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Abstract

The nuclear shell-model calculations show a clear anticorrelation between the Gamow-Teller

strength and the transition rate of the collective quadrupole excitation from the ground state in

response to artificial changes of the spin-orbit splitting. The shell-model calculations in the fp-

space demonstrate that changes of the spin-orbit coupling influence Gamow-Teller and quadrupole

modes in the opposite way. Both trends are discussed in terms of simple symmetry arguments.
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I. INTRODUCTION

Experimental and theoretical studies of weak interactions in general and nuclear Gamow-

Teller (GT) transitions specifically are in the focus of modern physics being important for

nuclear structure and reactions, astrophysics, particle physics and the search of phenomena

outside the Standard Model. In spite of many efforts, some basic problems related to nuclear

GT transitions are still controversial. Below we will try to address old questions on the

crossroads of nuclear structure and mechanisms of the GT dynamics in complex nuclei

which still are not convincingly answered.

The earlier shell-model studies [1] discovered a phenomenon of the pronounced correlation,

or rather anticorrelation, between the GT strength and the low-lying electric quadrupole

(E2) strength. To the best of our knowledge, this effect is not sufficiently explained. This

will be the main subject of our discussion. We will find that the anticorrelation effect

follows naturally as a consequence of isospin invariance, fermionic antisymmetry of the wave

functions, and spin-orbit coupling. Due to spin-orbit splitting of single-particle levels, the

total orbital momentum L ceases to be an exact quantum number so that the standard GT

operator excites a superposition of L = 0 and L = 2 states. It is not clear if the usual

experimental analysis correctly accounts for this fact which, however, should be included in

order to guarantee the total model-independent sum rule.

We will also confirm that this universal non-energy-weighted sum rule for the GT tran-

sitions is fulfilled in the shell-model calculations only through many contributions of very

weak transitions which can be hardly visible in an experiment with finite resolution and un-

avoidable background. The role of complicated configurations in the saturation of the GT

sum rule was stressed long ago [2]. Below we show exact results of the shell-model solution

in the fp space and add simple arguments based on the symmetry considerations.

Although the important problem of experimentally observed quenching of the GT

strength in nuclei [3–7] is not directly touched in this study, in our concluding discus-

sion we will mention some aspects of our results (strong fragmentation of the GT strength

and admixture of L = 2 excitations) which could be related to that problem.

II. TYPICAL SHELL-MODEL RESULTS

We start with the results of typical shell-model calculations for few nuclei in the fp shell.

The normal spin-orbit splitting in the FPD6pn shell-model version is 6.5 MeV between

f5/2 and f7/2 levels and 2 MeV between p3/2 and p5/2 levels. The numerical experiment

shown below, similarly to Ref. [1], demonstrates the simultaneous calculation of the total

GT excitation probability B− from the ground state, and the quadrupole excitation rate
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B(E2;0+ → 2+) for the lowest quadrupole collective excitation, as a function of the gradually

reduced spin-orbit splitting ∆ǫ(f) = ǫ(f5/2)− ǫ(f7/2) to zero, see Table 1.

We define the GT operators V± as vectors with respect to spin variables, s = (1/2)~σ,

carrying also vector components in the nucleon isospin space t = (1/2)~τ, τ± = τ1 ± iτ2,

V− =
1

2

∑

a

~σaτ
−
a , V+ = (V−)† =

1

2

∑

a

~σaτ
+
a , (1)

where the sums are taken over nucleons a; some useful algebraic definitions are included in

Appendix A.

One can speak of the total GT strength of a given nuclear state |ν〉 in the mother nucleus

summed over all final daughter states,

B+(ν) =
1

2
〈ν|(V− ·V+)|ν〉, B−(ν) =

1

2
〈ν|(V+ ·V−)|ν〉. (2)

This definition, where the scalar product refers to the spin vectors, leads to the standard

universal Ikeda sum rule, independent of the starting state |ν〉,

B−(ν)− B+(ν) =
∑

a

(~σa)
2(τ 3)a = 3(N − Z). (3)

Here |ν〉 is an arbitrary nuclear state below meson production threshold. In particular, for

nuclei with filled proton shells, such as 42−48Ca, the B+ part is quite low, and the sum rule

should be fulfilled mainly due to the B− part.

