
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Structure and decays of nuclear three-body systems: The
Gamow coupled-channel method in Jacobi coordinates

S. M. Wang (王思敏), N. Michel, W. Nazarewicz, and F. R. Xu (许甫荣)
Phys. Rev. C 96, 044307 — Published  5 October 2017

DOI: 10.1103/PhysRevC.96.044307

http://dx.doi.org/10.1103/PhysRevC.96.044307


Structure and decays of nuclear three-body systems: the Gamow coupled-channel
method in Jacobi coordinates

S.M. Wang (王思敏),1 N. Michel,2 W. Nazarewicz,3 and F.R. Xu (许甫荣)4

1FRIB/NSCL Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
2FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

3Department of Physics and Astronomy and FRIB Laboratory,
Michigan State University, East Lansing, Michigan 48824, USA
4School of Physics, Peking University, Beijing 100871, China

Background: Weakly bound and unbound nuclear states appearing around particle thresholds are prototypical
open quantum systems. Theories of such states must take into account configuration mixing effects in the presence
of strong coupling to the particle continuum space.

Purpose: To describe structure and decays of three-body systems, we developed a Gamow coupled-channel
(GCC) approach in Jacobi coordinates by employing the complex-momentum formalism. We benchmarked the
new framework against the complex-energy Gamow Shell Model (GSM).

Methods: The GCC formalism is expressed in Jacobi coordinates, so that the center-of-mass motion is auto-
matically eliminated. To solve the coupled-channel equations, we use hyperspherical harmonics to describe the
angular wave functions while the radial wave functions are expanded in the Berggren ensemble, which includes
bound, scattering and Gamow states.

Results: We show that the GCC method is both accurate and robust. Its results for energies, decay widths, and
nucleon-nucleon angular correlations are in good agreement with the GSM results.

Conclusions: We have demonstrated that a three-body GSM formalism explicitly constructed in cluster-orbital
shell model coordinates provides similar results to a GCC framework expressed in Jacobi coordinates, provided
that a large configuration space is employed. Our calculations for A = 6 systems and 26O show that nucleon-
nucleon angular correlations are sensitive to the valence-neutron interaction. The new GCC technique has many
attractive features when applied to bound and unbound states of three-body systems: it is precise, efficient, and
can be extended by introducing a microscopic model of the core.

I. INTRODUCTION

Properties of rare isotopes that inhabit remote re-
gions of the nuclear landscape at and beyond the particle
driplines are in the forefront of nuclear structure and re-
action research [1–6]. The next-generation of rare isotope
beam facilities will provide unique data on dripline sys-
tems that will test theory, highlight shortcomings, and
identify areas for improvement. The challenge for nu-
clear theory is to develop methodologies to reliably cal-
culate and understand the properties and dynamics of
new physical systems with different properties due to
large neutron-to-proton asymmetries and low-lying re-
action thresholds. Here, dripline systems are of particu-
lar interest as they can exhibit exotic radioactive decay
modes such as two-nucleon emission [7–13]. Theories of
such nuclei must take into account their open quantum
nature.

Theoretically, a powerful suite of A-body approaches
based on inter-nucleon interactions provides a quanti-
tative description of light and medium-mass nuclei and
their reactions [14–16]. To unify nuclear bound states
with resonances and scattering continuum within one
consistent framework, advanced continuum shell-model
approaches have been introduced [17–19]. Microscopic
models of exotic nuclear states have been supplemented
by a suite of powerful, albeit more phenomenological
models, based on effective degrees of freedom such as
cluster structures. While such models provide a “lower

resolution” picture of the nucleus, they can be extremely
useful when interpreting experimental data, providing
guidance for future measurements, and provide guidance
for more microscopic approaches.

The objective of this work is to develop a new three-
body method to describe both reaction and structure
aspects of two-particle emission. A prototype system
of interest is the two-neutron-unbound ground state of
26O [13, 20, 21]. According to theory, 26O exhibits the
dineutron-type correlations [21–25]. To describe such a
system, nuclear model should be based on a fine-tuned in-
teraction capable of describing particle-emission thresh-
olds, a sound many-body method, and a capability to
treat simultaneously bound and unbound states.

