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Precision measurements of free neutron β-decay have been used to precisely constrain our un-
derstanding of the weak interaction. However the neutron Fierz interference term bn, which is
particularly sensitive to Beyond-Standard-Model tensor currents at the TeV scale, has thus far
eluded measurement. Here we report the first direct constraints on this term, finding bn =
0.067 ± 0.005stat

+0.090
−0.061sys, consistent with the Standard Model. The uncertainty is dominated by

absolute energy reconstruction and the linearity of the beta spectrometer energy response.

Precision measurements in nuclear beta decay includ-
ing lifetimes, angular/spin correlations and energy spec-
tra can be used to test predictions of the electroweak
sector of the Standard Model [1–7]. Current efforts are
underway to measure many of these quantities in nuclear
beta decay as well as in free neutron decay. The Fierz
interference term vanishes in the Standard Model but
serves as a probe for new physics in scalar and tensor
couplings [1, 4]. In this paper, a direct measurement of
the Fierz interference term for the free neutron (here de-
noted bn) is presented for the first time. This term is
particularly sensitive to tensor couplings that previous
extractions of the Fierz term in superallowed 0+ → 0+

beta decay are not.
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The Fierz interference term appears in the full form
of the differential neutron decay rate parameterized in
terms of correlation coefficients of neutron spin, ~σn =
~Jn/| ~Jn|, and momenta, ~pe, ~pν , and total energies, Ee, Eν ,
of the final state particles [8]

dΓ =W(Ee)
[
1 + a

~pe · ~pν
EeEν

+ bn
me

Ee
+A

~pe · ~σn
Ee

+B
~pν · ~σn
Eν

+ · · ·
]
dEedEν dΩedΩν ,

(1)

where W(Ee) includes the total decay rate (e.g. 1/τn)
and the phase space along with recoil-order, radiative and
Coulomb corrections. The correlation coefficients also in-
clude recoil-order corrections. The dimensionless param-
eter bn, is the only spin and momentum-direction inde-
pendent coefficient, and thus survives summation over
spin and integration over the final state angular distribu-
tions leaving a distribution dependent only on the elec-
tron energy, E:

dΓb(E) =
(

1 + bn
me

E

)
W(E) dE. (2)

For the neutron, a combination of both Fermi and
Gamow-Teller components, bF and bGT respectively, con-
tributes to the Fierz term (see Refs [4, 9]):

bn =
bF + 3λ2bGT

1 + 3λ2
, (3)
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where λ ≡ gA/gV is the ratio of the axial vector to vector
nucleon coupling constants. Note that the Fermi and
Gamow-Teller components can also be described in terms
of an effective field theory (EFT) framework [4, 10] that
relates new scalar and tensor quark level couplings to bF
and bGT respectively.

The best limits for bF are from a global fit to multiple
superallowed Jπ = 0+ → 0+ β-decay ft values. Hardy
and Towner [11] place this limit at bF = −0.0028±0.0026,
or |bF| < 0.0043 at 90% C.L. Several β decay experiments
have set limits on bGT using the influence of b on the cor-
relation parameters of Eq. (1) including 19Ne [12], 60Co
[13], 114In [14], 67Cu [15], and neutrino mass constraints
[16], which give limits in the range |bGT| < 0.04—0.13 at
90% confidence level. These limits are derived from the
consistency of the observed correlation coefficient with
the Standard Model prediction, assuming that bGT is the
dominant Beyond-Standard Model (BSM) contribution.
Reviews of limits on tensor contributions in nuclear β-
decay can be found in [2, 3, 5]. In the EFT approach
[4, 10] sensitive limits to new tensor couplings, including
bGT, can be obtained also from pion decay [17]. While,
at present, nuclear beta and pion decays provide the
strongest constraints on BSM tensor couplings to left-
handed neutrinos [4, 5, 10], measurements at the LHC
provide the best constraints for tensor couplings to right-
handed neutrinos.