Table 1 and Fig. 1 show the anticorrelation mentioned in the Introduction. In the isospin-

symmetric nucleus 44Ti, the total GT strength linearly falls to zero while B(E2) grows when

the spin-orbit splitting ∆ǫ(f) is gradually reduced to zero. The weakening of the spin-orbit

coupling is harmful for the GT strength (in the limit of no such coupling, both GT strengths

(3) for N = Z vanish, see below). The energy of the quadrupole phonon 2+ state goes down,

Fig. 2, which is also reflected by the resulting increase of the quadrupole strength, Fig. 3.

Qualitatively, we see a similar evolution for 46Ti, where the sum rule (3) gives 6.

Figs. 4 and 5 show that the changes of the summed GT strength and low-lying B(E2)

transition probability as a function of the spin-orbit splitting ∆ǫ(f) in 44Ti are almost

exactly parabolic and opposite to each other. They do not depend on the sign of the spin-

orbit coupling. Fig. 6 illustrates the distribution of the GT− strength from the ground state

of the 46
22Ti24 nucleus as a function of the excitation energy in the daughter states of 46V. The

same process of accumulating the total GT strength along the excitation energy of 46Ti is

shown by Fig. 7; it works faster at small spin-orbit splitting, while in the realistic situation

the accumulation of the total strength is going slower.

This picture is practically universal, always the specific daughter states with a large GT

strength do not give the full sum rule. Moving along the excitation energy of the daughter
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TABLE I. The evolution of the total GT excitation probability from the ground state and the

quadrupole excitation rate B(E2;0+ → 2+) from the ground state to the lowest quadrupole col-

lective excitation in 44Ti and 46Ti, in the process of gradual changing the spin-orbit splitting

∆ǫ(ℓ) = ǫ(j = ℓ− 1/2)− ǫ(j = ℓ+ 1/2) from its realistic value to zero. To relate to the upper line

for 46Ti, we included in the calculation 1000 final states.

44Ti 46Ti

ǫ(2p3/2) ǫ(2p1/2) ∆ǫ(p) ǫ(1f7/2) ǫ(1f5/2) ∆ǫ(f) B− B(E2) E(2+) B− B+ B(E2) E(2+)

0 -6.495 -4.478 2.017 -8.388 -1.897 6.491 1.26 699 1.30 6.92 0.93 781 0.98

1 -6.495 -4.478 2.017 -8.088 -2.197 5.891 1.05 734 1.27 6.73 0.76 835 0.96

2 -6.495 -4.478 2.017 -7.788 -2.497 5.291 0.87 764 1.22 6.61 0.64 879 0.92

3 -6.495 -4.478 2.017 -7.488 -2.797 4.691 0.71 793 1.17 6.50 0.52 924 0.88

4 -6.495 -4.478 2.017 -7.188 -3.097 4.091 0.56 820 1.14 6.40 0.42 967 0.85

5 -6.495 -4.478 2.017 -6.888 -3.397 3.491 0.43 843 1.11 6.31 0.32 1008 0.82

6 -6.495 -4.478 2.017 -6.588 -3.697 2.891 0.32 864 1.09 6.23 0.25 1045 0.79

7 -6.495 -4.478 2.017 -6.288 -3.997 2.291 0.23 880 1.07 6.17 0.19 1078 0.77

8 -6.495 -4.478 2.017 -5.988 -4.297 1.691 0.17 893 1.06 6.12 0.14 1106 0.76

9 -6.495 -4.478 2.017 -5.688 -4.597 1.091 0.12 902 1.05 6.09 0.11 1127 0.75

10 -6.495 -4.478 2.017 -5.388 -4.897 0.491 0.09 907 1.05 6.07 0.09 1141 0.75

11 -6.495 -4.478 2.017 -5.088 -5.197 -0.109 0.09 909 1.04 6.06 0.07 1149 0.75

12 -6.495 -4.478 2.017 -5.134 -5.134 0.000 0.09 909 1.04 6.06 0.08 1149 0.75

13 -5.486 -5.486 0.000 -5.134 -5.134 0.000 0.04 873 1.13 6.02 0.04 1101 0.81

14 -5.134 -5.134 0.000 -5.134 -5.134 0.000 0.04 837 1.22 6.02 0.04 1059 0.87

nucleus and collecting the GT strength from the mother state we can see the gradual filling