If one considers bound three-body systems, few-body
models are very useful [26], especially models based on
the Lagrange-mesh technique [27] or cluster-orbital shell
model (COSM) [28]. However, for the description of res-
onances, the outgoing wave function in the asymptotic
region need to be treated very carefully. For example,
one can divide the coordinate space into internal and
asymptotic regions, where the R-matrix theory [29, 30],
microscopic cluster model [31], and the diagonalization of
the Coulomb interaction [32] can be used. Other useful
techniques include the Green function method [23] and
the complex scaling [33, 34].

Our strategy is to construct a three-body framework to
weakly bound and unbound systems similar to that of the
GSM [35], but with center-of-mass motion and asymp-
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totic behavior treated precisely. The attractive feature
of the GSM is that – by employing the Berggren en-
semble [36] – it treats bound, scattering, and outgoing
Gamow states on the same footing. Consequently, en-
ergies and decay widths are obtained simultaneously as
the real and imaginary parts of the complex eigenener-
gies of the shell model Hamiltonian [17]. In this study,
we develop a three-body Gamow coupled-channel (GCC)
approach in Jacobi coordinates with the Berggren ba-
sis. Since the Jacobi coordinates allow for the exact
treatment of nuclear wave functions in both nuclear and
asymptotic regions, and as the Berggren basis explicitly
takes into account continuum effects, a comprehensive
description of weakly-bound three-body systems can be
achieved. As the GSM is based on the COSM coordi-
nates, a recoil term appears due to the center-of-mass
motion. Hence, it is of interest to compare Jacobi- and
COSM-based frameworks for the description of weakly
bound and resonant nuclear states.

This article is organized as follows. Section II con-
tains the description of models and approximations. In
particular, it lays out the new GCC approach and GSM
model used for benchmarking, and defines the configu-
ration spaces used. The results for A = 6 systems and
26O are contained in Sec. III. Finally, the summary and
outlook are given in Sec. IV.

II. THE MODEL

A. Gamow Coupled Channel approach

In the three-body GCC model, the nucleus is described
in terms of a core and two valence nucleons (or clusters).
The GCC Hamiltonian can be written as:

Ĥ =

3∑
i=1

p̂2
i

2mi
+

3∑
i>j=1

Vij(rij)− T̂c.m., (1)

where Vij is the interaction between clusters i and j, in-

cluding central, spin-orbit and Coulomb terms, and T̂c.m.
stands for the kinetic energy of the center-of-mass.

The unwanted feature of three-body models is the ap-
pearance of Pauli forbidden states arising from the lack
of antisymmetrization between core and valence parti-
cles. In order to eliminate the Pauli forbidden states, we
implemented the orthogonal projection method [37–39]
by adding to the GCC Hamiltonian the Pauli operator

Q̂ = Λ
∑
c

|ϕjcmc〉〈ϕjcmc |, (2)

where Λ is a constant and |ϕjcmc〉 is a 2-body state in-
volving forbidden s.p. states of core nucleons. At large
values of Λ, Pauli-forbidden states appear at high ener-
gies, so that they are effectively suppressed.

In order to describe three-body asymptotics and to
eliminate the spurious center-of-mass motion exactly, we
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FIG. 1. Jacobi coordinates in a three-body system.

express the GCC model in the relative (Jacobi) coordi-
nates [15, 30, 39, 40]:

x =
√
µij(ri − rj),

y =
√
µ(ij)k

(
rk −

Airi +Ajrj
Ai +Aj

)
,

(3)

where ri is the position vector of the i-th cluster, Ai is
the i-th cluster mass number, and µij and µ(ij)k are the
reduced masses associated with x and y, respectively:

µij =
AiAj
Ai +Aj

,

µ(ij)k =
(Ai +Aj)Ak
Ai +Aj +Ak

.

(4)

As one can see in Fig. 1, Jacobi coordinates can be ex-
pressed as T- and Y-types, each associated with a com-
plete basis set. In practice, it is convenient to calculate
the matrix elements of the two-body interaction individ-
ually in T- and Y-type coordinates, and then transform
them to one single Jacobi set. To describe the trans-
formation between different types of Jacobi coordinates,
it is convenient to introduce the basis of hyperspherical
harmonics (HH) [41, 42]. The hyperspherical coordinates
are constructed from a five-dimensional hyperangular co-

ordinates Ω5 and a hyperradial coordinate ρ =
√
x2 + y2.

The transformation between different sets of Jacobi co-
ordinates is given by the Raynal-Revai coefficients [43].

