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We have incorporated the spin-dependent nucleon-nucleon cross sections into a Boltzmann-
Uehling-Uhlenbeck transport model for the first time, using the spin-singlet and spin-triplet nucleon-
nucleon elastic scattering cross sections extracted from the phase-shift analyses of nucleon-nucleon
scatterings in free space. We found that the spin splitting of the collective flows is not affected by
the spin-dependent cross sections, justifying it as a good probe of the in-medium nuclear spin-orbit
interaction. With the in-medium nuclear spin-orbit mean-field potential that leads to local spin
polarization, we found that the spin-averaged observables, such as elliptic flows of free nucleons and
light clusters, becomes smaller with the spin-dependent differential nucleon-nucleon scattering cross
sections.
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I. INTRODUCTION

The spin-orbit interaction, which was previously in-
troduced to explain the magic number of finite nuclei,
is critical in understanding the structures of rare iso-
topes and their impacts on astrophysics [1–5]. Heavy-
ion collisions provide the only way of studying prop-
erties of nuclear matter as well as nuclear interactions
at both finite densities and temperatures in terrestrial
laboratories, and a useful means of extracting proper-
ties of the in-medium nuclear spin-orbit interaction with
optimal reaction conditions. Recently, we have devel-
oped a spin- and isospin-dependent Boltzmann-Uehling-
Uhlenbeck (SIBUU) transport model, by incorporating
the nucleon spin degree of freedom and the nuclear spin-
orbit interaction into the IBUU transport model [6, 7].
We found this model is useful in studying the spin dy-
namics in intermediate-energy heavy-ion collisions [8].
In particular, it was observed that the spin splittings
of collective flows of free nucleons and light clusters
can be good probes of the in-medium spin-orbit interac-
tion [9, 10]. However, in our previous studies, we applied
the spin-dependent mean-field potential for nucleons but
employed the spin-averaged nucleon-nucleon scattering
cross sections. In order to have a complete framework
of the spin-dependent transport approach and a better
description of the spin dynamics in intermediate-energy
heavy-ion collisions, in the present study we incorporated
the spin-singlet and spin-triplet cross sections for elas-
tic nucleon-nucleon scatterings into the model. The lat-
ter are extracted based on the phase-shift analyses of
nucleon-nucleon scatterings in free space. We found that
the spin splitting of the collective flow as a probe of the
in-medium nuclear spin-orbit interaction is almost not af-
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fected by the spin-dependent nucleon-nucleon scattering
cross sections. However, the overall elliptic flows of free
nucleons and light clusters are slightly smaller with the
spin-dependent nucleon-nucleon scattering cross sections
compared with the spin-averaged ones, if there is local
spin polarization induced by the spin-dependent mean-
field potential. A more complete BUU framework in-
cluding both the spin-dependent potential and the spin-
dependent cross sections has been established, providing
possibilities of further exploring the interesting physics
of spin dynamics in intermediate-energy heavy-ion colli-
sions.

II. SPIN-DEPENDENT CROSS SECTIONS

FROM PHASE-SHIFT ANALYSES

The phase-shift analysis has been an effective way
of decoupling nucleon-nucleon interactions into various
channels by fitting experimental nucleon-nucleon scatter-
ing data in terms of the scattering matrix [11–14]. There
are series of studies on the energy-dependent phase-shift
analyses of nucleon-nucleon elastic scattering data in a
wide energy range [15–17]. Using the phase-shift data
in Ref. [15], we evaluate the spin-singlet and spin-triplet
nucleon-nucleon elastic cross sections within the incident
nucleon energy range between 1 and 500 MeV, where the
inelastic scatterings are less important. For complete-
ness, we first recall the most relevant formulaes in the
following.
We begin with the general formula for the differential

cross section of two-body collisions expressed directly in
terms of the eigenphases of the scattering matrix by Blatt
and Biedenharn [18]:

dσα′s′;αs =
g

(2s+ 1)k2

∞
∑

L=0

BL(α
′s′;αs)PL(cos θ)dΩ,

(1)
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where g is 1 for neutron-proton scatterings and 4 for
proton-proton (neutron-neutron) scatterings, PL(cos θ) is
the Legendre polynomial, k is the center-of-mass (C.M.)
momentum in the two-body system, and the coefficients

