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Many radiative capture reactions of astrophysical interest occur at such low energies that their
direct measurement is hardly possible. Until now the only indirect method, which was used to
determine the astrophysical factor of the astrophysical radiative capture process, was the Coulomb
dissociation. In this paper we address another indirect method, which can provide information
about resonant radiative capture reactions at astrophysically relevant energies. This method can be
considered as an extension of the Trojan Horse method for resonant radiative capture reactions. The
idea of the suggested indirect method is to use the indirect reaction A(a,s~)F to obtain information
about the radiative capture reaction A(z, v)F, where a = (sz) and F' = (x A). The main advantage
of using the indirect reactions is the absence of the penetrability factor in the channel x + A, which
suppresses the low-energy cross sections of the A(z, v)F reactions and does not allow to measure
these reactions at astrophysical energies. A general formalism to treat indirect resonant radiative
capture reactions is developed when only a few intermediate states do contribute and statistical
approach cannot be applied. The indirect method requires coincidence measurements of the triple
differential cross section, which is a function of the photon scattering angle, energy and a scattering
angle of the outgoing spectator-particle s. Angular dependence of the triple differential cross section
at fixed scattering angle of the spectator s is the angular v — s correlation function. Using indirect
resonant radiative capture reactions one can obtain the information about important astrophysical
resonant radiative capture reactions, like (p, v), («, ) and (n, ) on stable and unstable isotopes.
The indirect technique makes accessible low-lying resonances, which are close to the threshold,
and even subthreshold bound states located at negative energies. In this paper, after developing
the general formalism, we demonstrated the application of the indirect reaction 12C(GLi,d fy)lGO
proceeding through 1~ and 27 subthreshold bound states and resonances to obtain the information
about the 2C(a, v)'0 radiative capture at astrophysically most effective energy 0.3 MeV what is
impossible using standard direct measurements. Feasibility of the suggested approach is discussed.

PACS numbers: 26.20.Fj,26.20.Np, 25.60.Tv, 25.70.Ef

I. INTRODUCTION osynthesis in the Universe, i.e. the cooking processes
that produce the elements of the periodic chart, pro-
ceeds through a variety of reactions and decays such as
(p.7), (n,7), (BHe, ), (@, 7), (p,), (a, p), (n, @), (@, ),
beta decays, reactions induced by gamma-quanta (pho-
todisintegration), and neutrinos [2]. Determining the
rates of these processes at stellar energies is the major
part of the subject of nuclear astrophysics.

The conditions under which the majority of astrophys-
ical reactions proceed in stellar environments make it dif-
ficult or impossible to measure them under the same con-
ditions in the laboratory. For example, the astrophysical
reactions between charged nuclei occur at energies much
lower than the Coulomb barrier, which often makes the
cross section of the reaction too small to measure. This
is due to the very small barrier penetration factor from

Understanding the origin of the elements and stellar
evolution is one of the important contemporary scientific
questions in nuclear physics and astrophysics. Over 70
years ago, the concept that hydrogen and helium burning
are the sources for energy production in stars was postu-
lated in [1]. A byproduct of this burning process is the
production of new elements.

It is well known today that a large number of
different reactions are involved in element produc-
tion. Many of these reactions take place on rather
short-lived nuclei during explosive processes occurring
in the cosmos. For over 50 years, experimentalists
have worked to determine stellar reaction rates on

systems involving stable beams and stable targets.
Until recently, very little experimental information
was available for reaction rates on radioactive nuclei.
This is now changing with the development of new
indirect techniques to determine these rates and new
radioactive beam facilities that are expanding the
possibilities for both direct and indirect studies. Nucle-
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the Coulomb force, which produces an exponential fall off
of the cross section as a function of energy. Many years
ago, the astrophysical S-factor was adopted as a way to
characterize cross sections by removing the Coulomb pen-
etration factor based on an s-wave, or zero angular mo-
mentum capture. The S-factor, S(E), is defined through
the relationship
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o(E) = “—(B). (1)

Here, o(F) is the energy-dependent cross section, 7 is the



Coulomb parameter of two interacting nuclei. Typically,
the S-factor is the quantity that is used to extrapolate to
low energies.

Indirect techniques have been developed over the past
several decades to provide ways to determine reaction
rates that cannot be measured in the lab. Applica-
tions of indirect methods have been undertaken with
both stable and radioactive beams. There are three dif-
ferent commonly used indirect techniques to obtain the
information about astrophysical reactions, the asymp-
totic normalization coefficient (ANC) approach, the Tro-
jan Horse method (THM), and the Coulomb dissociation
(CD) technique. The review of these methods is given in
[3].

The ANC method in nuclear astrophysics was pro-
posed in [4] and is based on the fact that many direct
astrophysical radiative capture reactions are peripheral.
Their astrophysical factor is proportional to the square of
the amplitude of the overlap function. This amplitude is
the ANC. The ANC method focuses on determining the
normalization of the tail of the overlap function from pe-
ripheral transfer reactions whose cross sections are signif-
icantly higher than the cross sections at astrophysically
relevant. Using the determined ANC one can calculate
the astrophysical factor of the direct radiative capture
process. Including both direct and resonant capture in a
consistent framework can be done through an R-matrix
analysis [5] if the relevant information is available.

The second indirect method, THM, was suggested in
[6] and was modified in [7] to make it workable. It pro-
vides a powerful tool to determine the reaction rate for
resonant rearrangement reactions by obtaining the cross
section for a binary resonant process through the use of a
surrogate Trojan Horse particle. The THM allows one to
obtain the astrophysical factors of low-lying resonances
which are not available by direct methods because of the
absence of the penetrability factor in the entry channel of
the binary sub-reaction. The theory of the THM based
on the surface integral formalism [8] was presented in [3].
In [9] the combination of the ANC method and THM was
applied.

The third powerful indirect technique to obtain the as-
trophysical factors for the radiative capture processes is
the CD. The Coulomb dissociation method for nuclear
astrophysics was proposed by [10] and has been tested
successfully in many reactions of interest to astrophysics.
The most celebrated case is the reaction "Be(p, v)*B,
first studied in [11], followed by numerous experiments in
the last two decades [3]. The CD technique uses the vir-
tual photon flux from the interaction of a high-energy ion
with a very heavy target to dissociate the heavy ion. The
dissociation is an inverse process to a capture-gamma re-
action that takes place in a stellar environment. Mea-
surements of the dissociation cross section can be used
to infer the reaction rate of radiative capture processes
at stellar energies. All three of these methods provide
information on stellar reaction rates at very low energy
without requiring an extrapolation of data from higher

FIG. 1: Pole diagram describing the indirect radiative capture
reaction proceeding through the intermediate excited state
F~.

energies. The details of all three techniques and more
references can be found in the review paper [3].

In this paper, the idea of the THM is extended for
the resonant radiative capture reactions. To determine
the cross section for the resonant radiative capture reac-
tion A(x, v)F we propose to use the two-step transfer re-
actions A(a, sy)F, proceeding through the intermediate
subthreshold bound states or resonances F* = (x A)*,
with the subsequent decay of the excited state F* —
F + ~. This approach provides a powerful indirect tech-
nique to study radiative capture processes A(s, v)F and,
in particular, the astrophysical radiative capture reac-
tions. The mechanism of such processes is shown in Fig.
1, where a = (sz) and F = (z A) are the ground bound
states of @ and F. Note that diagram in Fig. 1 can be
obtained from the similar diagram in the THM (see Fig.
2 [3]) by replacing the particle’s line b by the photon’s
line 7.

Such indirect reactions allow one to invade into the re-
gion previously unthinkable if we would rely only on di-
rect measurements. Among of the important reactions,
which require a broader approach than only direct mea-
surements, are low-energy astrophysical radiative capture
processes, such as (p, ), (o, 7) and (n, v) [2] on stable
and unstable isotopes performed in direct and inverse
kinematics. Among these reactions, without any doubt,
is the most important one, the so-called, "holy grail” re-
action 12C + a — 00", E, = 0.0MeV) + ~, which
dominates the helium burning in red giants [2]. The in-
direct reactions provide a perfect tool to study radiative
capture reactions at astrophysically relevant energies.

We present the theory of the indirect method to treat
the resonant radiative capture processes when only a few
subthreshold bound states and resonances are involved,
and statistical methods cannot be applied. The devel-
oped formalism is based on the generalized multi-level
R-matrix approach and surface integral formulation of
the transfer reactions, which are the first stage of the in-
direct reaction mechanism described by the diagram in
Fig. 1 [3]. By the generalized R-matrix approach we
mean the R -matrix method applied for 2 — 3 particle



reactions rather than to binary 2 — 2 particle reactions.
We also describe the methodology of the indirect radia-
tive capture experiment. There are many papers devoted
to the angular correlation of the photons emitted in nu-
clear transfer reactions with final nuclei, see, for example,
[12] and references therein. Here we apply the general-
ized R-matrix to develop the formalism allowing one to
study the photon’s angular distribution correlated with
the scattering angle of one of the final nuclei formed in
the transfer reaction.