Expressed in HH, the total wave-function can be writ-
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ten as [39]:

ΨJMπ(ρ,Ω5) = ρ−5/2
∑
γK

ψJπγK(ρ)YJMγK (Ω5), (5)

where K is the hyperspherical quantum number and
γ = {s1, s2, s3, S12, S, `x, `y, L} is a set of quantum num-
bers other than K. The quantum numbers s and ` stand

for spin and orbital angular momentum, respectively,
ψJπγK(ρ) is the hyperradial wave function, and YJMγK (Ω5)
is the hyperspherical harmonic.

The resulting Schrödinger equation for the hyperradial
wave functions can be written as a set of coupled-channel
equations:

[
− ~2

2m

(
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

)
− Ẽ

]
ψJπγK(ρ)

+
∑
K′γ′

V JπK′γ′,Kγ(ρ)ψJπγ′K′(ρ) +
∑
K′γ′

∫ ∞
0

WK′γ′,Kγ(ρ, ρ′)ψLπγ′K′(ρ′)dρ′ = 0,
(6)

where

V LπK′γ′,Kγ(ρ) = 〈YJMγ′K′ |
3∑

i>j=1

Vij(rij)|YJMγK 〉 (7)

and

WK′γ′,Kγ(ρ, ρ′) = 〈YJMγ′K′ |Q̂|YJMγK 〉 (8)

is the non-local potential generated by the Pauli projec-
tion operator (2).

In order to treat the positive-energy continuum space
precisely, we use the Berggren expansion technique for
the hyperradial wave function:

ψJπγK(ρ) =
∑
n

CJπMγnK BJπγn (ρ), (9)

where BJπγn (ρ) represents a s.p. state belonging to to the
Berggren ensemble [36]. The Berggren ensemble defines
a basis in the complex momentum plane, which includes
bound, decaying, and scattering states. The complete-
ness relation for the Berggren ensemble can be written
as: ∑

n∈b,d

Bn(kn, ρ)Bn(kn, ρ
′)+

∫
L+

B(k, ρ)B(k, ρ′)dk

= δ(ρ− ρ′),
(10)

where b are bound states and d are decaying resonant (or
Gamow) states lying between the real-k momentum axis
in the fourth quadrant of the complex-k plane, and the
L+ contour representing the complex-k scattering contin-
uum. For numerical purposes, L+ has to be discretized,
e.g., by adopting the Gauss-Legendre quadrature [44].
In principle, the contour L+ can be chosen arbitrarily
as long as it encompasses the resonances of interest. If
the contour L+ is chosen to lie along the real k-axis,
the Berggren completeness relation reduces to the New-
ton completeness relation [45] involving bound and real-
momentum scattering states.

To calculate radial matrix elements with the Berggren
basis, we employ the exterior complex scaling [46], where
integrals are calculated along a complex radial path:

〈Bn|V (ρ)|Bm〉 =

∫ R

0

Bn(ρ)V (ρ)Bm(ρ)dρ (11)

+

∫ +∞

0

Bn(R+ ρeiθ)V (R+ ρeiθ)Bm(R+ ρeiθ)dρ.

For potentials that decrease as O(1/ρ2) (centrifugal po-
tential) or faster (nuclear potential), R should be suffi-
ciently large to bypass all singularities and the scaling an-
gle θ is chosen so that the integral converges, see Ref. [47]
for details. As the Coulomb potential is not square-
integrable, its matrix elements diverge when kn = km.
A practical solution is provided by the so-called “off-
diagonal method” proposed in Ref. [48]. Basically, a
small offset ±δk is added to the linear momenta kn and
km of involved scattering wave-functions, so that the re-
sulting diagonal Coulomb matrix element converges. By
diagonalizing the complex symmetric Hamiltonian, ener-
gies and decay widths are obtained as the real and imag-
inary parts of the complex eigenenergies.

B. Gamow Shell Model

In the GSM, expressed in COSM coordinates, one deals
with the center-of-mass motion by adding a recoil term
(p̂1 ·p̂2/mnAcore) [28, 35]. The GSM Hamiltonian is diag-
onalized in a basis of Slater determinants built from the
one-body Berggren ensemble. In this case, it is conve-
nient to deal with the Pauli principle by eliminating spu-
rious excitations at a level of the s.p. basis. In practice,
one just need to construct a valence s.p. space that does
not contain the orbits occupied in the core. It is equiva-
lent to the projection technique used in GCC wherein the
Pauli operator (2) expressed in Jacobi coordinates has a
two-body character. The treatment of the interactions is
the same in GSM and GCC. In both cases, we use the
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complex scaling method to calculate matrix elements [47]
and the “off-diagonal method” to deal with the Coulomb
potential [48].