For the free neutron, similar limits have been obtained
by using the precision correlation parameter A [18, 19].
While no measurements of the direct spectral extrac-
tion of the Fierz interference term have been published,
several precision measurements are underway using 6He
[20, 21] and the free neutron [22]. The sensitivity of these
searches is discussed in [23]. Extraction of the Fierz term
from measurements of neutron decay has the advantage
of the well-understood theoretical treatment of the de-
cay, eliminating the need for nuclear structure correc-
tions which complicate the interpretation of some nu-
clear decays. In particular, recent reviews such as ref
[5], for example, do not include some (nominally quite
stringent) tensor limits from suppressed nuclear decays
in which nuclear structure effects hinder the decay rel-
ative to strongly allowed decays. Because of its unique
characteristics, the UCNA experiment described below,
provides an opportunity to directly measure bn and thus
bGT with comparable precision to nuclear decays.

The ultracold neutron asymmetry (UCNA) experi-
ment is the first experiment[24] to use ultracold neutrons
(UCN) in a precision measurement of neutron decay cor-
relations. The 2010 data set from the UCNA experiment
provides a precision measurement of the β asymmetry
parameter, A, with a fractional error < 1% [25]. Because
of the 4π acceptance for the decay electrons, the very
low ambient and neutron-generated backgrounds (sig-
nal:noise > 120:1), and energy reconstruction at the 1%
level, this data set also provides a precision measurement
of the β decay spectrum. This allows, for the first time, a
direct spectral extraction of the Fierz interference term,

Figure 1. Schematic diagram of the UCNA spectrometer.

bn, for the free neutron. Experience with high precision
beta decay spectroscopy during the intensive search for a
neutrino with 17 keV rest mass for example, highlighted
the need for a detailed and quantitative analysis of scat-
tering and energy loss effects for these measurements [26].
Detailed models of the UCNA instrument response over
the past ten years of operation allow these effects to be
evaluated experimentally and provide a firm foundation
for the evaluation of sources of systematic uncertainty in
this experiment.

Details of the UCNA experiment are discussed in
[9, 25, 27, 28]; here the components of the experiment
that allow a measurement of the β spectrum are de-
scribed. A schematic diagram of the UCNA spectrometer
is shown in Fig. 1. UCN, generated by the UCN source
at the Los Alamos Neutron Science Center [29, 30], are
polarized by a 7T superconducting magnet and trans-
ported to the copper decay trap centered in the supercon-
ducting spectrometer [31] that provides a 1T spin-holding
field. UCN are confined by 0.7 µm thick beryllium-coated
mylar foils at the ends of the copper tube decay cham-
ber, trapping UCN while allowing decay electrons to pass
through and be transported, via the magnetic field of the
spectrometer, to two detectors, located on either end of
the decay trap. The magnetic field is reduced in the re-
gion of the detectors to 0.6T to reduce backscattering as
the incident trajectories are directed more normal to the
detector faces while the backscattered events see a mag-
netic pinch due to the field expansion which reverses the
direction for particles scattered well away from normal.

Each detector is composed of a multi-wire proportional
chamber (MWPC) [32] and a 3.5 mm thick plastic scin-
tillator to measure the electron energies. Scintillation
light from each detector is directed, via light guides, to-
wards four photomultiplier tubes (PMTs). Gain stabi-
lization is achieved using individual 207Bi sources em-
bedded in small scintillator blocks attached to each PMT
[25, 33]. Event triggers require signals above threshold in
at least two PMTs and valid events also require a signal
in the MWPC. The position measurement done by the
MWPC allows a calibration of the position-dependent
energy response of the scintillator system (e.g. due to op-
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tical transport in the scintillator and light guides) which
improves the electron energy reconstruction. This posi-
tion dependent response is measured by loading the spec-
trometer with neutron-activated xenon. By observing the
decay spectrum features (mainly the 915 keV endpoint
from 135Xe) as a function of position using the MWPC,
the position-dependent light transport of the scintilla-
tors is determined. The energy response and linearity of
each PMT is calibrated with conversion electron sources
(139Ce,113Sn, and 207Bi) inserted horizontally, transverse
to the spectrometer axis, at different locations across the
center of the decay trap. Energy loss due to the seal-
ing foils of each source is determined using a collimated
241Am alpha source and a silicon detector. Overall, the
energy response has a low energy threshold of ' 60 keV,
an energy resolution of 7%/

√
E (where E is the elec-

tron kinetic energy in MeV) dominated by photo-electron
statistics and a linearity of ' 1%. The uncertainty in the
absolute electron kinetic energy varies from ±2.5 keV at
130 keV to ±6.5 keV at 1 MeV.