of the total strength required by the GT sum rule. Apart from few significant peaks in

a cumulative sum, the convergence to the required value slowly proceeds through a large

number of quite small increments. This can be seen in detail in Fig. 8, where both the

cumulative strengths B− and B+ for 46Ti are shown. The B+ strength here is relatively small

and quickly saturates, while the B− strength grows slowly until the difference sum rule (3) is

satisfied. Including in the calculation more final states (up to 1000 states, at the excitation

energy about 20 MeV) we checked that the accuracy of satisfying the sum rule grows. To

relate to the upper line for 46Ti of Table 1, we obtain B−−B+ = 6.922−0.930 = 5.992 which

gives a precision of 0.13% of the exact value. This confirms that the sum rule is fulfilled by

addition of very many little contributions.
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FIG. 1. The total GT strength from the ground state of 44Ti is linearly anticorrelated with the

transition rate B(E2) (shown in Weisskopf units) from the ground state to the collective 2+ phonon

state.

III. EFFECT OF SPIN-ORBIT SPLITTING

Here we comment on the spin-orbit coupling part of the mean field as an appropriate inter-

mediary agent influencing both low-lying collective quadrupole vibrations and Gamow-Teller

mode based on the spin excitation. Because of this coupling, the total orbital momentum

L of the excitation is not conserved, and one of the specific effects of spin-orbit coupling is

the mixing of L = 0 and L = 2 excitations.

In agreement with findings of Ref. [1], in the limit of switched-off spin-orbit coupling, the

GT strength vanishes in N = Z nuclei, B− = B+ = 0. This can be understood in terms of

isospin invariance and the LS coupling scheme instead of the jj coupling. Indeed, neutrons

and protons occupy here the same orbitals, so that the n ↔ p transformations require the

spin flip. This changes the spin symmetry of the corresponding nucleon pair which could be

compensated by the change of orbital symmetry. However, if there is no coupling between

orbital and spin momenta the process turns out to be forbidden.

To illustrate this by the simplest example, consider the shell-model state of a valence np

pair that should satisfy (−)T+L+S = −1. For example take quantum numbers L = 0, S =
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FIG. 2. Energy of the lowest quadrupole excitation in 44Ti is almost linearly anticorrelated with

the total GT strength from the ground state when both are changed by the gradual elimination of

the spin-orbit splitting.

0, T = 1, T3 = 0 of the mother state |i〉, N = Z,

|i〉 = 1√
2
(p†1/2n

†

−1/2 − p†
−1/2n

†

1/2)|0〉, (4)

where only spin projections of proton and neutron creation operators are indicated. The

zero spin component GT−
0 of the GT− operator acts as

(GT)−0 |i〉 =
1√
2
[p†1/2(szp

†

−1/2)− p†
−1/2(szp

†

1/2)]|0〉 =
1

2
√
2
[−p†1/2p

†

−1/2 − p†
−1/2p

†

1/2]|0〉. (5)

Using the anticommutator of proton operators, we get zero. The “down”, GT−
−, and “up”,

GT−
+, components of the GT operator do not act either:

(GT)−−|i〉 = − 1√
2
[p†

−1/2(s−p
†

1/2)] = 0, (6)

Therefore in this case the GT strength vanishes, and it turns out the same for any even

L. Now, for odd L and S = 1, we take ML = 0, Sz = 0, and the result is the same. This

mechanism works in a general case of N = Z in the absence of spin-orbit coupling.

Table 1 and Figs. 1 and 2 show the monotonous growth of the GT strength for the N = Z

nucleus 44
22Ti22 in the shell-model calculation for two valence np pairs as a function of the
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increasing energy splitting between f7/2 and f5/2 orbitals. This splitting serves as a measure

of the spin-orbit coupling strength. At the same time, the B(E2) transition rate from the

ground state naturally grows with the change of this splitting in the opposite direction due

to the increasing softening of all simple transitions coupled into the collective mode.

