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Abstract

We compare phenomenological results from 3+1d quasiparticle anisotropic hydrodynamics (aHy-

droQP) with experimental data collected in LHC 2.76 TeV Pb-Pb collisions. In particular, we

present comparisons of particle spectra, average transverse momentum, elliptic flow, and HBT

radii. The aHydroQP model relies on the introduction of a single temperature-dependent quasi-

particle mass which is fit to lattice QCD data. By taking moments of the resulting Boltzmann

equation, we obtain the dynamical equations used in the hydrodynamic stage which include the

effects of both shear and bulk viscosities. At freeze-out, we use anisotropic Cooper-Frye freeze-out

performed on a fixed-energy-density hypersurface to convert to hadrons. To model the production

and decays of the hadrons we use THERMINATOR 2 which is customized to sample from ellip-

soidal momentum-space distribution functions. Using smooth Glauber initial conditions, we find

very good agreement with many heavy-ion collision observables.

PACS numbers: 12.38.Mh, 24.10.Nz, 25.75.Ld, 47.75.+f, 31.15.xm

Keywords: Quark-gluon plasma, Relativistic heavy-ion collisions, Anisotropic hydrodynamics, Equation of
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I. INTRODUCTION

Relativistic hydrodynamics has been quite successful in describing the soft hadron spectra

(pT <∼ 2 GeV) and collective flow observed in ultrarelativistic heavy-ion collision (URHIC)

experiments at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC)

[1–31] (see [32–35] for recent reviews). Early on, the success of this program suggested that

the quark-gluon plasma (QGP) generated in URHICs was nearly isotropic in the local rest

frame (LRF); however, in practice, one finds that there are rather large momentum-space

anisotropies, which are driven primarily by the rapid longitudinal expansion of the QGP cre-

ated in URHICs [36, 37]. All studies indicate that at early times after the nuclear impact, the

QGP possesses a high degree of momentum-space anisotropy in the fluid LRF, PT/PL � 1,

which only slowly relaxes towards unity during the QGP liftetime. Additionally, at all

proper times, there are large momentum-space anisotropies near the transverse/longitudinal

“edges” of the fireball where the system is nearly free streaming. The situation only gets

worse as one goes from AA to pA and pp collisions, since gradients are larger and sys-

tem lifetimes are considerably shorter. As a consequence, larger non-equilibrium deviations

are expected for these systems, which push traditional viscous hydrodynamics to its lim-

its [38]. This has motivated the investigation of alternative formulations of dissipative rela-

tivistic hydrodynamics which can be applied to systems which might possess a high degree

of momentum-space anisotropy at all points in spacetime [36, 37].

One way to proceed is to reorganize the expansion of the one-particle distribution function

around a leading-order form which possesses intrinsic momentum-space anisotropies but still

guarantees positivity [39, 40]. This method has become known as anisotropic hydrodynamics

(aHydro) and there are now many groups pursuing this idea [41–55]. One of the selling points

for the aHydro approach has been that it better reproduces exact solutions to the Boltzmann

equation compared to traditional near-equilibrium viscous hydrodynamic approaches, even

in the limit of very large shear viscosity to entropy density ratio and/or initial momentum-

space anisotropy [52, 56–62]. Given this success, the focus has recently turned to making

aHydro a practical phenomenological tool with a realistic equation of state (EoS) and self-

consistent anisotropic hadronic freeze-out. In a previous short paper [63], we presented

the first comparisons of experimental data with phenomenological results obtained using

generalized 3+1d aHydro including: (1) three momentum-space anisotropy parameters in
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the underlying distribution function, (2) the quasiparticle aHydro (aHydroQP) method for

implementing a realistic EoS [50, 53, 64], and (3) anisotropic Cooper-Frye freeze-out [38,

53] using the same form for the distribution function as was assumed for the dynamical

equations.

To the best of our knowledge, all previous phenomenological applications of aHydro have

either relied on the approximate conformal factorization of the energy-momentum tensor,

see e.g. [42, 43, 65, 66], and/or have used isotropic freeze-out [43]. To address the issue

with freeze-out, we use a customized version of THERMINATOR 2 [67] which has been

modified to accept ellipsoidally-anisotropic distribution functions. In this paper, we extend

our previous work [63] by (1) giving the details of the formalism of 3+1d aHydroQP and

(2) presenting comparisons with a wider set of heavy-ion observables. Here we present

comparisons of charged-hadron multiplicity, identified-particle spectra, identified-particle

average transverse momentum, charged-particle elliptic flow, identified-particle elliptic flow,

the integrated elliptic flow vs pseudorapidity, and the HBT radii. For some observables,

such as the spectra, compared to Ref. [63] we present comparisons in more centrality classes

and with higher statistics.

The structure of the paper is as follows. In Sec. II, we present our general setup. In

Sec. III, we introduce the formalism for quasiparticle anisotropic hydrodynamics and then

derive the 3+1d dynamical equations. In Sec. IV, we discuss anisotropic Cooper-Frye freeze-

out. In Sec. V, we compare our model results obtained using the 3+1d aHydroQP model for

Pb-Pb collisions at LHC energies with data from the ALICE collaboration. Sec. VI contains

our conclusions and an outlook for the future. In App. A, we list the derivatives used in

the body of the paper. App. B contains details concerning the thermodynamic integrals

introduced in the body of the text and our optimized scheme for their evaluation.