Developing quite a general formalism we keep in mind,
in particular, the application of the method for the
120(5Li, d )90 reaction, which can provide important
information about the astrophysical 2C(c, 7)'¢O pro-
cess. This astrophysical reaction is contributed by two
interfering subthreshold resonances ([2], sect. 4.5). We
note that a bound state, which is close to the thresh-
old, is also called a subthreshold resonance. The elastic
scattering cross section in the presence of subthreshold
bound states has a peak at zero energy, that is, it behaves
like a resonance cross section with a resonance close to
the threshold. Also, the subthreshold bound state may
reveal itself as a resonance in the case of the radiative
capture, which can occur to the wing of the subthreshold
state at positive energy forming the intermediate excited
state.

Subthreshold resonances play an important role in
many astrophysical processes. Often, using direct mea-
surements, it is quite difficult or impossible to reach
the astrophysically relevant energy region where the sub-
threshold resonances manifest themselves. However, the
region, where the contribution of the subthreshold res-
onances is important, can be reached using indirect re-
actions [3, 13]. For more details regarding subthreshold
resonances and how they are handled in the R-matrix
approach see [13]. The excited bound state subsequently
decays to lower lying states by emitting a photon. In this
case, the subthreshold bound state is characterized by a
resonance width in complete analogy with the real reso-
nance [51]. Besides the subthreshold resonances, we also
take into account the real resonances located at positive
energies.

Numerous attempts to obtain the astrophysical fac-
tor of the 2C(a, )00 reaction, both experimental and
theoretical, have been made for almost 50 years [14-50].
This reaction is contributed by interfering E'1 and E2
transitions. The EF1 transition is complicated by the in-
terference of the capture through the wing of the sub-
threshold 1~ resonance at —0.045 MeV with the low-
energy tail of the resonance 17, E,12¢ = 2.423 MeV,
where E,, 12¢ is the o — '2C relative kinetic energy. The
E2 transition is dominated by the capture to the ground
state of O through the wing of the subthreshold bound
state 21, B, 12c = —0.245 MeV. In addition, to fit the ex-
perimental data, usually a few artificial levels are added
to fit E1 and E2 data [24, 27]. The difficulty of the
direct measurements of the E1 transition can be eas-
ily understood if even in the peak of the resonance at

17, B, 12¢ = 2.423 MeV the cross section is only about
40 — 50 nb [44-46] . Moreover , the E1 transition from
1~ states to the ground state of °Q is isospin forbidden
for T' = 0 components and is possible only due to the
small admixture of the T'= 1 components.

Extremely small penetrability factor at E,i2c < 1
MeV makes it impossible or very difficult to measure the
astrophysical factor for the 12C(a, )90 reaction at en-
ergies F, 12 < 1 MeV with reasonable accuracy. For the
sensitivity of the extracted astrophysical factor from the
existing data, see works [37, 39, 41]. Note that from the
astrophysical point of view the required uncertainty of
this astrophysical factor at E,12¢ ~ 0.3 MeV should be
< 10%. New gamma-ray facilities, an upgraded gamma-
source (HIGS2) [47] in USA and Compton gamma-ray
source of Eli-NP [48] in Romania, are supposed to mea-
sure the astrophysical factor for the 2C(a, 7)*®O reac-
tion down to 1 MeV.

In this paper we discuss a completely new method
of measuring the astrophysical factor S(F,12¢) for the
2C(a, v)*0 reaction down to astrophysical energies
~ 300 keV. This method is based on the coincidence mea-
surements of the deuterons and the photons from the in-
direct reaction 12C(°Li, d+)'0. In the indirect method
the absolute value of the triple differential cross section
is determined by its normalization to the available direct
data at higher energies.

The suggested technique allows one not only to de-
termine the astrophysical S factor down to energies
E,12¢ ~ 0.3 MeV but also the interference pattern be-
tween the subthreshold bound state and higher resonance
for the E'1 transition. We use the surface-integral for-
malism [8] in which the matrix elements are expressed
in terms of the external radial overlap functions and do
not depend on the R-matrix hard-sphere scattering phase
shifts. Hence, when considering the interference of the
E1 and E2 matrix elements, the R-matrix hard-sphere
phase shifts do not appear. The method, which we ad-
dress here, can be used for a broader type of radiative
capture experiments A(a, sv)F proceeding through the
subthreshold and real resonances.

II. THEORY

We follow the THM idea and extend it for the radiative
capture reaction. To measure the cross section of the
binary process

e+ A F* 5~y +F (2)

proceeding through the intermediate resonance F™* at as-
trophysical energies we suggest to measure the surrogate
reaction (two-body to three-body process (2 — 3 parti-
cles)):

a+A—=s+F" = s+v+F (3)

in the vicinity of the quasi-free (QF) kinematics [3]. Here
the incident particle, a = (sx), which has a dominant



cluster structure, is accelerated at energies above the
Coulomb barrier. The reaction (3) is a two-stage process.
On the first stage the transfer reaction a + A — s + F*
populating the wing of the subthreshold bound state at
E.4 > 0 or the real resonance occurs. On the second
stage, the excited state F* decays to the ground state
F by emitting a photon. From the measured energy
dependence of the cross section of the reaction (3), the
energy dependence of the binary sub-process (2) is de-
termined. By normalizing the measured cross section to
the available direct one(s) measured at higher energies
with better accuracy one can get the absolute value of
the astrophysical S factor at low energies.

The mechanism of the indirect reaction shown
schematically in Fig. (1) gives the dominant contribution
to the cross section in a restricted region of the three-
body phase space when the relative momentum of the
fragments s and x is zero (the quasi-free (QF) kinemati-
cal condition) or less than the wave number of the bound
state a = (sx). Since the transferred particle z is vir-
tual, its energy and momentum are not related by the
on-shell equation, that is, E, # k2/(2my).

The main advantage of the indirect method is that the
penetrability factor in the entry channel of the binary
reaction (2) is not present in the expression for the indi-
rect reaction cross section. It allows one to measure the
resonant reaction (2) cross section at astrophysically rel-
evant energies at which direct measurements are impos-
sible or extremely difficult because of the presence of the
penetrability factor in the binary reaction cross section.
Moreover, the indirect method allows one to measure the
cross section of the binary reaction (2) even at negative
E, 4 owing to the off-shell character of the transferred
particle x in reaction (3).

The expression for the amplitude of the transfer re-
action (3) ( for = n) in the surface integral approach
and distorted wave Born approximation (DWBA) was
derived in [8]. It is assumed, similar to the THM [3],
that only the energy dependence of the cross section of
the reaction (3) is measured, while its absolute value is
determined by normalizing the cross section of the re-
action (3) to the available direct experimental data at
higher energies. That is why it makes sense to use the
plane wave approximation to get the indirect reaction
amplitude. The comparison of the plane wave impulse
approximation (PWIA) and DWBA has been done in
many THM papers [3, 9, 52-54]. In these papers, the
momentum distribution of the spectator was calculated
in plane wave and DWBA. Both calculations agreed with
each other and experimental data within the range of the
QF peak. The most detailed comparison of the PWIA
and DWBA was done in [54]. It was confirmed again
that the angular distribution of the spectator calculated
in the DWBA and PWIA agree quite well within the QF
peak. A further probe of the reliability of the plane-wave
approach in describing the experimental data came from
the comparison between plane-wave-Born approximation

(PWBA) and DWBA calculations. The differences in

the ratios of the integrated resonance cross sections cal-
culated in plane-wave and DWBA approaches are less
than 19%, compared with the experimental uncertainties.
Therefore, when no absolute values of the cross sections
are extracted, the PWIA description is more preferable
than DWBA because PWBA does not depend on the op-
tical potentials which are not known accurately at low
energies.

In this paper, we, for the first time, present the general
equations of the indirect reaction triple differential and
double cross sections to be used for the analysis of the
radiative reactions proceeding through the subthreshold
and isolated resonances. The system of units in which
h = c¢ =1 is being used throughout of the paper.

A. Indirect reaction amplitude for the resonant
radiative capture

Let us consider the radiative capture reaction (2) pro-
ceeding through the wing (at E;4 > 0) of the subthresh-
old bound state (aka subthreshold resonance) F* = F(5),
where F(®) = (2 A)(®) or real resonance at F,4 > 0.
We assume that both can decay to the ground state
F = (zA). To measure the cross section of this reaction
at astrophysically relevant energies where subthreshold
resonances can be important, for the reasons explained
above, we use the indirect reaction (3). First, we derive
the reaction amplitude of the indirect radiative capture
process and then the triple differential cross section of
reaction (3). After that, by integrating over the angles of
the emitted photons, we get the double differential cross
section. The interference of the subthreshold bound state
and the resonance, which both decay to the ground state
F = (xA), is taken into account. Evidently that this
case can be applied for the E'1 and E2 transitions of the
reaction 2C(a, 7)'0.