The typical spin-orbit term in the mean-field approximation can be written as a sum of

single-particle contributions,

H(ls) =
∑

a

h(ra)(~ℓ · s)a, (7)

where the radial form-factor of spin-orbit coupling contains the radial derivative of the mean

nuclear potential and can be evaluated in average as

h̄ ≈ − 20

A2/3
MeV; (8)

|h̄| is slightly bigger in the shell-model description of the pf -shell nuclei used in our calcu-

lations.

The isoscalar quadrupole moment of the nucleus is taken as a sum over particles,

Qkl =
∑

a

(qkl)a =
∑

a

(3xkxl − r2δkl)a. (9)

The shift of the collective quadrupole excitation due to the spin-orbit splitting can be esti-

mated with the help of general arguments, for example using a simple model of factorizable
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FIG. 3. Energy of the first collective quadrupole state in 44Ti is reduced while the corresponding

quadrupole transition probability grows.
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FIG. 4. The parabolic dependence of the GT strength on the spin-orbit splitting in 44Ti.
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FIG. 5. The parabolic dependence of the quadrupole strength B(E2;0+ → 2+) on the spin-orbit

splitting in 44Ti.
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FIG. 6. (a) Distribution of the GT− strengths from the ground state of 46Ti along the excitation

energy in the daughter state 46V. (b) Cumulative sum of the GT− strengths growing as a function

of the excitation energy in the daughter nucleus 46V.

(in this case quadrupole-quadrupole) forces, HQ = −κ(Q · Q). As discussed in textbooks,

see for example [8], Section 18.1, in the case of an attractive residual interaction, κ > 0,

the energy ω of a collective excitation is lower than the centroid of energies ǭ of indepen-

dent (mean-field) excitations with the same quantum numbers, ω ≈ ǭ− κN q2, where N is

a characteristic collectivity factor (a number of simple excitations coherently coupled to a

collective mode) and q2 their typical strength. A simplified model in Appendix B illustrates

the main features of the behavior of the collective frequency and transition rate seen in Table

1.

The GT strength from the ground state is, to a good approximation, a quadratic function

of the spin-orbit splitting. This is exactly what we should expect for transitions induced

by a time-odd operator (magnetic dipole or GT). As follows from the symmetry arguments

(Ref. [8], Section 13.11), in such cases the matrix element for the transition between orbitals

λ and λ′ is proportional to the combination

P
(−)
λλ′ = uλvλ′ − uλ′vλ′ , (10)

where the factors u and v describe the occupancies (nλ between zero and one) of correspond-
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(*) The line numbers were described in Table 1.
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FIG. 7. Cumulative sum of the GT− strengths growing as a function of the excitation energy

in the daughter nucleus 46V. The consecutive lines (labeled as the lines of Table 1) illustrate the

accumulation process for several values of the spin-orbit splitting.

ing orbitals,

v2λ = nλ, u2
λ = 1− nλ. (11)

For degenerate levels, the occupancies in equilibrium filling are equal, and the transition

probability vanishes. With spin-orbit splitting growing, the difference of occupancies grows

quadratically with this splitting, in agreement with what is given by the numerical calcula-

tion of Fig. 4.

The spin-dependent contribution to the equation of motion for the quadrupole moment

is found as

[H(ls), Qkl] = −3i
∑

a

h(ra) ([s× r]kxl + [s× r]lxk)a . (12)

Looking for the physical overlap of GT and quadrupole modes, we evaluate the double

commutator typical for the sum rules,

[V −
l , [H(ls), Qkl]] = 3M−

k , (13)

where the sum over repeated Cartesian subscripts is assumed. The vector operators M±
k are

spin-quadrupole moments for the two opposite directions of the GT excitation,

M±
k =

∑

a

τ±a ha

(

3(s · r)xk − r2sk

)

a
. (14)
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FIG. 8. Cumulative sums of the GT− and GT+ strengths growing as a function of the number of

1+ states in the daughter nuclei 46V and 46Sc.

The physical effect of this dynamics is the appearance of the quadrupole component in the

GT excitation so that the part of the GT strength is now transferred to the L = 2 channel.

In a crude estimate, the vectors (14) are proportional to the original GT amplitudes.

