ground state
F = (xA), is taken into account. Evidently that this
case can be applied for the E1 and E2 transitions of the
reaction 12C(α, γ)16O.

To describe the radiative capture to the ground state
through two interfering states we use the single channel,
two-level generalized R-matrix equations developed for
the three-body reactions 2 particles → 3 particles [3, 8].
We also take into account the interference of transitions
with different multipolarities L. Thus, we take into ac-
count the interference of radiative decays from different
levels with the same multipolarity and interference of
transitions from various levels with different multipolar-
ities.

The indirect reaction described by the diagram of Fig.
(1) proceeds as a two stage process. The first part is
transfer of particle x (stripping process) to the excited
state Fτ , τ = 1, 2, where F1 = F (s) is the subthreshold
resonance and F2 is the resonance state at ExA > 0. No
gamma is emitted during the first stage. On the second
stage the excited state Fτ decays to the ground state
F = (xA) by emitting a photon. Then the indirect reac-
tion amplitude followed by the photon emission from the
intermediate subtheshold resonance and resonance takes
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the form:

MMs M MF

Ma MA
=

2
∑

τ,ν=1

∑

M
F

(s)
ν

M
F

(s)
τ

V MF M
M

F
(s)
ν

ν Aν τ M
Ms M

F
(s)
τ

Ma MA τ .

(4)

Here Mi is the projection of the spin Ji of the particle
i, M

F
(s)
τ

is the projection of the spin JF (s) of the sub-

threshold resonance (τ = 1) and resonance (τ = 2), M is
the projection of the angular momentum of the emitted
photon. Also 2 is the number of the level included. We
assume that the spins of the subthreshold resonance and
real resonance are equal F1 = F2 = F (s) and these reso-
nances do interfere. At the moment we confine ourselves
by transition with one multipolarity L. That is why the
index L is omitted. Later on we take into account tran-

sitions with different L. M
Ms M

F
(s)
τ

Ma MA τ is the amplitude of
the direct transfer reaction

a+ A → s+ Fτ (5)

populating the intermediate excited state Fτ . The re-
action (5) is the first stage of the indirect reaction (3).
Vν is the amplitude of the radiative decay of the excited
state Fν (ν = 1, 2) to the ground state F = (xA), Aλ τ

is the matrix element of the level matrix in the R-matrix
method.
In the prior form of the plane-wave approximation

M
Ms M

F
(s)
τ

Ma MA τ takes the form:

M
Ms M

F
(s)
τ

Ma MA τ (ksFτ
,kaA) =< χ

(0)
ksFτ

Φτ

∣

∣VxA

∣

∣ϕsx ϕA χ
(0)
kaA

> .

(6)

Here, Φ1 is the bound-state wave function of the sub-
threshold bound state F1 = (xA)(s), Φ2 is the F2

resonance wave function, ϕsx and ϕA are the bound-
state wave functions of a = (s x) and A, respectively,

χ
(0)
kaA

= eikaA·raA and χ
(0)
ksFτ

= eiksFτ ·rsF are the planes

waves in the initial and final states of the reaction (5), re-
spectively, rij is the radius-vector connecting the centers
of mass of nuclei i and j, kaA is the a−A relative mo-
mentum in the initial state of the reaction (5) and ksFτ

is the s−Fτ relative momentum in the final state of this
transfer reaction, VxA is the x−A interaction potential.

In the matrix element M
Ms M

F
(s)
τ

Ma MA τ (ksFτ
,kaA) we intro-

duce in the bra state the projection operator
∑

n
|ϕAn

><

ϕAn
|, where the sum over n is taken over the bound and

continuum states of nucleus A. In the projection oper-
ator we keep only the projection on the ground state of
A. Then Eq. (6) can be rewritten as

M
Ms M

F
(s)
τ

Ma MA τ (ksFτ
,kaA) =< χ

(0)
ksFτ

Υτ

∣

∣V xA

∣

∣ϕsx χ
(0)
kaA

>,

(7)

where V xA =< ϕA|VxA|ϕA >. Also,

Υτ (rxA) =< ϕA

∣

∣Φτ >=
∑

mji
mli

< ji mji limli

∣

∣JF (s) M
(s)
Fτ

>

× < Jx Mx JA MA

∣

∣ji mji > Υτ ji li JF (s)
(rxA)Yli mli

(r̂xA)

(8)

is the projection of the wave function Φτ on the ground
state wave function of A, Υτ ji li JF (s)

(rxA) is its ra-

dial part, ji (mji) is the channel spin (its projection)
of x + A and li (mli) is their orbital angular momen-
tum (its projection) at which the subthreshold reso-
nance and resonance occur in the channel x + A, <

jimji limli

∣

∣JF (s) M
(s)
Fτ

> is the Clebsch-Gordan coeffi-
cient, Yli mli

(r̂xA) is the spherical harmonic, r̂ = r/r.

Υτ ji li JF (s)
(rxA) is the radial part of Υτ (rxA) in the

state τ with the channel spin ji and the orbital angu-
lar momentum li. Since we assume that both levels
τ = 1 and τ = 2 do interfere, ji and li are the same
for both levels. We assume that only one ji and li con-
tribute to the reaction. It is important to underscore
that, although the subthreshold resonance is located at

ExA = −ε
(s)
xA, the capture occurs to its wing at ExA > 0.

Hence, Υ1 ji li JF (s)
(rxA) is described by the resonance ra-

dial wave function, which we take in the R-matrix form.
We also take the radial overlap Υ2 ji li JF (s)

(rxA) in the

form of the R-matrix resonant wave function. It has been
shown in [3] that in the surface integral approach the
dominant contribution to the prior form of the trans-
fer reaction amplitude comes from the external region
rxA ≥ RxA. In the external region we take the resonance
wave function as [8]

Υτ ji li JF (s)
(rxA) =

√

µxA

kxA
Γτ jiliJF (s)

e−i δhs
li

Oli(rxA)

rxA
, (9)

where
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Oli(rxA) = i Fli(kxA, rxA) +Gli(kxA, rxA) = ei δ
hs
li

√

F 2
li
(kxA, rxA) +G2

li
(kxA, rxA) (10)

is the outgoing spherical wave in the partial wave li, Fli

and Gli are the Coulomb regular and singular solutions,
δhsli is the R-matrix hard-sphere scattering phase shift.
From Eqs. (9) and (10) is clear that Υτ ji li JF (s)

(rxA)

does not depend on the R-matrix hard-sphere scattering
phase shift.
At rxA = RxA we get

Υτ ji li JF (s)
(RxA) =

√

2µxA

RxA
γτ jiliJF (s)

. (11)

We see that Υτ ji li JF (s)
(RxA) does not depend on δhsli .

Γτ jiliJF (s)
is the formal resonance width in the R-

matrix approach for the level τ , which is related to the
reduced width amplitude γτ jiliJF (s)

of the level τ as [55]

Γτ jiliJF (s)
= 2Pli(ExA, RxA) γ

2
τ jiliJF (s)

. (12)

Here, Pli(ExA, RxA) is the barrier penetrability factor,
RxA is the channel radius, Equation (12) holds at ExA >
0 both for the subthreshold resonance and resonance.
The observable resonance width is expressed in terms

of the observable reduced width by [55]

Γ̃τ jiliJF (s)
= 2Pli(ExA, RxA) γ̃

2
τ jiliJF (s)

, (13)

where the observable and formal reduced widths
γ̃2
τ jiliJF(s)

and γ2
τ jiliJF (s)

, respectively, are related by [55]

γ̃2
τ jiliJF (s)

=
γ2
τ jiliJF (s)

1 + γ2
τ jiliJF (s)

[dSli(ExA)/dExA]
∣

∣

ExA=Eτ

.

