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The high-precision cross-section data for the reaction γp → K∗+Λ reported by the CLAS Col-
laboration at the Thomas Jefferson National Accelerator Facility have been analyzed based on an
effective Lagrangian approach in the tree-level approximation. Apart from the t-channel K, κ,
K∗ exchanges, the s-channel nucleon (N) exchange, the u-channel Λ, Σ, Σ∗(1385) exchanges, and
the generalized contact term, the contributions from the near-threshold nucleon resonances in the
s-channel are also taken into account in constructing the reaction amplitude. It is found that, to
achieve a satisfactory description of the differential cross section data, at least two nucleon resonances
should be included. By including the N(2060)5/2− resonance, which is responsible for the shape
of the angular distribution near the K∗Λ threshold, and one of the N(2000)5/2+, N(2040)3/2+,
N(2100)1/2+, N(2120)3/2− and N(2190)7/2− resonances, one can describe the cross-section data
quite well, with the fitted resonance masses and widths compatible with those advocated by the
Particle Data Group. The resulted predictions of the beam, target, and recoil asymmetries are
found to be quite different from various fits, indicating the necessity of the spin observable data for
γp → K∗+Λ to further pin down the resonance contents and associated parameters in this reaction.

PACS numbers: 25.20.Lj, 13.60.Le, 14.20.Gk, 13.75.Jz

I. INTRODUCTION

The extraction of nucleon resonances (N∗’s) from ex-
perimental data and understanding their nature are es-
sential to get insight into the non-perturbative regime of
Quantum Chromodynamics (QCD). Our current knowl-
edge of most of the N∗’s is mainly coming from the anal-
yses of πN scattering and π photoproduction off the nu-
cleon. One of the problem with this situation is that the
quark models [1–3] predict the existence of many more
resonances than found in these reactions. This is known
as the missing resonance problem [4]. The number of
baryon resonances in the lattice QCD calculations [5, 6]
are also increasing.
Some of the nucleon resonances are known to couple

weakly to the πN channel, escaping their detections in
these reactions. This forces us to search for those missing
resonances in channels other than πN , where they couple
more strongly so that they can be better established. In
the present work we investigate the K∗Λ photoproduc-
tion reaction in search for clear evidence of resonances
that may be revealed through their couplings to the K∗Λ
channel. There are many attractive features in studying
this reaction. First of all, resonances with sizable hidden
ss̄ content can have a better chance to be revealed in this
reaction than in π production reactions. Also, since the
threshold of K∗Λ is much higher than that of πN , the
K∗Λ photoproduction off nucleon is more suited than the
π production reactions for investigating the nucleon reso-
nances in a less-explored higherN∗ mass region. Another
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advantage of K∗Λ photoproduction in studying N∗’s is
that it acts as an “isospin filter” isolating the N∗’s with
isospin I = 1/2.

Experimentally, so far the available data for the re-
action γp → K∗+Λ are all reported by the CLAS Col-
laboration at the Thomas Jefferson National Accelerator
Facility (JLab). The first preliminary total cross section
data for center-of-mass energy, W , from threshold up to
2.85 GeV were reported by Guo et al. in 2006 in a confer-
ence proceedings [7]. Later, the preliminary differential
cross section data for this reaction from W = 2.22 GeV
to 2.42 GeV were reported by Hicks et al. in 2011 in
another conference proceedings [8]. It was only in 2013
that the first high-statistics cross section data for this
reaction were published by Tang et al. in Ref. [9], where
the measured differential cross sections and the extracted
total cross sections are presented from threshold up to
W ≈ 2.85 GeV. Also, a few preliminary differential cross
section data for the γn → K∗0Λ reaction have been re-
ported by Mattione in a conference proceedings [10].

The CLAS differential cross section data for γp →
K∗+Λ [9] show some structures near the K∗+Λ thresh-
old energy which may indicate some possible contri-
bution from nucleon resonance(s). In fact, in this
energy region, there are six resonances advocated in
the most recent Particle Data Group (PDG) review
[11] that might potentially contribute to this reaction,

namely, N(2000)5/2
+
, N(2040)3/2

+
, N(2060)5/2

−
,

N(2100)1/2
+
, N(2120)3/2

−
, and N(2190)7/2

−
. Among

them, N(2190)7/2− is rated as a four-star resonance
but with rather broad mass (2100 − 2200 MeV) and

width (300 − 700 MeV); N(2000)5/2
+
, N(2060)5/2

−

and N(2120)3/2− are rated as two-star resonances and,
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N(2040)3/2
+

and N(2100)1/2
+

as one-star resonances.