To describe the radiative capture to the ground state
through two interfering states we use the single channel,
two-level generalized R-matrix equations developed for
the three-body reactions 2 particles — 3 particles [3, 8].
We also take into account the interference of transitions
with different multipolarities L. Thus, we take into ac-
count the interference of radiative decays from different
levels with the same multipolarity and interference of
transitions from various levels with different multipolar-
ities.

The indirect reaction described by the diagram of Fig.
(1) proceeds as a two stage process. The first part is
transfer of particle  (stripping process) to the excited
state F, 7 = 1,2, where F; = F'®) is the subthreshold
resonance and F5 is the resonance state at E,4 > 0. No
gamma is emitted during the first stage. On the second
stage the excited state F, decays to the ground state
F = (zA) by emitting a photon. Then the indirect reac-
tion amplitude followed by the photon emission from the
intermediate subtheshold resonance and resonance takes



the form:
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Here M; is the projection of the spin J; of the particle
1, MFT(S) is the projection of the spin Jp() of the sub-
threshold resonance (7 = 1) and resonance (7 = 2), M is
the projection of the angular momentum of the emitted
photon. Also 2 is the number of the level included. We
assume that the spins of the subthreshold resonance and
real resonance are equal F} = Fp, = F () and these reso-
nances do interfere. At the moment we confine ourselves
by transition with one multipolarity L. That is why the

index L is omitted. Later on we take into account tran-
s (s)
sitions with different L. M, MZT

. is the amplitude of
the direct transfer reaction

a+A—s+F; (5)

populating the intermediate excited state F,. The re-
action (5) is the first stage of the indirect reaction (3).
V,, is the amplitude of the radiative decay of the excited
state F, (v = 1,2) to the ground state F' = (xA), Ay,
is the matrix element of the level matrix in the R-matrix
method.

In the prior form of the plane-wave approximation
My M (s)
My, MZTT takes the form:

M (0)

(s)
M, MZTT (ksFTukaA) =< Xg)) O ‘VIA|()051 PA Xk, 4 >

SFr

(6)

Here, ®; is the bound-state wave function of the sub-
threshold bound state F} = (xA)(S), Py is the Fy
resonance wave function, ¢s,; and ¢4 are the bound-

state wave functions of @ = (sx) and A, respectively,

W, = et s

waves in the initial and final states of the reaction (5), re-
spectively, r;; is the radius-vector connecting the centers
of mass of nuclei 7 and j, kg4 is the a — A relative mo-
mentum in the initial state of the reaction (5) and kg,
is the s — F; relative momentum in the final state of this
transfer reaction, V4 is the x — A interaction potential.

= e'ksrr Tsr gre the planes

My M .
. Mo :
In the matrix element M, MZTT (ksr. , kqa) we intro-

duce in the bra state the projection operator »_ [pa, ><
n

©a, |, where the sum over n is taken over the bound and
continuum states of nucleus A. In the projection oper-
ator we keep only the projection on the ground state of
A. Then Eq. (6) can be rewritten as

M MFT<s> (k ko) = 0) ~ % (0)
M, Ma T sF, Kga) =< stFT 7-‘ xA‘@sxXkaA >,

(7)

where V4 =< 0a|Vialpa >. Also,

JF(S) M;;ST) >

YT, (rpa) =<@a “I)T >= Z < jimy, limy,

mji mli

(8)

is the projection of the wave function @, on the ground
state wave function of A, Y, T o) (rea) is its ra-
dial part, j;(mj,) is the channel spin (its projection)
of x + A and [; (my;) is their orbital angular momen-
tum (its projection) at which the subthreshold reso-
nance and resonance occur in the channel x + A, <

jimg, limy, | Jpe MY > is the Clebsch-Gordan coeffi-

cient, Yy, m, (fz4) is the spherical harmonic, ¥ = r/r.

Yrjit o) (rza) is the radial part of Y, (ry4) in the
state 7 with the channel spin j; and the orbital angu-
lar momentum [;. Since we assume that both levels
7 =1 and 7 = 2 do interfere, j; and [; are the same
for both levels. We assume that only one j; and [; con-
tribute to the reaction. It is important to underscore
that, although the subthreshold resonance is located at
FEoa= —855821, the capture occurs to its wing at F,4 > 0.
Hence, T1,4, 7, (rz4) is described by the resonance ra-
dial wave function, which we take in the R-matrix form.
We also take the radial overlap 2,4, ., (rs4) in the
form of the R-matrix resonant wave function. It has been
shown in [3] that in the surface integral approach the
dominant contribution to the prior form of the trans-
fer reaction amplitude comes from the external region
rz4 > Rya. In the external region we take the resonance
wave function as [8]

_ s shs O[ TrA
i € iy, Lﬂax (9)

A
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where
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is the outgoing spherical wave in the partial wave [;, F},
and Gy, are the Coulomb regular and singular solutions,
5{:5 is the R-matrix hard-sphere scattering phase shift.
From Egs. (9) and (10) is clear that Y- ;1,5 . (r24)
does not depend on the R-matrix hard-sphere scattering
phase shift.

At o4 = R.a we get

2/14114
Roa IR (11)

Yo jitid ) (Bea) =

We see that YT j,, T o) (R;4) does not depend on 51’25.
].—‘TjiliJF(S) is the formal resonance width in the R-
matrix approach for the level 7, which is related to the
reduced width amplitude - ;1,5 of the level 7 as [55]
FTjiliJF(s) =2 ‘Plz (ELEA7 RIA) ’772'jiliJ (12)

F(s)”

Here, P;,(E,a, Ry4) is the barrier penetrability factor,

of the observable reduced width by [55]
fT Jilid sy — 2R, (EIA, RIA) :Yqz-jiliJF(s) ) (13)

where the observable and formal reduced widths
%2-3'-1- T and ﬁj,l_ J ., Fespectively, are related by [55]
AR F s AR F S

2
;5/2 . o /yTjiliJF(s)
TJiliJp(s) 1+ ’Yzjili‘]p(s) [dSli (EIA)/dEIA] |EmA:ET '
(14)
FEi = —53(;)‘ and EFy = FEg, where Er is the resonance

energy corresponding to the level 7 = 2. The inverse
equation is

- ﬁzjiliJF(s)
) T = azjil,JF(s) [dS), (Era)/dE,A] |EM:ET '

2
Vrjilid

R, 4 is the channel radius, Equation (12) holds at E,4 > (15)
0 both for the subthreshold resonance and resonance.
The observable resonance width is expressed in terms For the subthreshold resonance (7 = 1) [51]
|
, 21172 (5)
[Criitis " W2 nﬂylﬁl/?@ ipa Foa) _ Njitid =52 (16)
- — 115l sy
2ppa Roa 1 +712jiliJF(s) [dsli(EmA)/dEwA]‘EIA:7€(22 Jitid p(s)

where ﬁ/%jiliJF(s) and V%jiliJF(s) are the observed
and formal reduced widths of the subthreshold res-
onance; Chj,7 ., is the asymptotic normalization
coefficient (ANC) of the subthreshold bound state
(x A)®) for the decay to the channel (x + A)1 ;1,7

F(s)?
W—ng,l#l/?( 2 Ii(zsf)‘ R,4) is the Whittaker function,

773(52 = (Z, ZA/137)/1,1A/I€(;;)‘ and Ii(;;)‘ are the z — A
Coulomb parameter and the bound-state wave number of
the subthreshold bound state F(S), LaA is the reduced

mass of x and A, Z; e is the charge of nucleus j, Sj, (Ez4)
is the R-matrix Thomas shift function [55].