(14)

E1 = −ε
(s)
xA and E2 = ER, where ER is the resonance

energy corresponding to the level τ = 2. The inverse
equation is

γ2
τ jiliJF (s)

=
γ̃2
τ jiliJF (s)

1− γ̃2
τ jiliJF (s)

[dSli(ExA)/dExA]
∣

∣

ExA=Eτ

.

(15)

For the subthreshold resonance (τ = 1) [51]

[C1 jiliJF (s)
]2 W 2

− η
(s)
xA,li+1/2

(2 κ
(s)
xARxA)

2µxARxA
=

γ2
1 jiliJF (s)

1 + γ2
1 jiliJF (s)

[dSli(ExA)/dExA]
∣

∣

ExA=−ε
(s)
xA

= γ̃2
1 jiliJF (s)

, (16)

where γ̃2
1 jiliJF (s)

and γ2
1 jiliJF (s)

are the observed

and formal reduced widths of the subthreshold res-
onance; C1 jiliJF(s)

is the asymptotic normalization

coefficient (ANC) of the subthreshold bound state
(xA)(s) for the decay to the channel (x + A)1 jiliJF (s)

,

W
−η

(s)
xA,li+1/2

( 2 κ
(s)
xARxA) is the Whittaker function,

η
(s)
xA = (Zx ZA/137)µxA/κ

(s)
xA and κ

(s)
xA are the x − A

Coulomb parameter and the bound-state wave number of
the subthreshold bound state F (s), µxA is the reduced

mass of x and A, Zj e is the charge of nucleus j, Sli(ExA)
is the R-matrix Thomas shift function [55].

Now we return to the transfer reaction amplitude

M
Ms M

F
(s)
τ

Ma MA τ (ksFτ
,kaA). To calculate it we use the three-

body approach in which we neglect the internal degrees of
freedom of particles x, A and s. The potential V xA(rxA)
depends only on the distance between x and A. Then the
amplitude of the direct transfer reaction (5) in the plane-
wave, surface-integral approximation reduces to [3, 8]
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M
Ms M

F
(s)
τ

Ma MA τ (ksFτ
,kaA) =

√
π

µxA
ili ϕsx(psx)RxAΥτ jiliJF (s)

(RxA) M̃li

∑

Mx mji
mli

< Js Ms Jx Mx

∣

∣Ja Ma >

× < Jx Mx JA MA

∣

∣jimji >< ji mji limli

∣

∣JF (s) M
F

(s)
τ

> Y ∗
li mli

(p̂xA)

=

√
π

µxA
ili ϕsx(psx)

√

2µxARxA γτ jiliJF (s)
M̃li

∑

Mx mji
mli

< Js Ms Jx Mx

∣

∣Ja Ma >

× < Jx Mx JA MA

∣

∣jimji >< ji mji limli

∣

∣JF (s) M
F

(s)
τ

> Y ∗
li mli

(p̂xA), (17)

M̃li =

{

jli(pxARxA)
[

Bli(kxA, RxA)− 1−Dli(pxA, RxA)
]

+ 2µxA
ZxZA

137

∞
∫

RxA

drxA jli(pxA rxA)
Oli(rxA)

Oli(RxA)

}

, (18)

Dli(pxA, RxA) = RxA
∂ ln jli(pxA, rxA)

∂rxA

∣

∣

∣

rxA=RxA

, Bli(kxA, RxA) = RxA
∂ lnOli(kxA, rxA)

∂rxA

∣

∣

∣

rxA=RxA

. (19)

Note that M
Ms M

F
(s)
τ

Ma MA τ (ksFτ
,kaA) does not contain the

hard-sphere scattering phase shift δhsli . Also, ϕsx(psx) is
the Fourier transform of the radial part of the s-wave
bound-state wave function ϕsx(psx) of the a = (s x).
Also, κsx =

√
2µsx εsx is the wave number of the bound-

state a = (s x), εsx is its binding energy for the virtual
decay a → s+x. Since particles s and x are structureless,
the spectroscopic factor of the bound state a = (s x) is
unity and we can use just the bound-state wave function
ϕsx. In the center-off-mass of the reaction (2) kaA = ka,
ksFτ

= ks and reviewpaper

pxA = ka −
mA

mF
ks, psx = ks −

ms

ma
ka (20)

are the off-shell x−A and s− x relative momenta in the
vertices x+A → Fτ and a → s+x of the diagram in Fig.
1, respectively, px = ka − ks is the off-shell momentum
of the transferred virtual particle x, kj is the on-shell
momentum of particle j. Also ks and ExA are related by
the energy conservation [3]:

EaA − εsx = ExA + k2s/(2µsF ), (21)

where µsF is the reduced mass of particles s and F .

Now we consider the amplitude Vν , ν = 1, 2, describ-
ing the radiative decay of the intermediate resonance
Fν → F + γ [56]:

V MF M λ

M
(s)
Fν

ν
= −

∫

drxA < IFxA(rxA)
∣

∣Ĵ(r)
∣

∣Υν(rxA) > ·A∗
λkγ

(r), (22)

where IFxA(rxA) is the overlap function of the bound-
state wave functions of x, A and the ground state of
F = (xA). Again, for the point-like nuclei x and A the
overlap function IFxA(rxA) can be replaced by the single-
particle bound-state wave function of (xA) in the ground
state. Also A∗

λkγ
(r) is the electromagnetic vector poten-

tial of the photon with helicity λ = ±1 and momentum
kγ at coordinate rxA. Ĵ(r) is the charge current density

operator. Matrix element in Eq. (22) is written assuming
that on the first stage of the reaction the excited state
Fν , ν = 1, 2, is populated, which subsequently decays to
the ground state F .

Using the multipole expansion of the vector potential,
leaving only the electric components with the lowest al-
lowed multipolarities L and using the long wavelength
approximation for Ĵ(r), see for details [56], we get
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V MF M λ
M

F
(s)
ν

ν = − 1

2 π

∑

L

√

1

2 kγ

√

L+ 1

L

√

ĴF l̂f
i−L kLγ

(2L− 1)!!
e Zeff(L)

[

DL
M λ(φ, θ, 0)

]∗

× < lf 0 L 0
∣

∣li 0 > (−1)li−ji−JL

F (s) < JF MF LM
∣

∣JL
F (s) M

L

F
(s)
ν

>

{

lf ji JF
JL
F (s) L li

}

RL
ν jf lf JF ji li JL

F (s)

=

√
2

4 π

∑

L

i−L (−1)L+1
√

L̂ kL−1/2
γ [γ

JL

F(s)

(γ) ν JF L]
[

DL
M λ(φ, θ, 0)

]∗
< JF MF LM

∣

∣JL
F (s) M

L

F
(s)
ν

>, (23)

where γ
JL

F(s)

(γ) ν JF L is the formal R-matrix radiative width

amplitude for the electric EL transition JL
F (s) → JF

given by the sum of the internal and external radiative
width amplitudes, see Eqs (32) and (33) from [57], in

which we singled out
√
2 k

L+1/2
γ . Because now we take

into account a few multipolarities L, we replace the previ-
ously introduced spin of the intermediate resonance JF (s)

by JL
F (s) , where the superscript L denotes the multipo-

larity of the EL transition to the ground state F . Re-
placement of JF (s) by JL

F (s) takes into account that the
spins of the intermediate excited states are different for
different multipolarities. Since we added the subscript L
to the spin of the intermediate resonance we added the
same subscript to its projection ML

F
(s)
ν

. It is important to

note that V MF M λ
M

F
(s)
ν

ν does not depend on the hadr-sphere

scattering phase shift.
The determined radiative width amplitude is related

to the formal resonance radiative width by the standard
equation

Γ
JL

F (s)

(γ) ν JF L = 2 kL+1/2
γ (γ

JL

F (s)

(γ) ν JF L)
2. (24)

Note that the observable radiative width is related to the
formal one by

(γ̃
JL

F (s)

(γ) ν JF L)
2 =

(γ
JL

F (s)

(γ) ν JF L)
2

1 + γ2
ν jiliJF (s)

[dSli(ExA)/dExA]
∣

∣

ExA=Eν

.