For the extraction of the β decay asymmetry in the
UCNA experiment, a super-ratio [25, 27] is formed in
order to cancel, to first order, differences in detection
efficiency between the two detectors as well as spin-
dependent loading efficiencies of the UCN. Because the
UCNA data is taken with polarized neutrons, the β de-
cay spectrum includes an energy dependent modification
of the spectrum due to the presence of the asymmetry
term, A in Eq. (1). To remove this dependence from the
spectral analysis a “super-sum” is introduced, described
below.

In the UCNA apparatus, four detector count rates are
measured corresponding to the two detectors and the two
neutron spin directions. These rates can be written as a
function of decay electron total energy (E) and angle (θ)
between the neutron spin and electron momentum by us-
ing Eq. (1) and integrating over the neutrino momentum:

r↑1(E) = 1
2η1N

↑ (1 + bnme/E +Ay(E)) W(E),

r↑2(E) = 1
2η2N

↑ (1 + bnme/E −Ay(E)) W(E),

r↓1(E) = 1
2η1N

↓ (1 + bnme/E −Ay(E)) W(E),

r↓2(E) = 1
2η2N

↓ (1 + bnme/E +Ay(E)) W(E),

(4)

where e.g. r↑2 corresponds to the rate in detector 2 for
spin ↑, y(E) ≡ 〈P 〉β 〈cos θ〉, with 〈P 〉 the average po-
larization, and β = v/c. These four rates are expressed
in terms of the detector efficiencies, η1,2(E). The UCN
loading numbers for each spin state, N↑ and N↓, differ
typically by 50% due to polarized UCN transport through
the magnetic fields of the polarizing magnet and the spec-
trometer magnet.

An electron energy spectrum that does not have a sig-
nificant dependence on A can be generated [up to O
(bnA

2)] by forming a super-sum as the sum of the ge-
ometric means of the spin/detector pairs:

Σ(E) ≡ 1
2

√
r↑1r
↓
2 + 1

2

√
r↑2r
↓
1 , (5)

where, using the rates given in Eq. (4),

Σ(E) =
√
η1η2N↑N↓(1 + bnme/E)W(E). (6)

While this does not eliminate the detector efficiencies, it
does remove dependence on A from the extraction of bn.

For extraction of bn and for analysis of potential sys-
tematic uncertainties, a GEANT4 simulation [34] de-
scribed in [25, 28], has been modified to include the Fierz
term and to incorporate a newer version of GEANT4
(Geant4.10.2).

In the simulation, the 1 T magnetic field of the spec-
trometer directs electrons towards the detectors on either
end, where energy loss in the UCN trap windows, the
MWPC and its windows and the plastic scintillator are
calculated. The detectors are located in a field expan-
sion region of 0.6T to suppress electron backscattering.
A post processor is then used to convert the energy loss
into photons, including light quenching via Birk’s Law
[35] that was previously calibrated for the UCNA scin-
tillator [36]. This result is then converted into a PMT
signal including the effects of energy resolution, due to
PMT response shot noise, and low-energy threshold ef-
fects.

Two types of initial energy distributions are used for
the simulation described above: a pure Standard Model
(i.e. bn = 0 in Eq. (2)) and a maximal Fierz distribution
in which

dΓb(E) =
(me

E

)
W(E) dE. (7)

In both cases the recoil-order, radiative and Coulomb
corrections are included (see [28]). Note that these cor-
rections produce a small me/E term of order 1 × 10−3

[4]. The Fierz term is then extracted by fitting the exper-
imental decay spectrum, Σ(E), to a superposition of the
Monte Carlo generated Standard Model super-sum and
the maximal Fierz super-sum with bn as a free parameter.

The direct, spectral measurement of bn is essentially
a measurement of a small distortion of the energy spec-
trum compared to the Standard Model distribution. For
example, with a simple allowed phase space spectrum, a
bn = 0.1 corresponds to a global shift in the peak of the
neutron decay spectrum downward by ' 5 keV. Thus
small uncertainties in the energy response (specifically
the absolute energy and linearity) can lead to significant
systematic uncertainties in the extraction of bn.

