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The quantitative extraction of quark-gluon plasma (QGP) properties from heavy-ion data, such as
its specific shear viscosity η/s, typically requires comparison to viscous hydrodynamic or “hybrid”
hydrodynamics+transport simulations. In either case, one has to convert the fluid to hadrons,
yet without additional theory input the conversion is ambiguous for dissipative fluids. Here, shear
viscous phase-space corrections calculated using linearized transport theory are applied in Cooper-
Frye freezeout to quantify the effects on anisotropic flow coefficients vn(pT ) at both RHIC and LHC
energies. Expanding upon our previous flow harmonics studies [1, 2], we calculate pion and proton
v2(pT ), v4(pT ), and v6(pT ), but here we incorporate a hadron gas that is chemically frozen below
a temperature of 175 MeV and use hypersurfaces from realistic viscous hydrodynamic simulations.
For additive quark model cross sections and relative phase-space corrections with p3/2 momentum
dependence rather than the quadratic Grad form, we find at moderately high transverse momentum
noticeably higher v4(pT ) and v6(pT ) for protons than for pions. In addition, the value of η/s
deduced from elliptic flow data differs by nearly 50% from the value extracted using the naive
“democratic Grad” form of freeze-out distributions. To facilitate the use of the self-consistent viscous
corrections calculated here in hydrodynamic and hybrid calculations, we also present convenient
parameterizations of the corrections for the various hadron species (cf. Table I).

I. INTRODUCTION

The most widely used framework for describing the early stages of a heavy-ion collision is relativistic hydrodynamics
[3–5]. The calculation of heavy-ion observables from a hydrodynamic simulation requires the conversion of an expand-
ing fluid into a description in terms of hadrons, often referred to as particlization [6]. The hadrons are then either
evolved further in a transport model or assumed to free-stream to the detectors. The conversion is usually done using
the Cooper-Frye [7] prescription that gives the distribution of particles emitted from the fluid across a hypersurface
in spacetime (typically chosen as a constant-temperature or energy density hypersurface). This requires knowledge of
the local distribution functions of each hadron species in momentum space. If the fluid is in local thermal equilibrium,
i.e., an ideal fluid, then the distributions are uniquely determined by the hydrodynamic variables [1, 8]. For viscous
fluids, however, an infinite number of particle distributions will match the hydrodynamic fields (see discussion in Sec.
II); therefore, additional theory input is required.

The ambiguity in the viscous particle distributions is often ignored, and in practice, relative corrections to thermal
distributions are assumed to be quadratic in momentum (Grad ansatz). Moreover, the distributions are commonly
taken to be independent of the hadron scattering rates that are responsible for keeping the gas near equilibrium,
which we refer to as the “democratic Grad” ansatz [8]. In Refs. [1, 2], the ambiguity was resolved self-consistently
by calculating the distributions from the linearized Boltzmann equation, and shear viscous corrections proportional
to p3/2 power of momentum were found to be favored over the quadratic Grad dependence. Here we expand upon
those works by implementing an equation of state for a hadron gas chemically frozen below 175 MeV, as well as
hypersurfaces obtained from real viscous hydrodynamic evolution. In addition, we estimate the uncertainty in the
specific shear viscosity of the quark-gluon plasma (QGP) deduced from elliptic flow data, and study how the fluid-to-
particle conversion affects higher anisotropic flow coefficients v4(pT ) and v6(pT ) at both RHIC and LHC energies.

The paper is structered as follows: In Section II we summarize the self-consistent approach to calculating shear
viscous particle distributions and collect the major results from Ref. [1]. In Section III A and B particle distributions
are calculated for a chemically frozen effective hadron gas. These distributions are then used in Cooper-Frye freezeout
in Section III C to calculate differential elliptic flow. The uncertainty in the specific shear viscosity in the hybrid
approach is quantified in Section III D and in Section III E we compare the value obtained for the specific shear
viscosity to results from other theoretical frameworks. In Section III F we conclude with results for higher anisotropic
flow coefficients v4(pT ) and v6(pT ).

II. COOPER-FRYE PROCEDURE AND VISCOUS PHASE-SPACE CORRECTIONS

After hydrodynamic evolution, the distribution of particles emitted by the fluid is typically calculated using the
Cooper-Frye [7] prescription. The number Ni of particles of species i with 4-momentum pµ emitted from a fluid
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surface element dσµ of a 3D hypersurface embedded in 4D spacetime at point x is

Ei
dNi(x,p)

d3p
= pµdσµ(x)fi(x,p) , (1)

where Ei =
√
p2 +m2

i is the on-shell energy of a particle of mass mi. The procedure requires not only knowledge of the
constant-temperature hypersurface given by the hydrodynamic simulation, but also the full phase-space distribution
functions of emitted particle species in momentum space, fi(x,p). The latter can be separated into a local equilibrium
part and a viscous correction, fi ≡ feqi + δfi.