(25)

We consider the two-level approach with ν = 1 (ν = 2)
corresponding to the subthreshold resonance (the reso-

nance at ExA > 0). Then Eν = −ε
(s)
xA for ν = 1 and

Eν = ER for ν = 2 with ER being the resonance energy
corresponding to the level ν = 2. This observable radia-
tive width is related to the observable resonance radiative
width as

Γ̃
JL

F (s)

(γ) ν JF L = 2 kL+1/2
γ (γ̃

JL

F (s)

(γ) ν JF L)
2. (26)

Also in Eq. (23) M is the projection of the angular
momentum L of the emitted photon (multipolarity of
the electromagnetic transition), e Zeff(L) is the effective
charge of the x+A system for the electric transition EL.
The matrix element RL

νjf lf JF ji li JL

F (s)

is

RL
νjf lf JF ji li JL

F (s)
=< rL+2

xA Iji lf JF
(rxA)Υν ji li JL

F (s)
(rxA) > .

(27)

Υν ji li JL

F (s)
(rxA) is the resonant scattering wave function

in the R-matrix approach whose external part is given
by Eq. (9). Again, it follows from Eqs. (9) and (10)
that Υν ji li JL

F (s)
(rxA) does not depend on the R-matrix

hard-sphere scattering phase shift.

The internal resonant wave function Xint τ in the R-
matrix approach matches the external one on the border
rxA = RxA and satisfies the boundary condition

Xint τ (kxA, RxA) =
√

2µxARxA γτ jiliJL

F (s)
. (28)

For τ = 1 Xint 1 is the overlap function of the bound-
state wave functions of F (s) = (xA)(s), x and A, which is
normalized to untiy over the internal region rxA ≤ RxA.

Substituting Eqs. (17) and (23) into Eq. (4) we get
the expression for the indirect reaction amplitude
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MMs MF M λ
Ma MA

=
ϕsx(psx)

2

√

RxA

π µxA

∑

L

(−1)L+1 L̂1/2 kL−1/2
γ

[

DL
M λ(φ, θ, 0)

]∗
∑

li

ili−L M̃li

×
2

∑

ν, τ=1

γ
JL

F(s)

(γ) ν JF LAL
ν τ γτ jiliJL

F (s)

∑

ML

F
(s)
ν

< JF MF LM
∣

∣JL
F (s) M

L

F
(s)
ν

>

×
∑

mji
mli

Mx

< ji mji li mli

∣

∣JL
F (s) M

L

F
(s)
τ

>< Jx Mx Js Ms

∣

∣Ja Ma >< Jx Mx JA MA

∣

∣ji mji > Y ∗
li mli

(p̂xA). (29)

The amplitude MMs MF M λ
Ma MA

describes the indirect re-
action proceeding through the intermediate resonances,
which decay to the ground state F = (xA) by emitting
photons. Equation (29) is generalization of Eq. (4) by
including the sum over multipolarities L corresponding
to the radiative electric transitions from the intermedi-
ate resonances with the spins JL

F (s) to the ground state
F with the spin JF . Note also that we assume that two
levels contribute to each transition of multipole L. It re-
quires the two-level generalized R-matrix approach. The
generalization of Eq. (29) for three- or more-level cases
is straightforward. In Eq. (29) the reaction part and
radiative parts are interconnected by the R-matrix level
matrix elements AL

ν τ . Note that MMs MF M λ
Ma MA

does not
contain the R-matrix hard-sphere scattering phase shift.

The part
2
∑

ν, τ=1
γ
JL

F (s)

(γ) ν JF LAL
ν τ γτ jiliJL

F (s)
is the stan-

dard R-matrix term for the binary resonant radiative
capture reaction. However, we analyze the three-body
reaction a(x s) +A → s+ F + γ with the spectator s in
the final state rather than the standard two-body radia-
tive capture reaction x+A → F+γ. This difference leads
to the generalization of the standard R-matrix approach
for the three-body reactions resulting in the appearance
of the additional terms, ϕsx(psx) M̃li . That is why we call
the developed approach the generalizedR-matrix method
for the indirect resonant radiative capture reactions.

(i) The most important feature of this approach is that
the indirect reaction amplitude does not contain the pen-
etrability factor Pli(ExA, RxA) in the entry channel of the
sub-reaction (2). This factor is the main obstacle to mea-
sure the astrophysical factor of this reaction if one uses
direct measurements. The absence of this penetrability
factor in the entry channel of the sub-reaction allows one
to use the indirect method to get the information about
the astrophysical factor of the sub-reaction.
(ii) The indirect reaction amplitude is parameterized in
terms of the formal R-matrix width amplitudes, which
are connected to the observable resonance widths.
(iii) The final expression for the indirect reaction am-

plitude MMs MF M λ
Ma MA

does not depend on the R-matrix
hard-sphere scattering phase shift.

We take the indirect reaction amplitude at fixed pro-
jections of the spins of the initial and final particles in-

cluding the fixed projection M of the orbital momentum
L of the emitted photon and fixed its chirality λ. For ex-
ample, for the 12C(α, γ)16O reaction the electric dipole
E1 (L = 1) and quadrupole E2 (L = 2) transitions do
contribute and they interfere. In the long wavelength
approximation only minimal allowed li for given L does
contribute. For example, for the case considered below
lf = 0 li = L = 1 for the dipole and li = L = 2 for
the quadrupole electric transitions do contribute. The
dimension of the R-matrix level matrix AL depends on
the number of the levels taken into account for each L.
The indirect reaction amplitude depends on the off-

shell momenta psx and pxA. Both off-shell momenta are
expressed in terms of ka and ks, see Eq. (20). Also the
the indirect reaction amplitude depends on the momen-
tum of the emitted photon kγ whose direction is deter-
mined by the angles in the Wigner D-function.
In the center-off-mass of the reaction (3) neglecting the

recoil effect of the nucleus F during the photon emission
from the energy conservation we get

EaA +Q = EsF + kγ , (30)

kγ = ExA + εxA, (31)

where EsF = k2s/(2µsF ), Q = εxA − εsx and εxA is the
binding energy of the ground state of the nucleus F .
To estimate the recoil effect we take into account that

in the center-off-mass of the reaction (3) the momentum
conservation in the final state gives

k
′

F = −kγ − ks, (32)

where k
′

F is the momentum of the final nucleus F after
emitting the photon. Then the energy conservation leads
to

EaA − εsx =
k2s

2µsF
+ ExA =

k2s
2ms

+
(k′F )

2

2mF
+ kγ (33)

=
k2s

2µsF
+ 2

ks kγ
2mF

cos θ′ +
k2γ

2mF
+ kγ . (34)

We remind that we use the system of units in which
~ = c = 1, that is, Eγ = kγ . Evidently that the term
k2
γ

2mF
= Eγ

Eγ

2mF
can be neglected because Eγ << mF .