Now we return to the transfer reaction amplitude

M M, Mjf(:) (ksr,,Kkqa). To calculate it we use the three-
body approach in which we neglect the internal degrees of
freedom of particles x, A and s. The potential V ,4(rz4)
depends only on the distance between x and A. Then the
amplitude of the direct transfer reaction (5) in the plane-
wave, surface-integral approximation reduces to [3, 8]
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Note that MM Mj(T) (ksr,,kqa) does not contain the
hard-sphere scattering phase shift 5h5 Also, psz(psz) is
the Fourier transform of the radlal part of the s-wave
bound-state wave function s, (ps;) of the a = (sz).
Also, Ksy = /2 sz €sz 18 the wave number of the bound-
state a = (sx), €5 is its binding energy for the virtual
decay a — s+x. Since particles s and z are structureless,
the spectroscopic factor of the bound state a = (sx) is
unity and we can use just the bound-state wave function
sz- In the center-off-mass of the reaction (2) ko4 = kg,

ksr. = ks and reviewpaper

PzA = k, — % k57 Psz = k, — % k, (20)

mr

a

Mp MX _
VM<s>

where IF,(r,4) is the overlap function of the bound-
state wave functions of x, A and the ground state of

= (x A). Again, for the point-like nuclei z and A the
overlap function I, (r;4) can be replaced by the single-
particle bound-state wave function of (xA) in the ground
state. Also A% (r) is the electromagnetic vector poten-
tial of the photon with helicity A = +1 and momentum
k., at coordinate r 4. J(r) is the charge current density

. Bi,(kza, Rya) = Rya

1;(Raa)

Rqa

(91n01i (szﬂ”mA)
Orza

(19)

reA=Rga

are the off-shell z — A and s — x relative momenta in the
vertices t+ A — F; and a — s+ x of the diagram in Fig.
1, respectively, p, = k, — ks is the off-shell momentum
of the transferred virtual particle x, k; is the on-shell
momentum of particle j. Also ks and F, 4 are related by
the energy conservation [3]:

EaA — Esz — ExA + k?/(2 ,LLsF)v (21)

where s is the reduced mass of particles s and F'.

Now we consider the amplitude V,,, v = 1,2, describ-
ing the radiative decay of the intermediate resonance
F, — F + v [56]:

/ drpa < 15, (ren) [3(0) [T (ren) > A% (1), (22)

operator. Matrix element in Eq. (22) is written assuming
that on the first stage of the reaction the excited state
F,, v =1,2, is populated, which subsequently decays to
the ground state F'.

Using the multipole expansion of the vector potential,
leaving only the electric components with the lowest al-
lowed multipolarities L and using the long wavelength
approximation for J(r), see for details [56], we get
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where ~, £ is the formal R-matrix radiative width
(Vv Jp L

amplitude for the electric EL transition Jlﬁ(s) — Jr
given by the sum of the internal and external radiative
width amplitudes, see Eqs (32) and (33) from [57], in

which we singled out \/ik.% /2 Because now we take
into account a few multipolarities L, we replace the previ-
ously introduced spin of the intermediate resonance Jp(s)
by JEL F(s)» Where the superscript L denotes the multipo-
larity of the F'L transition to the ground state F. Re-
placement of Jp) by J}Q(s) takes into account that the
spins of the intermediate excited states are different for
different multipolarities. Since we added the subscript L
to the spin of the intermediate resonance we added the

same subscript to its projection M L( y- It is important to
note that VAAfF( I;/[V)‘ does not depend on the hadr-sphere

scattering phase shift.

The determined radiative width amplitude is related
to the formal resonance radiative width by the standard
equation

1—\ F(S)

(VvJrL — 2 kL+1/2 (v e ). (24)

(MvJrL

Note that the observable radiative width is related to the
formal one by

L ( J;(s) )2
(,7‘]1:(5) )2 _ T virL .
(Vv Jr L 1+ ’ygjiliJF(s) [dSli (EmA)/dEmA] ’EZA:EV

(25)

We consider the two-level approach with v =1 (v = 2)
corresponding to the subthreshold resonance (the reso-

nance at F,4 > 0). Then F, = —55;)1 for v = 1 and

| [DE A (8, 0,0)]" < Jp Mp LM|JE.,

Lt
eZejf(L) [Dys (0, 0 O)}

JL

F()Lli

I/jflf JFjiliJ;(s)

My, >, (23)

E, = ER for v = 2 with Fr being the resonance energy
corresponding to the level v = 2. This observable radia-
tive width is related to the observable resonance radiative
width as

FF()

MvIeL QkLH/Q (¥ o )% (26)

(MvJrL

Also in Eq. (23) M is the projection of the angular
momentum L of the emitted photon (multipolarity of
the electromagnetic transition), e Z.¢f(z) is the effective
charge of the x+ A system for the electric transition EL.

The matrix element RE is
l/j lf ]F jll ]

L

Ry e, (roa) > .

(27)

__ . L+27
=< Ty A I]'L ly JF(rmA)TVji l; Jlﬁ(s)

T, I (r4) is the resonant scattering wave function
(s

in the R-matrix approach whose external part is given
by Eq. (9). Again, it follows from Egs. (9) and (10)
that T, ;. 4, T (rya) does not depend on the R-matrix
hard-sphere scattering phase shift.

The internal resonant wave function X;,;, in the R-
matrix approach matches the external one on the border
ry4 = Ry and satisfies the boundary condition

V 2/L1‘A RQCA ’Y‘I’jll JL . (28)

For 7 =1 X1 is the overlap function of the bound-
state wave functions of F(®) = (2 A)(®)| z and A, which is
normalized to untiy over the internal region 7,4 < Ry 4.

Substituting Eqs. (17) and (23) into Eq. (4) we get
the expression for the indirect reaction amplitude

XintT( xA;
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The amplitude M 1\1\2[; I\I‘g M2 Jescribes the indirect re-
action proceeding through the intermediate resonances,
which decay to the ground state F' = (z A) by emitting
photons. Equation (29) is generalization of Eq. (4) by
including the sum over multipolarities L corresponding
to the radiative electric transitions from the intermedi-
ate resonances with the spins JZ F to the ground state
F with the spin Jr. Note also that we assume that two
levels contribute to each transition of multipole L. It re-
quires the two-level generalized R-matrix approach. The
generalization of Eq. (29) for three- or more-level cases
is straightforward. In Eq. (29) the reaction part and
radiative parts are interconnected by the R-matrix level
matrix elements AZ_. Note that M]]\\/fa ]\]\44: M does not
contain the R- matrix hard—sphere scattering phase shift.

The part Z 7& 7o is the stan-

L
v Jp L VT/YTj»;l»;J;“(S)

) T_
dard R-matrix term for the binary resonant radiative
capture reaction. However, we analyze the three-body
reaction a(z s) + A — s + F + « with the spectator s in
the final state rather than the standard two-body radia-
tive capture reaction x+A — F'+~. This difference leads
to the generalization of the standard R-matrix approach
for the three-body reactions resulting in the appearance
of the additional terms, @; (psz) M;,. That is why we call
the developed approach the generalized R-matrix method
for the indirect resonant radiative capture reactions.

(i) The most important feature of this approach is that
the indirect reaction amplitude does not contain the pen-
etrability factor P}, (Eya, Rz4) in the entry channel of the
sub-reaction (2). This factor is the main obstacle to mea-
sure the astrophysical factor of this reaction if one uses
direct measurements. The absence of this penetrability
factor in the entry channel of the sub-reaction allows one
to use the indirect method to get the information about
the astrophysical factor of the sub-reaction.

(ii) The indirect reaction amplitude is parameterized in
terms of the formal R-matrix width amplitudes, which
are connected to the observable resonance widths.

(iii) The final expression for the indirect reaction am-
plitude M, M, MF M2X Joes not depend on the R-matrix
hard- sphere scattermg phase shift.

We take the indirect reaction amplitude at fixed pro-
jections of the spins of the initial and final particles in-

=L,
lz

> < JeMp LM|Jf., MK, >
T v

Foo M > < Jo My Jo M| Jo Mo > < Jo My Ja Maljimg, > Y/, (Bea)- (29)

cluding the fixed projection M of the orbital momentum
L of the emitted photon and fixed its chirality A. For ex-
ample, for the 12C(a, v)'%0 reaction the electric dipole
E1 (L = 1) and quadrupole E2 (L = 2) transitions do
contribute and they interfere. In the long wavelength
approximation only minimal allowed [; for given L does
contribute. For example, for the case considered below
ly =0 l; = L =1 for the dipole and [; = L = 2 for
the quadrupole electric transitions do contribute. The
dimension of the R-matrix level matrix A’ depends on
the number of the levels taken into account for each L.

The indirect reaction amplitude depends on the off-
shell momenta ps, and p, 4. Both off-shell momenta are
expressed in terms of k, and ks, see Eq. (20). Also the
the indirect reaction amplitude depends on the momen-
tum of the emitted photon k, whose direction is deter-
mined by the angles in the Wigner D-function.

In the center-off-mass of the reaction (3) neglecting the
recoil effect of the nucleus F' during the photon emission
from the energy conservation we get

EaA + Q = EsF + kvu (30)
k»y = EzA + ExA, (31)

where Egp = k2/(2 isr), Q = €44 — €5z and 54 is the
binding energy of the ground state of the nucleus F.