The two-body recoil term is treated in GSM by ex-
panding it in a truncated basis of harmonic oscillator
(HO). The HO basis depends on the oscillator length b
and the number of states used in the expansion. As it
was demonstrated in Refs. [44, 49], GSM eigenvalues and
eigenfunctions converge for a sufficient number of HO
states, and the dependence of the results on b is very
weak.

Let us note in passing that one has to be careful when
using arguments based on the variational principle when
comparing the performance of GSM with GCC. Indeed,
the treatment of the Pauli-forbidden states is slightly dif-
ferent in the two approaches. Moreover, the recoil effect
in the GSM is not removed exactly. (There is no recoil
term in GCC as the center-of-mass motion is eliminated
through the use of Jacobi coordinates.)

C. Two-nucleon correlations

In order to study the correlations between the two va-
lence nucleons, we utilize the two-nucleon density [50–52]
ρnn′(r, r′, θ) = 〈Ψ|δ(r1− r)δ(r2− r′)δ(θ12− θ)|Ψ〉, where
r1, r2, and θ12 are defined in Fig. 1(a). In the follow-
ing, we apply the normalization convention of Ref. [52] in
which the Jacobian 8π2r2r′2 sin θ is incorporated into the
definition of ρnn′ , i.e., it does not appear explicitly. The
angular density of the two valence nucleons is obtained
by integrating ρnn′(r, r′, θ) over radial coordinates:

ρ(θ) =

∫
ρnn′(r, r′, θ)drdr′. (12)

The angular density is normalized to one:
∫
ρ(θ)dθ = 1.

While it is straightforward to calculate ρnn′ with
COSM coordinates, the angular density cannot be cal-
culated directly with the Jacobi T-type coordinates used
to diagonalize the GCC Hamiltonian. Consequently, one
can either calculate the density distribution ρT(x, y, ϕ) in
T-type coordinates and then transform it to ρ(r1, r2, θ12)
in COSM coordinates by using the geometric relations
of Fig. 1(a), or – as we do in this study – one can
apply the T-type-to-COSM coordinate transformation.
This transformation [43], provides an analytical rela-
tion between hyperspherical harmonics in COSM coor-
dinates YJMγ′K′(r′1, r

′
2) and the T-type Jacobi coordinates

YJMγK (x′,y′), where r′1, r′2, x′ and y′ are:

r′1 =
√
Air1,

r′2 =
√
Ajr2,

x′ = x =
√
µij(r1 − r2),

y′ =

√
Ai +Aj
µ(ij)k

y =
Air1 +Ajr2√

Ai +Aj
.

(13)

D. Model space and parameters

In order to compare approaches formulated in Jacobi
and COSM coordinates, we consider model spaces de-
fined by the cutoff value `max, which is the maximum
orbital angular momentum associated with (r1, r2) in
GSM and (x, y) in GCC. The remaining truncations
come from the Berggren basis itself.

The nuclear two-body interaction between valence nu-
cleons has been approximated by the finite-range Min-
nesota force with the original parameters of Ref. [53]. For
the core-valence Hamiltonian, we took a Woods-Saxon
(WS) potential with parameters fitted to the resonances
of the core+n system. The Coulomb interaction has been
considered when valence protons are present. For both
GSM and GCC, the forbidden states of core nucleons (2)
are generated by the s.p. levels of the core-valence WS
(+ Coulomb) potential.