BL(α
′s′;αs) =

(−)s
′−s

4

∑

J1

∑

J2

∑

l1

∑

l2

∑

l1
′

∑

l2
′

× Z(l1J1l2J2, sL)Z(l1
′J1l2

′J2, s
′L)

× R.P.[(δα′αδs′sδl1′l1 − SJ1

α′s′l1
′;αsl1

)∗

× (δα′αδs′sδl2′l2 − SJ2

α′s′l2
′;αsl2

)] (2)

can be determined directly from the phase-shift data. In
the above expression, δab represents the Kronecker δ func-
tion; α, s, l, and J represent the scattering channel, the
spin of the scattering channel, the orbital angular mo-
mentum, and the total angular momentum, respectively;
SJ
α′s′l′;αsl is the scattering amplitude of a collision from

a channel αsl to a channel α′s′l′; the Z coefficient rep-
resents the selection rules introduced by Biedenharn et

al. [19]; the R.P.[...] represents the real part of the expres-
sion in the bracket. In the limit of pure elastic nucleon-
nucleon scatterings without spin flipping, α′ = α and
s′ = s are always satisfied, so we omit the superscript α
and use only s as the superscript in the following. s = 0
and s = 1 stand for the spin-singlet and spin-triplet scat-
tering, respectively.
Let’s first consider the spin-singlet and spin-triplet

channel for neutron-proton scatterings. For the spin-
singlet case with s = 0, there is only one channel l = J .
Using S = exp(2iδ0J), Eq. (2) becomes

BL(0; 0) =
∑

J1

∑

J2

∑

l1=J1

∑

l2=J2

Z(l1J1l2J2, 0L)
2

× sin δ0J1
sin δ0J2

cos(δ0J1
− δ0J2

), (3)

where δ0J is the phase-shift of the spin-singlet channel
with orbital angular momentum l = J . For the spin-
triplet case with s = 1, given l = J , there is still only
one channel with S = exp(2iδ1J). When the neutron-
proton scattering is affected by the tensor force in their
spin-triplet state, the angular momentum l can have two
values, i.e., l = J ± 1. In the latter case, the general
expression of the S matrix of a two-channel reaction is

S = (4)
(

cos2(ǫJ)e
2iδ1J−1 + sin2(ǫJ )e

2iδ1J+1 1
2 sin(2ǫJ)(e

2iδ1J−1 − e
2iδ1J+1 )

1
2 sin(2ǫJ)(e

2iδ1
J−1 − e

2iδ1
J+1 ) sin2(ǫJ )e

2iδ1
J−1 + cos2(ǫJ )e

2iδ1
J+1

)

.

In the above, δ1J±1 is usually called the Biedenharn-Blatt
(BB) phase shift of the spin-triplet channel with l = J±1,
and ǫJ is the parameter describing the mixing proba-
bility of the two coupling states. By using the energy-
dependent neutron-proton phase-shift data as well as the
mixing parameters for various channels in Tables III and
IV of Ref. [15], we calculate the coefficient BL and the

differential cross section. For the unpolarized neutron-
proton cross section, we also take the summation of the
isovector contribution T = 1, the isoscalar contribution
T = 0, and their interference contribution to the coeffi-
cient BL [20]. We note there is a simplified method for
calculating the spin-triplet case developed by Blatt and
Biedenharn [21], and it leads to identical results.
For proton-proton scatterings, we only incorporate the

nuclear contribution to the cross section into transport
model simulations, but subtract the contribution of the
long-range Coulomb potential to the scatterings. For
the spin-singlet and spin-triplet proton-proton scatter-
ings with l = J , the scattering matrix S can be expressed
as

S = e2iδ
0(1)
J − e2iφJ + 1, (5)

where φJ is the pure Coulomb phase shift for orbital
angular momentum l = J , and it can be written as [22]