10

The contribution of the term 2
ks kγ

2mF
cos θ′ depends on

cos θ′ = k̂s · k̂γ .
To estimate the recoil effect of the nucleus F we con-

sider the reaction 12C(6Li, d γ)16O at the most effective
astrophysical energy ExA = Eα 12C = 0.3 MeV; the en-
ergy of the emitted photon is kγ ≈ 7 MeV and EaA = 7
MeV. As we will see below (Fig. (4)) at 0.3 MeV the max-
imum of the photon’s angular distribution is at θ = 52◦,
where θ is the angle between pα 12C and kγ . In the QF
kinematics pα 12C||kd where ks = kd, that is, θ

′ = θ. At
θ = 52◦, which is the maximum of the photon’s angular
distribution and is close to the maximum of the angu-
lar distribution for the E2 transition, the recoil effect is
∼ 6.5%. Note that for the E1 transition the photon’s an-
gular distribution has a peak at 90◦ at which the recoil
effect vanishes.
Neglecting the recoil effect of the nucleus F in Eq. (33)

we can replace k
′

F by ks. Then kγ and ks are related by
Eq. (30) while kγ and ExA are related by Eq. (31).
If we would take into account the recoil effect then the
relationship between kγ and ExA is more complicated
then Eq. (31) and is given by

kγ =
ExA

ks cos θ′

mF
+ 1

, (35)

where we neglected the extremely small term
k2
γ

2mF
. How-

ever, in this paper, because we don’t analyze the real data
and make a proposal, we neglect the recoil effect of the

nucleus F .

The expression for pxA is needed to calculate M̃li .
From the energy-momentum conservation law in the
three-ray vertices a → s + x and x + A → F (s) of the
diagram in Fig. 1 we get [3]

ExA =
p2xA
2µxA

− p2sx
2µsx

− εs x. (36)

In the QF kinematics psx = 0 and

ExA =
p2xA
2µxA

− εs x. (37)

Thus always
p2
xA

2µxA
> ExA.

III. DIFFERENTIAL CROSS SECTIONS

A. Triple differential cross section

Let us consider the indirect resonant reaction con-
tributed by different interfering multipoles L. For each
L we assume two-level contribution. Then the triple dif-
ferential cross section of the resonant indirect radiative
capture reaction for unpolarized initial and final parti-
cles (including the photon) in the center-off-mass of the
reaction (3) is given by

dσ

dΩ
k̂s

dΩ
k̂γ

dEsF
=

µaA µsF

Ĵa ĴA(2 π)5

ksF k2γ
kaA

∑

Ma MA Ms MF M λ

∣

∣

∣
MMs MF M λ

Ma MA

∣

∣

∣

2

= − 1

(2 π)7
µaA µsF

Ĵx ĴA

ϕ2
sx(psx)RxA

4µxA

ksF
kaA

(−1)JF−ji
∑

L′ L

(−1)L
′+L kL

′+L+1
γ ĴL′

F (s) Ĵ
L
F (s)

√

L̂′ L̂
∑

l′i li l

iL
′−l′i−L+li

√

l̂′i l̂i

× M̃∗
l′i
M̃li

{

ji l
′
i J

L′

F (s)

l JL
F (s) li

}{

JL′

F (s) JF L′

L l JL
F (s)

}

2
∑

ν′, ν, τ ′, τ=1

[

γ
JL′

F(s)

(γ) ν′ JF L′

]∗
[γ

JL

F(s)

(γ) ν JF L]
[

AL′

v′ τ ′

]∗ [

AL
ν τ

]

×, γτ ′ jil′iJ
L′

F (s)
γτ jiliJL

F (s)
< l′i 0 li 0

∣

∣l 0 >< L′ 1 L − 1
∣

∣l 0 > [1 + (−1)L
′+L+l]Pl(cosθ). (38)

To obtain Eq. (38) we adopted z || p̂xA, that is,

Yl ml
(p̂xA) =

√

l̂
4π δml 0. Thus, in the plane-wave ap-

proximation, the direction p̂xA becomes the axis of the
symmetry. Note that if we replace the plane waves by
the distorted waves, the vestige of this symmetry will
still survive [12].

We remind that the radiative transition JL
F (s) → JF is

the electric EL where JL
F (s) is the spin of the intermediate

state (subthreshold resonance or resonance).

For a more simple case when only one multipole L
contributes into the radiative transition, the triple differ-
ential cross section takes the form:
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dσ

dΩ
k̂s

dΩ
k̂γ

dEsF
= − 1

(2 π)7
µaA µsF

Ĵx ĴA

ϕ2
sx(psx)RxA

2µxA

ksF
kaA

kL̂γ (−1)JF−ji L̂ (ĴL
F (s))

2
∑

li l

l̂i

×
∣

∣M̃li

∣

∣

2

{

ji li J
L
F (s)

l JL
F (s) li

}{

JL
F (s) JF L
L l JL

F (s)

}

2
∑

ν′, ν, τ ′, τ=1

[

γ
JL

F (s)

(γ) ν′ JF L

]∗
[γ

JL

F (s)

(γ) ν JF L]
[

AL
v′ τ ′

]∗ [

AL
ν τ

]

×, γτ ′ jiliJL

F (s)
γτ jiliJL

F (s)
< li 0 li 0

∣

∣l 0 >< L 1 L − 1
∣

∣l 0 > Pl(cosθ). (39)

Also formally we keep the summation over li, in the long
wavelength approximation for given L at astrophysically
relevant energies only minimal allowed li does contribute.
The triple differential cross section depends on ks and

kγ . Because we neglected the recoil of the final nucleus
F , ks and kγ are related by Eq. (30). We remind that
we selected axis z||pxA. Hence the photon’s scattering
angle is counted from pxA, which itself is determined by
ks. Thus the angular dependence of the triple differential
cross section determines the angular correlation between
the emitted photons from the intermediate excited state
F ∗ and the spectator s. Because we consider the three-
body reaction (3) the angular correlation function also
depends on the spins JL

F (s) of the intermediate nucleus
F ∗ which decays to F .
By choosing QF kinematics, psx = 0, one can provide

the maximum of the triple differential cross section due
to the maximum of ϕ2

sx(psx). At fixed ks the triple
differential cross section determines the emitted photon’s
angular distribution, which is contributed by different

interfering multipoles L. By measuring the photon’s
angular distributions at different photon’s energies
(that is, at different ks or ExA) one can determine the
energy dependence of the photon’s angular distribution.
However, a wide variation of ks away from the QF
kinematics psx = ks − (ms/ma)ka = 0 will decrease the
differential cross section due to the drop of ϕ2

sx(psx).
Usually, in indirect methods ks is varied in the interval
in which psx ≤ κsx [3].