In contrast, statistical uncertainties can be quite small
for a large data sample. The statistical uncertainties can
be estimated using [37] where, assuming bn ' 0 and using

the full energy spectrum, σb = 7.5/
√
N where N is the

number of detected events. Because of detection energy
threshold effects, fitting the spectrum at low energies can
be problematic. Using a restricted energy range as in [37],
and with energy dependent detector efficiency,

σ−2b = m2
eN
(〈
E−2

〉
−
〈
E−1

〉2)
, (8)

which, for the electron kinetic energy window used in
this work from 150 keV to 650 keV, gives σb = 11.4/

√
N .
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Even for this range, with 2.0× 107 events from the 2010
UCNA data set, the corresponding statistical uncertainty
is σb < 0.003, which is much smaller than the systematic
uncertainties as described below.

An initial assessment of systematic effects was per-
formed using an analytical model in place of a full simu-
lation [9]. Here the electron energy is generated from the
allowed phase space and a model of detector response is
used to account for detector efficiency, electron backscat-
tering, background subtraction and energy response ef-
fects including energy resolution, non-linearities and ab-
solute energy calibration. These studies indicated rela-
tively modest 1σ systematic uncertainties (σb) from back-
ground subtractions (±0.005), energy resolution (±0.01)
and electron backscattering from spectrometer windows
and detectors (±0.005). The small uncertainty due to
background subtraction is due to the good signal:noise
as discussed in Refs [25, 28]. The backscattering effects
are minimized by using events that trigger only one scin-
tillator and its adjacent MWPC. Monte Carlo estimates
(which have been benchmarked with detected backscat-
tering events) indicate that only 0.5% of events of this
type experience backscattering in the spectrometer win-
dows in front of the detectors. These events experience a
small amount of additional energy loss in these windows
and are then detected in the opposite detector. The en-
ergy dependence of the detector efficiency is estimated to
give σb ≤ 0.02, assuming an uncertainty of ±20% in the
calculated inefficiency. The detector inefficiency due to
energy deposition in material along the electron beam
path (e.g. detector windows) is determined from the
GEANT4 Monte Carlo. The PMT threshold response is
determined from the data using overdetermined triggers,
since a trigger requires only two PMTs above thresh-
old. We note that the efficiency is > 90% above the
minimum energy used for the analysis and the simulated
energy deposition is expected to be well-reproduced by
the GEANT4 simulation (see [38]). However these an-
alytical studies suggest considerably larger uncertainties
(≥ ±0.05) from non-linearities and absolute energy cali-
bration.

To better quantify the uncertainty due to energy re-
sponse, the full GEANT4 simulation of the spectrometer
is used to investigate how the uncertainty in energy re-
sponse could contribute to a false bn. As discussed above,
this reconstructed kinetic energy response, ER, is deter-
mined from a series of calibration runs with conversion
electron sources. These sources have an approximately
mono-energetic conversion electron with true kinetic en-
ergy ET , determined by averaging the individual electron
lines over the resolution of the detectors. However this
calibration has a corresponding uncertainty [28] due to
variations in the detector position response, uncertain-
ties in gain stabilization, etc. These uncertainties are
indicated in Fig. 2 for the four energies used in the cali-
bration from the three conversion electron sources. The
ER determined from the calibrations assumes a linear
response for conversion of energy deposition to light out-
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207Bi (995 keV)
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Figure 2. Top: Reconstructed kinetic energy vs. true kinetic
energy for the conversion electron calibration sources. Uncer-
tainty bands for the quadratic energy response functions used
in the Monte Carlo estimate of systematic uncertainty in bn
are also shown but barely visible due to well-characterized re-
sponse. Bottom: ∆E, the difference between true energy and
reconstructed energy vs. true energy. The bands are the same
as for the top plot. The mean energies of conversion electron
sources and their corresponding 1σ uncertainty in ∆E are also
shown.

put after correction for light quenching discussed above.
The assumption of linear response is confirmed in Fig. 2
as the observed ∆E = ET − ER is consistent with zero
within its uncertainty. These uncertainties are the stan-
dard deviation of many global fits to the energy response
based on 10-12 separate source location runs taken dur-
ing each of five separate time periods spread throughout
the experiment.