φl =
l

∑

m=1

arctan(η/m), (6)

with η = e2/~v ≈ (137β)
−1

where β = v/c is the reduced
velocity of the incident proton in the lab frame. In order
to subtract the Coulomb contribution from the S matrix
for the two channels of spin-triplet scatterings with l =
J ± 1, we express it as [23]

S = 1 + (7)
(

cos(2ǫJ )e
2iδ1J−1 − e

2iφJ−1 i sin(2ǫJ )e
i(δ1J+1+δ1J−1)

i sin(2ǫJ )e
i(δ1

J+1+δ1
J−1)

cos(2ǫJ )e
2iδ1

J+1 − e
2iφJ+1

)

,

with

δ
0(1)
l = δ

0(1)
l (N) + φl (8)

where δ
0(1)
l (N) is called the nuclear bar phase shifts,

which are taken from Table II of Ref. [15] for various
proton incident energies. The way of subtracting the
Coulomb contribution assumes that the Coulomb force
acts only outside the region of the nuclear force where the
WKB approximation is valid [23]. For the spin-singlet
and spin-triplet proton-proton scatterings with l = J ,
the expressions for the scattering matrix S are the same
for BB phase shifts and bar phase shifts, as can be seen
from Eq. (5). In this way the spin-dependent differential
proton-proton elastic scattering cross sections can also be
obtained.

III. PARAMETRIZATION OF THE

SPIN-DEPENDENT CROSS SECTIONS

Starting from the energy-dependent phase-shift results
of nucleon-nucleon scatterings by Arndt et al. [15], and
using the method described above, we are now able to
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obtain the differential cross sections for elastic nucleon-
nucleon scatterings at various collision energies. Since
the higher-order terms of the Legendre polynomials van-
ish after intergration, the total cross section is deter-
mined by the terms with L = 0 in Eq. (1). The total
cross sections for both spin-singlet and spin-triplet elas-
tic neutron-proton scatterings between 1 and 500 MeV
can be parameterized respectively as

σ0

np
= 9302.64/E3

− 982.187/E2
− 1.32 × 102 + 1.03E

− 3.06× 10−3E2 + 4.85× 10−6E3
− 3.19× 10−9E4, (9)

σ1

np
= −27888.84 × 104/E3 + 17565.39/E2 + 13382.81/E

− 8.10× 101 + 0.37E − 2.75× 10−4E2
− 9.60× 10−7E3

+ 1.37× 10−9E4. (10)

Similarly, the total cross sections for both spin-singlet
and spin-triplet elastic proton-proton scatterings be-
tween 1 and 500 MeV can also be parameterized respec-
tively as

σ0

pp
= −11877.31/E3 + 733.31/E2 + 17397.66/E − 2.38× 102

+ 1.51E − 4.9× 10−3E2 + 8.37× 10−6E3
− 5.58× 10−9E4,

σ1

pp
= −1.20 + 0.79E − 8.40× 10−3E2 + 3.24× 10−5E3,

(1 MeV < E < 100 MeV)

σ1

pp
= 1.72× 101 + 0.16E − 8.13× 10−4E2 + 2.14 × 10−6E3

− 2.86× 10−9E4 + 1.52× 10−12E5.

(100 MeV < E < 500 MeV) (11)

In the above, σ0 and σ1 in mb are the cross sections for
the elatistic spin-singlet and spin-triplet scatterings, re-
spectively, and E in MeV is the kinetic energy of the
incident nucleon in the lab frame. The spin-averaged
cross section can be obtained from σ = σ0/4+ 3σ1/4. In
Fig. 1 we compared the total elastic scattering cross sec-
tions obtained in the present study with those previously
used in the IBUU transport model, with the latter taken
from Ref. [24] parameterized as

σpp(nn) = 8.76/β2 − 15.04/β + 13.73 + 68.76β4, (12)

σnp = 25.26/β2 − 18.18/β − 70.67 + 113.85β, (13)

where the cross section σ is in mb, and β =
√

1−M2
Nc4/(MNc2 + E)2 is the reduced velocity of the

incident nucleon with MN being the nucleon mass. We
find that the previously used parameterized cross sec-
tions are similar to the spin-averaged ones obtained in
the present study using the phase-shift results in the en-
ergy range considered. Note that a cut at very low energy
region, where the cross section may diverge, is usually
used in transport model simulations.