B. Double differential cross section

Integrating the triple differential cross section over the
the photon’s solid angle Ω

k̂γ
we get the non-coherent

sum of the double differential cross sections with different
multipoles L:

dσ

dΩ
k̂s

dEsF
=

1

(2 π)6
µaA µsF

Ĵx ĴA

ϕ2
sx(psx)RxA

µxA

ksF
kaA

∑

L

√

L̂ ĴL
F (s) k

L̂
γ

∑

li

∣

∣M̃li

∣

∣

2

×
2

∑

ν′, ν, τ ′, τ=1

[

γ
JL

F(s)

(γ) ν′ JF L

]∗
[γ

JL

F (s)

(γ) ν JF L]
[

AL
v′ τ ′

]∗ [

AL
ν τ

]

γτ ′ ji li JL

F (s)
γτ ji li JL

F (s)
. (40)

Despite of the virtual transferred particle x in the di-
agram of Fig. 1, using the surface integral approach and
the generalized R-matrix we can rewrite the double dif-
ferential cross section in terms of the on-the-energy-shell
(OES) astrophysical factor for the resonant radiative cap-

ture A(x, γ)F for the electric transition of the multipo-
larity L and the relative orbital angular momentum li of
particles x and A in the entry channel of the A(x, γ)F
raiative capture. In the R-matrix formalism this astro-
physical factor is given by [5]

SEL,li(ExA)(MeV b) = 2 π λ2
N

ĴL
F (s)

Ĵx ĴA

1

µxA
m2

N e2π ηi Pli(ExA, RxA) 10
−2 kL̂γ

∣

∣

∣

∑

ν,τ

[γ
JL

F(s)

(γ) ν JF L]
[

AL
ν τ

]

γτ ji li JL

F (s)

∣

∣

∣

2

. (41)

Here, λN = 0.2118 fm is the Compton nucleon wave length, mN = 931.5 MeV is the atomic mass unit, µxA is



12

the x−A reduced mass expressed in MeV, ηi is the x−A
Coulomb parameter at relative enerrgy ExA. Then the

indirect double differential cross section takes the form:

dσ

dΩ
k̂s

dEsF
= KF ϕ2

sx(psx)RxA

∑

L

√

√

√

√

L̂

ĴL
F (s)

∑

li

e−2π ηi P−1
li

(ExA, RxA)
∣

∣M̃li

∣

∣

2
SEL,li(ExA), (42)

where

KF =
102

(2 π)7
µaA µsF

m2
N λ2

N

ksF
kaA

(43)

is the kinematical factor.
To determine the astrophysical factor from the indirect

double differential cross section we need to identify the
region where accurate direct data are available and only
one resonance dominates with given L and li. By nor-
malizing in this region the astrophysical factor obtained
from the indirect measurement to the experimental one
we get the

SEL,li(ExA) = NF
dσ

dΩ
k̂s

dEsF

√

ĴL
F (s)

L̂

1

KF ϕ2
sx(psx)RxA

e2π ηi Pli(ExA, RxA)
∣

∣M̃li

∣

∣

−2
. (44)

Here, NF is an energy-independent normalization fac-
tor providing correct astrophysical factor SEL,li(ExA)
at higher energies. Using this normalization factor we
can determine with accuracy, which is not achievable in
any direct approach, the astrophysical factors at ener-
gies ExA → 0. This is the main achievement of the in-
direct approach. We remind that in our formalism we
use the plane wave approximation rather than the dis-
torted wave. But it should not affect the accuracy of our
method because the distorted waves and plane wave ap-
proximation give similar energy dependence of the trans-
fer reaction cross section. The normalization factor NF
compensates the inaccuracy of the plane wave approxi-
mation.

We summarize the methodology of the indirect method
to obtain the astrophysical factor.
(1) Measurements of the photon’s angular distribution
(photon-spectator angular correlation) at different ExA

energies covering the interval from low energies relevant
to nuclear astrophysics up to higher energy at which di-
rect data are available. To cover a broad energy range
at fixed energy of the projectile, the energy, and scatter-
ing angle of the spectator should be varied near the QF
kinematics (psx = 0).
(2) Obtaining the indirect double differential cross sec-
tion by integrating the triple differential cross section
over the photon’s scattering angle.
(3) Expressing the astrophysical factor in terms of the
indirect double differential cross section.
(4) Normalization of astrophysical factor to the available

experimental data at higher energy.
(5) Determination of the astrophysical factor at astro-
physical energies.

IV. RADIATIVE CAPTURE 12C(α, γ)16O VIA

INDIRECT REACTION 12C(6Li, d γ)16O

In this section we demonstrate the application of the
developed formalism for the analysis of the indirect re-
action 12C(6Li, d γ)16O to obtain the information about
the astrophysical factor for the 12C(α, γ)16O at energies
< 1 MeV. For our analysis we use the energy levels from
[58].
At low energies the astrophysical reaction under con-

sideration is contributed by the L = 1 and L = 2 elec-
tric transitions [24, 27, 29, 32, 37]. E1 transition to
the ground state JF = 0, lf = 0 proceeds as the res-
onant capture through the wing at Eα 12C > 0 of the
subthreshold bound state 1− at Eα 12C = −0.045 MeV,
which works as the subthreshold resonance. Besides, the
E1 transition to the ground state is contributed by the
resonant capture through the low-energy tail of the 1−

resonance located at ER = 2.423 MeV. The E2 tran-
sition is contributed by the subthreshold 2+ state at
Eα 12C = −0.2449 MeV and low-energy tail of 2+ res-
onance at 2.68 MeV.
These four states are observable physical states con-

tributing to the low-energy radiative capture under con-
sideration. Besides these states, when fitting the data the
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artificial level was added for E1 transition (see, for ex-
ample, [24, 27, 29, 32, 38] and references therein). In the
present paper we calculate the photon’s angular distri-
bution (the angular photon-deuteron correlation) at low
energies down to the most effective astrophysical energy
Eα 12C = 0.3 MeV.
We take into account the mentioned four physical

states and added one artificial state for the E1 transi-
tion. It can be explained qualitatively why the back-
ground level is necessary to include into the fit of the
E1 transition. The problem is that the subthreshold
state J = 1, Eα 12C = −0.045 MeV and the resonance
J = 1, ER = 2.423 MeV cannot decay by the E1 transi-
tion to the ground state of 16O because all of them have
the isospin T = 0. Evidently that the observed weak E1
transition from the first two J = 1, T = 0 states is pos-

sible only due to the small admixture of the higher lying
J = 1, T = 1 states [19].
The reduced widths of the subthreshold resonances are

known from the experimental ANCs [27, 43] and the re-
duced width of the 1−, 2.423 MeV resonance is deter-
mined from the resonance width. We disregard the cas-
cade transitions to the ground state of 16O through sub-
threshold states. According to [19], the sum of all cascade
transitions contributes only 7 − 10%. Because we don’t
pursue here a perfect fit, we neglect all the cascade tran-
sitions. In our fit, as in Ref. [20], we also disregard the
E2 direct radiative capture to the ground state 16O.
For the case under consideration Jx = 0, JA = 0, ji =

0, li = L = JL
F (s) , JF = 0 and the expression for the

triple differential cross section for the case under consid-
eration simplifies to

dσ

dΩ
k̂s

dΩ
k̂γ

dEsF
= −µaA µsF

(2 π)7
ϕ2
sx(psx)RxA

2µxA

ksF
kaA

∑

L′ L

(−1)L
′+L kL

′+L+1
γ

√

L̂′ L̂

× M̃∗
L′ M̃L

2
∑

ν′, ν, τ ′, τ=1

[

γL′

(γ) ν′ 0L′

]∗
[γL

(γ) ν 0L]
[

AL′

v′ τ ′

]∗ [

AL
ν τ

]

×, γτ ′ 0L′ L′ γτ 0LL

∑

l

< L′ 0 L 0
∣

∣l 0 >< L′ 1 L − 1
∣

∣l 0 > Pl(cosθ). (45)

Here, a = 6Li, A = 12C, s = d, x = α, F = 16O. This
expression is used for the analysis of the indirect reaction
12C(6Li, d γ)16O at low energies. We outline here some
details of the calculations.
After integration over the photon’s solid angle we get

the indirect double differential cross section (42) in which
li = L. Then at energies near the 1− resonance at 2.423
MeV where, as we will see below, the E1 transition com-
pletely dominates,

SE1(ExA) = NF
dσ

dΩ
k̂s

dEsF

1

KF ϕ2
sx(psx)RxA

e2π ηi P1(ExA, RxA)
∣

∣M̃1

∣

∣

−2
. (46)