II. SETUP

A. Conventions and notation

Here we define some conventions and notation that will be used in the body of this paper.

The metric is taken to be “mostly minus” with xµ = (t, x, y, z) where the line element is

ds2 = gµνdx
µdxν = dt2 − dx2 − dy2 − dz2 with gµν being metric tensor in Minkowski space.
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The longitudinal proper time is τ =
√
t2 − z2 and the longitudinal spacetime rapidity is

ς = tanh−1(z/t).

The basis vectors for a general 3+1d system in the laboratory frame can be obtained by

the following parametrization, which is based on a set of Lorentz transformations applied

to the LRF basis vectors [41, 42]. The set of successive transformations correspond to a

longitudinal boost ϑ along the beam line, a rotation ϕ ≡ tan−1(uy/ux) around the beam

line, and a transverse boost θ⊥, which together yield

uµ ≡ (u0 coshϑ, ux, uy, u0 sinhϑ) ,

Xµ ≡
(
u⊥ coshϑ,

u0ux
u⊥

,
u0uy
u⊥

, u⊥ sinhϑ
)
,

Y µ ≡
(

0,− uy
u⊥
,
ux
u⊥
, 0
)
,

Zµ ≡ (sinhϑ, 0, 0, coshϑ) , (1)

where uµ is the fluid four-velocity and u⊥ ≡
√
u2x + u2y =

√
u20 − 1 = sinh θ⊥.

B. Distribution Function

The leading order distribution function in aHydro is assumed to be of generalized

Romatschke-Strickland form [68, 69]

f(x, p) = feq

(
1

λ

√
pµΞµνpν

)
, (2)

where λ is an energy scale which becomes the temperature in the isotropic equilibrium limit.

The anisotropy tensor has the form Ξµν ≡ uµuν + ξµν − ∆µνΦ where ξµν is a symmetric

traceless tensor obeying uµξ
µν = 0 and ξµµ = 0, Φ is the bulk degree of freedom, and

∆µν = gµν − uµuν is the transverse projector [42, 46]. Using the ellipsoidal form (2) and the

tracelessness of ξµν , we are left with three independent parameters out of the four original

parameters Φ and ξ = (ξx, ξy, ξz). In thermal equilibrium, the distribution function feq(x)

can be identified as Fermi-Dirac, Bose-Einstein, or Maxwellian distribution. Herein, ignoring

the quantum statistics, we take the Boltzmann form with zero chemical potential.

We note that, in order to perform the integrals, it is useful to define three parameters αi
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as the system’s independent anisotropy parameters

αi ≡ (1 + ξi + Φ)−1/2 , (3)

such that the distribution function can be written as

f(x, p) = feq

(
1

λ

√∑
i

p2i
α2
i

+m2

)
. (4)

C. The equation of state

We use an analytic parameterization of lattice QCD (LQCD) data for the trace anomaly

taken from the Wuppertal-Budapest collaboration [70]. This analytic parameterization can

be used to calculate the energy density, pressure, and entropy density using standard ther-

modynamic identities. In order to implement the equation of state in the quasiparticle

model, we fit a single temperature-dependent mass, m(T ), to the LQCD entropy density.

For details, we refer the reader to Ref. [50].

D. Shear and bulk viscosity in the quasiparticle (QP) model

The relaxation time τeq can be related to the shear viscosity, η, for the system of quasi-

particles. The shear viscosity for a quasiparticle gas can be found in Refs. [71] and [31],

Eqs. (4.3) and (46), respectively, with both giving the same result

η

τeq
=

1

T
I3,2(m̂eq) , (5)

with m̂eq ≡ m/T and

I3,2(x) =
NdofT

5 x5

30π2

[
1

16

(
K5(x)− 7K3(x) + 22K1(x)

)
−Ki,1(x)

]
,

Ki,1(x) =
π

2

[
1− xK0(x)S−1(x)− xK1(x)S0(x)

]
, (6)

where Ndof is the number of degrees of freedom, Kn are modified Bessel functions of the

second kind, and Sn are modified Struve functions. Using Eq. (5), the relaxation time can
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FIG. 1. In panel (a), we show the bulk viscosity scaled by the entropy density obtained using the

quasiparticle model (black solid line) [31, 71] compared with ζ/s = 15η/s (1/3 − c2s)2, which is a

frequently used small-mass limit result (red dashed line). In panel (b), we show m/T extracted by

fitting to LQCD results for the entropy density [70].

be written as

τeq(T ) = η̄
E + P
I3,2(m̂eq)

, (7)

where η̄ ≡ η/s with s being the entropy density, E is the energy density, and P is the

pressure.

Using the quasiparticle model, one can extract the bulk viscosity in a similar manner.