We have also parameterized the differential spin-singlet
and spin-triplet cross sections for elastic neutron-proton
and proton-proton scatterings between 1 and 500 MeV
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FIG. 1: (color online) Total elastic spin-averaged, spin-
singlet, and spin-triplet cross sections obtained in the present
study for neutron-proton (left) and proton-proton (neutron-
neutron) (right) scatterings as functions of the reduced inci-
dent nucleon velocity β in the lab frame, compared with the
previous ones used in the IBUU transport model.

in the following form:

dσs
np(θ) =

11
∑

n=0

asncos
nθdΩ, (14)

dσs
pp(θ) =

5
∑

m=0

bs2mcos2mθdΩ. (15)

In the above equations, the cross sections are in mb, n
and m are related to the angular momentum quantum
numbers of the orbital wave function, i.e., from s-wave to
h-wave, as used in the energy-dependent phase-shift anal-
yses. With the differential cross sections from phase-shift
results at discrete energies, we are able to parameterize
the coefficients asn and bs2m as functions of the energy E
to get continuous energy-dependent differential cross sec-
tions between 1 and 500 MeV. The s-wave coefficients a00,
a10, b

0
0, and b10, which lead to the total cross section, are

parameterized respectively as

a00 = −47.99/E3
− 28.93/E2 + 740.42/E − 12.11 + 7.53× 10−2E

− 2.32 × 10−4E2 + 3.83 × 10−7E3
− 2.62× 10−10E4, (16)

a10 = −2435.74/E3 + 1565.07/E2 + 1115.4/E − 9.27 + 0.02E

+ 1.43 × 10−4E2
− 6.04 × 10−7E3 + 6.08× 10−10E4, (17)

b00 = −987.99/E3 + 80.497/E2 + 1409.47/E − 23.51 + 0.148E

− 4.488 × 10−4E2 + 7.203× 10−7E3
− 4.72× 10−10E4, (18)

b10 = −0.142 + 0.079E − 8.78× 10−4E2 + 3.36× 10−6E3,

(1 MeV < E < 100 MeV)

b10 = 1.89 + 9.85× 103E − 6.90× 10−5E2 + 1.84× 10−7E3 (19)

− 2.33 × 10−10E4 + 1.16× 10−13E5.

(100 MeV < E < 500 MeV)

For other coefficients asn and bs2m corresponding to larger
orbital angular momentum quantum numbers, polyno-
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mial functions are used to fit their energy dependence,
and the fitting results are showed in Table I.
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FIG. 2: (color online) Differential cross sections for neutron-
proton (left) and proton-proton (right) pairs with the same
spin, different spins, and the spin-averaged differential cross
sections as functions of the scattering polar angle θ in the
C.M. frame, at an incident nucleon energy of 100 MeV.

In transport model simulations of heavy-ion collisions,
it is more convenient to use the cross sections determined
by the spins of the colliding nucleons, and they can be ex-
pressed in terms of the spin-singlet and spin-triplet scat-
tering cross section as

σ
↑↑(↓↓)
NN = σ1

NN , (20)

σ
↑↓(↑↓)
NN = (σ1

NN + σ0
NN )/2, (21)

where σ
↑↑(↓↓)
NN (σ

↑↓(↑↓)
NN ) is the cross section for nucleon

pairs with the same (different) spin with respect to the
angular momentum of the pair. The angular dependence
of the differential cross sections to be used in SIBUU
transport model simulations is plotted in Fig. 2. These
angular distributions reveal the nucleon interaction in
vacuum. For example, in neutron-proton scatterings, the
forward peak is due to the Wigner force while the back-
ward peak is due to the Majorana force [25]. On the
other hand, scatterings between identical particles with
the same spin and isospin are not likely to have forward
and backward peaks due to the strong Pauli repulsive
effect.