The S(E1) astrophysical factor was measured at energies
near 2.423 MeV with a very good accuracy [19, 32, 36].
Should we have the experimental indirect double differen-
tial cross section expressed in arbitrary units, we can use
Eq. (46) to normalize the SE1(ExA) to the experimen-
tal one at higher energies. After that, having measured
indirect double differential cross section at 0.3 MeV, we
can determine the SE1(0.3MeV) + SE2(0.3MeV).
In this paper we calculate the photon’s angular distri-

bution at different Eα 12C energies for the 12C(α, d γ)16O
reaction and how it is affected by the interference charac-
ter (constructive or destructive) of the 1− subthreshold
bound state and 1− resonance. In the R-matrix approach
the fitting parameters are the formal reduced widths

which are related to the observable ones by Eq. (15). The
observable reduced widths (γ̃1 0 1 1)

2 and (γ̃1 0 2 2)
2 are ex-

pressed in terms of the corresponding ANCs of the sub-
threshold bound states by Eq. (16). For the ANCs of the

1− and 2+ subthreshold states we adopted [C
(s)
(α 12C)1]

2 =

4.39×1028 fm−1 and [C
(s)
(α 12C)2]

2 = 1.48×1010 fm−1 [43],

respectively. In all the calculations, following [27], we
use the channel radius Rα 12C = 6.5 fm. The observable
reduced width of the resonance 1− is expressed in terms
of the observable resonance width of this resonance. For
this resonance we adopt Γ̃2 011 = 0.48 MeV [58]. In the
case under consideration for the E1 transition we take
into account three states and select the boundary con-
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FIG. 2: Square of the d−α bound state wave function in the
momentum space.

dition at the energy of the first level, which is the 1−

subthreshold bound state, that is, E1 = −ε
(s)
xA(1).

For the E2 transition we take into account two levels
and select the boundary condition at the energy of the
2+ subthreshold bound state E2 = −0.245 MeV.

Now we discuss the radiative width amplitudes. We
use Eq. (25) to express the formal radiative widths am-
plitudes γ1

(γ) 1 0 1, γ
1
(γ) 2 0 1 and γ2

(γ) 1 0 2 in terms of corre-

sponding observable reduced widths, which are related
to the observable radiative resonance widths by Eq. (26)
[55].

Another important point to discuss is the kinematics of
the indirect reaction. The triple differential cross section
is proportional to ϕ2

dα(pdα), which is shown in Fig. 2.
The maximum of ϕ2

dα(pdα) at pdα = 0 (QF kinematics)
also provides the maximum of the triple differential cross
section. pdα is the d−α relative momentum in the three-
ray vertex 6Li → d+ α of the diagram in Fig. 1.

To calculate the Fourier transform of the 6Li = (dα)
bound-state wave function we use the Woods-Saxon po-
tential with the depth V0 = 60.0 MeV, radial param-
eter r0 = rC = 1.25 fm and diffuseness a = 0.65 fm.
This potential provides the d − α bound state with the
binding energy εdα = 1.474 MeV [58] . The correspond-
ing bound-state wave number of the dα bound state is
κdα =

√
2µdα εdα = 0.31 fm−1. The square of ANC for

the virtual decay 6Li → d + α is [C(dα)0]
2 = 7.28 fm−1.

This value is higher than a realistic value of this square
of [C(dα)0]

2 = 5.29 fm−1 [59]. To get the correct ANC
from the one obtained in the Woods-Saxon potential we
need to introduce the spectroscopic factor. However, be-
cause we are not interested in the absolute cross section,
we keep using the ANC generated by the Woods-Saxon
potential.

Usually the indirect experiments are performed at fixed
incident energy of the projectiles [3]. In the case un-
der consideration the projectile is 6Li or 12C (in the in-

verse kinematics). To cover the Eα 12C energy interval
∼ 2 MeV at fixed relative kinetic energy E6Li 12C, one
needs to change pdα. Since k6Li is fixed to change pdα

we have to change kd so that pdα ≤ κdα. It can be
achieved by changing kd or its direction k̂d or both. Ex-
perimentally one can select all the events falling into the
region pdα ≤ καd. Here, to simplify calculations, we as-
sume that kd||k6Li. It means that the variation of pdα

is achieved by changing of kd. Owing to the energy con-
servation by changing kd we can vary Eα 12C but simul-
taneously we change the d − α relative momentum pdα.
The triple differential cross section given by Eq. (45)
is proportional to the d − α bound-state wave function
in the momentum space ϕ2

dα(pdα), which decreases with
increase of pdα, see Fig. 2.

To avoid significant decrease of the triple differential
cross section when covering the Eα 12C energy interval
≈ 2 MeV it is better to take a lower E6Li 12C but not
too close to the Coulomb barrier in the initial channel of
the indirect reaction (3). Taking into account that this
Coulomb barrier is ≈ 5 MeV we consider as an exam-
ple the relative kinetic energy E6Li 12C = 7 MeV. In this
case for Eα 12C = 2.28 MeV, which is close to the res-
onance energy of the 1− resonance, pdα = 0.141 fm−1

while at Eα 12C = 0.3 MeV pdα = 0.281 fm−1. Hence,
when covering the Eα 12C energy interval from the en-
ergy Eα 12C = 2.28 MeV to the most effective astrophys-
ical energy for the process 12C(α, γ)1616 the square of
the Fourier transform ϕ2

dα(pdα) drops by a factor of
2.97. Note that the drop of ϕ2

dα(pdα), when moving
from Eα 12C = 2.28 MeV to 0.9 MeV, is 2.1. ϕ2

dα(pdα)
appears because we consider the indirect three-body re-
action. There is another energy-dependent factor M̃L,
which is also result of the consideration of the three-body
indirect reaction. This factor will be considered below.

Our goal is to calculate the photon’s angular distri-
butions at different Eα−12C energies. It can allow us
to compare the indirect cross sections at higher energy
Eα−12C = 2.28 MeV and the most effective astrophysical
energy Eα−12C = 0.3 MeV. Because the indirect triple
differential cross section does not contain the penetrabil-
ity factor in the channel α−12C of the binary sub-reaction
(2), the indirect method allows one to measure the triple
differential cross section at Eα−12C = 0.3 MeV what is
impossible by any direct method.
1. By comparing the triple differential cross sections at
higher energies and at 0.3 MeV we can determine how
much the indirect cross section will drop when we reach
Eα−12C = 0.3 MeV. It will help to understand whether it
is feasible to measure the triple differential cross section
at such a low energy.
2. The second goal is to determine whether the interfer-
ence of the 1− subthreshold resonance and 1− resonance
at 2.423 MeV is constructive or distractive because the
pattern of this interference may affect the photon’s an-
gular distribution.
3. The third goal is to compare the relative contribution
of the E1 and E2 transitions.
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TABLE I: Parameters used in calculations of the astrophysi-
cal factors of the 12C(α, γ)16O radiative capture and the pho-
ton’s angular distributions from the indirect 12C(6Li, d γ)16O
reaction.

L = 1 L = 2

E1 [MeV] (−0.45) (−0.245)

γ1 0LL [MeV1/2] (0.0867) (0.1500)

γL
(γ) 1 0LL [MeV1/2fmL+1/2] (0.0241) (0.9415)

E2 [MeV] 3.0 2.8

γ2 0LL [MeV1/2] 0.3254 0.75

γL
(γ) 2 0LL [MeV1/2fmL+1/2] −0.00963 −0.09257

E3 [MeV] 33.8

γ3 0LL [MeV1/2] 1.1

γL
(γ) 3 0LL [MeV1/2fmL+1/2] −0.00239

A. Astrophysical factors for 12C(α, γ)16O

First, to determine the parameters, which we use
to calculate the triple differential cross sections, we
fit the experimental astrophysical factors SE1 for the
E1 transition and S(E2) for the E2 transition for the
12C(α, γ)1616 reaction from [19]. We do not pursue a
perfect fit and are mostly interested in fitting energies
below the 1− resonance at 2.423 MeV, and at low ener-
gies Eα−12C ≤ 1 MeV. To get an acceptable fit for the E1
transition we needed to include three levels, two physi-
cal states, subthreshold 1− state and the 1− resonance,
and one background state. For the E2 transition it was
enough to include only two physical states, 2+ subthresh-
old resonance and 2+ resonance at 2.683 MeV.