To quantify the systematic uncertainty in bn due to
energy response, Monte Carlo simulations with bn = 0
are performed where the energy response is varied with
variations consistent within the uncertainties of ∆E. To
do this, the ER is assumed to be a non-linear polynomial
as a function of ET . The coefficients for this polyno-
mial are then sampled in order to reproduce the calibra-
tion uncertainties (assumed Gaussian). Both quadratic
and cubic polynomials were sampled in separate studies
(higher orders are not justified due to the limited im-
pact on bn), but the results are not significantly differ-
ent. The envelopes for these sampled energy responses
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Figure 3. Distribution of fitted values of bn for the simulations
with adjusted energy response.

Contribution σb

Background Subtraction ± 0.005

Energy Resolution ± 0.01

Electron Backscattering ± 0.005

Detector Inefficiency ± 0.02

Energy Response +0.087/−0.056

Table I. Summary of 1σ systematic uncertainties.

for a quadratic polynomial (both 1σ and 2σ) are shown
as bands in Fig. 2. To assess the systematic effects for
these varied energy responses, generated energy spectra
from each varied response are fit, with bn as a free param-
eter, to the Monte Carlo spectrum without varied energy
response and bn = 0. The results of the fitted values of
bn for 500 simulated responses are shown in Fig. 3, with
the quadratic polynomial assumption. From this distri-
bution a systematic uncertainty due to energy response
can be determined for both a 1σ(+0.087

−0.056) and 90%(+0.157
−0.104)

confidence interval. A summary of the 1σ systematic un-
certainties is given in Table I. The experimental decay
spectrum Σ(E) vs. reconstructed electron kinetic en-
ergy is shown in Fig. 4 along with the full Monte Carlo
spectrum for bn = 0. The expected spectrum from the
Standard Model without energy response is shown as the
dashed curve to indicate the effects of detector energy
thresholds and energy resolution when compared to the
measured spectrum. The lower panel in Fig. 4 shows
the shape factor, defined as (ΣM − ΣMC)/ΣMC, where
ΣM is the measured spectrum and ΣMC is the simulated
spectrum with bn = 0. A value for the Fierz interfer-
ence term from the measured data is then determined by
fitting the measured shape factor to that expected from
Eq. (2). This fit is shown in the lower panel of Fig. 4
as the solid line. Since the systematic uncertainties in-
crease significantly at both low and high energies (i.e.
near detector threshold and β spectrum endpoint) due
to signal:noise degradation and energy response uncer-
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Figure 4. Top: Measured energy spectrum compared with
the full GEANT4 Monte Carlo spectrum for bn = 0 which in-
cludes the detector response. The dashed line is the predicted
Standard Model spectrum in the absence of detector response.
Bottom: Measured shape factor (as defined in text) with sta-
tistical uncertainties. The solid line is the best-fit value for
bn for the energy range of 150 keV < ER < 650 keV. The
approximate 1σ and 2σ uncertainty range due to energy re-
sponse is shown, using Monte Carlo simulations with non-zero
bn sampled from Fig. 3 at the appropriate confidence levels.
The minimum in the uncertainty bands occurs since only bn
is varied in the simulations which produces a simple shift in
the spectrum after normalization.

tainty, the spectrum is only fitted for electron kinetic en-
ergy 150 keV < ER < 650 keV. The fit to the data shows
significant disagreement compared to the statistical un-
certainties of the measurement likely because of the large
systematic uncertainties due to energy response. We note
that the statistical uncertainties can be increased by a
factor 2.5 to produce a reasonable fit (i.e. χ2 ' 1), but
this still leads to a statistical uncertainty much less than
the systematic uncertainties discussed above.

The best fit value is bn = 0.067 ± 0.005stat
+0.090
−0.061sys,

where the systematic uncertainty is from the analysis dis-
cussed above. This corresponds to a 90% confidence limit
interval of −0.041 < bn < 0.225 and, since the error on bF
is much smaller, a similar limit for bGT. The result is con-
sistent with a vanishing bn as predicted by the Standard
Model and is dominated by the systematic uncertainty
in energy response.

This is the first direct extraction of bn from a mea-
surement of the decay electron energy spectrum. Future
proposed spectral measurements of Fierz interference [7]
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(with sensitivity goals ≤ 0.005) will require significant
improvements in characterization of the energy response
of the detection system. More modest improvements in
sensitivity to bGT for UCNA are being investigated via a
simultaneous fit to both the spectral and asymmetry (A)
energy dependence.
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