IV. EFFECTS IN HEAVY-ION SIMULATIONS

In the SIBUU transport model, the density of the ini-
tial two nuclei is sampled according to the prediction of
Skyrme-Hartree-Fock calculations, while the momentum
of each nucleon is sampled according to its local den-
sity and further boosted by the beam energy. The spin

expectation value of each nucleon is chosen as a unit vec-
tor in the 4π solid angle, and it is randomly sampled in
the initial stage. As the system begins to evolve, the
coordinate ~r, momentum ~p, and spin ~s of each nucleon
follow the equations of motion consistently derived from
the spin-dependent Boltzmann-Vlasov equation [7] as fol-
lows:

d~r/dt = ~p/
√

p2c2 +M2
Nc4 +∇pU

s, (22)

d~p/dt = −∇U −∇Us, (23)

d~s/dt = −
i

~
[~s, Us], (24)

where U is the momentum- and spin-independent mean-
field potential, and the right-hand side of the third equa-
tion denotes the commutator of each component of spin
with the spin-dependent mean-field potential Us. Par-
ticularly, the strength, the isospin dependence, and the
density dependence of Us are still under debate and are
hot topics in nuclear structure studies [8]. In our pre-
vious studies, we have shown that nucleons with differ-
ent spins may have different dynamics with Us, and this
leads to local spin polarization (see Fig. 1 of Ref. [6] and
Fig. 1 of Ref. [10]) as well as the spin splitting of col-
lective flows of free nucleons and light clusters [6, 9, 10].
Here we investigate the effects of nucleon-nucleon scat-
terings with spin-dependent differential elastic cross sec-
tions in heavy-ion collisions. Since the spin expectation
direction is known for each nucleon, the spin state of
a single nucleon and that of the colliding nucleon pair
can be obtained by projecting the spin expectation direc-
tion onto the total angular momentum of the incoming
nucleon pair. The differential scattering cross sections
are then determined from the spin state as well as the
collision energy through the parameterizations given in
Sec. III, and they are technically incorporated according
to the scattering treatment in Appendix B of Ref. [26].
We first examine the effects of the spin-dependent cross

sections on the spin up-down differential transverse flow
defined as [6, 9]

Fud(yr) =
1

N(yr)

N(yr)
∑

i=1

si(px)i, (25)

where N(yr) is the number of nucleons with rapidity yr,
(px)i is the momentum of the ith nucleon in x direction,
and si is 1(−1) for spin-up (spin-down) nucleons with
respect to the total angular momentum of the heavy-ion
collision system. As discussed in Refs. [6, 9], the spin-
dependent potential Us gives an additional attractive
(repulsive) potential to spin-up (spin-down) nucleons, re-
sulting in their different transverse flows. As shown in the
left panel of Fig. 3, Fud vanishes without Us, with the
latter the source of different potentials for spin-up and
spin-down nucleons and thus their different transverse
flows. With Us, Fud remain almost the same using the
spin-averaged and spin-dependent nucleon-nucleon cross
sections, as shown in the right panel of Fig. 3. We have
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TABLE I: Coefficients for the polynomial fit of the energy dependence of as

n (n > 0) and bs2m (m > 0), i.e., as

n(b
s

2m) = C0 +
C1E+C2E

2+C3E
3 (1 MeV < E < 50 MeV) and as

n(b
s

2m) = C4+C5E+C6E
2+C7E

3+C8E
4+C9E

5 (50 MeV < E < 500 MeV).

C0 C1 C2(10−3) C3(10−5) C4 C5 C6(10−3) C7(10−6) C8(10−9) C9(10−12)