We repeat that we do not pursue the perfect fit of the
experimental S factors. Our goal is to demonstrate the
pattern of the triple differential cross section using rea-
sonable parameters. More complicated fit can be done
when indirect data will be available. In our fit, we kept
fixed only the parameters of the subthreshold resonances
1− and 2+ while the parameters of the higher lying res-
onances 1− and 2+ were varying. The fixed parameters
are shown in Table I in parentheses. In this table is shown
the set of the parameters used to fit the astrophysical fac-
tors SE1 and SE2 . These parameters are also used to
calculate the triple differential cross section. En is the
energy of the n-th level.

Note that in the R-matrix approach, which includes

a few interfering levels, it is convenient to choose one
of the energy level coinciding with the location of the
observable physical state [56, 60] while energies of other
levels become fitting parameters.

In this paper we adopted E1 = −ε
(s)
α 12C(1) = −0.045

MeV for L = 1 and E2 = −ε
(s)
α 12C(2) = −0.245 MeV for

L = 2 transitions. Then the boundary condition for the
second and third levels of the E1 transition are taken
at Eα 12C = −0.045 MeV while for L = 2 the boundary
condition is taken at Eα 12C = −0.245 MeV. Moreover,
because in our choice the locations of the subthreshold
bound states for L = 1 and L = 2 are fixed, the energies
of other levels are fitting parameters and deviate from
the real resonance energies. For example, the 1− reso-
nance at 2.423 MeV in the fit is shifted to Eα 12C = 3.0
MeV and the 2+ resonance at 2.683 MeV is shifted to 2.8
MeV. Hence, the statement that we take into account the
radiative capture through the wing of the subthreshold
1− resonance at Eα 12C = −0.045 MeV and the 1− reso-
nance at Eα 12C = 2.423 MeV does not contradict to the
fact that in the fit the resonance at 2.423 MeV is shifted
to 3.0 MeV. To fit the E1 transition we needed to add
the background state at 33.8 MeV with parameters given
in Table I.
In this table, the given parameters provide the con-

structive interference of the subthreshold 1− resonance
and resonance at 2.423 MeV at low energies. Changing
the sign of γ1

(γ) 2 0 1L = −0.00963 MeV1/2fm3/2 to pos-

itive provides the destructive interference between the
first two 1− levels. In what follows by the E1 construc-
tive (destructive) interference we mean the constructive
(destructive) interference between the first two 1− levels.
In Fig. 3 the calculated SE1 and SE2 astrophysical

factors for the E1 and E2 transitions, respectively, are
compared with the experimental ones from [19]. Our
fitted astrophysical factors are: SE1(0.3MeV) = 124.6
keVb for the E1 transition and SE2(0.3MeV) = 71.1
keVb for the E2 transition. Evidently that our value for
the E1 transition is higher than the contemporary ac-
cepted value of 80 keVb for constructive interference but
the value for the E2 transition is close to the low value
60 keVb [37]. But, as we have underscored, our values
should not be taken very seriously. In the absence of in-
direct data we use the parameters obtained from fitting
the data from [19] to generate the photon’s angular dis-
tributions to make some qualitative predictions. We also
show how the photon’s angular distributions are affected
by lowering SE1(0.3MeV).

B. Photon’s angular distributions

In Figs. 4, 5, 6 and 7 the photon’s angular distributions
are shown at four different Eα 12C energies: 0.3, 0.9, 2.1
and 2.28 MeV. We do not show the angular distributions
at the middle energy 1.5 MeV because it is very similar
to the angular distributions at higher energies and com-
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FIG. 3: Low-energy astrophysical SE1(Eα 12C) and
SE2(Eα 12C) factors for E1 and E2 transitions for the
12C(α, γ)16O radiative capture. Black dotes are astrophysi-
cal factors from [19], solid red line is present paper fit. Panel
(a): SE1(Eα 12C) astrophysical factor; panel (b): SE2(Eα 12C)
astrophysical factor.

pletely dominated by the E1 transition. The calculations
are performed at E6Li 12C = 7 MeV (9.33 MeV in the
Lab. system with 6Li projectile), which is higher than
the Coulomb barrier VCB ≈ 5 MeV in the entry channel
6Li + 12C of the indirect reaction.
Figures 4 and 5 are very instructive. First, we note

that the E1 angular distributions of the photons at all
energies are peaked at 90◦ while the E2 angular distri-
butions are double-humped and peaked at 45◦ and 135◦.
However, the interference of the E1 and E2 transitions
leads to different total angular distributions. The an-
gular distributions at 0.3 MeV are quite similar for the
E1 transitions with constructive and destructive inter-
ferences, panels (a) and (b) in Fig. 4, with pronounced
peaks at 52◦ and 50◦, respectively. The character of the
total angular distribution at 0.3 MeV depends on the
relative weight of the E1 and E2 transitions.
The photon’s angular distributions at 0.9 MeV, panels

(c) and (d), are the most instructing. The patterns of
the photon’s angular distributions are different for the
constructive and destructive E1 transitions what allows
one to distinguish between two types of the E1 interfer-
ences. However, the cross sections for the destructive E1
interference is too small compared to the cross section at
0.3 MeV.
Now we proceed to the angular distributions at higher

energies shown in Fig. 5. At higher energies, the E1 tran-
sition dominates and we see profound E1 type angular
distributions both for the E1 constructive and destruc-
tive interferences of the two first 1− levels. Hence, the an-
gular distributions at higher energies cannot distinguish
between constructive and destructive E1 interferences.
Comparing the relative values of the triple differential

cross sections of Fig. 5, panel (c) and Fig. 4, panel (a) we
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FIG. 4: Angular distribution of the photons emitted from
the reaction 12C(6Li, d γ)16O proceeding through the wings
of two subthreshold resonances 1−, Eα 12C = −0.045 MeV,
2+, Eα 12C = −0.245 MeV, and the resonances at Eα 12C > 0.
The green dashed-dotted line is the angular distribution for
the electric dipole transition E1, the blue dashed line is the
angular distribution generated by the electric quadrupole E2
transition, and the red solid line is the total angular distribu-
tion resulted from the interference of the E1 and E2 radiative
captures. Panel (a): Eα 12C = 0.3 MeV, constructive interfer-
ence of the E1 transitions through the wing of 1−, Eα 12C =
−0.045 MeV and the resonance 1−, ER = 2.423 MeV; panel
(b): Eα 12C = 0.3 MeV, destructive interference of the E1
transitions through the wing of 1−, Eα 12C = −0.045 MeV
and the resonance 1−, ER = 2.423 MeV; panel (c): the same
as panel (a) for Eα 12C = 0.9 MeV; panel (d): the same as
panel (b) for Eα 12C = 0.9 MeV.

can make, presumably, the most important conclusion:
the triple differential cross section near the 1− resonance
at 2.28 MeV exceeds the one at 0.3 MeV by approxi-
mately an order of magnitude. We remind to the reader
that in the case of the direct measurements when mov-
ing from 2.28 MeV to 0.3 MeV, the cross section drops
by a factor of 109. Our estimation detailed in the next
section shows that measurements of the indirect triple
differential cross section at 0.3 MeV are feasible. Thus,
for the first time, we provide a possibility to measure the
12C(α, γ)16O right at the most effective astrophysical en-
ergy 0.3 MeV.