Expressions for the bulk viscosity for a quasiparticle gas can be found in Refs. [71] and [31],

Eqs. (4.4) and (45), respectively, with, both again giving the same result

ζ

τeq
=

5

3T
I3,2(m̂eq)− c2s(E + P) + c2sm

dm

dT
I1,1(m̂eq) , (8)

where

I1,1(x) =
NdofT

3 x3

6π2

[
1

4

(
K3(x)− 5K1(x)

)
+Ki,1(x)

]
. (9)

In Fig. 1-a, we plot the result for the bulk viscosity to entropy density ratio ζ/s in the

quasiparticle model as a black solid line. For comparison, we plot ζ/s = 15η/s (1/3− c2s)2,

where cs is the speed of sound. This is an often-used small-mass expansion result [72]. For

both curves, we assume that η/s = 2/(4π).
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In Fig. 1-b we plot m/T obtained by fitting to the Wuppertal-Budapest LQCD results

for the entropy density [50]. We point out that, at small temperatures, the value of m/T

necessary to fit the LQCD data [70] is not small, invalidating the often used small m/T

expansion used to compute effective transport coefficients. The quasiparticle model has a

finite bulk viscosity to entropy density ratio as shown in Fig. 1-a. It peaks in the vicinity

of the phase transition temperature from QGP to a hadronic gas. By comparing to other

ansätze for ζ/s used in other studies we see that, in our quasiparticle model, the peak value

is much smaller ∼ 0.05, compared to prior works. For example, in Ref. [30] the respective

peak value of ζ/s is approximately 0.3.

III. DYNAMICAL EQUATIONS

For a system of quasiparticles with a temperature-dependent mass, the Boltzmann equa-

tion is [50, 71, 73]

pµ∂µf +
1

2
∂im

2∂i(p)f = −C[f ] , (10)

with i ∈ {x, y, z}. Herein, we take the collisional kernel C[f ] in the relaxation time approxi-

mation, C[f ] = pµu
µ(f − feq)/τeq. By taking moments of this equation we can generate the

necessary dynamical equations.

The kinetic part of the energy-momentum tensor can be obtained from the second moment

of distribution function, however, when the quasiparticle mass is temperature dependent,

this quantity is not conserved by itself. In order to enforce thermodynamic consistency and

energy-momentum conservation, one must introduce the background field contribution [74],

B(T ), which is fixed through comparison with LQCD data [50, 71]

T µν = T µνkinetic +Bgµν , (11)

where T µνkinetic =
∫
dP pµpνf(x, p) with dP ≡ E−1 d3p/(2π)3 being the Lorentz-invariant

integration measure.

For the case considered here, namely a diagonal anisotropy tensor, the full energy-
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momentum tensor can be expanded as

T µν = Euµuν + PxXµXν + PyY µY ν + PzZµZν . (12)

The resulting energy density and pressures are

E = H3(α, m̂)λ4 +B ,

Pi = H3i(α, m̂)λ4 −B , (13)

with i ∈ {x, y, z} and the H-functions appearing above defined in App. B.

Taking the first moment of Boltzmann equation we obtain four equations

DuE + Eθu + PxuµDxX
µ + PyuµDyY

µ + PzuµDzZ
µ = 0 ,

DxPx + Pxθx − EXµDuu
µ − PyXµDyY

µ − PzXµDzZ
µ = 0 ,

DyPy + Pyθy − EYµDuu
µ − PxYµDxX

µ − PzYµDzZ
µ = 0 ,

DzPz + Pzθz − EZµDuu
µ − PxZµDxX

µ − PyZµDyY
µ = 0 . (14)

The second moment of Boltzmann equation involves a rank-3 tensor I which is the third

moment of the distribution function

Iµνλ ≡
∫
dP pµpνpλf(x, p) . (15)

Expanding I over the basis vectors one has

I = Iu [u⊗ u⊗ u]

+ Ix [u⊗X ⊗X +X ⊗ u⊗X +X ⊗X ⊗ u] + (X → Y ) + (X → Z) , (16)

with [46]

Ii = αα2
i Ieq(λ,m) ,

Ieq(λ,m) = 4πÑλ5m̂3K3(m̂) , (17)

where α =
∏

i αi. Since we have eight independent variables, αx, αy, αz, ux, ux, ϑ, T , and

λ, we need eight equations to solve the full 3+1d aHydroQP system. With ten equations

8



obtained from the second moment of Boltzmann equation, the system is overdetermined.

Therefore, we have to come up with a selection rule to choose a subset of these equations

in order to close the set of dynamical equations. The final equations are taken from the

three diagonal projections of the equation of motion of the third moment, XµXν∂αIαµν ,

YµYν∂αIαµν , and ZµZν∂αIαµν giving [50]

DuIx + Ix(θu + 2uµDxX
µ) =

1

τeq

[
Ieq(T,m)− Ix

]
,

DuIy + Iy(θu + 2uµDyY
µ) =

1

τeq

[
Ieq(T,m)− Iy

]
,

DuIz + Iz(θu + 2uµDzZ
µ) =

1

τeq

[
Ieq(T,m)− Iz

]
. (18)

Finally, in order to compute the local effective temperature T , we match the non-equilibrium

kinetic energy density with the equilibrium kinetic energy density

H3(α, m̂)λ4 = H3,eq(1, m̂eq)T
4. (19)

To summarize, to perform the numerical simulations reported herein we use the eight equa-

tions resulting from the first (14) and second (18) moments of the Boltzmann equation,

together with the matching condition (19).

IV. ANISOTROPIC FREEZE-OUT

The QGP undergoes freeze-out at late times/low temperatures and the degrees of freedom

need to be changed from hydrodynamical variables to hadronic positions and momenta. In

this work, we perform “anisotropic Cooper-Frye freeze-out” using Eq. (4) as the form for the

one-particle distribution function. The anisotropic distribution function used in the freeze-

out is guaranteed to be positive-definite, by construction, in all regions in phase space,

avoiding the usual problems encountered within standard viscous hydrodynamic freeze-out.