For ideal fluids in local equilibrium, it is straightforward to obtain the equilibrium distributions of outgoing particles
from the energy-momentum tensor. In a fluid with shear viscosity, however, there are in general shear corrections
πµν(x) to the ideal energy-momentum tensor. To find the viscous corrections to thermal distribution functions, one
must invert

πµν(x) =
∑
i

∫
d3p

E
pµpνδfi(x,p) . (2)

The problem is that infinitely many viscous correction functions δfi(x,p) satisfiy the constraint (2), even if there
is only a single particle species present. The democratic Grad ansatz, which is quadratic in momentum, is but one
ad-hoc choice from among these. One could pick, for example, arbitrary power-law momentum dependence instead.1

The ambiguity was resolved in Ref. [1] by calculating the distribution functions using the linearized Boltzmann
equation. In this way, the collision rates between particles that keep the hadron gas near equilibrium are taken into
account, and no ad-hoc assumptions about the momentum dependence of the corrections are necessary.2 Here we
recapitulate key ingredients of that approach (the reader is directed to Ref. [1] and references therein for more detail).
First, the viscous corrections δfi can be reduced to a dimensionless function of momentum, χi(|p̃|), defined by

δfi/f
eq
i ≡ φi(x,p) ≡ χi(|p̃|)PµνXµν with

1

T
∆µνpν

∣∣∣∣
LR

≡ (0, p̃) , (3)

where ∆µν ≡ gµν−uµuν is a spatial projector perpendicular to the flow velocity uµ such that p̃ is the three-momentum
in the local fluid rest frame (LR) normalized by temperature. The tensors

Pµν ≡ 1

T 2

[
∆µ
α∆ν

βp
αpβ − 1

3
∆µν(∆αβp

αpβ)

]
and Xµν ≡ 1

T
(∇µuν +∇νuµ − 2

3
∆µν∂αu

α), (∇µ ≡ ∆µν∂ν) (4)

are dimensionless, symmetric, traceless, and purely spatial in the LR frame. The self-consistent phase-space corrections
{χi} are then given by a linear integral equation, which can be solved via extremizing the functional

Q[χ] ≡ 1

2T 2

∑
i

∫
1

P1 · P1f
eq
1i χ1i

+
1

2T 4

∑
ijk`

∫
1

∫
2

∫
3

∫
4

f eq1i f
eq
2j W̄

ij→k`
12→34 δ

4(12− 34) (χ3kP3 · P1 + χ4`P4 · P1 − χ1iP1 · P1 − χ2jP2 · P1)χ1i . (5)

1 One such infinite class which satisfies constraint (2) is the generalization of the quadratic p2 Grad form to a general power law pα:

δfα ≡ cα
(p·u
T

)α−2 πµνpµpν

2(e+ P )T 2
feq ,

where the normalization constant

cα =
15z3K3(z)

Iα(z)
, with Iα(z) ≡

∞∫
z

dx xα−2(x2 − z2)5/2e−x

is fixed by the requirement that δfα reproduces the given local shear stress πµν . Setting α = 2 reproduces the standard Grad coefficient
with cα = 1.

2 While no assumption about the momentum dependence is needed a priori, for simplicity, the relative corrections are here taken to be
proportional to a single power of momentum, though not necessarily quadratic.
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Here, ∫
a

≡
∫
d3pa/(2Ea) , Pa · Pb ≡ Pµνa Pb,µν , χai ≡ χi(|p̃a|) , δ4(ab− cd) ≡ δ4(pa + pb − pc − pd) , (6)

where a, b, c, and d label particle momenta in microscopic 2→ 2 scatterings. Once the transition probabilities W̄ ij→k`
12→34

are specified, one can evaluate the functional in Eq. (5) (if necessary, numerically), and obtain a variational solution
for the viscous corrections χi(|p̃|) for all particle species in the system.

III. HADRON GAS AND ANISOTROPIC FLOW

The self-consistent method described in Section II will now be applied to a gas of hadrons near thermal equilibrium
to calculate the dissipative corrections at particlization based on the microscopic dynamics of each species. Unlike in
Ref. [1], where all hadrons in the gas were taken to be in chemical equilibrium, shear corrections are now computed
for a hadron gas that is chemically frozen for temperatures T < Tch = 175 MeV.