In the case of GSM, we use the Berggren basis for the
spd partial waves and a HO basis for the channels with
higher orbital angular momenta. For 6He, 6Li and 6Be
we assume the 4He core. For 6He and 6Be, GSM we
took a complex-momentum contour defined by the seg-
ments k = 0 → 0.17 − 0.17i → 0.34 → 3 (all in fm−1)
for the p3/2 partial wave, and 0 → 0.5 → 1 → 3 fm−1

for the remaining spd partial waves. For 6Li, we took
the contours 0 → 0.18 − 0.17i → 0.5 → 3 fm−1 for
p1/2; 0 → 0.15 − 0.14i → 0.5 → 3 fm−1 for p3/2; and

0 → 0.25 → 0.5 → 3 fm−1 for the sd partial waves.
Each segment was discretized with 10 points. This is
sufficient for the energies and most of other physical
quantities, but one may need more points to describe
wave functions precisely, especially for the unbound res-
onant states that are affected by Coulomb interaction.
Hence, we choose 15 points for each segment to calcu-
late the two-proton angular correlation of the unbound
6Be. The HO basis was defined through the oscillator
length b = 2 fm and the maximum radial quantum num-
ber nmax = 10. The WS parameters for the A = 6 nuclei
are: the depth of the central term V0 = 47 MeV; spin-
orbit strength Vs.o. = 30 MeV; diffuseness a = 0.65 fm;
and the WS (and charge) radius R = 2 fm. With these
parameters we predict the 3/2− ground state (g.s.) of
5He at E = 0.732 MeV (Γ = 0.622 MeV), and its first
excited 1/2− state at E = 2.126 MeV (Γ = 5.838 MeV).

For 26O, we consider the 24O core [23, 54, 55]. In the
GSM variant, we used the contour 0 → 0.2 − 0.15i →
0.4 → 3 fm−1 for d3/2, and 0 → 0.5 → 1 → 3 fm−1 for
the remaining spd partial waves. For the HO basis we
took b = 1.75 fm and nmax = 10. The WS potential
for 26O has fitted in Ref. [23] to the resonances of 25O.
Its parameters are: V0 = 44.1 MeV, Vs.o. = 45.87 MeV,
a = 0.73 fm, and R = 3.6 fm.

The GCC calculations have been carried out with the
maximal hyperspherical quantum number Kmax = 40,
which is sufficient for all the physical quantities we study.
We checked that the calculated energies differ by as little
as 2 keV when varying Kmax from 30 to 40. Similar
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as in GSM, in GCC we used the Berggren basis for the
K 6 6 channels and the HO basis for the higher angular
momentum channels. The complex-momentum contour
of the Berggren basis is defined as: k = 0→ 0.3−0.2i→
0.5 → 0.8 → 1.2 → 4 (all in fm−1), with each segment
discretized with 10 points. We took the HO basis with
b = 2 fm and nmax = 20. As k2ρ = k2x + k2y, the energy
range covered by the GCC basis is roughly doubled as
compared to that of GSM. For the constant Λ in the
Pauli operator (2), we use 107 MeV. We have checked
that our results do not depend on Λ in the range Λ =
105 to 109 MeV.

For the core-valence Coulomb potential, we use the
dilatation-analytic form [49, 56, 57]:

U (Z)
c (r) = e2Zc

erf(r/νc)

r
, (14)

where νc = 4R0/(3
√
π) fm, R0 is the radius of the WS

potential, and Zc is the number of core protons.
We emphasize that the large continuum space, contain-

ing states of both parities, is essential for the formation
of the dineutron structure in nuclei such as 6He or 26O
[24, 25, 52, 58–60]. In the following, we shall study the
effect of including positive and negative parity continuum
shells on the stability of threshold configurations.

III. RESULTS

A. Structure of A=6 systems

We begin with the GCC-GSM benchmarking for the
A = 6 systems. Figure 2 shows the convergence rate for
the g.s. energies of 6He, 6Li, and 6Be with respect to
`max. (See Ref. [61] for a similar comparison between
GSM and complex scaling results.) While the g.s. ener-
gies of 6He and 6Be are in a reasonable agreement with
experiment, 6Li is overbound. This is because the Min-
nesota interaction does not explicitly separate the T =
0 and T = 1 channels. The structure of 6He and 6Be is
given by the T = 1 force, while the T = 0 channel that is
crucial for 6Li has not been optimized. This is of minor
importance for this study, as our goal is to benchmark
GCC and GSM not to provide quantitative predictions.
As we use different coordinates in GCC and GSM, their
model spaces are manifestly different. Still for `max = 10
both approaches provide very similar results, which is
most encouraging.