In practice, we construct a constant energy-density hypersurface, defined through TFO =

E−1(EFO). Then, by computing the number of particles that cross this hypersurface, one can

determine the number of hadrons produced in heavy-ion collisions at freeze-out using(
p0
dN

d3p

)
i

=
Ni

(2π)3

∫
fi(x, p) p

µd3Σµ , (20)
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where i labels the hadronic species, Ni ≡ 2si + 1 is the degeneracy factor with si being the

spin of particle species i, and fi is the distribution function for particle species i taking into

account the appropriate quantum statistics.1 For more details we refer the reader to [38, 53].

V. NUMERICAL RESULTS

In this section, we present comparisons of our aHydroQP model results with
√
sNN =

2.76 TeV Pb-Pb collision data available from the ALICE collaboration. To set the initial

conditions, we assume the system to be initially isotropic in momentum space (αi(τ0) =

1), with zero transverse flow (u⊥(τ0) = 0), and Bjorken flow in the longitudinal direction

(ϑ(τ0) = η). The initial energy density distribution in the transverse plane is computed

from a “tilted” profile [75]. The distribution used is a linear combination of smooth Glauber

wounded-nucleon and binary-collision density profiles, with a binary-collision mixing factor

of χ = 0.15. In the longitudinal direction, we used a profile with a central plateau and

Gaussian “tails”, resulting in a longitudinal profile function of the form

ρ(ς) ≡ exp
[
−(ς −∆ς)2/(2σ2

ς ) Θ(|ς| −∆ς)
]
. (21)

The parameters entering (21) were fitted to the pseudorapidity distribution of charged

hadrons with the results being ∆ς = 2.3 and σς = 1.6. The first quantity sets the width of

the central plateau and the second sets the width of the Gaussian “tails”.

The resulting initial energy density at a given transverse position x⊥ and spatial rapidity

ς was computed using

E(x⊥, ς) ∝ (1− χ)ρ(ς)
[
WA(x⊥)g(ς) +WB(x⊥)g(−ς)

]
+ χρ(ς)C(x⊥) , (22)

where WA,B(x⊥) is the wounded nucleon density for nucleus A or B, C(x⊥) is the binary

collision density, and g(ς) is the “tilt function”. The tilt function is defined through

g(ς) =


0 if ς < −yN ,

(ς + yN)/(2yN) if −yN ≤ ς ≤ yN ,

1 if ς > yN ,

(23)

1In THERMINATOR 2, different isospin states are treated separately negating the need for an explicit isospin degen-

eracy factor.
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FIG. 2. Transverse momentum spectra of π±, K±, and p+ p̄ for six centrality classes. All results

are for 2.76 TeV Pb-Pb collisions and data shown are from the ALICE collaboration [76].

where yN = log(2
√
sNN/(mp +mn)) is the nucleon momentum rapidity [75].

We solved the aHydroQP dynamical equations on a 643 lattice with lattice spacings

∆x = ∆y = 0.5 fm and ∆ς = 0.375. To compute spatial derivatives we used fourth-order

centered-differences and, for temporal updates, we used fourth-order Runge-Kutta with step

size of ∆τ = 0.02 fm/c. To regulate potential numerical instabilities associated with the
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rapidity. Results are for 2.76 TeV Pb-Pb collisions and data are from the ALICE collaboration

[77, 78].
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FIG. 4. The average transverse momentum of π±, K±, and p + p̄ as a function of centrality for

2.76 TeV Pb-Pb collisions. Data are from the ALICE collaboration [76].

centered-differences scheme, we used a weighted-LAX smoother [42]. In most cases, we set

the weighted-LAX fraction to be 0.005, however, for large impact parameters we used 0.02.2

The aHydroQP evolution was started at τ0 = 0.25 fm/c and stopped when the highest

effective temperature in the entire volume was sufficiently below TFO.

Using aHydroQP, we first ran the full 3+1d evolution of the system, then we extracted a

freeze-out hypersurface based on the effective temperature. We assumed that all hadronic

species were in chemical equilibrium and had the same fluid anisotropy tensor (Ξµν) and scale

2This does not affect the evolution considerably since, for high impact parameters, the system reaches TFO at times
<∼ 4 fm/c.
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FIG. 5. The integrated v2 for charged hadrons as a function of centrality (0.2 < pT < 3 GeV,

η < 0.8). All results are for 2.76 TeV Pb-Pb collisions and data are from the ALICE collaboration

[79].

parameter (λ). The distribution function parameters on the freeze-out hypersurface were fed

into a customized version of THERMINATOR 2 which allows for an ellipsoidal distribution

function of the form given in Eq. (4). THERMINATOR 2 performs sampled event-by-event

hadronic production from the exported freeze-out hypersurface using Monte-Carlo sampling.

It then performs hadronic feed down (resonance decays) for each sampled event. Depending

on the observables under consideration and the centrality class considered, one may need to

generate more hadronic events for the purposes of improved statistics. For all plots shown

herein we used between 7,400 and 36,200 hadronic events per centrality class. We indicate

the statistical uncertainty of our model results associated with the hadronic Monte-Carlo

sampling by a shaded band surrounding the hadronic event-averaged value (the central line).