This means that the four-star N(2190)7/2
−

resonance
needs further investigation to improve the accuracy of
its parameters, and the other five two- and one-star
resonances need more information, especially from the
reaction channels (other than those cited in PDG) to
which these resonances couple more strongly, to improve
the evidences of their existences and to extract their
parameters. The high-statistics cross section data for
γp → K∗+Λ from the CLAS Collaboration [9] promote
the studies along this direction.

Theoretically, several works based on effective La-
grangian approaches have already been devoted to the
study of K∗Λ photoproduction reaction [12–17]. In 2006,
Oh and Kim have investigated the non-resonant contri-
butions for γN → K∗Λ within an isobar model, and
they found that the t-channel K-exchange, which causes
a sharp raise of the differential cross sections at forward-
scattering angles, dominates this reaction process [12].
Further in late 2006, they have examined the contribu-
tion of scalar meson κ, and concluded that the t-channel
κ-exchange in γp → K∗+Λ is rather small [13]. In
2010, Ozaki et al. have studied the γp → K∗+Λ re-
action in a Regge model [14]. They have obtained the
total cross sections compatible with CLAS’s preliminary
data [7], and found that the contributions from the K∗

trajectory and reggeized contact term are much bigger
than those in the isobar model of Ref. [12]. (However,
we point out here that the Regge model of Ref. [18]
used in Ref. [14] is based on incorrect dynamical as-
sumptions, as shown in Ref. [19].) In 2011, Kim et

al. [15] have included the contributions from the res-

onances N(2080)3/2
−

and N(2200)5/2
−

based on the
theoretical models of Refs. [12, 13] in order to describe
the preliminary differential cross section data from CLAS
[8]. They have found that the non-resonant contributions
dominate the K∗Λ photoproduction reaction, while the
resonance N(2080)3/2

−
plays a crucial role in explain-

ing the enhancement of the near-threshold production
rate; the contribution from N(2200)5/2

−
is rather small.

When the first high-statistics cross section data from
CLAS was published in 2013 [9], it was found that all
-mentioned theoretical calculations [12–15] significantly
underestimate the cross sections in the range of (labo-
ratory) photon energy of 2.1 GeV < Eγ < 3.1 GeV.
Then in 2014, Kim et al. have re-investigated [16] the
K∗Λ photoproduction reaction to accommodate the most
recent CLAS data [9]. They have considered four nu-

cleon resonances, namely N(2000)5/2+, N(2060)5/2−,

N(2120)3/2
−
and N(2190)7/2

−
, in addition to the non-

resonant contributions as included in Ref. [15], and found
that apart from the significant contributions from the t-
channel K and κ exchanges, the s-channel nucleon reso-
nances N(2120)3/2

−
and N(2190)7/2

−
play very impor-

tant roles in reproducing the experimental cross section
data. The contribution from the resonance N(2060)5/2

−

was found to be small but noticeable, while that from
N(2000)5/2

+
was found to be almost negligible. In

Ref. [17], the total cross sections and the differential cross
sections at three selected energies for γN → K∗Λ are
investigated within a Regge approach. (The dynamical
assumptions [18] of this Regge analysis are also marred
by incomplete dynamical assumptions [19].) It is found
that the K and K∗ trajectories dominate the the process
of K∗+Λ photoproduction. The preliminary differential
cross section data for γn → K∗0Λ [10] have been also
analyzed recently by Wang and He [20] in an effective
Lagrangian approach.

The work of Ref. [16] presents so far the only detailed
theoretical analysis of the most recent high-statistics dif-
ferential cross section data for γp → K∗+Λ reported
by the CLAS Collaboration [9]. It describes the total
cross section data quite well in the photon energy re-
gion of Eγ < 3.5 GeV, and the differential cross section
data have also been qualitatively described. Neverthe-
less, there is still some room for improvement in their
results for the differential cross sections, especially, near
the K∗+Λ threshold, where the nucleon resonances are
relevant. Figure 1 illustrates this issue; there, a compar-
ison of the differential cross sections from the theoretical
calculation of Ref. [16] (blue dashed lines) with the most
recent CLAS data [9] (scattered symbols) at some se-
lected energies in the near-threshold region is shown. The
numbers in parentheses denote the photon laboratory in-
cident energy, Eγ , (left number) and the total center-
of-mass energy of the system, W , (right number). The
black solid lines represent the results from model I of our
present work which will be discussed in detail in Sec. III.
It is clearly seen from Fig. 1 that there is still some room
for improvement in the differential cross section results
of Ref. [16]. We mention that in Ref. [16] the resonance

parameters of N(2000)5/2
+
and N(2060)5/2

−
are taken

from Ref. [21], the parameters of N(2190)7/2
−
are taken

from Ref. [22], and the parameters of N(2120)3/2
−

are
determined by a fit to the experimental data.