In Figs 4 and 5 we have used the R-matrix parameters,
which provide a higher SE1(0.3MeV) = 124.6 keVb for
the constructive E1 transition than the contemporary
accepted ∼ 80 keVb [37]. To check how the photon’s
angular distributions are affected by a lower E1 astro-
physical we changed three R-matrix parameters in Table
I: E2 = 3.1 MeV, γ1

(γ) 2 0 1 1 = −0.006132 MeV1/2fm3/2

and γ3 0 1 1 = 1.4 MeV1/2. With these parameters we get
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FIG. 5: Angular distribution of the photons emitted from
the reaction 12C(6Li, d γ)16O proceeding through the wings of
the two subthreshold resonances, 1−, Eα 12C = −0.045 MeV,
2+, Eα 12C = −0.245 MeV, and the resonances at Eα 12C > 0.
Notaions of the lines are the same as in Fig. 4. Panel (a): the
same as panel (a) in Fig. 4 for Eα 12C = 2.1 MeV; panel (b):
the same as panel (b) in Fog. 4 for Eα 12C = 2.1 MeV; panel
(c) the same as panel (c) in Fig. 4 for Eα 12C = 2.28 MeV.

SE1(0.3MeV) = 75.8 keVb and SE1(0.9MeV) = 14.7
keVb. We use the modified parameters to calculate
the photon’s angular distributions again at Eα 12C =
0.3, 0.9, 2.1 and 2.28 MeV, see Figs 6 and 7. Thus we
repeated calculations similar to the ones shown in Figs.
4 and 5 but with three modified parameters leading to
smaller SE1.

We find that decrease of the SE1 does not change the
angular distribution except for the panel (d) in 6, which is
different than the panel (d) in Fig 4 but the absolute val-
ues of the cross sections in these panels are quite small.
The main effect of the dropping of the SE1 factor is a
decrease of the triple differential cross section at higher
energies where E1 significantly dominates over E2. As
a result, the ratio of the triple differential cross sections
at 2.28 MeV and 0.3 MeV is only 6.5. That is, the rel-
ative weight of the triple differential cross section at 0.3
MeV increases what makes more plausible the chances to
measure the triple differential cross section at 0.3 MeV
for lower SE1.

In [37] it was underscored that contemporary experi-
mental data do not exclude very low SE1(0.3MeV) = 10
keVb and high SE2(0.3MeV) = 154 keVb. We did not
exploit here all the possibilities for the astrophysical fac-
tors but, evidently that this marginal values can change
the photon’s angular distributions. Indirect measure-
ments can finally resolve ambiguities in the low-energy
astrophysical factors.

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

Ph
ot

on
's 

an
gu

la
r d

is
tri

bu
tio

n 
(a

rb
. u

ni
ts

)

(a)

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500 (b)

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

(c)

(deg)
0 20 40 60 80 100 120 140 160 180

0

10

20

30

40

50

60

(d)

(deg)

FIG. 6: The same as in Fig. 4 but the calculations are done
with three modified R-matrix parameters generating lower
SE1(0.3) MeV astrophysical factor.
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FIG. 7: The same as in Fig. 5 but calculations are done
with three modified R-matrix parameters generating lower
SE1(0.3) MeV astrophysical factor.

V. FEASIBILITY OF THE PROPOSED

APPROACH

Reliable estimates for the 12C(6Li,d) reaction cross sec-
tion at 10-11 MeV energy of 6Li beam populating the 1−

state at 9.585 MeV can be made. Using FRESCO [61]
reaction code and the same set of potentials as in [43],
DWBA calculations predict cross section on the order
of 10 mb/sr for forward angles (0-30◦ in c.m.). The γ
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branching of this state to the 16O ground state is 5×10−8

[58]. This sets the absolute scale for the cross sections to
be measured at close to 1 nb. This is a very challenging
but achievable target for a dedicated experimental setup.
One possibility is to couple high efficiency array for high
energy γ-rays (such as nearly 4π BaF or CsI [62–76] )
with large area position sensitive Si array (with total solid
angle of ∼ 1 sr) to detect deuterons. Another possibility
is to use inverse kinematics (12C beam on 6Li target) and
detect 16O recoils in the spectrometer while still measur-
ing deuterons at back angles in coincidence with high
energy γ-rays. The former approach (direct kinematics)
allows to achieve better energy resolution, while the later
leads to very clean measurement due to triple 16O/γ/d
coincidence. We estimate that event rates as high as 103

per day can be achieved with high intensity beams (on
the order of 1 particle µA) while keeping energy reso-
lution within 100 keV. This specific estimate was made
for the direct kinematics approach assuming 60 µg/cm2

12C target thickness. Slow variation of triple differential
cross section with energy (by one order of magnitude)
makes it possible to achieve satisfactory statistics even
at Eα 12C = 0.3 MeV within reasonable time frame. One
week of beam time would produce on the order of few
hundred events in the region of Gamow window energy.

VI. SUMMARY

In this paper, we suggested and developed the formal-
ism of resonant indirect radiative capture reactions. The
derived expressions for the triple and double differential
cross sections can be used for the analysis of the indirect
radiative capture reactions. The developed formalism
can be utilized when indirect reactions proceed through
a few subthreshold bound states and resonances. In this
case, the statistical theory cannot be applied and the
intermediate subthreshold bound states and resonances
should be taken into account explicitly.
The idea of the indirect method is to use the indirect

reaction A(a, s γ)F to obtain the information about the
radiative capture reaction A(x, γ)F , where a = (s x) and
F = (xA). The main advantage of using the indirect
reactions is the absence of the Coulomb-centrifugal pen-
etrability factor in the entry channel x+A of the binary
sub-reaction A(x, γ)F , which suppresses the low-energy
cross section of this reaction and does not allow one to

measure it at astrophysically relevant energies.

Using indirect resonant radiative capture reactions
one can obtain the information about important as-
trophysical resonant radiative capture reactions, like
(p, γ), (α, γ) and (n, γ) on stable and unstable isotopes.
The indirect technique makes accessible low-lying reso-
nances, which are close to the threshold, and even sub-
threshold bound states at negative energies.

In this paper, after developing the general formal-
ism, we have demonstated the application of the indirect
method for the indirect reaction 12C(6Li, d γ)16O pro-
ceeding through 1− and 2+ subthreshold bound states
and resonances to obtain the information about the
12C(α, γ)16O radiative capture.

The indirect method requires measurement of the
triple differential cross section in the coincidence exper-
iment, in which one has to measure the photon’s angu-
lar distribution at given energy and scattering angle of
the deuteron. This photon’s angular distribution is the
photon-deuteron angular correlation.

We show that the ratio of the triple differential cross
section at energyEα 12C = 2.28 MeV, which is close to the
1− resonance at 2.423 MeV, to the one at Eα 12C = 0.3
MeV is about an order of magnitude. Such a small drop
of the triple differential cross section when one reaches
the most effective astrophysical energy Eα 12C = 0.3 MeV
makes it possible to obtain the information about the as-
trophysical factor for the 12C(α, γ)16O process. We re-
mind that in the direct experiment the cross section of
the 12C(α, γ)16O reaction drops by ∼ 109 when moving
from the energies close to the resonance at 2.423 MeV
down to 0.3 MeV. We discuss also the optimal experi-
mental kinematics to measure the indirect reactions and,
in particular, the 12C(6Li, d γ)16O process.
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