In our model we have three remaining free parameters: (1) the initial central temperature

T0 obtained in a perfectly central collision at x⊥ = 0 and ς = 0, (2) the freeze-out temper-

ature TFO, and (3) η/s which is assumed to be a (temperature-independent) constant. In

order to fix these parameters we scanned over them and compared the theoretical predictions

resulting from this scan with experimental data from the ALICE collaboration for the differ-

ential spectra of pions, kaons, and protons in both the 0-5% and 30-40% centrality classes.

The fitting error was minimized across species, with equal weighting for the three particle

types. The parameters obtained from this procedure are T0 = 600 MeV, η/s = 0.159, and

TFO = 130 MeV.

We first present our comparisons of the transverse momentum spectra of π±, K±, and
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FIG. 6. The elliptic flow coefficient for identified hadrons as a function of pT for four centrality

classes as shown in each panel. All results and data are for 2.76 TeV Pb-Pb collisions. Data shown

are from the ALICE collaboration and were extracted using the scalar product method [80].

p+ p̄ in six centrality classes 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, and 40-50% in Fig. 2.

These comparisons show that our model provides a very good simultaneous description of

the ALICE data for the pion, kaon, and proton spectra [76], with largest differences at

pT >∼ 1.5 GeV and relatively high centrality classes 30-40%, and 40-50%. We note that

our model slightly underpredicts the pion spectrum at low transverse momentum which is

similar to what is observed in other hydrodynamic models (see e.g. Ref. [30]). One possible

explanation for this discrepancy that has been suggested is pion condensation [82].

In Fig. 3, we show the charged-hadron multiplicity in different centrality classes as a

function of pseudorapidity, η. In panel (a), we show the 0-5%, 5-10%, 10-20%, 20-30%, and

30-40% centrality classes, and in panel (b) we show the 40-50%, 50-60%, 70-80%, 80-90%,

and 90-100% centrality classes. As can be seen from both panels, our model is able to
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FIG. 7. The pseudorapidity dependence of the elliptic flow v2 for charged hadrons in different

centrality classes where we take 0 < pT < 100 GeV. All results are for 2.76 TeV Pb-Pb collisions

and data are from the ALICE collaboration [81].

describe the charged hadron multiplicity as a function of pseudorapidity [77, 78] quite well

in all centrality classes. Another observable to consider is the average transverse momentum

of pions, kaons, and protons as a function of centrality. This is shown in Fig. 4, where our

model is again able to reproduce the data reasonably well.

Next, in Fig. 5, we show the integrated elliptic flow coefficient v2 for charged hadrons as a

function of centrality. Our model predictions were computed using the geometrical definition

of the elliptic flow coefficient, v2 ∼ 〈cos(2φ)〉, for all charged hadrons. The experimental

data were obtained using second- and fourth-order cumulants v2{2} and v2{4} [79]. From

this figure we see that our model agrees well with v2{4} measurements at low centrality, but

agrees better with v2{2} at higher centrality. One would expect better agreement with v2{4}

than v2{2}, since the former has non-flow effects subtracted. The fact that we agree better

with v2{2} at high centrality could be due to the fact that our smooth initial condition is too

simple or that we have not included the off-diagonal components of the anisotropy tensor in

the evolution and freeze-out.

In Fig. 6, we present comparisons of the identified-particle v2 as a function of pT obtained

using our model with experimental data reported by ALICE collaboration [80]. Our model

provides a quite reasonable description of the identified-particle elliptic flow as can be seen

in panels (b) and (c), 20-30% and 30-40% centrality classes, respectively. In panel (b), the

20-30% centrality class, we see that our model reproduces the data very well for the pion,
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FIG. 8. The femtoscopic (HBT) radii as a function of the pair mean transverse momentum (kT )

for π+π+ in the 0-5%, 5-10%, 10-20%, and 20-30% centrality classes. The left, middle, and right

panels show Rout, Rside, and Rlong, respectively. All results are for 2.76 TeV Pb-Pb collisions where

data shown are for π± π± obtained by the ALICE collaboration [83].

kaon, and proton data out to pT ∼ 1.5, 1.5, and 2.5 GeV, respectively. A very similar

agreement is seen in panel (c), the 30-40% centrality class, where the model is in good

agreement with the pion, kaon, and proton data out to pT ∼ 1, 1, and 2 GeV, respectively.
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However, in panels (a) and (d), 10-20% and 40-50% centrality classes, respectively, we see

less agreement than panels (b) and (c). For example, we underpredict the pion elliptic flow

in the 10-20% centrality class as can be seen from panel (a). Again, as in the case of Fig. 5,

this is related to our use of smooth Glauber initial conditions.

In order to further examine how well our model describes various observables, we look

at the pseudorapidity dependence of v2 for different centrality classes in Fig. 7. As can be

seen from Fig. 7 our model results do not fall fast enough at large pseudorapidity compared

to the experimental data [81]. One possible remedy for this may be including temperature-

dependent η/s, since this has been shown to improve agreement with this observable in the

context of viscous hydrodynamics [84].