A. Chemical freezeout in an effective hadron gas

The dynamics of a realistic hadron gas are complicated, as each species has a unique energy-dependent (and possibly
angle-dependent) cross section with each other species in the system. Here a simple model of interactions is considered
with constant meson-meson, meson-baryon, and baryon-baryon cross sections in the proportions σMM : σMB : σBB =
4 : 6 : 9, motivated by the additive quark model (AQM) [9, 10]. The overall magnitudes of the cross sections are set
by the shear viscosity of the system. Only elastic ij → ij scattering (allowing i = j) is considered with isotropic,
energy-independent cross sections. In this way, a simple model can be investigated that still includes hadronic species
dependence. It has been shown previously [1, 11] that if one postulates the same constant cross sections for all particle
species, then the results for heavy-ion observables are very similar to those of the democratic Grad ansatz typically
employed. As in Ref. [1], to simplify the calculation, we combine members of the same isospin multiplet, as well as
their antiparticles, into a single effective species with an appropriately scaled degeneracy factor. Hadrons up to mass
1.672 GeV, i.e., the Ω(1672), are included in this way, yielding a mixture of 49 effective species.

The cross sections for inelastic, particle-number-changing processes are known to be smaller than those of elastic,
resonance-forming processes at lower temperatures [12, 13]. Final hadron abundance ratios also seem to favor a
chemical freeze-out temperature of about Tch ≈ 160 − 175 MeV [14, 15], while the slopes of spectra prefer a lower
kinetic freeze-out temperature [16]. Therefore, unlike in Ref. [1], we now allow for separate kinetic TFO and chemical
Tch freeze-out temperatures with Tch ≥ TFO. Following the approach of Ref. [17], temperature-dependent chemical
potentials are introduced for each species such that relative abundances of species are locked in for T < Tch to their
values at Tch:

ni(T, µi)

nj(T, µj)
=
ni(Tch, 0)

nj(Tch, 0)
. (7)

The 49− 1 = 48 independent ratio equations summarized in Eq. (7) allow one to write all chemical potentials of the
effective hadron gas in terms of one of the chemical potentials, for example, µπ. The last chemical potential is then
fixed by requiring that the ratio of particle density to entropy density remains unchanged along flow streamlines as
in Ref. [18]:

nπ(T, µπ)

s(T, {µi})
=

nπ(Tch, 0)

s(Tch, {µi = 0})
(T < Tch) . (8)

With chemical potentials calculated from Eqs. (7) and (8), we solve the variational problem numerically using the
same adaptive integration routines from the GNU Standard Library (GSL) [19] as in Ref. [1]. For simplicity, as in Ref.
[1], power-law dependence is considered here with relative viscous corrections that are either quadratic in momentum
(Grad case) or proportional to p3/2. The exponent 3/2 is motivated by the variational solutions for a gas of hadrons
in [1], as well as analytical results for massless species [20]. It is useful to define viscous correction coefficients ci by
factoring out the momentum dependence as

χGradi = cGradi |p̃|0χdem , χ
(3/2)
i (|p̃|) = c

(3/2)
i |p̃|−1/2χdem , (9)
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where

χdem =
ηT

2(e+ P )
=

1

2

η

s+
∑
c
µcnc/T

(10)

corresponds to the species-independent democratic Grad corrections expressed in terms of thermal values of pressure
P , energy density e, and charge densities nc. For example, cGradi quantifies how far species i is from the democratic
form. Note that in the limit of vanishing chemical potentials, µc → 0, the viscous corrections are proportional to the
shear viscosity to entropy density ratio η/s.

To facilitate inclusion of the self-consistent viscous corrections calculated here in hydrodynamic and hybrid calcu-
lations, in Table I we list convenient parameterizations of the corrections for the various hadron species for the two
power-law scenarios at conversion temperatures Tconv = 100, 120, 140, and 160 MeV. In order to match the hydro-
dynamic equation of state used in the elliptic flow study in Sec. III C, we set Tch = 175 MeV. Despite variations in
the degeneracy factors between hadronic species, the viscous correction coefficients ci depend on hadron mass rather
smoothly, and can be fit well with

c(x) = δ + α

[
1 +

(
x

γ

)β]−1
, x ≡ m

1 GeV
, (11)

where x is the hadron (pole) mass m in GeV. The functional form (11) was chosen empirically for accuracy (the
relative accuracy of the fits is better than 10−3), i.e., it does not reflect any physics motivation. To apply the
dynamical correction for species i, take the appropriate coefficient ci from the table and multiply democratic viscous
corrections by the expression in (9) that corresponds to the assumed momentum dependence.

B. Coefficients ci in the dynamic Grad approximation

It is instructive to look at the overall effect of chemical freezeout on the viscous corrections. For corrections that
are quadratic in momentum, the viscous coefficients of pions and heavier resonances are higher in the chemically
frozen case. For example, at a conversion temperature of 100 MeV the relative correction for pions and protons are
cπ = 1.46, cN = 0.75 with chemical freezeout at 175 MeV, while cπ = 1.08, cN = 0.56 in full chemical equilibrium
at Tconv. Early chemical freezeout brings the pions further above the democratic baseline of cπ = 1, and the heavier
species closer to the democratic baseline (ci = 1). The reason why pions go further out of equilibrium is that, due to
the chemical potentials, their relative abundance decreases for temperatures below Tch.