a0
1

−6.23 −0.46 32.24 −42.98 −2.20 −2.84× 10−3 0.14 −0.26 −0.064 0.29

a0
2

−0.48 0.54 −21.99 24.79 4.71 −7.55× 10−2 0.74 −2.41 3.54 −1.98

a0
3

0.47 −0.32 7.92 −4.77 −8.82 0.23 −1.98 6.80 −10.61 6.39

a0
4

−4.07× 10−2 11.08 5.23 −9.12 0.23 0.12 −1.96 7.48 −12.09 7.36

a0
5

−0.13 9.77× 10−2
−11.76 15.66 −1.80 −0.12 1.37 −5.28 8.92 −5.75

a0
6

4.80× 10−2
−3.77× 10−2 4.57 −5.47 3.41 −0.14 3.03 −12.81 21.96 −13.90

a0
7

−2.63× 10−2 1.90× 10−2
−1.99 2.07 1.43 −0.11 1.13 −4.02 6.57 −4.01

a0
8

2.12× 10−2
−1.55× 10−2 1.68 −2.23 0.10 0.12 −2.67 11.89 −21.24 13.77

a0
9

−2.52× 10−3 1.49× 10−3
−0.052 −0.90 2.43 −6.06× 10−2

−0.30 1.97 −3.80 2.55

a0
10

−4.21× 10−5 4.64× 10−4
−0.19 1.45 −4.37 9.84× 10−2 0.43 −3.68 7.86 −5.56

a1
1

0.36 −8.13× 10−2 7.28 −10.15 2.72 −1.39× 10−2
−0.11 0.92 −2.11 1.59

a1
2

−0.18 −0.22 16.87 −21.24 1.10 1.07× 10−1
−1.00 4.27 −8.11 5.63

a1
3

1.17× 10−2 1.15× 10−2
−1.34 2.27 −1.69 5.93× 10−2

−0.57 2.10 −3.42 2.09

a1
4

5.37× 10−2
−3.46× 10−2 3.80 −6.46 4.16 −6.24× 10−2

−0.65 4.21 −8.40 5.75

a1
5

−1.81× 10−3 3.65× 10−3
−1.07 1.97 −2.72 6.95× 10−2

−0.36 0.39 0.41 −0.72

a1
6

2.03× 10−2
−1.74× 10−2 2.24 −0.78 −5.71 0.25 −1.42 3.63 −4.75 2.52

a1
7

−1.05× 10−2 8.01× 10−3
−0.91 1.06 1.76 −0.11 1.41 −5.04 7.87 −4.64

a1
8

1.32× 10−3
−9.45× 10−4 0.09 0.08 −0.70 2.77× 10−2

−0.19 0.53 −0.66 0.29

a1
9

−3.39× 10−4 5.50× 10−5 0.05 −0.61 0.94 −1.36× 10−2
−0.43 2.03 −3.58 2.27

a1
10

−5.08× 10−5 6.50× 10−5
−0.01 0.09 −0.08 −1.16× 10−3 0.11 −0.48 0.81 −0.48

b0
2

−1.24 −9.83× 10−1
−36.74 38.86 8.51 −9.91× 10−2 0.47 −1.27 1.84 −1.04

b0
4

0.16 −0.12 14.36 −20.55 4.01 4.33× 10−2
−0.87 3.07 −4.73 2.91

b0
6

1.44× 10−2
−1.02× 10−2 0.99 −0.35 −1.62 0.064 0.0061 −0.27 0.57 −0.61

b0
8

1.38× 10−4
−8.66× 10−5 0.0048 0.034 −0.078 0.0022 0.0097 −0.042 0.068 −0.041

b1
2

0.039 −0.019 −0.82 2.06 −1.44 0.03 −0.15 0.52 −0.98 0.67

b1
4

−0.027 0.023 −1.79 1.63 −0.488 0.397 −1.61 3.08 −2.10 5.63

b1
6

6.53× 10−5
−3.52× 10−3 0.52 −0.84 2.13 −5.18× 10−2 0.34 −0.84 0.65 −0.073

b1
8

1.73× 10−3
−1.95× 10−3 0.204 −0.18 −0.63 4.94× 10−2

−0.68 2.55 −3.93 2.25

b1
10

−2.30× 10−3 6.16× 10−3
−0.021 0.15 −0.29 −3.78× 10−3 0.23 −1.04 1.75 −1.07

also found that the spin up-down differential transverse
flow remains the same for neutrons and protons as well as
for energetic nucleons, justifying the validity of Fud as a
good probe of the strength, the isospin dependence, and
the density dependence of the in-medium nuclear spin-
orbit potential [6, 9, 10].
Figure 4 compares the resulting spin-averaged elliptic

flows (v2 = 〈(p2x − p2y)/(p
2
x + p2y)〉) of free nucleons and

deuterons from the spin-averaged and spin-dependent
nucleon-nucleon scattering cross sections with and with-
out the spin-dependent mean-field potential. It is seen
that v2 of free nucleons is the same from the spin-
averaged and spin-dependent cross sections without Us,
while the difference is observed with Us. The latter is
due to the local spin polarization induced by Us. As is
know, v2 is sensitive to the shear viscosity of the sys-
tem [27, 28], with the later related to the transport cross
section defined as