In Fig. 8 we compare the HBT radii predicted by aHydroQP with experimental data

from the ALICE collaboration [83]. To compute the HBT radii, we used exactly the same

parameters used to describe other observables including the same number of hadronic events

in each centrality class. In this set of figures, in the left, middle, and right panels we show

Rout, Rside, and Rlong, respectively, as a function of the mean transverse momentum of the

pair π+π+ in four different centrality classes, 0-5%, 5-10%, 10-20%, and 20-30%. From the

left column of this set of figures, we see that our model reproduces the data quite well for

Rout out to kT ∼ 0.6 GeV. In the middle column, we present comparisons of Rside where

our model shows a good agreement out to kT ∼ 0.9 GeV. Lastly, in the right column we

compare results for Rlong which show poorer agreement with the data when compared to the

first two columns. However, in most cases, our model predictions are within the error bars

of the experimental data, with the biggest differences at low kT ∼ 0.2 GeV. This is opposite

to what we see in Rout and Rside where we observe good agreement with the experimental

data at low kT .

For more comparisons, we compare also the ratios of the HBT radii in Fig. 9. In this

set of figures, in the left, middle, and right panels we show Rout/Rside, Rout/Rlong, and

Rside/Rlong, respectively, as a function of the mean transverse momentum of the pair π+π+

in four different centrality classes, 0-5%, 5-10%, 10-20%, and 20-30%. We see that our model

was able to reproduce the data quite well in all three panels for all centrality classes shown

here.
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FIG. 9. The ratios of femtoscopic (HBT) radii as a function of the pair mean transverse momentum

(kT ) for π+π+ in the 0-5%, 5-10%, 10-20%, and 20-30% centrality classes. The left, middle, and

right panels show Rout/Rside, Rout/Rlong, and Rside/Rlong, respectively. All results are for 2.76 TeV

Pb-Pb collisions where data shown are for π± π± obtained by the ALICE collaboration [83].

VI. CONCLUSIONS AND OUTLOOK

In this paper we presented phenomenological comparisons of aHydroQP with LHC exper-

imental data collected in 2.76 TeV Pb-Pb collisions. This work is an extension of a previous
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letter [63]. Herein, we gave more details about the formalism used and presented a more

thorough comparison between our model and LHC data for a variety of observables. In aHy-

droQP, we included three momentum anisotropy parameters in the underlying distribution

function, both in the dissipative hydrodynamic stage and at freeze-out. We also used a quasi-

particle implementation of the QCD EoS in order to take into account the non-conformality

of the system. At freeze-out, we used a customized version of THERMINATOR 2 which was

modified to accept anisotropic distribution functions of generalized Romatschke-Strickland

form. As a first test, in this work, we used smooth Glauber initial conditions which were

obtained from a linear combination of wounded-nucleon and binary-collision profiles. We

additionally assumed the system to be initially isotropic in momentum space with no initial

transverse flow.

To fix the remaining phenomenological parameters, we performed a parameter scan and

compared our results with experimentally observed identified-particle spectra in the 5-10%

and 30-40% centrality classes. The resulting set of best fit parameters was T0 = 600 MeV,

η/s = 0.159, and TFO = 130 MeV. After this fitting was complete, we computed an array of

different heavy-ion observables, finding quite good agreement between our model and exper-

imental data despite our simple smooth initial condition. We looked at particle multiplicity

and spectra, average transverse momentum, v2, and HBT radii. Compared to Ref. [63], we

have added additional centrality classes in some cases and increased the statistics associated

with the hadronic Monte-Carlo sampling where necessary.

Combined with what was reported in [63], the phenomenological results presented herein

represent the first aHydro results to include three separate anisotropy parameters together

with the quasiparticle method for imposing the EoS and self-consistent anisotropic freeze-

out. Compared to prior results which used a single anisotropy parameter and/or an ap-

proximate conformal-factorization implementation of the equation of state [43, 65, 66] we

see much better agreement with the pion, kaon, and proton spectra and, relatedly, the to-

tal multiplicity as a function of pseudorapidity. Prior studies which used the approximate

conformal-factorization implementation of the equation of state dramatically underestimated

the low pT spectra [65, 66], making this the first phenomenological study within the context

of aHydro which is able to reproduce both the experimentally observed spectra and elliptic

flow.

Looking to future, there is certainly room for improvements in our model. For example,
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we are working on including a temperature-dependent shear viscosity to entropy density ratio

since in this study it was assumed to be constant. Based on prior studies in the context of

viscous hydrodynamics [84], there is some hope that this will improve the agreement between

our model and the experimental data, in particular, with regards to the pseudorapidity

dependence of v2. We also plan to include realistic fluctuating initial conditions, realistic

initial momentum anisotropy profiles, and more realistic collisional kernels. Additionally, we

are planning to look at different collision energies, e.g. RHIC 200 GeV collisions and LHC

5.023 TeV collisions, and different colliding systems, e.g. pA and pp, in the near future. The

application of aHydro to pA and pp is of particular interest, since in these systems viscous

hydrodynamics is being pushed to limits, especially at freeze-out [38].