In this work, we investigate the γp → K∗+Λ reac-
tion based on an effective Lagrangian approach in the
tree-level approximation. We expect that a better de-
scription of the data for this reaction will allow for a
more reliable extraction of the resonance content and
their associated parameters. One of the major differ-
ences of our theoretical model compared with that of
Refs. [15, 16] is that in the latter a common form fac-
tor is introduced in the reaction amplitudes in order to
preserve gauge invariance, while in our work, following
Refs. [23–26], a generalized contact current – that ac-
counts effectively for the interaction current arising from
the unknown parts of the underlying microscopic model
– is introduced in such a way that the full photoproduc-
tion amplitude satisfies the generalized Ward-Takahashi-
Identity (WTI) and thus it is fully gauge invariant. As
a consequence, our model is free from such an artificial
constraint as the use of a common form factor. More-
over, and most relevantly, we adopt a rather different
strategy in choosing the nucleon resonances to be con-
sidered in our model. Instead of including all of them,
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FIG. 1. (Color online) Status of theoretical description of the differential cross sections for γp → K∗+Λ at selected energies in
the near threshold region. The numbers in parentheses denote the photon laboratory incident energy (left number) and the
total center-of-mass energy of the system (right number). The blue dashed lines represent the results from Ref. [16], and the
black solid lines denote the results from model I of our present work which will be discussed later. The scattered symbols are
the most recent data from CLAS Collaboration [9].

we introduce the nucleon resonances in the present work
as few as possible with the resonance parameters being
adjusted to reproduce the data. We find that apart from
the t-channel K, κ, K∗ exchanges, the s-channel nucleon
(N) exchange, the u-channel Λ, Σ, Σ∗(1385) exchanges,
and the generalized contact current, at least two nucleon
resonances near the K∗Λ threshold should be included
in the s-channel in order to obtain a satisfactory descrip-
tion of the CLAS high-statistics differential cross section
data. By including the N(2060)5/2− resonance, which,
as we shall show later, is responsible for the shape of
the angular distribution near the K∗Λ threshold, and
one of the N(2000)5/2

+
, N(2040)3/2

+
, N(2100)1/2

+
,

N(2120)3/2− and N(2190)7/2− resonances, we get five
fits with roughly the similar fit qualities. The result-
ing differential and total cross sections are both in very
good agreement overall with the most recent CLAS data
[9]. In particular, the angular dependence of the differ-
ential cross sections near the K∗+Λ threshold is now, for
the first time, described quite well. The fitted resonance
masses and widths are compatible with those advocated
by the PDG [11]. The non-resonant terms, dominated
by the t-channel K exchange, are found to have very sig-
nificant contributions. The predictions for the photon
beam asymmetry, target nucleon asymmetry, and recoil
Λ asymmetry are also given; they are found to be more
sensitive to the details of the model than the cross sec-
tions, indicating the necessity of data on these spin ob-
servables to further constrain the resonance contents and

their parameters in this reaction.

Of course, a more complete analysis and extraction of
nucleon resonances requires a coupled channels approach
[27–31], so far developed mostly for pseudo-scalar meson
production reactions. In this approach, the unitarity and
analyticity of the reaction amplitude can be maintained
and the search of poles (associated with the resonances)
in the complex energy plane can be performed. This
is beyond the scope of the present work which may be
considered as a first step toward developing such a more
complete model.

The present paper is organized as follows. In Sec. II,
we briefly introduce the framework of our theoretical
model. There, the strategy for imposing gauge invari-
ance of the photoproduction amplitude according to the
generalized WTI, the specific forms of the effective inter-
action Lagrangians, the resonance propagators and the
phenomenological form factors are explicitly presented.
In Sec. III, the results of our model calculations are
shown, including a comparison of our calculated cross
sections with the most recent high-statistics CLAS data,
an analysis of the γp → K∗+Λ reaction dynamics, and
a discussion of the resulting resonance contents and as-
sociated parameters. Our predicted beam, target, and
recoil asymmetries in γp → K∗+Λ are also shown and
discussed in this section. Finally a brief summary and
conclusions are given in Sec. IV.
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FIG. 2. Generic structure of the K∗ photoproduction ampli-
tude for γN → K∗Λ. Time proceeds from left to right.