To estimate the recoil effect we take into account that
in the center-off-mass of the reaction (3) the momentum
conservation in the final state gives

’

krp = -k, — ki, (32)

where k;? is the momentum of the final nucleus F after
emitting the photon. Then the energy conservation leads
to

]{52 k2 (k/ )2
Eoa — €52 Eoq=—— £ k, (33
ATE 2,uSF+ A 2m5+2mp+ v (33)
k2 ke k k2
=5 220 o' il k. 34
2,USF+ 2chos i F+ K (34)

We remind that we use the system of units in which
h = c =1, that is, B, = k,. Evidently that the term

2
Eo_p

By
2mp Y 2mp

can be neglected because £, << mpr.



The contribution of the term 2
cost =k, - 127.

To estimate the recoil effect of the nucleus F' we con-
sider the reaction >C(°Li, d)'®O at the most effective
astrophysical energy F,a = F,12c = 0.3 MeV; the en-
ergy of the emitted photon is ky ~ 7 MeV and E,4 =7
MeV. As we will see below (Fig. (4)) at 0.3 MeV the max-
imum of the photon’s angular distribution is at 8 = 52°,
where 0 is the angle between p,12¢ and k,. In the QF
kinematics py 12¢||kq where kg = kg, that is, 6/ = 0. At
6 = 52°, which is the maximum of the photon’s angular
distribution and is close to the maximum of the angu-
lar distribution for the E2 transition, the recoil effect is
~ 6.5%. Note that for the E'1 transition the photon’s an-
gular distribution has a peak at 90° at which the recoil
effect vanishes.

Neglecting the recoil effect of the nucleus F in Eq. (33)
we can replace k;ﬂ by ks. Then k, and k are related by
Eq. (30) while k, and E 4 are related by Eq. (31).
If we would take into account the recoil effect then the
relationship between k, and E, is more complicated
then Eq. (31) and is given by

ks k
5= cosf’ depends on
mpr

E;EA

ky = t———> (35)
s ;IOFS +1
2
where we neglected the extremely small term 212 . How-

ever, in this paper, because we don’t analyze the real data
and make a proposal, we neglect the recoil effect of the
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To obtain Eq. (38) we adopted z||DPra, that is,

Yim,(Pza) = ﬁ Om,0- Thus, in the plane-wave ap-
proximation, the direction p, 4 becomes the axis of the
symmetry. Note that if we replace the plane waves by
the distorted waves, the vestige of this symmetry will
still survive [12].

(17 3

10

nucleus F.

The expression for p,a is needed to calculate Mli'
From the energy-momentum conservation law in the
three-ray vertices a — s+ and © + A — F©) of the
diagram in Fig. 1 we get [3]

2 2

Pza Psx
Fop="2 — % — e, 36
2 HazA 2 Msa ( )

In the QF kinematics pg, = 0 and
2
Pza
ExA = —Esx 37
2/'LLEA ( )
2
Thus always QPJ:A > F,a.

III. DIFFERENTIAL CROSS SECTIONS

A. Triple differential cross section

Let us consider the indirect resonant reaction con-
tributed by different interfering multipoles L. For each
L we assume two-level contribution. Then the triple dif-
ferential cross section of the resonant indirect radiative
capture reaction for unpolarized initial and final parti-
cles (including the photon) in the center-off-mass of the
reaction (3) is given by

MMS Mp M X 2
Mq M

ATt

L'+L L'+ L+1
1) k’y JF(S)

jII;(S) \% i/fj Z ZL/_l{L_L-"_lZ ZA; iz

Uil

r’ L
I

JE . -
[V(VF)(L)/ Jr L/] [”Y(w)uJFL] [Aﬁ/r'} [AfT]

> [14 (=1)Y 4] P(cosh).

We remind that the radiative transition J}Lr(s) — Jp is

the electric EL where J£ ., is the spin of the intermediate
state (subthreshold resonance or resonance).

For a more simple case when only one multipole L
contributes into the radiative transition, the triple differ-
ential cross section takes the form:
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A9 A9 dE.r  (27)

2 l, JL
F(s)
{ZJL l;

j;E jA

F() F(s)

X Y Jili J ’Y‘r Jili J

Also formally we keep the summation over [;, in the long
wavelength approximation for given L at astrophysically
relevant energies only minimal allowed /; does contribute.

The triple differential cross section depends on k, and
k.. Because we neglected the recoil of the final nucleus
F, ks and ky are related by Eq. (30). We remind that
we selected axis z||p,4. Hence the photon’s scattering
angle is counted from p 4, which itself is determined by
k. Thus the angular dependence of the triple differential
cross section determines the angular correlation between
the emitted photons from the intermediate excited state
F* and the spectator s. Because we consider the three-
body reaction (3) the angular correlation function also
depends on the spins J é(s) of the intermediate nucleus
F* which decays to F'.

By choosing QF kinematics, ps, = 0, one can provide
the maximum of the triple differential cross section due
to the maximum of ¢? (ps;). At fixed kg the triple
differential cross section determines the emitted photon’s
angular distribution, which is contributed by different

do 1 praapsr sﬁsm(Psz

2 Mz A

2
JE . JrL
F(s)
HoEd )2

L, <LOLO[0><L1L ~1[10 > Pi(cos).

ki/ 1 Jr— J7, JL 2 1
kaa 7 =1 F) -~
JE JE
I:/y('YF)( )lJF L] [ (VF;V)JF L] [A } [AL ]

(39)

interfering multipoles L. By measuring the photon’s
angular distributions at different photon’s energies
(that is, at different ks or E,4) one can determine the
energy dependence of the photon’s angular distribution.
However, a wide variation of ky away from the QF
kinematics ps, = ks — (ms/mq) ko, = 0 will decrease the
differential cross section due to the drop of 2, (pss)-
Usually, in indirect methods kg is varied in the interval
in which ps, < Kgs [3]-

B. Double differential cross section

Integrating the triple differential cross section over the
the photon’s solid angle wa we get the non-coherent

sum of the double differential cross sections with different
multipoles L:

xA ksF

dQRSdEsF - (27‘() JzJA

JL

2
Jt s *
x Z [’Y(’YF)(V)/ Jr L] [’Y(VIB(U)JF L] [A

viiv, T/, 7=1

Despite of the virtual transferred particle = in the di-
agram of Fig. 1, using the surface integral approach and
the generalized R-matrix we can rewrite the double dif-
ferential cross section in terms of the on-the-energy-shell
(OES) astrophysical factor for the resonant radiative cap-

2 Jﬁ(s) 1
SeL1,(Eva)(MeVb) =21\ -
JA HxA
Here, A\y = 0.2118 fm is the Compton nucleon wave

: o, ILs 2
m?\/‘ 627”71 P)ll (EIA; RxA) 10 2 ké/ } Z[FY(VF)(V)JF L] I:AIE/T] FYTji i JII;(S) } .

Z VL JE. K Z |3, |?

AL v TE

S gL
) ’YTJl li JF(S)

ture A(z, v)F for the electric transition of the multipo-
larity L and the relative orbital angular momentum /; of
particles  and A in the entry channel of the A(xz, v)F
raiative capture. In the R-matrix formalism this astro-
physical factor is given by [5]

(41)

v, T

length, my = 931.5 MeV is the atomic mass unit, .4 is



the x — A reduced mass expressed in MeV, 7); is the z — A
Coulomb parameter at relative enerrgy E,4. Then the

do L
———— = KF ¢, (psa) Raa T
dQRS dEr XL: Jlﬁ(s)
where
1 2 a S kS
wp— 107 Haapse Ese (43)

(27T)7 m%\, /\%V kaA

is the kinematical factor.
To determine the astrophysical factor from the indirect

L
dO’ JF(S)

Z 6_27”” ‘Pljl(EmAa RmA) |Mlz |2 SEL’li (EIA)7
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indirect double differential cross section takes the form:

(42)
l;

double differential cross section we need to identify the
region where accurate direct data are available and only
one resonance dominates with given L and ;. By nor-
malizing in this region the astrophysical factor obtained
from the indirect measurement to the experimental one
we get the

1

-2

Seri,(Eza) =N

F
A9 dE.r | I

Here, NF' is an energy-independent normalization fac-
tor providing correct astrophysical factor Spr i, (Eza)
at higher energies. Using this normalization factor we
can determine with accuracy, which is not achievable in
any direct approach, the astrophysical factors at ener-
gies F,4 — 0. This is the main achievement of the in-
direct approach. We remind that in our formalism we
use the plane wave approximation rather than the dis-
torted wave. But it should not affect the accuracy of our
method because the distorted waves and plane wave ap-
proximation give similar energy dependence of the trans-
fer reaction cross section. The normalization factor N F
compensates the inaccuracy of the plane wave approxi-
mation.