One can see in Fig. 2 that the calculations done
with Jacobi coordinates converge faster than those with
COSM coordinates. This comes from the attractive char-
acter of the nucleon-nucleon interaction, which results in
the presence of a di-nucleon structure (see discussion be-
low). Consequently, as T-type Jacobi coordinates well
describe the di-nucleon cluster, they are able to capture
correlations in a more efficient way than COSM coordi-
nates. This is in agreement with the findings of Ref. [34]
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FIG. 2. Comparison between GSM and GCC results for the
two-nucleon separation energies of 6Be, 6Li, and 6He obtained
in different model spaces defined by `max. The bars in the
panel (a) represent decay widths.

based on the complex scaling method with COSM co-
ordinates, who obtained the g.s. energy 6He that was
slightly less bound as compared to results of Ref. [39]
using Jacobi coordinates. In any case, our calculations
have demonstrated that one obtains very similar results
in GCC and GSM when sufficiently large model spaces
are considered. As shown in Table I, the energy difference
between GCC and GSM predictions for A = 6 systems
is very small, around 20 keV for majority of states. The
maximum deviation of ∼70 keV is obtained for the 3+

state of 6Li. However, because of the attractive charac-
ter of the T = 0 interaction, the GSM calculation for this
state has not fully converged at `max = 10.

TABLE I. Comparison between energies (in MeV) and widths
(in keV) predicted for 6He, 6Li, and 6Be in GSM and GCC
in the `max = 10 model space.

Nucleus Jπ GSM GCC
6He 0+ −0.933 −0.934

2+ 0.800(98) 0.817(42)
6Li 1+ −5.680 −5.698

3+ −2.097 −2.167
0+ −0.041 −0.048

6Be 0+ 1.314(25) 1.275(54)

Motivated by the discussion in Ref. [39], we have also
studied the effect of the `-dependent core-nucleus poten-
tial. To this end, we changed the WS strength V0 from 47
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MeV to 49 MeV for the ` = 1 partial waves while keeping
the standard strength for the remaining ` values. As seen
in Fig. 3, the convergence behavior obtained with Jacobi
and COSM coordinates is fairly similar to that shown in
Fig. 2, where the WS strength V0 is the same for all par-
tial waves. For `max = 12, the difference between GSM
and GCC energies of 6He becomes very small. This result
is consistent with the findings of Ref. [62] that the recoil
effect can indeed be successfully eliminated using COSM
coordinates at the expense of reduced convergence.

2 3 4 5 6 7 8 9 10 11 12
-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

GSMS 2n
 (M

eV
)
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0+6He g.s.

FIG. 3. Similar as in Fig. 2 but for the two-neutron sepa-
ration energy of 6He obtained with the angular-momentum
dependent Hamiltonian, see text for details.

In order to see whether the difference between the
model spaces of GCC and GSM can be compensated by
renormalizing the effective Hamiltonian, we slightly read-
justed the depth of the WS potential in GSM calculations
to reproduce the g.s. GCC energy of 6He at the model
space of `max = 7. As a result, the strength V0 changed
from 47 MeV to 47.05 MeV. Except for the 2+ state of
6He, the GSM and GCC energies for A = 6 systems got
significantly closer as a result of such a renormalization.
This indicates that the differences between COSM and
Jacobi coordinates can be partly accounted for by refit-
ting interaction parameters, even though model spaces
and asymptotic behavior are different.

GCC is also in rough agreement with GSM when com-
paring decay widths, considering that they are very sen-
sitive to the asymptotic behavior of the wave function,
which is treated differently with Jacobi and COSM co-
ordinates. Also, the presence of the recoil term in GSM,
which is dealt with by means of the HO expansion, is
expected to impact the GSM results for decay widths.

In order to check the precision of decay widths calcu-
lated with GCC, we adopted the current expression [63]:

Γ = i

∫
(Ψ†ĤΨ−ΨĤΨ†) dxdy∫

|Ψ|2dxdy
, (15)

which can be expressed in hyperspherical coordinates as
[64, 65]:

Γ = i
~2

m

∫
dΩ5Im[ψ ∂

∂ρψ
†]
∣∣∣
ρ=ρmax∫ ρmax

0
|ψ|2dρdΩ5

, (16)

where ρmax is larger than the nuclear radius (in general,
the decay width should not depend on the choice of ρmax).
By using the current expression, we obtain Γ=42 keV for
2+ state of 6He and Γ=54 keV for 0+ state of 6Be, which
are practically the same as the GCC values of Table I
obtained from the direct diagonalization.
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FIG. 4. Comparison between GSM and GCC results for the
two-neutron angular correlation in 6He for different model
spaces defined by `max.