II. FORMALISM

Following a full field theoretical approach of Refs. [23–
26], the full reaction amplitude for γN → K∗Λ can be
expressed as

Mνµ = Mνµ
s +Mνµ

t +Mνµ
u +Mνµ

int , (1)

with ν and µ being the Lorentz indices of vector meson
K∗ and photon γ, respectively. The first three terms
Mνµ

s , Mνµ
t , and Mνµ

u stand for the s-, t-, and u-channel
pole diagrams, respectively, with s, t, and u being the
Mandelstam variables of the internally exchanged parti-
cles. They arise from the photon attaching to the exter-
nal particles in the underlying ΛNK∗ interaction vertex.
The last term, Mνµ

int , stands for the interaction current
which arises from the photon attaching to the internal
structure of the ΛNK∗ interaction vertex. All four terms
in Eq. (1) are diagrammatically depicted in Fig. 2.
In the present work, the following contributions, as

shown in Fig. 2, are considered in constructing the s-,
t-, and u-channel amplitudes: (a) N and N∗’s exchanges
in the s-channel, (b) K, κ, and K∗ meson exchanges
in the t-channel, and (c) Λ, Σ, and Σ∗(1385) hyperon
exchanges in the u-channel. The exchanges of other hy-
peron resonances with higher masses in the u-channel are
tested to have tiny contributions and thus are omitted in
the present work in order to reduce the model parame-
ters. Using an effective Lagrangian approach, one can,
in principle, obtain explicit expressions for these ampli-
tudes. However, the exact calculation of the interaction
current Mνµ

int is impractical, as it obeys a highly non-
linear equation and contains diagrams with very compli-
cated interaction dynamics. Furthermore, the introduc-
tion of phenomenological form factors makes it impossi-
ble to calculate the interaction current exactly even in
principle. Following Refs. [23–25], we model the interac-
tion current by a generalized contact current,

Mνµ
int = Γν

ΛNK∗(q)Cµ +Mνµ
KRft. (2)

Here Γν
ΛNK∗(q) is the vertex function of ΛNK∗ coupling

given by the Lagrangian of Eq. (21),

Γν
ΛNK∗(q) = −igΛNK∗

[

γν − i
κΛNK∗

2MN
σναqα

]

(3)

with q being the 4-momentum of the outgoing K∗ me-
son; Mνµ

KR is the Kroll-Ruderman term given by the La-
grangian of Eq. (35),

Mνµ
KR = gΛNK∗

κΛNK∗

2MN
σνµQK∗ , (4)

with QK∗ being the electric charge of K∗; ft in Eq. (2) is
the phenomenological form factor attached to the ampli-
tude of t-channelK∗-exchange, which is given in Eq. (43);
Cµ is an auxiliary current, which is non-singular, intro-
duced to ensure that the full photoproduction amplitude
of Eq. (1) satisfies the generalized WTI and thus is fully
gauge invariant. Following Refs. [24, 25], we choose Cµ

for γp → K∗+Λ as

Cµ = −QK∗

ft − F̂

t− q2
(2q−k)µ−QN

fs − F̂

s− p2
(2p+k)µ, (5)

with

F̂ = 1− ĥ (1− fs) (1− ft) . (6)

Here p, q, and k are 4-momenta of the incomingN , outgo-
ing K∗ and the incoming photon, respectively; QN(K∗)

is the electric charge of N (K∗); fs is the phenomeno-

logical form factor for s-channel N -exchange. ĥ is an
arbitrary function, except that it should go to unity in
the high-energy limit to prevent the “violation of scaling
behavior” [32]. For the sake of simplicity, in the present

work it is taken to be ĥ = 1.
In the rest of this section, we present the effective

Lagrangians, the resonance propagators and the phe-
nomenological form factors employed in the present work.

A. Effective Lagrangians

The effective interaction Lagrangians used in the
present work for the production amplitudes are given be-
low. For further convenience, we define the operators

Γ(+) = γ5 and Γ(−) = 1, (7)

and the field-strength tensors

K∗µν = ∂µK∗ν − ∂νK∗µ, (8)

Fµν = ∂µAν − ∂νAµ, (9)

withK∗µ and Aµ denoting the K∗ vector-meson field and
electromagnetic field, respectively.
The electromagnetic interaction Lagrangians required

to calculate the non-resonant Feynman diagrams are

LNNγ = − eN̄

[(

êγµ − κ̂N

2MN
σµν∂ν

)

Aµ

]

N, (10)
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LγK∗K∗ = − e
(

K∗ν ×K∗
µν

)

3
Aµ, (11)

LγκK∗ = e
gγκK∗

2MK∗

FµνK∗
µνκ, (12)

LγKK∗ = e
gγKK∗

MK
εαµλν (∂αAµ) (∂λK)K∗

ν , (13)

LΛΛγ = e
κΛ

2MN
Λ̄σµν (∂νAµ) Λ, (14)

LΣΛγ = e
κΣΛ

2MN
Λ̄σµν (∂νAµ)Σ

0 +H. c., (15)