Even after incorporating chemical freezeout, the ratio of pion to proton viscous correction coefficients stays
cGradπ /cGradN ≈ 2 for 100 < Tconv < 160 MeV. Therefore, just like in chemical equilibrium [1], protons are still about
twice as equilibrated thermally as pions, reflecting the larger overall scattering cross sections for baryons relative to
mesons in the additive quark model. The pion-proton difference, therefore, will also manifest in identified particle
observables when self-consistent, species-dependent distribution functions are included in Cooper-Frye freezeout.

C. Elliptic flow for δf ∝ p3/2

From here on, we focus on relative shear corrections with p3/2 momentum dependence (i.e., φi ≡ δfi/f
eq
i ∝ p3/2).

To quantify the effect of self-consistent freezeout in heavy-ion collisions at RHIC and LHC energies, we first calculate
differential elliptic flow v2(pT , y), defined as the second Fourier coefficient of the azimuthal momentum distribution
at fixed transverse momentum pT and rapidity y:

E
d3N

d3p
=

1

2π

d2N

pT dpT dy

(
1 + 2

∞∑
n=1

vn(pT , y) cos[n(φ−Ψn,RP )]

)
. (12)

Here φ is the azimuthal angle around the beam axis and Ψn,RP is the reaction-plane angle for the n-th harmonic.
Specifically we calculate v2(pT ) for Au+Au collisions at top RHIC energy

√
sNN = 200 GeV, and for Pb+Pb collisions

at the LHC at
√
sNN = 2.76 TeV, for 20-30% centrality in both cases. Hypersurface data from boost-invariant 2+1D

viscous hydrodynamic simulations from smooth A + A initial conditions,3 using the realistic QCD equation of state

3 The initial conditions are those used in Ref. [22] with saturation coefficient Ksat = 0.69, hardness parameter β = 0.9, and Bjorken
scaling of the energy density before thermalization (“BJ” scenario).
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fits for AQM cross sections with Tch = 175 MeV

using c(x) = δ + α

[
1 +

(
x

γ

)β]−1

δf/feq ∝ p2 (Grad), mesons

T [MeV] α β γ δ

100 1.001 1.237 0.824 0.555

120 0.894 1.302 0.931 0.572

140 0.815 1.359 1.026 0.587

160 0.752 1.407 1.112 0.600

δf/feq ∝ p2 (Grad), baryons

T [MeV] α β γ δ

100 0.955 1.014 0.784 0.317

120 0.867 1.052 0.925 0.323

140 0.798 1.089 1.061 0.330

160 0.742 1.124 1.190 0.337

δf/feq ∝ p3/2, mesons

T [MeV] α β γ δ

100 1.361 1.261 0.783 2.331

120 1.215 1.308 0.879 2.265

140 1.104 1.350 0.967 2.217

160 1.018 1.388 1.048 2.180

δf/feq ∝ p3/2, baryons

T [MeV] α β γ δ

100 1.127 1.229 0.897 1.611

120 1.055 1.225 0.987 1.552

140 0.994 1.227 1.083 1.507

160 0.942 1.233 1.182 1.473

TABLE I: Parametrization of the species-dependent shear viscous corrections in a 49-species hadron gas that is chemically
frozen below Tch = 175 MeV, with additive quark model cross sections (see text), and assuming either quadratic (top two

tables) or p3/2 (bottom two tables) momentum dependence for the relative correction δf/feq.

parameterization s95p-PCE-v1 [21] with chemical freezeout at Tch = 175 MeV, were obtained from H. Niemi (the
same hypersurface data were also used in Ref. [22]). In the hydro calculations, the specific shear viscosity of the
system was constant η/s = 0.12 in the deconfined phase, while it decreased linearly with temperature in the hadron
gas phase (cf. Fig. 2 of Ref. [22]). For both RHIC and LHC collisions, the kinetic freezeout temperature was chosen
to be TFO = 100 MeV. For further details on the simulation parameters, see Ref. [22]. Details of the numerical
algorithm used in the simulations can be found in Refs. [23, 24]. The viscous Cooper-Frye integrals were evaluated
numerically4 the same way as in Ref. [1]. After the fluid-to-particle conversion, unstable resonances in the system
were decayed to pions, protons, and kaons using the RESO algorithm in the AZHYDRO package [25, 26].