Finally, it would be interesting to apply this formalism also to even lower energy collisions

where it is critical to take into the finite net baryon density, heat flow, etc. In this context,

it would also be interesting to extend the formalism to multicomponent fluids, e.g. two- and

three-fluid models, similar to what has been done by the Los Alamos [85, 86], Kurchatov

Institute [87–89], Frankfurt [90–94], and GSI [95–100] groups. Along these lines, there

have already been prior anisotropic hydrodynamics studies which have considered multi-

component fluids with explicit quark and gluon components [101, 102]; however, to the best

of our knowledge there have thus far not been any attempts to do this in the context of

multicomponent hadronic fluids.
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Appendix A: Explicit formulas for derivatives

In this section, we introduce the notation used in our formulation of the general moment-

based hydrodynamics equations. Using the definitions

D ≡ cosh(ϑ− ς)∂τ +
1

τ
sinh(ϑ− ς)∂ς ,

D̃ ≡ sinh(ϑ− ς)∂τ +
1

τ
cosh(ϑ− ς)∂ς , (A1)

∇⊥ · u⊥ ≡ ∂xux + ∂yuy ,

u⊥ · ∇⊥ ≡ ux∂x + uy∂y ,

u⊥ ×∇⊥ ≡ ux∂y − uy∂x , (A2)

and four-vectors defined in Eq. (1) one obtains

Du ≡ uµ∂µ = u0D + u⊥ · ∇⊥ ,

Dx ≡ Xµ∂µ = u⊥D +
u0
u⊥

(u⊥ · ∇⊥) ,

Dy ≡ Y µ∂µ =
1

u⊥
(u⊥ ×∇⊥) ,

Dz ≡ Zµ∂µ = D̃ . (A3)

The divergences can be defined as

θu ≡ ∂µu
µ = Du0 + u0D̃ϑ+∇⊥ · u⊥ ,

θx ≡ ∂µX
µ = Du⊥ + u⊥D̃ϑ+

u0
u⊥

(∇⊥ · u⊥)− 1

u0u2⊥
(u⊥ · ∇⊥)u⊥ ,

θy ≡ ∂µY
µ = − 1

u⊥
(u⊥ · ∇⊥)ϕ ,

θz ≡ ∂µZ
µ = Dϑ , (A4)
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where ϕ = tan−1(uy/ux). Finally, we list the non-vanishing contractions appearing in the

second moment equations

uµDαX
µ =

1

u0
Dαu⊥ ,

uµDαY
µ = u⊥Dαϕ ,

uµDαZ
µ = u0Dαϑ ,

XµDαY
µ = u0Dαϕ ,

XµDαZ
µ = u⊥Dαϑ ,

YµDαZ
µ = 0 , (A5)

where α ∈ {u, x, y, z}. Note that, using the orthogonality of the basis vectors, i.e.

Dα(Xµuµ) = 0, contractions such as XµDαuµ can be related to the contractions listed

above, e.g. XµDαuµ = −uµDαX
µ.

Appendix B: Special functions and derivatives

The H-functions appearing in the body of the paper can be written as

H3(α, m̂) ≡ Ñα

∫
d3p̂R feq

(√
p̂2 + m̂2

)
, (B1)

H3i(α, m̂) ≡ Ñα α2
i

∫
d3p̂Ri feq

(√
p̂2 + m̂2

)
, (B2)

H3B(α, m̂) ≡ Ñα

∫
d3p̂R−1 feq

(√
p̂2 + m̂2

)
, (B3)

where α = (αx, αy, αz), m̂ = m/λ, i ∈ {x, y, z}, α ≡
∏

i αi, and Ñ ≡ Ndof/(2π)3 with Ndof

being the number of degrees of freedom. The R and Ri functions appearing above are

R ≡
√
α2
x p̂

2
x + α2

y p̂
2
y + α2

z p̂
2
z + m̂2 , (B4)

Ri ≡ p̂2iR−1 . (B5)

More details concerning the H-functions and the manner in which they appear in the dy-

namical equations can be found in Refs. [50] and [53].

To the best of our knowledge, it is not possible to analytically evaluate the H-functions

listed above. In practice, only one integral can be done analytically and we are left with
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integrals over φ and p. Evaluation of these 2d integrals is numerically intensive, making it

infeasible to evaluate them in real-time during 3+1d simulations. One might consider inter-

polating them, however, they are functions of 4 variables (α, m̂) and, in practice, one must

separately interpolate these five functions and all derivatives necessary. As a consequence,

one quickly runs into memory limitations, even on modern computers. A more efficient

technique, which does not require a great deal of memory either, is needed. In the next

subsection, we present a method for doing this.

Series expansions

Since, in practice, the α’s do not evolve too far from αx = αy = αz = 1, it makes sense to

expand these integrals around such an isotropic point. After expanding around an isotropic

point, the angular part of the integrals become trivial and one is left only with the p integral

which can easily be interpolated since it is only function of the mass. Before proceeding,

we note that many of the H-functions are related to each other by symmetries. As a result,

we will present the method for evaluating H3 and H3x and use symmetries to find the other

H-functions and their derivatives necessary.

To proceed, we expand around an arbitrary isotropic point defined by α2
i ∼ δ0 using

α2
i = δ0 + δi ε where δ0 is the point around which the expansion is performed, and ε is used

to keep track of the order of the expansion. Based on this, we expand R and Rx as

R =
∞∑
n=0

(
1
2

n

)(
m̂2 + δ0 p̂

2
) 1

2
−n
p̂2n
[

sin2 θ
(
δx cos2 φ+ δy sin2 φ

)
+ δz cos2 θ

]n
,

Rx =
∞∑
n=0

(
−1

2

n

)(
m̂2 + δ0 p̂

2
)− 1

2
−n
p̂2+2n cos2 φ sin2 θ

[
sin2 θ

(
δx cos2 φ+ δy sin2 φ

)
+ δz cos2 θ

]n
,

where δi = α2
i − δ0.