We summarize the methodology of the indirect method
to obtain the astrophysical factor.
(1) Measurements of the photon’s angular distribution
(photon-spectator angular correlation) at different E, 4
energies covering the interval from low energies relevant
to nuclear astrophysics up to higher energy at which di-
rect data are available. To cover a broad energy range
at fixed energy of the projectile, the energy, and scatter-
ing angle of the spectator should be varied near the QF
kinematics (psy = 0).
(2) Obtaining the indirect double differential cross sec-
tion by integrating the triple differential cross section
over the photon’s scattering angle.
(3) Expressing the astrophysical factor in terms of the
indirect double differential cross section.
(4) Normalization of astrophysical factor to the available

KF spgx (psw) Rya

™" P (Epa, Roa) | M,

(44)

experimental data at higher energy.
(5) Determination of the astrophysical factor at astro-
physical energies.

IV. RADIATIVE CAPTURE ?C(a, 7)'°0 VIA
INDIRECT REACTION '2C(°Li,d~)'°0

In this section we demonstrate the application of the
developed formalism for the analysis of the indirect re-
action 12C(°Li, d)1%0 to obtain the information about
the astrophysical factor for the *2C(a, )10 at energies
< 1 MeV. For our analysis we use the energy levels from
[58].

At low energies the astrophysical reaction under con-
sideration is contributed by the L = 1 and L = 2 elec-
tric transitions [24, 27, 29, 32, 37]. FE1 transition to
the ground state Jp = 0,y = 0 proceeds as the res-
onant capture through the wing at E,i12¢ > 0 of the
subthreshold bound state 17 at E,i12c = —0.045 MeV,
which works as the subthreshold resonance. Besides, the
FE1 transition to the ground state is contributed by the
resonant capture through the low-energy tail of the 1~
resonance located at Fr = 2.423 MeV. The E2 tran-
sition is contributed by the subthreshold 2T state at
E,12c = —0.2449 MeV and low-energy tail of 27 res-
onance at 2.68 MeV.

These four states are observable physical states con-
tributing to the low-energy radiative capture under con-
sideration. Besides these states, when fitting the data the



artificial level was added for E1 transition (see, for ex-
ample, [24, 27, 29, 32, 38] and references therein). In the
present paper we calculate the photon’s angular distri-
bution (the angular photon-deuteron correlation) at low
energies down to the most effective astrophysical energy
Ea 12¢ = 0.3 MeV.

We take into account the mentioned four physical
states and added one artificial state for the E1 transi-
tion. It can be explained qualitatively why the back-
ground level is necessary to include into the fit of the
E1 transition. The problem is that the subthreshold
state J = 1, E,12c = —0.045 MeV and the resonance
J =1, Er = 2.423 MeV cannot decay by the E1 transi-
tion to the ground state of 10 because all of them have
the isospin 7' = 0. Evidently that the observed weak E1
transition from the first two J = 1, T' = 0 states is pos-

do _ HaA UsF 4/7?1 (psx) RzA ksF
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sible only due to the small admixture of the higher lying
J=1,T =1 states [19].

The reduced widths of the subthreshold resonances are
known from the experimental ANCs [27, 43] and the re-
duced width of the 17, 2.423 MeV resonance is deter-
mined from the resonance width. We disregard the cas-
cade transitions to the ground state of 0O through sub-
threshold states. According to [19], the sum of all cascade
transitions contributes only 7 — 10%. Because we don’t
pursue here a perfect fit, we neglect all the cascade tran-
sitions. In our fit, as in Ref. [20], we also disregard the
E2 direct radiative capture to the ground state 60.

For the case under consideration J, =0, J4 =0, j; =
0,l; = L = J}Lr(s), Jr = 0 and the expression for the
triple differential cross section for the case under consid-
eration simplifies to

de(S de‘w dESF a (2 7T)7

2

X MEIML Z [’y(L’y,)V’OL/]*[,y
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2 Hax A

Z(_l)L’JrL k$’+L+1 VI

k
aA L

(v)vo L] [Ail)/’l‘r’] ' [AII//T}

X\ Y 0L L YrOL L Z <L'0LOJI0><L'L L —1[10 > Py(cosh). (45)

l

Here, a = 14, A = 2C, s = d, z = a, F = %0. This
expression is used for the analysis of the indirect reaction
120(5Li,d )0 at low energies. We outline here some
details of the calculations.

After integration over the photon’s solid angle we get

d
Sp1(Eyn) = N ?

the indirect double differential cross section (42) in which
l; = L. Then at energies near the 1~ resonance at 2.423
MeV where, as we will see below, the E1 transition com-
pletely dominates,

The S(E1) astrophysical factor was measured at energies
near 2.423 MeV with a very good accuracy [19, 32, 36].
Should we have the experimental indirect double differen-
tial cross section expressed in arbitrary units, we can use
Eq. (46) to normalize the Sgi(E;4) to the experimen-
tal one at higher energies. After that, having measured
indirect double differential cross section at 0.3 MeV, we
can determine the Sg1(0.3MeV) + Sg2(0.3MeV).

In this paper we calculate the photon’s angular distri-
bution at different E, 12¢ energies for the 2C(a, d )10
reaction and how it is affected by the interference charac-
ter (constructive or destructive) of the 1~ subthreshold
bound state and 1~ resonance. In the R-matrix approach
the fitting parameters are the formal reduced widths

F
dQg dBr KF @2, (pss) Roa

27 P (Eya, Rea) | M| (46)

which are related to the observable ones by Eq. (15). The
observable reduced widths (71 911)? and (71 022)? are ex-

pressed in terms of the corresponding ANCs of the sub-
threshold bound states by Eq. (16). For the ANCs of the

17 and 2T subthreshold states we adopted [C((;)12 0)1]2 —

4.39x 10% fn =1 and [C{2) 1] = 148 x 1010 fm =1 [43],

respectively. In all the calculations, following [27], we
use the channel radius R, 12c = 6.5 fm. The observable
reduced width of the resonance 1~ is expressed in terms
of the observable resonance width of this resonance. For
this resonance we adopt I's011 = 0.48 MeV [58]. In the
case under consideration for the E1 transition we take
into account three states and select the boundary con-
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FIG. 2: Square of the d — a bound state wave function in the
momentum space.

dition at the energy of the first level, which is the 1~

subthreshold bound state, that is, F; = —Eii)‘(l).

For the E2 transition we take into account two levels
and select the boundary condition at the energy of the
21 subthreshold bound state Ey = —0.245 MeV.

Now we discuss the radiative width amplitudes. We
use Eq. (25) to express the formal radiative widths am-
plitudes 7(1'y) 1019 7(17)201 and 7(2'y) 102 in terms of corre-
sponding observable reduced widths, which are related
to the observable radiative resonance widths by Eq. (26)
[55].

Another important point to discuss is the kinematics of
the indirect reaction. The triple differential cross section
is proportional to ¢2%  (pia), which is shown in Fig. 2.
The maximum of ¢2  (paa) at pae = 0 (QF kinematics)
also provides the maximum of the triple differential cross
section. pgq is the d —a relative momentum in the three-
ray vertex SLi — d 4+ a of the diagram in Fig. 1.

To calculate the Fourier transform of the °Li = (d«)
bound-state wave function we use the Woods-Saxon po-
tential with the depth V5 = 60.0 MeV, radial param-
eter 19 = r¢ = 1.25 fm and diffuseness a = 0.65 fm.
This potential provides the d — a bound state with the
binding energy 4, = 1.474 MeV [58] . The correspond-
ing bound-state wave number of the da bound state is
Kda = V2 tda €da = 0.31 fm~!. The square of ANC for
the virtual decay °Li — d + a is [C(ga)0)? = 7.28 fm 1.
This value is higher than a realistic value of this square
of [Claay)? = 5.29 fm™! [59]. To get the correct ANC
from the one obtained in the Woods-Saxon potential we
need to introduce the spectroscopic factor. However, be-
cause we are not interested in the absolute cross section,
we keep using the ANC generated by the Woods-Saxon
potential.

Usually the indirect experiments are performed at fixed
incident energy of the projectiles [3]. In the case un-
der consideration the projectile is °Li or 2C (in the in-
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verse kinematics). To cover the F,i12¢ energy interval
~ 2 MeV at fixed relative kinetic energy FEsp;i2¢, one
needs to change pg. Since key; is fixed to change pgq
we have to change ky so that pgjo < Kda- It can be
achieved by changing k4 or its direction k4 or both. Ex-
perimentally one can select all the events falling into the
region pgo < Ko q. Here, to simplify calculations, we as-
sume that k4||ker;. It means that the variation of pg,
is achieved by changing of k4. Owing to the energy con-
servation by changing kg we can vary E, 12¢ but simul-
taneously we change the d — « relative momentum pg .
The triple differential cross section given by Eq. (45)
is proportional to the d — o bound-state wave function
in the momentum space ¢ (p4a), which decreases with
increase of pg,, see Fig. 2.