Figure 1 compares pion and proton differential elliptic flow for Au+ Au at RHIC with fluid-to-particle conversion
at Tconv = 100 MeV using the commonly employed democratic Grad ansatz (open boxes) and the self-consistent
approach (crosses). For reference, results from freezeout without any viscous corrections (δf = 0) are also shown

4 In hydrodynamic applications one uses the local shear stress tensor directly, i.e., in the viscous correction Eq. (3) substitutes Xµν →
πµν/ηT .
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FIG. 1: Differential elliptic flow v2(pT ) of pions and protons in Au + Au at
√
sNN = 200 GeV at 20-30% centrality using

2+1D boost invariant viscous hydrodynamic solutions [22] and fluid-to-particle conversion at Tconv = 100 MeV. Feed-down
from decays of unstable resonances has been included. Dashed lines are for pions, while solid curves are for protons. The
standard democratic Grad approach (open boxes) is compared to self-consistent shear corrections with momentum dependence

δfi ∝ p3/2 (crosses) computed for a 49-species effective hadron gas from linearized kinetic theory (see text). Results with
uncorrected, local equilibrium phase-space distributions (δf = 0) are also shown (filled circles) for reference.

(filled circles). In the democratic Grad scenario, dissipation reduces elliptic flow by around 35% for both species at
higher pT compared to ideal, nonviscous, freezeout. In contrast, with self-consistent, species-dependent freezeout,
protons are closer to equilibrium and, therefore, proton elliptic flow is much less suppressed at high pT . On top
of this effect, there is also an increase in v2 for both species at larger pT due to the weaker δf ∝ p3/2 momentum
dependence compared to the quadratic one assumed in the democratic Grad case. The mass ordering of elliptic flow,
vp2 < vπ2 , is also present at low pT in all freeze-out scenarios, characteristic of a common hydrodynamic velocity for all
species. For viscous freezeout the mass ordering reverses at higher pT , so the pion and proton curves necessarily cross.
With self-consistent viscous corrections, the crossing occurs at significantly lower pT ≈ 1.6 GeV because protons are
closer to equilibrium (hence, their v2 is larger) than in the democratic Grad case. These features combine to give a
pion-proton elliptic flow splitting of roughly 10% at pT ≈ 2.5 GeV with self-consistent particlization, compared to a
neglible splitting if one uses the democratic Grad ansatz.

At the low conversion temperatures T ≈ 100 MeV used here, realistic viscous hydrodynamic evolution in fact gives
rise to much larger viscous corrections at high pT than the Navier-Stokes shear stress estimate

πµν = η

(
∇µuν +∇νuµ − 2

3
∆µν∂αu

α

)
(13)

that was used in Refs. [1, 2]. By late times, flow gradients get smoothed out so effectively that the calculation in Ref.
[1] would give negligible shear corrections to both pion and proton v2(pT ), even with the three times larger η/s ≈ 0.3
at Tconv = 100 MeV in the simulations used here. The influence of early chemical freezeout on identified elliptic flow
is, however, smaller. It leads to a roughly 5% relative increase for pion v2, while it leaves proton flow practically
unaffected.

To investigate the influence the collision energy of the system has on the elliptic flow, Fig. 2a shows the analogous
calculation for midcentral Pb+Pb collisions at the LHC at

√
sNN = 2.76 TeV. The initial temperature of the fireball

is now higher, so the system evolves longer by the time it reaches the Tconv = 100 MeV hypersurface. This leads
to an increase in both proton and pion elliptic flow, as well as a more pronounced mass splitting at low pT . As a
result, the viscous curves cross at noticeably higher pT ≈ 2.2 GeV with self-consistent conversion (crosses), while at
pT > 2.5 GeV for democratic freezeout (open boxes).

To test the sensitivity of the elliptic flow to the assumed conversion temperature, the same observables in Pb+ Pb
collisions at the LHC were also calculated using hypersurfaces at higher Tconv = 120, 140, and 160 MeV. Here we only
compare results for Tconv = 100 (Fig. 2a) and 160 MeV (Fig. 2b) because the intermediate temperatures qualitatively
interpolate between those two extremes. At Tconv = 160 MeV, there is only a slight reduction in the differential elliptic
flow for pions and protons but the mass effect at low pT is greatly reduced because it is driven by the difference in m/T
between the species. While the pion-proton flow crossing shifts from pT ≈ 2.2 GeV to ≈ 1.6 GeV for self-consistent
viscous corrections (crosses), the difference between pion and proton elliptic flow at high pT ≈ 2.5 GeV is insensitive
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FIG. 2: Differential elliptic flow v2(pT ) of pions and protons in Pb+Pb at
√
sNN = 2.76 TeV at the LHC at 20-30% centrality

using 2+1D boost invariant viscous hydrodynamic solutions[22] and fluid-to-particle conversion at Tconv = 100 MeV (a) and
160 MeV (b). Feed-down from decays of unstable resonances has been included. Dashed lines are for pions, while solid curves
are for protons. The standard democratic Grad approach (open boxes) is compared to self-consistent shear corrections with

momentum dependence δfi ∝ p3/2 (crosses) computed for a 49-species effective hadron gas from linearized kinetic theory (see
text). Results with uncorrected, local equilibrium phase-space distributions (δf = 0) are also shown (filled circles) for reference.

to the conversion temperature.