LΣ∗Λγ = ie
g
(1)
Σ∗Λγ

2MN
Λ̄γνγ5F

µνΣ∗0
µ

− e
g
(2)
Σ∗Λγ

(2MN )
2

(

∂νΛ̄
)

γ5F
µνΣ∗0

µ +H. c., (16)

where e is the elementary charge unit and ê stands for
the charge operator; κ̂N = κp (1 + τ3) /2+κn (1− τ3) /2,
with the anomalous magnetic moments κp = 1.793 and
κn = −1.913; κΛ = −0.613 is the Λ anomalous mag-
netic moment and κΣΛ = −1.61 is the anomalous mag-
netic moment for the Σ0 → Λγ transition; MN , MK

and MK∗ stand for the masses of N , K and K∗, respec-
tively; εαµλν is the totally antisymmetric Levi-Civita ten-
sor with ε0123 = 1. The coupling constant gγκK∗ = 0.214
is taken from Refs. [15, 16], determined by a vector-meson
dominance model proposed by D. Black et al. [33]. The
value of the electromagnetic coupling gγKK∗ is deter-
mined by fitting the radiative decay width of K∗ → Kγ
given by the PDG [11], which leads to gγK±K∗± = 0.413,
with the sign inferred from gγπρ [34] via the flavor SU(3)
symmetry considerations in conjunction with the vector-
meson dominance assumption. The electromagnetic cou-

plings g
(1)
Σ∗Λγ and g

(2)
Σ∗Λγ should, in principle, be fixed

by the helicity amplitudes of the transition reaction
Σ∗0 → Λγ. Nevertheless, the latest PDG [11] is still de-
void of such information, and thus we treat the coupling

g
(1)
Σ∗Λγ as a fit parameter and let the coupling g

(2)
Σ∗Λγ be

determined by the PDG value of the partial decay width,
ΓΣ∗0→Λγ = 0.45 MeV [11].

The resonance-nucleon-photon transition Lagrangians
are

L1/2±
RNγ = e

g
(1)
RNγ

2MN
R̄Γ(∓)σµν (∂

νAµ)N +H. c., (17)

L3/2±
RNγ = − ie

g
(1)
RNγ

2MN
R̄µγνΓ

(±)FµνN

+ e
g
(2)
RNγ

(2MN)
2 R̄µΓ

(±)Fµν∂νN +H. c., (18)

L5/2±
RNγ = e

g
(1)
RNγ

(2MN)2
R̄µαγνΓ

(∓) (∂αFµν)N

± ie
g
(2)
RNγ

(2MN)
3 R̄µαΓ

(∓) (∂αFµν) ∂νN

+H. c., (19)

L7/2±
RNγ = ie

g
(1)
RNγ

(2MN)
3 R̄µαβγνΓ

(±)
(

∂α∂βFµν
)

N

− e
g
(2)
RNγ

(2MN)4
R̄µαβΓ

(±)
(

∂α∂βFµν
)

∂νN

+H. c., (20)

where R designates the nucleon resonance, and the su-
perscript of LRNγ denotes the spin and parity of the res-

onance R. The coupling constants g
(i)
RNγ (i = 1, 2) are fit

parameters.
The effective Lagrangians for meson-baryon interac-

tions are

LΛNK∗ = − gΛNK∗Λ̄

[(

γµ − κΛNK∗

2MN
σµν∂ν

)

K∗
µ

]

N

+H. c., (21)

LΛNκ = − gΛNκΛ̄κN +H. c., (22)

LΛNK = − gΛNKΛ̄Γ(+)

[(

iλ+
1− λ

2MN
∂/

)

K

]

N

+H. c., (23)

LΣNK∗ = − gΣNK∗Σ̄

[(

γµ − κΣNK∗

2MN
σµν∂ν

)

K∗
µ

]

N

+H. c., (24)

LΣ∗NK∗ = − i
g
(1)
Σ∗NK∗

2MN
Σ̄∗

µγνγ5K
∗µνN

+
g
(2)
Σ∗NK∗

(2MN)
2 Σ̄

∗
µγ5K

∗µν∂νN

− g
(3)
Σ∗NK∗

(2MN)2
Σ̄∗

µγ5 (∂νK
∗µν)N +H. c.. (25)