To avoid significant decrease of the triple differential
cross section when covering the F,12¢ energy interval
~ 2 MeV it is better to take a lower For;12¢ but not
too close to the Coulomb barrier in the initial channel of
the indirect reaction (3). Taking into account that this
Coulomb barrier is &~ 5 MeV we consider as an exam-
ple the relative kinetic energy Eop;i12c = 7 MeV. In this
case for F,i12c = 2.28 MeV, which is close to the res-
onance energy of the 1~ resonance, pgo = 0.141 fm™1!
while at E,12c = 0.3 MeV pgo = 0.281 fm~!. Hence,
when covering the E 12 energy interval from the en-
ergy F,12c = 2.28 MeV to the most effective astrophys-
ical energy for the process 2C(a, 7)'016 the square of
the Fourier transform ¢ (paa) drops by a factor of
2.97. Note that the drop of ¢2_(pia), when moving
from E,12c = 2.28 MeV to 0.9 MeV, is 2.1. ¢2_(paa)
appears because we consider the indirect three-body re-
action. There is another energy-dependent factor My,
which is also result of the consideration of the three-body
indirect reaction. This factor will be considered below.

Our goal is to calculate the photon’s angular distri-
butions at different F,_12¢ energies. It can allow us
to compare the indirect cross sections at higher energy
E,_12c = 2.28 MeV and the most effective astrophysical
energy F,_i12c = 0.3 MeV. Because the indirect triple
differential cross section does not contain the penetrabil-
ity factor in the channel a—'2C of the binary sub-reaction
(2), the indirect method allows one to measure the triple
differential cross section at E,_i2c = 0.3 MeV what is
impossible by any direct method.

1. By comparing the triple differential cross sections at
higher energies and at 0.3 MeV we can determine how
much the indirect cross section will drop when we reach
E,_12c = 0.3 MeV. It will help to understand whether it
is feasible to measure the triple differential cross section
at such a low energy.

2. The second goal is to determine whether the interfer-
ence of the 1~ subthreshold resonance and 1~ resonance
at 2.423 MeV is constructive or distractive because the
pattern of this interference may affect the photon’s an-
gular distribution.

3. The third goal is to compare the relative contribution
of the F'1 and E2 transitions.



TABLE I: Parameters used in calculations of the astrophysi-
cal factors of the lzC(a, fy)lGO radiative capture and the pho-
ton’s angular distributions from the indirect *C(°Li,d~)'°O
reaction.

L=1 L=2
E; [MeV] (—0.45)  (—0.245)

yiorr [MeV'/?] (0.0867)  (0.1500)
Y10 MeVY/2m /2] (0.0241)  (0.9415)

E> [MeV] 3.0 2.8
Yoor 1 [MeV'/?]
Y20 [MeV/2fm /2] —0.00963 —0.09257
E3 [MeV] 33.8
301 [MeV'/?] 1.1
Yoy sorLp [MeV/2fm™ /2] —0.00239

0.3254 0.75

A. Astrophysical factors for >C(a, 7)'°O

First, to determine the parameters, which we use
to calculate the triple differential cross sections, we
fit the experimental astrophysical factors Sg; for the
E1 transition and S(E2) for the E2 transition for the
120(ar, 7)*¢16 reaction from [19]. We do not pursue a
perfect fit and are mostly interested in fitting energies
below the 17 resonance at 2.423 MeV, and at low ener-
gies E,_12¢ < 1 MeV. To get an acceptable fit for the F'1
transition we needed to include three levels, two physi-
cal states, subthreshold 1~ state and the 1~ resonance,
and one background state. For the E2 transition it was
enough to include only two physical states, 2" subthresh-
old resonance and 27 resonance at 2.683 MeV.

We repeat that we do not pursue the perfect fit of the
experimental S factors. Our goal is to demonstrate the
pattern of the triple differential cross section using rea-
sonable parameters. More complicated fit can be done
when indirect data will be available. In our fit, we kept
fixed only the parameters of the subthreshold resonances
17 and 2% while the parameters of the higher lying res-
onances 17 and 27 were varying. The fixed parameters
are shown in Table I in parentheses. In this table is shown
the set of the parameters used to fit the astrophysical fac-
tors Sg1 and Sgs. These parameters are also used to
calculate the triple differential cross section. FE,, is the
energy of the n-th level.

Note that in the R-matrix approach, which includes
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a few interfering levels, it is convenient to choose one
of the energy level coinciding with the location of the
observable physical state [56, 60] while energies of other
levels become fitting parameters.

In this paper we adopted E; = —5((;220(1) = —0.045

MeV for L =1 and By = —&{,,) = —0.245 MeV for
L = 2 transitions. Then the boundary condition for the
second and third levels of the E1 transition are taken
at E,12c = —0.045 MeV while for L = 2 the boundary
condition is taken at F,i12c = —0.245 MeV. Moreover,
because in our choice the locations of the subthreshold
bound states for L =1 and L = 2 are fixed, the energies
of other levels are fitting parameters and deviate from
the real resonance energies. For example, the 1~ reso-
nance at 2.423 MeV in the fit is shifted to E,12¢ = 3.0
MeV and the 2% resonance at 2.683 MeV is shifted to 2.8
MeV. Hence, the statement that we take into account the
radiative capture through the wing of the subthreshold
17 resonance at E,12c = —0.045 MeV and the 1~ reso-
nance at F,12¢ = 2.423 MeV does not contradict to the
fact that in the fit the resonance at 2.423 MeV is shifted
to 3.0 MeV. To fit the E1 transition we needed to add
the background state at 33.8 MeV with parameters given
in Table I.

In this table, the given parameters provide the con-
structive interference of the subthreshold 1~ resonance
and resonance at 2.423 MeV at low energies. Changing
the sign of () 501, = —0.00963 MeV'/2fm®2 to pos-
itive provides the destructive interference between the
first two 17 levels. In what follows by the E1 construc-
tive (destructive) interference we mean the constructive
(destructive) interference between the first two 1~ levels.

In Fig. 3 the calculated Sg1 and Sgo astrophysical
factors for the E'1 and E2 transitions, respectively, are
compared with the experimental ones from [19]. Our
fitted astrophysical factors are: Sg1(0.3MeV) = 124.6
keVb for the E1 transition and Sg2(0.3MeV) = 71.1
keVb for the F2 transition. Evidently that our value for
the F1 transition is higher than the contemporary ac-
cepted value of 80 keVDb for constructive interference but
the value for the E2 transition is close to the low value
60 keVb [37]. But, as we have underscored, our values
should not be taken very seriously. In the absence of in-
direct data we use the parameters obtained from fitting
the data from [19] to generate the photon’s angular dis-
tributions to make some qualitative predictions. We also
show how the photon’s angular distributions are affected
by lowering Sg1(0.3 MeV).

B. Photon’s angular distributions

In Figs. 4, 5, 6 and 7 the photon’s angular distributions
are shown at four different F,12¢ energies: 0.3, 0.9,2.1
and 2.28 MeV. We do not show the angular distributions
at the middle energy 1.5 MeV because it is very similar
to the angular distributions at higher energies and com-
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FIG. 3: Low-energy astrophysical Sgi(F,12¢) and

Se2(E,12¢) factors for EF1 and E2 transitions for the
12C(o¢, 7)160 radiative capture. Black dotes are astrophysi-
cal factors from [19], solid red line is present paper fit. Panel
(a): Sp1(E412¢) astrophysical factor; panel (b): Sg2(E,12¢)
astrophysical factor.

pletely dominated by the E'1 transition. The calculations
are performed at FEspjizc = 7 MeV (9.33 MeV in the
Lab. system with SLi projectile), which is higher than
the Coulomb barrier Vo &~ 5 MeV in the entry channel
6Li 4+ 12C of the indirect reaction.

Figures 4 and 5 are very instructive. First, we note
that the E'1 angular distributions of the photons at all
energies are peaked at 90° while the F2 angular distri-
butions are double-humped and peaked at 45° and 135°.
However, the interference of the E1 and E2 transitions
leads to different total angular distributions. The an-
gular distributions at 0.3 MeV are quite similar for the
E1 transitions with constructive and destructive inter-
ferences, panels (a) and (b) in Fig. 4, with pronounced
peaks at 52° and 50°, respectively. The character of the
total angular distribution at 0.3 MeV depends on the
relative weight of the F1 and E2 transitions.

The photon’s angular distributions at 0.9 MeV, panels
(¢) and (d), are the most instructing. The patterns of
the photon’s angular distributions are different for the
constructive and destructive E1 transitions what allows
one to distinguish between two types of the E1 interfer-
ences. However, the cross sections for the destructive F'1
interference is too small compared to the cross section at
0.3 MeV.

Now we proceed to the angular distributions at higher
energies shown in Fig. 5. At higher energies, the E'1 tran-
sition dominates and we see profound E1 type angular
distributions both for the F1 constructive and destruc-
tive interferences of the two first 1~ levels. Hence, the an-
gular distributions at higher energies cannot distinguish
between constructive and destructive E1 interferences.