D. Uncertainty in shear viscosity extraction

The results in the previous section highlight the sensitivity of identified particle flow harmonics to the particlization
model. One of the main goals of heavy-ion physics is to extract quantitative values for properties of the quark-
gluon plasma (QGP), such as its specific shear viscosity η/s by matching collision simulations to experimental data.
To estimate the sensitivity, we multiply the local shear stress tensor at each point on the conversion hypersurface
by a constant factor κ in order to mimic a change in specific shear viscosity η/s → κη/s. In the Navier-Stokes
approximation (13), this is reasonable because viscous corrections to flow gradients are generally small [27, 28]. We
then capture the difference in particlization models empirically via adjusting κ.

Figure 3 demonstrates that both self-consistent particlization and the democratic Grad ansatz can reproduce the
same proton v2(pT ) curve from the calculation in the previous Section for Pb + Pb collisions at the LHC, provided
one increases η/s by 50% (i.e., κ = 1.5) in the self-consistent case. Three of the proton v2(pT ) curves shown are the
same as in Fig. 2, computed with ideal freezeout (filled circles), democratic Grad (open boxes), and the self-consistent
approach (crosses). The fourth curve (filled triangles) is the self-consistent result, but with shear stress scaled by
κ = 1.5, making it practically identical to the democratic Grad curve. In the original hydrodynamic simulation the
specific shear viscosity was η/s = 0.12 in the plasma phase, which comprises a good portion of the hydrodynamic
evolution. If, with standard democratic freezeout, the calculation fits experimental data then one might infer an
effective η/s = 0.12 for the QGP. However, with self-consistent freezeout a 50% larger η/s ≈ 0.18 would be needed to
agree with the data.

E. Shear viscosity comparison

It is interesting to compare our hadron gas shear viscosity calculation to other works in the literature, in particular,
results by Demir et al [29] extracted from the hadron transport code UrQMD [9], and calculations by Wiranata
et al based on the K-matrix approach [30]. Figure 4 shows the specific shear viscosities η/s in the temperature
window 100 MeV < T < 165 MeV from these approaches, for hadronic mixtures at zero baryon density (µB = 0).
Linearized kinetic theory used in this work gives for a hadron gas of 49 effective species an η/s that drops markedly
with temperature, from about η/s ≈ 1.3 at T = 100 MeV to 0.2 at 165 MeV (solid red curve, with filled circles). The
monotonic decrease is driven almost entirely by the denominator of η/s, i.e., the monotonic increase of the hadron
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FIG. 3: Differential elliptic flow v2(pT ) of protons in Pb + Pb at
√
sNN = 2.76 TeV at the LHC at 20-30% centrality using

2+1D boost invariant viscous hydrodynamic solutions [22] and fluid-to-particle conversion at Tconv = 100 MeV. Feed-down
from decays of unstable resonances has been included. The standard democratic Grad approach (open boxes) is compared

to self-consistent shear corrections with momentum dependence δfi ∝ p3/2 computed for a 49-species effective hadron gas
from linearized kinetic theory with unscaled shear stress (crosses) and shear stress multiplied by κ = 1.5 everywhere on the
conversion hypersurface (filled triangles). Results with uncorrected, local equilibrium phase-space distributions (δf = 0) are
also shown (filled circles) for reference.

gas entropy density with temperature

s =
∑
i

si =
∑
i

ei + Pi
T

=
∑
i

gi
2π2

m3
iTK3

(mi

T

)
(14)

where gi is the degeneracy factor, Kn is a modified Bessel function of the second kind, and Eq. (14) is valid in the
Boltzmann limit. The hadron gas shear viscosity actually increases with temperature in our approach, albeit rather
slowly. Moreover, we find that hadron gas shear viscosity is dominated by the lightest species, most importantly the
pions, and changes only little as more and more species are included in the calculation.

A qualitatively similar drop in η/s with temperature can be seen in Fig. 4 from K-matrix cross sections [30],
for a mixture of pions, kaons, η(548)-s and nucleons (dashed blue line, with squares). Quantitatively, however, the
K-matrix result is twice as large as our calculation. This is not surprising. We both agree on the hadron gas entropy
density; in particular, the entropy density we extract from their Figs. 13 and 14, via s = η/(η/s), matches our result
for a π − K − η − N mixture to within a couple percent. Where the two calculations disagree is the hadron gas
viscosity. We used effective hadronic cross sections chosen to reproduce mean scattering times for pions, kaons, and
nucleons calculated by Prakash et al in [31]. Compared to the shear viscosity from the K-matrix approach, the shear
viscosity calculated in Ref. [3] is smaller by nearly a factor of 2 (compare Figs. 10 and 11 in Ref. [31] to Fig. 13
in [30]). We do reproduce the shear viscosity in Ref. [31] to better than 30% (not shown) in the temperature range
100 MeV < T < 165 MeV studied here.