σtr =

∫

dσ

dΩ
(1− cos2 θ). (26)

For a given total σ, a more forward- and backward-
peaked differential cross section generally leads to a

smaller transport cross section and a larger shear vis-
cosity. Since locally there can be different numbers of
spin-up and spin-down nucleons induced by the spin-
dependent mean-field potential, the transport cross sec-
tion can be different from the spin-averaged and spin-
dependent cross sections. This is the reason why the
slightly different v2 is observed in Panel (c) of Fig. 4. We
have also studied the formation of light clusters formed in
transport simulations, through a dynamical coalescence
algorithm from nucleons that are close in coordinate and
momentum space [10, 29]. The spin-dependent differen-
tial cross sections lead to correlations between the scat-
tering angles of final-state nucleons, resulting in the dif-
ferent final distribution of these light clusters. It is seen
from Fig. 4 that slight v2 difference is observed at midra-
pidities between results from the spin-averaged cross sec-
tions and the spin-dependent ones, and the effect is fur-
ther enhanced with the spin-dependent mean-field poten-
tial.
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FIG. 3: (color online) Rapidity dependence of the spin
differential transverse flow from the spin-averaged and the
spin-dependent cross sections with (right) and without (left)
the spin-orbit (SO) potential in Au+Au collisions at 100
MeV/nucleon and an impact parameter b = 12 fm.

0.8

1.0

1.2

w/o SO

 spin-averaged 
 spin-dependent 

 

 

7

8

9

10

w/o SO

 

 

-0.6 -0.3 0.0 0.3 0.6
0.8

1.0

1.2
(d)(c)

(b)

with SO

v
d2  (%

)

 

vN 2
 (%

)

yr/y
beam
r

 

 

(a)

-0.6 -0.3 0.0 0.3 0.6
7

8

9
with SO

 

 

FIG. 4: (color online) Rapidity dependence of the elliptic flow
of free nucleons (left) and deuterons (right) from the spin-
averaged and the spin-dependent cross sections with (lower)
and without (upper) the spin-orbit (SO) potential in Au+Au
collisions at 100 MeV/nucleon and an impact parameter b =
12 fm.

V. CONCLUSION AND OUTLOOK

Using the phase-shift results from nucleon-nucleon
scattering data in free space, we have obtained the spin-

dependent neutron-proton and proton-proton differential
elastic scattering cross sections. We have further incorpo-
rated them into the spin-dependent Boltzmann-Uehling-
Uhlenbeck transport model for the first time. The spin
splittings of collective flows, which were previously found
as probes of the in-medium nuclear spin-orbit interaction,
are not affected by these spin-dependent cross sections.
However, spin-averaged quantities, such as the elliptic
flows of free nucleons and deuterons, can be slightly af-
fected with both the spin-dependent mean-field potential
and cross sections.

We note that it is still a big challenge to obtain the
spin-dependent inelastic nucleon-nucleon scattering cross
sections in the suitable energy range for intermediate-
energy heavy-ion collisions, due to the lack of the experi-
mental data. On the other hand, the in-medium nucleon-
nucleon scattering cross sections remain uncertain, even
for the spin-independent part. So far, the information of
the in-medium cross sections relies on various many-body
theories [30–32], while in transport model simulations the
in-medium effective mass scaling [33, 34] or empirical pa-
rameterizations [35] are generally used. We are still on
the way of looking for reliable probes of the in-medium
nuclear spin-orbit interaction and studying interesting
and relevant physics of spin dynamics in heavy-ion col-
lisions, by using a dynamical framework as complete as
possible.
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