We now discuss the angular correlation of the two va-
lence neutrons in the g.s. of 6He. Figure 4 shows GSM
and GCC results for model spaces defined by different
values of `max. The distribution ρ(θ) shows two maxima
[24, 34, 51, 52, 62, 66, 67]. The higher peak, at a small
opening angle, can be associated with a dineutron con-
figuration. The second maximum, found in the region of
large angles, represents the cigarlike configuration. The
GCC results for `max = 2 and 10 are already very close.
This is not the case for the GSM, which shows sensitivity
to the cutoff value of `. This is because the large contin-
uum space, including states of positive and negative par-
ity is needed in the COSM picture to describe dineutron
correlations [25, 52, 58–60]. Indeed, as `max increases,
the angular correlations obtained in GSM and GCC are
very similar. This indicates that Jacobi and COSM de-
scriptions of ρ(θ) are essentially equivalent provided that
the model space is sufficiently large.

In order to benchmark GCC and GSM calculations
for the valence-proton case, in Fig. 5 we compare two-
nucleon angular correlations for A = 6 nuclei 6He, 6Li,
and 6Be. Similar to Refs. [51, 52], we find that the
T = 1 configurations have a dominant S = 0 component,
in which the two neutrons in 6He or two protons in 6Be
are in the spin singlet state. The amplitude of the S = 1
density component is small. For all nuclei, GCC and
GSM angular correlations are close.

Similar to 6He, the two peaks in 6Be indicate dipro-
ton and cigarlike configurations [68] (see also Refs. [69–
73]). It is to be noted that the dineutron peak in 6He
is slightly higher than the diproton maximum in 6Be.
This is due to the repulsive character of the Coulomb in-
teraction between valence protons. The large maximum
at small opening angles seen in 6Li corresponds to the
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FIG. 5. Two-nucleon angular densities (total and in the S = 1 channel) in the g.s. configurations of 6He (a), 6Li (b), and 6Be
(c) obtained in GSM and GCC with `max = 10.

deuteron-like structure. As discussed in Ref. [66], this
peak is higher that the dineutron peak in 6He. Indeed,
the valence proton-neutron pair in 6Li is very strongly
correlated because the T = 0 interaction is much stronger
than the T = 1 interaction. The different features in
the two-nucleon angular correlations in the three A = 6
systems shown in Fig. 5 demonstrate that the angular
correlations contain useful information on the effective
interaction between valence nucleons.

B. Structure of unbound 26O

After benchmarking GSM and GCC for A = 6 systems,
we apply both models to 26O, which is believed to be a
threshold dineutron structure [13, 20–25]. It is a theo-

2 3 4 5 6 7 8 9 10 11 12
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

GSMS 2n
 (M

eV
)

GCC

0+26O g.s.

FIG. 6. Two-neutron separation energy of the g.s. of 26O
computed with GSM and GCC for different values of `max.

retical challenge to reproduce the resonances in 26O as
both continuum and high partial waves must be consid-
ered. As 24O can be associated with the subshell closure
in which the 0d5/2 and 1s1/2 neutron shells are occupied
[74], it can be used as core in our three-body model.

Figure 6 illustrates the convergence of the g.s. of 26O
with respect to `max in GSM and GCC calculations. It
is seen that in the GCC approach the energy converges
nearly exponentially and that the stable result is prac-
tically reached at `max = 7. While slightly higher in

energy, the GSM results are quite satisfactory, as they
differ only by about 30 keV from the GCC benchmark.
Still, it is clear that `max = 12 is not sufficient to reach
the full convergence in GSM.

The calculated energies and widths of g.s. and 2+ state
of 26O are displayed in Table II; they are both consis-
tent with the most recent experimental values [21]. The

TABLE II. Energies and widths (all in keV) predicted for 26O
in GSM and GCC in the `max = 12 model space. Also shown
are the dominant GSM (`1, `2) and GCC (`x, `y) configura-
tions.

Jπ GSM GCC

0+ 101 81% (d, d) 69 46% (p, p)
11% (f, f) 44% (s, s)

7% (p, p) 3% (d, d)
2+ 1137(33) 77% (d, d) 1150(14) 28% (f, p)

7% (p, p) 27% (p, f)
7% (d, s) 10% (d, d)

amplitudes of dominant configurations listed in Table II
illustrate the importance of considering partial waves of
different parity in the GSM description of a dineutron
g.s. configuration in 26O [25].