In light of the two kinetic theory calculations discussed above it is rather striking that UrQMD gives [29] an
essentially flat hadron gas η/s versus temperature (shaded green band in Fig. 4). It would be useful to investigate in
more detail in the future whether η/s from UrQMD comes out largely independent of temperature because entropy
density in UrQMD increases much slower than for an ideal gas of hadrons, or whether it is the shear viscosity that
increases in UrQMD much more rapidly with temperature. It should be noted that the dynamics of UrQMD includes
not only particles (hadrons) but also extended objects (strings), which might be responsible for this unusual behavior.

Finally, it is illustrative to provide a rough comparison to the temperature dependence of η/s from λφ4 theory at
weak coupling (dotted magenda line, with crosses). Here we use the shear viscosity calculation by Jeon et al [32]
that gives the viscosity in units of the thermal mass, i.e., η/m3

th, versus normalized temperature T/mth (cf. Fig. 4
therein), and we ignore interaction corrections both in the thermal mass m2

th = m2 +O(λT 2) and the entropy (i.e.,
we use Eq. (14)). The scalar mass m = 0.14 GeV is set to the pion mass. At weak coupling, shear viscosity in λφ4

theory is very large; for T � m, η ∼ 3000T 3/λ2 ≫ s. Therefore, we divide η/s by an arbitrary constant factor to
highlight its temperature dependence. The end result is a modest, monotonic decrease in η/s by about one-third from
T = 100 MeV to T = 165 MeV, in qualitative agreement with the dropping trend seen earlier in kinetic kinetic theory.
The decrease is weaker partly because in scalar theory the 2→ 2 cross section σ ∼ λ2/32πs drops with energy, which
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makes the shear viscosity increase more rapidly with temperature.
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FIG. 4: Comparison of the specific shear viscosity η/s as a function of temperature from a variety of models, for mixtures at
zero baryon density: i) the self-consistent kinetic theory calculation employed in this work for a hadron gas of 49 effective species
(solid red curve, filled circles), ii) the hadron transport model UrQMD[9], extracted in Ref. [29] (shaded green band), and iii)
for a π−K−η−N mixture, from the K-matrix approach in Ref. [30] (dashed blue line, with squares). For illustration (dotted
magenta line, with crosses), we also plot the approximate temperature dependence of η/s in λφ4 theory at weak coupling for
T � m, based on [32] (see text).

F. Higher flow harmonics

In systems with nonzero shear viscosity, velocity gradients in general smooth out between adjacent layers of the fluid.
Higher flow coefficients with n > 2 in Eq. (12) encode anisotropies at progressively smaller angular separations, and
thus tend to get evened out more efficiently than elliptic flow [33]. Figure 5 shows the differential 4th flow harmonic
v4(pT ) for pions and protons in Au + Au at RHIC for the same calculation shown in Fig. 1. Qualitative features of
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FIG. 5: Differential 4th flow harmonic v4(pT ) of pions and protons at RHIC from the same calculation as in Fig. 1.

v4(pT ) are similar to those of v2(pT ), such as mass ordering and crossing of pion and proton flow, and the viscous
suppression relative to results from ideal freezeout. The sensitivity to the particlization model used is, however,
stronger than in v2. For viscous freezeout the crossing between protons and pions occurs at a noticeably lower pT for
v4 than for v2. This narrows the pT range for traditional mass splitting with vp4 < vπ4 . Also, viscous freezeout with
the standard democratic Grad ansatz (open boxes) reduces v4 by at least a factor of two at pT > 1.8 GeV compared
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to ideal freezeout (filled circles). On the other hand, the self-consistent approach (crosses) suppresses proton v4 less,
leading to a large pion-proton difference of nearly 50% at pT ≈ 2.5 GeV.
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FIG. 6: Differential 4th flow harmonic v4(pT ) of pions and protons at the LHC from the same calculation as in Fig. 2 for
Tconv = 100 MeV (a) and 160 MeV (b).

Figure 6 shows v4(pT ) for pions and protons in Pb+Pb at the LHC for the same calculations shown in Fig. 2. For
Tconv = 100 MeV (Fig. 6a), which is relevant for direct comparison between hydrodynamics and LHC data, there is
a larger separation at low pT between the flows of the two species and the various particlization models than in the
corresponding v4(pT ) results at RHIC. At high pT , however, the spread in v4 is smaller at the LHC. Remarkably, for
the higher conversion temperature Tconv = 160 MeV (Fig. 6b) relevant for hybrid (hydro+transport) calculations, all
v4(pT ) curves at the LHC look similar, even quantitatively, to those in Au+Au at RHIC with Tconv = 100 MeV. This,
in part, must be a reflection of the shorter evolution time, during which smaller hydrodynamic flow is generated. One
should also note that using hypersurfaces from realistic viscous hydrodynamic simulations has a dramatic effect on
v4(pT ), as this observable was roughly zero for protons and negative for pions when estimated from ideal hydrodynamic
evolution in Ref. [2].
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FIG. 7: Differential 6th flow harmonic v6(pT ) of pions and protons at RHIC from the same calculation as in Figs. 1 and 5.