As a result, H3(α, m̂) can be written as

H3(α, m̂) = Ñα

∞∑
n=0

(
1
2

n

)
Ω(δ, n)G(

1

2
− n, m̂, δ0) , (B6)
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where Ω(δ, n) is the angular part of the integral which is trivial to evaluate

Ω(δ, n) =

∫
dΩ
[

sin2 θ
(
δx cos2 φ+ δy sin2 φ

)
+ δz cos2 θ

]n
, (B7)

and

G(a, m̂, δ0) =

∫
dp̂ p̂3−2a

(
m̂2 + δ0p̂

2
)a
feq

(√
p̂2 + m̂2

)
. (B8)

Similarly, H3x(α, m̂) can be written as

H3x(α, m̂) = Ñα α2
x

∞∑
n=0

(
−1

2

n

)
Ωx(δ, n)G(−1

2
− n, m̂, δ0) , (B9)

where Ωx(δ, n) is the angular part of the integral which is trivial

Ωx(δ, n) =

∫
dΩ cos2 φ sin2 θ

[
sin2 θ

(
δx cos2 φ+ δy sin2 φ

)
+ δz cos2 θ

]n
. (B10)

The derivatives of both H3 and H3x with respect to α’s are straightforward since the

G(a, m̂, δ0) integral is independent of α.

There are symmetries of each H-function that can be used for efficiently computing all

derivatives necessary, for example, H3 is symmetric under the exchange of α’s, i.e.,

H3(αx, αy, αz, m̂) = H3(αy, αx, αz, m̂) = H3(αz, αy, αx, m̂) . (B11)

In a similar way,

H3x(αx, αy, αz, m̂) = H3x(αx, αz, αy, m̂) . (B12)

Using these identities, once one calculates one of these derivatives, the other ones can be

determined using symmetry arguments. For example, once ∂H3/∂αx is known, the other

derivatives with respect to αy and αz are related by the exchange symmetry

∂H3(αx, αy, αz, m̂)

∂αy
=
∂H3(αy, αx, αz, m̂)

∂αx
, (B13)

∂H3(αx, αy, αz, m̂)

∂αz
=
∂H3(αz, αy, αx, m̂)

∂αx
. (B14)

Unlike H3, for H3x we have only one identity to use, so we need two derivatives, ∂H3/∂αx

24



and ∂H3/∂αy and then Eq. (B12) can be used to find ∂H3/∂αz

∂H3x(αx, αy, αz, m̂)

∂αz
=
∂H3x(αx, αz, αy, m̂)

∂αy
. (B15)

We now turn to the derivative with respect to the fourth argument, m̂. The only part in

H3 and H3x that involves m̂ is the integral G(a, m̂, δ0). Taking its derivative gives another

integral which can be easily interpolated and used

Gm(a, m̂, δ0) = −
∫
dp̂
p̂3−2a (m̂2 + δ0 p̂

2)
a−1

2
√
m̂2 + p̂2

(
m̂2 − 2a

√
m̂2 + p̂2 + δ0 p̂

2
)
feq

(√
p̂2 + m̂2

)
.

So,

∂H3

∂m̂
= 2m̂αÑ

∞∑
n=0

(
1
2

n

)
Ω(δ, n)Gm(

1

2
− n, m̂, δ0) , (B16)

∂H3x

∂m̂
= 2m̂α2

xαÑ
∞∑
n=0

(
−1

2

n

)
Ωx(δ, n)Gm(−1

2
− n, m̂, δ0) . (B17)

Using the symmetries obeyed by the H functions, one can evaluate H3y, H3z, and H3B and

their derivatives similarly

H3y(αx, αy, αz, m̂) = H3x(αy, αx, αz, m̂) , (B18)

H3z(αx, αy, αz, m̂) = H3x(αz, αy, αx, m̂) , (B19)

H3B(α, m̂) =
1

m̂2

(
H3(α, m̂)−H3x(α, m̂)−H3y(α, m̂)−H3z(α, m̂)

)
. (B20)

Expansion points

Finally, we must specify which value(s) of δ0 to use and the order of the expansion. Since

the αi’s are typically in a region 0 < αi <∼ 3 during the dynamical evolution, we expand

around two points corresponding to δ0 = 1, 4 and interpolate between these two expansions

in the intermediate region. For the interpolation, we define rmin = 1.75 and rmax = 1.85

25



where r =
√
α2
x + α2

y + α2
z and, for H3, use

H3(α, m̂, δ0) =


H3(α, m̂, 1) If r < rmin ,

H3(α, m̂, 4) If r > rmax ,

rmax−r
rmax−rmin

H3(α, m̂, 1) + r−rmin

rmax−rmin
H3(α, m̂, 4) otherwise .

(B21)

In a similar way, H3x and all derivatives necessary can be calculated. In all cases, we expand

up to 12th order (n ≤ 12) which was found to reproduce the direct numerical evaluation of

all H-functions very well.
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