For an estimate by order of magnitude we assume that the soft quadrupole mode with its

direction of slowly changing deformation generates on average the same directional character

of the fast GT excitation, so that Qkl ∝ 3nknl − δkl and V ±
k ∝ v±nk in terms of the unit

vector n. Then

[V +
k V −

l , [H(ls), Qkl]] ⇒ 6h̄q̄klnknl〈v+v−〉 = 12h̄q̄〈v+v−〉, (15)

where the bar means the average over relevant single-particle transitions, and the matrix

elements qkl were defined in eq. (9). On the other hand, the sum rule following from the

original equation of motion with our auxiliary Hamiltonian, gives for the expectation value

of the left hand side of eq. (15) the estimate 4∆ωQ〈v+v−〉. Here ∆ω is the displacement of

the collective quadrupole excitation energy because of the spin-orbit splitting, and Q is the

phonon amplitude, Q = N q̄, where N is the factor of collectivity of the phonon excitation.

The comparison of two estimates gives

∆ω ≈ 3h̄

Q/q
≈ − 60

A2/3N MeV. (16)

This quantity is of the order 200-300 keV which is in agreement with Fig. 2.
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In this oversimplified approach, being mediated by the spin-orbit interaction, the centroid

of the GT excitation and the low-lying collective quadrupole excitation follow each other,

in a qualitative agreement with exact results of shell-model computation. Fig. 6 shows that

the GT sum rule is getting fulfilled earlier in the process of gradual switching off the spin-

orbit coupling when, as mentioned earlier, see eq. (16) and Appendix B, the quadrupole

frequency diminishes. The realistic spin-orbit interaction moves the GT final states up

slowing the approach to the sum rule limit and making this process more fine-grained.

The whole interplay here can be considered as a result of the effective interaction between

quadrupole and GT and charge-exchage degrees of freedom, that, in the lowest order, can

be written as Heff ∝ QklV
+
k V −

l . This is somewhat similar to the correlation between collec-

tive octupole and quadrupole modes also described by the cubic anharmonic terms. That

correlation was predicted theoretically [9] and found experimentally [10] working practically

exactly for the chain of xenon isotopes. Later this effect was qualitatively observed in the

data for other isotope chains [11]. The same idea was useful in the theoretical search [12]

for the enhancement of the nuclear Schiff moment, important in the problem of the electric

dipole moment, due to the combined action, and therefore correlation, of soft quadrupole

and octupole modes [13].

IV. CONCLUSION

We discussed some features of the nuclear GT processes which are not clearly formulated

in the literature. The phenomenon of anticorrelation between the GT strength and col-

lectivity of the lowest quadrupole excitation was studied numerically by exact shell-model

calculations for the fp orbital space and with the help of simple clarifying models. The

physics of this phenomenon is based on Fermi statistics, isospin invariance and spin-orbit

interaction.

In self-conjugate nuclei (N = Z) without spin-orbital splitting, the GT strengths in both

directions would vanish under exact isospin symmetry. This interrelation is illustrated by

the shell-model calculations for consecutive intermediate values of spin-orbit splitting. As

follows from the general physics of low-lying collective excitations, in the same process of

eliminating spin-orbit splitting, the quadrupole frequency goes down and the corresponding

transition rate grows.

Our study might be useful for the problem of experimental quenching of the GT strength

which was not touched directly in our study. For a long time it is claimed that the GT

strength exciting the ground or a low-lying nuclear state is significantly quenched compared

to the standard estimates [3–6]. The experimental studies typically find only about (60-

70)% of the total strength. When such a reduction factor is introduced, the advanced
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shell-model calculations, including the Monte Carlo studies, agree with what is observed,

for example, in the 56Ni (p, n) charge-exchange reaction [14]. This subject was broadly

discussed in the literature, and, as stated in the old review article [15], “Both detailed nuclear

structure calculations and extensive analysis of the scattering data suggest that the nuclear

configuration mixing effect is the more important quenching mechanism, although subnuclear

degrees of freedom cannot be ruled out.” One argument in favor of nuclear mechanisms

behind the quenching is that the GT strength considerably grows for the processes started

in excited states |ν〉. The shell-model analysis of the GT strength for the 24Mg nucleus [16]

shows a steady increase of this strength as a function of excitation energy of the initial state.

Apart from the statistical effect of the level density, a considerable part of this increase comes

from the suppression of spatial symmetry and corresponding progress towards the Wigner

SU(4) symmetry.