Comparing the relative values of the triple differential
cross sections of Fig. 5, panel (c) and Fig. 4, panel (a) we
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FIG. 4: Angular distribution of the photons emitted from
the reaction "2C(°Li,d~)'"®O proceeding through the wings
of two subthreshold resonances 17, EF 12 = —0.045 MeV,
2% B 12¢ = —0.245 MeV, and the resonances at E, 12¢ > 0.
The green dashed-dotted line is the angular distribution for
the electric dipole transition E1, the blue dashed line is the
angular distribution generated by the electric quadrupole £E2
transition, and the red solid line is the total angular distribu-
tion resulted from the interference of the E1 and E2 radiative
captures. Panel (a): E,12¢ = 0.3 MeV, constructive interfer-
ence of the F1 transitions through the wing of 17, E 12¢c =
—0.045 MeV and the resonance 17, Er = 2.423 MeV; panel
(b): E,i12¢ = 0.3 MeV, destructive interference of the E1
transitions through the wing of 17, E 12 = —0.045 MeV
and the resonance 17, Er = 2.423 MeV; panel (c): the same
as panel (a) for E,i12c = 0.9 MeV; panel (d): the same as
panel (b) for E,12c = 0.9 MeV.

can make, presumably, the most important conclusion:
the triple differential cross section near the 1~ resonance
at 2.28 MeV exceeds the one at 0.3 MeV by approxi-
mately an order of magnitude. We remind to the reader
that in the case of the direct measurements when mov-
ing from 2.28 MeV to 0.3 MeV, the cross section drops
by a factor of 10°. Our estimation detailed in the next
section shows that measurements of the indirect triple
differential cross section at 0.3 MeV are feasible. Thus,
for the first time, we provide a possibility to measure the
20 (a, v)'0 right at the most effective astrophysical en-
ergy 0.3 MeV.

In Figs 4 and 5 we have used the R-matrix parameters,
which provide a higher Sgi(0.3MeV) = 124.6 keVb for
the constructive F1 transition than the contemporary
accepted ~ 80 keVb [37]. To check how the photon’s
angular distributions are affected by a lower E1 astro-

physical we changed three R-matrix parameters in Table

I Ey = 3.1 MeV, 7l,0,; = —0.006132 MeV'/?fm?/?

and v3p011 =14 MeVY/2, With these parameters we get
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FIG. 5: Angular distribution of the photons emitted from
the reaction ">C(°Li, d v)'®O proceeding through the wings of
the two subthreshold resonances, 17, F 12 = —0.045 MeV,
2% B 12¢ = —0.245 MeV, and the resonances at E,12¢ > 0.
Notaions of the lines are the same as in Fig. 4. Panel (a): the
same as panel (a) in Fig. 4 for E,12¢ = 2.1 MeV; panel (b):
the same as panel (b) in Fog. 4 for F,12¢ = 2.1 MeV; panel
(c) the same as panel (c) in Fig. 4 for E,12¢ = 2.28 MeV.

Sp1(0.3MeV) = 75.8 keVb and Sg1(0.9MeV) = 14.7
keVb. We use the modified parameters to calculate
the photon’s angular distributions again at E,12¢ =
0.3, 0.9, 2.1 and 2.28 MeV, see Figs 6 and 7. Thus we
repeated calculations similar to the ones shown in Figs.
4 and 5 but with three modified parameters leading to
smaller Sg.

We find that decrease of the Sg; does not change the
angular distribution except for the panel (d) in 6, which is
different than the panel (d) in Fig 4 but the absolute val-
ues of the cross sections in these panels are quite small.
The main effect of the dropping of the Sg; factor is a
decrease of the triple differential cross section at higher
energies where E1 significantly dominates over F2. As
a result, the ratio of the triple differential cross sections
at 2.28 MeV and 0.3 MeV is only 6.5. That is, the rel-
ative weight of the triple differential cross section at 0.3
MeV increases what makes more plausible the chances to
measure the triple differential cross section at 0.3 MeV
for lower Sg1.

In [37] it was underscored that contemporary experi-
mental data do not exclude very low Sg1(0.3MeV) = 10
keVb and high Sg2(0.3MeV) = 154 keVb. We did not
exploit here all the possibilities for the astrophysical fac-
tors but, evidently that this marginal values can change
the photon’s angular distributions. Indirect measure-
ments can finally resolve ambiguities in the low-energy
astrophysical factors.
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FIG. 7: The same as in Fig. 5 but calculations are done
with three modified R-matrix parameters generating lower
SE1(0.3) MeV astrophysical factor.

V. FEASIBILITY OF THE PROPOSED
APPROACH

Reliable estimates for the 12C(°Li,d) reaction cross sec-
tion at 10-11 MeV energy of SLi beam populating the 1~
state at 9.585 MeV can be made. Using FRESCO [61]
reaction code and the same set of potentials as in [43],
DWBA calculations predict cross section on the order
of 10 mb/sr for forward angles (0-30° in c.m.). The ~



branching of this state to the '°0 ground state is 5x10~8
[68]. This sets the absolute scale for the cross sections to
be measured at close to 1 nb. This is a very challenging
but achievable target for a dedicated experimental setup.
One possibility is to couple high efficiency array for high
energy y-rays (such as nearly 47 BaF or Csl [62-76] )
with large area position sensitive Si array (with total solid
angle of ~ 1 sr) to detect deuterons. Another possibility
is to use inverse kinematics (*2C beam on SLi target) and
detect 190 recoils in the spectrometer while still measur-
ing deuterons at back angles in coincidence with high
energy ~y-rays. The former approach (direct kinematics)
allows to achieve better energy resolution, while the later
leads to very clean measurement due to triple *¢0/~/d
coincidence. We estimate that event rates as high as 103
per day can be achieved with high intensity beams (on
the order of 1 particle pA) while keeping energy reso-
lution within 100 keV. This specific estimate was made
for the direct kinematics approach assuming 60 pg/cm?
12C target thickness. Slow variation of triple differential
cross section with energy (by one order of magnitude)
makes it possible to achieve satisfactory statistics even
at Fy12c = 0.3 MeV within reasonable time frame. One
week of beam time would produce on the order of few
hundred events in the region of Gamow window energy.

VI. SUMMARY

In this paper, we suggested and developed the formal-
ism of resonant indirect radiative capture reactions. The
derived expressions for the triple and double differential
cross sections can be used for the analysis of the indirect
radiative capture reactions. The developed formalism
can be utilized when indirect reactions proceed through
a few subthreshold bound states and resonances. In this
case, the statistical theory cannot be applied and the
intermediate subthreshold bound states and resonances
should be taken into account explicitly.

The idea of the indirect method is to use the indirect
reaction A(a,s~)F to obtain the information about the
radiative capture reaction A(x, v)F, where a = (sx) and
F = (2 A). The main advantage of using the indirect
reactions is the absence of the Coulomb-centrifugal pen-
etrability factor in the entry channel x + A of the binary
sub-reaction A(z, v)F, which suppresses the low-energy
cross section of this reaction and does not allow one to
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measure it at astrophysically relevant energies.

Using indirect resonant radiative capture reactions
one can obtain the information about important as-
trophysical resonant radiative capture reactions, like
(p, v), (a, ) and (n, ) on stable and unstable isotopes.
The indirect technique makes accessible low-lying reso-
nances, which are close to the threshold, and even sub-
threshold bound states at negative energies.

In this paper, after developing the general formal-
ism, we have demonstated the application of the indirect
method for the indirect reaction 2C(°Li,d~)%O pro-
ceeding through 1= and 2% subthreshold bound states
and resonances to obtain the information about the
120(ar, )00 radiative capture.

The indirect method requires measurement of the
triple differential cross section in the coincidence exper-
iment, in which one has to measure the photon’s angu-
lar distribution at given energy and scattering angle of
the deuteron. This photon’s angular distribution is the
photon-deuteron angular correlation.

We show that the ratio of the triple differential cross
section at energy E, 12 = 2.28 MeV, which is close to the
17 resonance at 2.423 MeV, to the one at F,12c = 0.3
MeV is about an order of magnitude. Such a small drop
of the triple differential cross section when one reaches
the most effective astrophysical energy E, 12 = 0.3 MeV
makes it possible to obtain the information about the as-
trophysical factor for the 2C(a, )0 process. We re-
mind that in the direct experiment the cross section of
the 12C(a, )90 reaction drops by ~ 10° when moving
from the energies close to the resonance at 2.423 MeV
down to 0.3 MeV. We discuss also the optimal experi-
mental kinematics to measure the indirect reactions and,
in particular, the 12C(°Li, d )9O process.
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