where the parameter λ was introduced in LΛNK to in-
terpolate between the pseudo-vector (λ = 0) and the
pseudo-scalar (λ = 1) couplings. Unlike for the pion
coupling, where the low-energy chiral perturbation the-
ory calls for the pseudo-vector coupling over the pseudo-
scalar coupling, for Kaons, the situation is much less
clear. In fact, some authors have employed pseudo-scalar
coupling [16] and others have allowed for both types of
couplings [35]. On the other hand, it is a common prac-
tice to rely on SU(3) flavor symmetry for obtaining the
effective Lagrangians when studying the Kaon-baryon
systems, which implies a pseudo-vector ΛNK coupling,
since the pseudo-vector coupling is used in the NNπ
vertex as demanded by chiral symmetry. For example,
Haidenbauer et al. [36], have obtained an excellent de-
scription of the hyperon-nucleon system in chiral effec-
tive field theory, i.e., with pseudo-vector ΛNK coupling.
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In the present work, following Refs. [29, 36], λ is set to
be zero, i.e., we adopt the pure pseudo-vector type cou-
pling. Although we shall not show any results with the
pseudo-scalar coupling for the ΛNK vertex in the present
work, we just mention that we have tested this coupling
type during the trial calculations and found that it leads
to results that are systematically worse by a factor of
∼ 1.5 in χ2 than those obtained using the pseudo-vector
coupling. The coupling constant gΛNK = 13.99 is taken
from Ref. [29], determined by the flavor SU(3) symmetry.
The coupling constants gΛNK∗ , κΛNK∗ , gΣNK∗ , κΣNK∗

and g
(1)
Σ∗NK∗ are also fixed by the flavor SU(3) symmetry

[29, 37],

gΛNK∗ = − 1

2
√
3
gNNω −

√
3

2
gNNρ = −6.21, (26)

κΛNK∗ =
fΛNK∗

gΛNK∗

= −
√
3

2

fNNρ

gΛNK∗

= 2.76, (27)

gΣNK∗ = − 1

2
gNNω +

1

2
gNNρ = −4.26, (28)

κΣNK∗ =
fΣNK∗

gΣNK∗

=
1

2

fNNρ

gΣNK∗

= −2.33, (29)

g
(1)
Σ∗NK∗ = − 1√

6
g∆Nρ = 15.96, (30)

where the empirical values gNNρ = 3.25, gNNω = 11.76,
κNNρ = gNNρ/fNNρ = 6.1 and g∆Nρ = −39.10 from

Refs. [25, 29] are used. As the g(2) and g(3) terms in the
∆Nρ interactions have never been seriously studied in
literature, the corresponding couplings for the Σ∗NK∗

interactions, i.e. g
(2)
Σ∗NK∗ and g

(3)
Σ∗NK∗ , cannot be deter-

mined via flavor SU(3) symmetry, and we ignore these
two terms in the present work, following Refs. [15, 16].
The coupling constant gΛNκ = −8.312 is taken from Ni-
jmegen model NSC97a [38], determined by a fit to the
ΛN − ΣN scattering data.
The effective Lagrangians for hadronic vertices includ-

ing nucleon resonances are

L1/2±
RΛK∗ = − gRΛK∗

2MN
R̄Γ(∓)

{[(

γµ∂
2

MR ∓MN
± i∂µ

)

− fRΛK∗

gRΛK∗

σµν∂
ν

]

K∗µ

}

Λ +H. c., (31)

L3/2±
RΛK∗ = − i

g
(1)
RΛK∗

2MN
R̄µγνΓ

(±)K∗µνΛ

+
g
(2)
RΛK∗

(2MN)
2 R̄µΓ

(±)K∗µν∂νΛ

∓ g
(3)
RΛK∗

(2MN)
2 R̄µΓ

(±) (∂νK
∗µν) Λ + H. c., (32)

L5/2±
RΛK∗ =

g
(1)
RΛK∗

(2MN)2
R̄µαγνΓ

(∓) (∂αK∗µν) Λ

± i
g
(2)
RΛK∗

(2MN)
3 R̄µαΓ

(∓) (∂αK∗µν) ∂νΛ

∓ i
g
(3)
RΛK∗

(2MN)
3 R̄µαΓ

(∓) (∂α∂νK
∗µν) Λ

+H. c., (33)

L7/2±
RΛK∗ = i

g
(1)
RΛK∗

(2MN)
3 R̄µαβγνΓ

(±)
(

∂α∂βK∗µν
)

Λ

− g
(2)
RΛK∗

(2MN)
4 R̄µαβΓ

(±)
(

∂α∂βK∗µν
)

∂νΛ

± g
(3)
RΛK∗

(2MN)
4 R̄µαβΓ

(±)
(

∂α∂β∂νK
∗µν
)

Λ

+H. c.. (34)