Two aspects of the current study could be useful in the quenching problem. With restora-

tion of the spin-orbit interaction, the GT strength centroid moves to higher energies with

increasing fragmentation. This process is anticorrelated with the enhancement of the collec-

tive quadrupole mode. The limiting value of the universal GT sum rule is reached through

growing fragmentation into many weak transitions. The understanding of this process can

again (see, for example, [7]) raise the question of better evaluation of experimental results

on GT quenching with the detailed consideration of the significantly fragmented strength.

Another question that might reappear is the role of spin-orbit forces in mixing various

values of the total orbital momentum L in GT processes and charge exchange reactions,

including the isovector spin-monopole giant resonance [17]. In the presence of spin-orbit

coupling, the total orbital momentum L of the nucleus is not conserved. With the spin-orbit

coupling as an intermediary, the GT pseudovector operator in the nuclear medium excites

not only L = 0 but also L = 2 states (these channels are interfering). The experimental

treatment of charge-exchange reactions with the help of multipole decomposition typically

extracts from the angular distribution only the L = 0 strength which does not reflect the

total strength excited by the GT operator inside the target nucleus. This question deserves

better attention from both experimental and theoretical viewpoints.
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Appendix A. Operator algebra

The nine operators related to the SU(4) group are

V α
i =

1

2

∑

a

(σi)a(τ
α)a. (17)

They commute (in Cartesian coordinates of vectors) according to

[V α
i , V β

j ] = i
(

ǫijkδ
αβSk + δijǫ

αβγT γ
)

, (18)

where S =
∑

a sa and T =
∑

a ta are the total spin (Latin subscripts) and total isospin

(Greek superscripts) operators, respectively. In particular (vector summation over i in the

third equality),

[V +
i , V −

j ] = 2iǫijkSk + 2δijT
3, [V ±

i , V ±
j ] = 0, [V +

i , V −
i ] = 3(N − Z), (19)
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in agreement with eq. (19). There are also simple ladder relations

[V ±
i , T 3] = ∓V ±

i . (20)

We note that this commutator of two vector operators, eqs. (18-20), contains only

pseudovector and scalar components with respect to spin coupling while the quadrupole

component is absent. The squared vector part is proportional to the GT intensity.

Appendix B. Simple model

Here we use an oversimplified but generic model to illustrate the conciliated behavior

of the collective quadrupole frequency and corresponding transition probability under the

change of spin-orbit splitting. Assume that we have two groups of degenerate single-particle

levels (images of our f7/2 and f5/2 orbitals) with approximately the same single-particle

matrix elements q of the collective operator (a quadrupole moment in our problem). The

interaction matrix elements H ′
ij are factorized as κqiqj, where κ < 0. The unperturbed

Hamiltonian includes degenerate energies incide those groups, ǫ1 = 0 and ǫ2 > 0, and

pairing forces which create the energy gap ∆ so that the characteristic excitation energies

in an even system are 2∆ and 2
√
∆2 + ǫ2.

The secular equation for the collective energy ω contains the two groups of contributions:

1 =
S

ω − 2∆
+

S ′

ω − 2
√
∆2 + ǫ2

, (21)

where S = κ
∑

k q
2
k and S ′ = κ

∑

k′ q
2
k′ contain contributions of the first and the second

groups of single-particle transitions, respectively. S and S ′ are quantities of the same order

of magnitude and for simplicity we set S ′ = S. For typical numerical values of the upper

line of Table 1, ǫ = 6.5 MeV, ω = 1.3 MeV and, in this region of the nuclear chart, ∆ ≈1.7

MeV, we extract S ≈ -1.8 MeV. Changing the level distance ǫ to zero we increase ∆ and

decrease the collective frequency ω. Normalizing correctly the collective state [8] we find the

collective transition probability at any point of this process,

B =
4S

κ

(∆ +
√
∆2 + ǫ2 − ω)2

(2∆− ω)2 + (2
√
∆2 + ǫ2 − ω)2

. (22)

The maximum of this probability is reached for degenerate levels, ǫ → 0, when

Bmax =
2S

κ
. (23)

The ratio B/Bmax for the upper line of Table 1 is predicted by eq. (22) to be 0.67 which

agrees with the numerical results in this table.
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