Finally, Figs. 7 and 8 show v6(pT ) for pions and protons in Au+Au at RHIC and Pb+Pb at the LHC, respectively.
As expected, viscous corrections to v6 are generally larger than for v4, exceeding even a factor of three in some cases.
In Au+ Au collisions at RHIC, viscosity reduces v6 to nearly zero; in fact, v6 goes negative for pT > 2 GeV, except
for protons from self-consistent freezeout which maintain a positive v6 in the entire pT range shown. In contrast,
viscous corrections for Pb + Pb collisions at the LHC, though large, leave v6 positive in all cases studied here. For
the higher conversion temperature of 160 MeV (Fig. 8b), pion and proton v6 from democratic Grad freezeout are
largely identical. While with self-consistent conversion to particles, pion v6 stays about the same but proton v6 nearly



11

doubles, resulting in a two-to-one proton to pion v6 ratio. The self-consistent and democratic Grad particlizations
both give much the same v6 for pions at Tconv = 100 MeV (Fig. 8a) as well. However, they differ in proton v6;
specifically, proton v6 is ≈ 20% higher than pion v6 from the self-consistent approach, whereas it is ≈ 15− 30% below
pion v6 with democratic Grad corrections.
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FIG. 8: Differential 6th flow harmonic v6(pT ) of pions and protons at the LHC for Tconv = 100 MeV (a) and 160 MeV (b) from
the same calculation as in Figs. 2 and 6.

The results of this section cleary underscore the need for careful future comparisons between precise identified
particle flow harmonics data from both RHIC and the LHC up to pT = 2− 3 GeV and state of the art hydrodynamic
and hybrid calculations that employ realistic fluctuating initial conditions together with self-consistent particlization.

IV. CONCLUSIONS

The quantitative extraction of QGP properties such as the specific shear viscosity in the viscous hydrodynamic
paradigm inevitably requires the conversion of a dissipative fluid to particles. This so-called particlization is typically
done using the Cooper-Frye formula (1) with hadron phase-space densities fi = feqi + δfi that include corrections to
thermal distributions which are chosen to be independent of particle dynamics and quadratic in momentum (demo-
cratic Grad ansatz). This naive approximation completely ignores the dynamics that keeps the hadron gas near equi-
librium. Here, self-consistent shear viscous corrections are calculated from linearized kinetic theory using hadronic
cross sections motivated by the additive quark model [10]. The corrections were then used to compute differential
harmonic flow coefficients v2(pT ), v4(pT ), and v6(pT ) in Au + Au collisions at top RHIC energy

√
sNN = 200 GeV

and Pb+Pb collisions at the LHC energy
√
sNN = 2.76 TeV. Expanding upon previous works [1, 2], we include early

chemical freezeout in the hadron gas and use Cooper-Frye hypersurfaces from real viscous hydrodynamic evolution.
We find that self-consistent particlization leads to larger proton elliptic flow at moderately high pT ∼ 2 − 3 GeV

compared to that of pions, qualitatively corroborating our prior estimate [1] of the effect on elliptic flow. In addition,
we show that v4 and v6 are more sensitive than v2 to the hadron distributions used in the conversion. In fact, with
self-consistent, species-dependent viscous corrections, the pion-proton splitting in v4(pT ) and v6(pT ) can be surprising
large. For example, in Au + Au at RHIC, pion and proton v6 can even have different signs at moderately high
transverse momentum.

The ambiguity in particlization model leads to a theoretical uncertainty in the specific shear viscosity of the quark-
gluon plasma extraced from elliptic flow data. For Pb+ Pb collisions at the LHC, we estimate the uncertainty to be
as high as 50%.

We note that there are several simplifications made in this work. The use of constant cross sections instead of
the realistic energy-dependent cross sections between hadron species will need to be remedied in a future study. In
addition, the momentum dependence of relative viscous corrections, φi ≡ δfi/feqi , was approximated here by a single

p3/2 power. Nevertheless, our results indicate the need for careful comparisons between hydrodynamic calculations
and precise data on identified-particle v4(pT ) and v6(pT ) up to pT ∼ 2− 3 GeV. To facilitate such studies, we give in
Table I convenient parametrizations of the self-consistent shear viscous corrections for each hadron species.
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