In the present work, the coupling constant fRΛK∗ in

L1/2±
RΛK∗ is set to be zero, and the g

(2)
RΛK∗ and g

(3)
RΛK∗ terms

in L3/2±
RΛK∗ , L5/2±

RΛK∗ and L7/2±
RΛK∗ are ignored for the sake

of simplicity. The parameters gRΛK∗ and g
(1)
RΛK∗ are fit

parameters. Actually, only the products of the electro-
magnetic couplings and the hadronic couplings of nucleon
resonances are relevant to the reaction amplitudes, and
these products are what we really fit in practice.
The effective Lagrangian for the Kroll-Ruderman term

of γN → ΛK∗ reads

LγNΛK∗ = − igΛNK∗

κΛNK∗

2MN
Λ̄σµνAνQ̂K∗K∗

µN

+H. c., (35)

with Q̂K∗ being the electric charge operator of the out-
going K∗ meson. This interaction Lagrangian is ob-
tained by the minimal gauge substitution ∂µ → Dµ ≡
∂µ − iQ̂K∗Aµ in the ΛNK∗ interaction Lagrangian of
Eq. (21). The couplings gΛNK∗ and κΛNK∗ have been
given in Eqs. (26) and (27).

B. Resonance propagators

In principle, an energy-dependent width of resonance is
more realistic than a constant value multiplied by a step
function. However, as discussed in Ref. [39], the cross
section data alone are usually insensitive to the energy
dependence of the resonance width. For the reaction of
γN → K∗Λ, so far we only have the differential cross sec-
tion data while the data for spin observables are not avail-
able. Hence, it is justified to treat the resonance width as
a constant instead of a complex energy-dependent func-
tion for the sake of simplicity.
For spin-1/2 resonance propagator, we use the ansatz

S1/2(p) =
i

p/−MR + iΓ/2
, (36)

where MR and Γ are the mass and width of resonance R
with four-momentum p, respectively.
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Following Refs. [40–42], the prescriptions of the prop-
agators for resonances with spin-3/2, -5/2 and -7/2 are

S3/2(p) =
i

p/ −MR + iΓ/2

(

g̃µν +
1

3
γ̃µγ̃ν

)

, (37)

S5/2(p) =
i

p/ −MR + iΓ/2

[

1

2

(

g̃µαg̃νβ + g̃µβ g̃να
)

− 1

5
g̃µν g̃αβ +

1

10

(

g̃µαγ̃ν γ̃β + g̃µβ γ̃ν γ̃α

+ g̃ναγ̃µγ̃β + g̃νβγ̃µγ̃α
)

]

, (38)

S7/2(p) =
i

p/ −MR + iΓ/2

1

36

∑

PµPν

(

g̃µ1ν1 g̃µ2ν2 g̃µ3ν3

− 3

7
g̃µ1µ2

g̃ν1ν2 g̃µ3ν3 +
3

7
γ̃µ1

γ̃ν1 g̃µ2ν2 g̃µ3ν3

− 3

35
γ̃µ1

γ̃ν1 g̃µ2µ3
g̃ν2ν3

)

, (39)

where

g̃µν = − gµν +
pµpν
M2

R

, (40)

γ̃µ = γν g̃νµ = −γµ +
pµp/

M2
R

, (41)

and the summation over Pµ (Pν) in Eq. (39) goes over
the 3! = 6 possible permutations of the indices µ1µ2µ3

(ν1ν2ν3). These high-spin resonance propagators and
their variations have been applied with success in a num-
ber of resonance studies [15, 16, 26, 43, 44].

C. Form factors

Each hadronic vertex obtained from the Lagrangians
given in Sec. II A is accompanied with a phenomeno-
logical form factor to parametrize the structure of the
hadrons and to normalize the behavior of the produc-
tion amplitude. Following Refs. [15, 16], for intermediate
baryon exchange we take the form factor as

fB(p
2) =

(

Λ4
B

Λ4
B + (p2 −M2

B)
2

)n

, (42)

where p denotes the four-momentum of the intermediate
baryon, the exponent n is taken to be 2 for all baryon
exchanges, and the cutoff ΛB is taken to be 900 MeV
for all N , Λ, Σ and Σ∗ exchanges [15, 16]. For the s-
channel resonance exchanges, the cutoffs are treated as fit
parameters. For intermediate meson exchange, we take
the form factor as

fM (q2) =

(

Λ2
M −M2

M

Λ2
M − q2

)m

, (43)

where q represents the four-momentum of the intermedi-
ate meson, the exponent m is taken to be 2 for all meson

exchanges, MM and ΛM designate the mass and cutoff
mass of exchanged mesonM . We chooseMκ = 800 MeV,
and for other exchanged mesons, the experimental values
are used for their masses. The cutoffs ΛK∗ = 900 MeV
and Λκ = 1100 MeV are adopted in the present work
which are also taken from Ref. [16]. The cutoff ΛK is
treated as a free parameter and will be determined by a
fit to the experimental differential cross section data.
Note that the gauge-invariance feature of our photo-

production amplitude is independent of the specific form
of the form factors.