The g.s. wave function of 26O computed in GCC is
shown in Fig. 7 in the Jacobi coordinates. The cor-
responding angular distribution is displayed in Fig. 8.
Three pronounced peaks associated with the dineutron,
triangular, and cigarlike configurations [23, 75] can be
identified. In GCC, the (`x, `y) = (s, s), (p, p) compo-
nents dominate the g.s. wave function of 26O; this is con-
sistent with a sizable clusterization of the two neutrons.
In COSM coordinates, it is the (`1, `2) = (d, d) configu-
ration that dominates, but the negative-parity (f, f) and
(p, p) channels contribute with ∼20%. Again, it is en-
couraging to see that with `max = 10 both approaches
predict very similar two-nucleon densities.

In Table II we also display the predicted structure of
the excited 2+ state of 26O . The predicted energy is close
to experiment [21] and other theoretical studies, see, e.g.,
[22, 23, 76–78]. We obtain a small width for this state,
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FIG. 8. Two-neutron angular correlation for the 0+ g.s. (a)
and 2+

1 state (b) configuration of 26O computed with GCC
(solid line) and GSM (dashed line) with `max = 10. The dash-
dotted curve labeled GCC’ in panel (a) shows GCC results
obtained with the strength of the neutron-neutron interaction
reduced by 50%.

which is consistent with the GSM+DMRG calculations of
Ref. [25]. The GCC occupations of Table II indicate that
the wave function of the 2+ state is spread out in space,
as the main three configurations, of cluster type, only
contribute to the wave function with only 65%. When
considering the GSM wave function, the (d, d) configura-
tion dominates. The corresponding two-neutron angular
correlation shown in Fig. 8(b) exhibits a broad distribu-
tion with a maximum around 90◦. This situation is fairly

similar to what has been predicted for the 2+ state of 6He
[34, 52].

Finally, it is interesting to study how the neutron-
neutron interaction impacts the angular correlation. To
this end, Fig. 8(a) shows ρ(θ) obtained with the Min-
nesota neutron-neutron interaction whose strength has
been reduced by 50%. While there are still three peaks
present, the distribution becomes more uniform and the
dineutron component no longer dominates. We can this
conclude that the nn angular correlation can be used as
an indicator of the interaction between valence nucleons.

IV. CONCLUSIONS

We developed a Gamow coupled-channel approach in
Jacobi coordinates with the Berggren basis to describe
structure and decays of three-body systems. We bench-
marked the performance of the Gamow Shell Model
against the new approach. Both methods are capable
of considering large continuum spaces but differ in their
treatment of three-body asymptotics, center-of-mass mo-
tion, and Pauli operator. We demonstrated that the
Jacobi-coordinate-based framework (GCC) is accurate
and robust for three-body systems. It’s also encouraging
to see that, in spite of those differences, COSM-based
framework (GSM) yields fairly similar results, provided
that the continuum space is sufficiently large.

For benchmarking and illustrative examples we choose
6He, 6Li, and 6Be, and 26O – all viewed as a core-plus-
two-nucleon systems. We discussed the spectra, decay
widths, and nucleon-nucleon angular correlations in these
nuclei. The Jacobi coordinates capture cluster correla-
tions (such as dineutron and deuteron-type) more effi-
ciently; hence, the convergence rate of GCC is faster than
that of GSM.

For 26O, we demonstrated the sensitivity of nn angu-
lar correlation to the valence-neutron interaction. It will
be interesting to investigate this aspect further to pro-
vide guidance for future experimental investigations of
di-nucleon correlations in bound and unbound states of
dripline nuclei.

In summary, we developed an efficient approach to
structure and decays of three-cluster systems. The GCC
method is based on a Hamiltonian involving an interac-
tion between valence nucleons and a core-nucleon poten-
tial. The advantage of the model is its ability to cor-
rectly describe the three-body asymptotic behavior and
the efficient treatment of the continuum space, which is
of particular importance for the treatment of threshold
states and narrow resonances. The model can be easily
extended along the lines of the resonating group method
by introducing a microscopic picture of the core [15, 79].
Meanwhile, it can be used to elucidate experimental find-
ings on dripline systems, and to provide finetuned pre-
dictions to guide A-body approaches.
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