III. RESULTS AND DISCUSSION

As mentioned in Sec. I, the work of Ref. [16] presents
so far the only detailed theoretical analysis of the
most recent high-statistics differential cross section data
from CLAS [9] for the K∗+Λ photoproduction reaction.

There, four nucleon resonances, namely N(2000)5/2
+
,

N(2060)5/2−, N(2120)3/2− and N(2190)7/2−, have

been considered with the parameters of N(2000)5/2
+

and N(2060)5/2
−

taken from Ref. [21], the parameters

of N(2190)7/2
−

taken from a relativistic quark model

calculation [22], and the parameters of N(2120)3/2
−
de-

termined by a fit to the experimental data. It was found
that the N(2120)3/2− and N(2190)7/2− resonances are
essential in describing the measured cross section data.
The N(2060)5/2− resonance was found to have a rel-
ative small but still noticeable contribution, while the
N(2000)5/2+ was found to be negligible in this reaction.
In the present work, we adopt a rather different strat-

egy than Ref. [16] for investigating the roles of nucleon
resonances in the γp → K∗+Λ reaction. That is, in addi-
tion to the Born term which is composed of the t-channel
K, κ, K∗ exchanges, the u-channel Λ, Σ, Σ∗(1385) ex-
changes, the s-channel N exchange, and the generalized
contact current as illustrated in Fig. 2, we introduce
the s-channel nucleon resonances as few as possible in
constructing the reaction amplitudes in order to achieve
a satisfactory fit to the high-statistics differential cross
section data from CLAS [9]. In practice, we allow in
our model all those six resonances near the K∗Λ thresh-
old, namely, N(2000)5/2

+
, N(2040)3/2

+
, N(2060)5/2

−
,

N(2100)1/2+, N(2120)3/2−, and N(2190)7/2−. After
numerous trials with the inclusion of different number of
nucleon resonances and different combinations of them,
we found that, if only one resonance is included, the χ2

per data point, χ2/N , are all larger than 3. The qual-
ity of the corresponding fit results are then found to be
significantly poor. In particular, in the low-energy re-
gion one gets a nearly isotropic angular distribution in
the differential cross sections and, consequently, failing
to reproduce the shape of the angular distribution near
the ΛK∗ threshold exhibited by the CLAS data. Thus,
they are treated as unacceptable fit results. If two reso-
nances are included, it is found that there are five pos-
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TABLE I. Model parameters in five different fits. Here βΛK∗ is the branching ratio for resonance decay to ΛK∗, and A1/2,
A3/2 are helicity amplitudes for resonance radiative decay to γp. For the definition of other parameters, see Sec. II. The stars
below resonance names denote the overall status of these resonances evaluated by the most recent PDG [11]. The numbers in
brackets below the resonance masses and widths represent the corresponding values estimated by the most recent PDG [11].

Model I II III IV V

χ2/N 1.35 1.79 1.85 2.09 2.18

g
(1)
Σ∗Λγ 0.74 ± 0.16 −0.90± 0.17 −0.87± 0.14 −0.60± 0.18 −0.22± 0.16

ΛK [MeV] 1000 ± 6 1019± 4 993 ± 7 1030 ± 3 1018± 4

N∗ Name N(2060)5/2− N(2060)5/2− N(2060)5/2− N(2060)5/2− N(2060)5/2−

∗∗ ∗∗ ∗∗ ∗∗ ∗∗
MR [MeV] 2033 ± 2 2009± 5 2032 ± 3 2043 ± 4 2038± 3

ΓR [MeV] 65± 4 213± 20 81± 8 202 ± 16 77± 8

ΛR [MeV] 1188 ± 20 965± 16 1126 ± 12 889 ± 13 981± 22
√
βΛK∗A1/2 [10−3 GeV−1/2] 0.69 ± 0.06 0.03± 0.01 0.33± 0.03 0.60 ± 0.06 −0.21± 0.02

√
βΛK∗A3/2 [10−3 GeV−1/2] −1.39 ± 0.13 −0.10± 0.01 −1.10± 0.10 −1.94± 0.19 −1.56± 0.15

N∗ Name N(2000)5/2+ N(2040)3/2+ N(2120)3/2− N(2190)7/2− N(2100)1/2+

∗∗ ∗ ∗∗ ∗∗∗∗ ∗
MR [MeV] 2115 ± 22 2200 ± 62 2203 ± 9 2243 ± 6 2100 ± 15

[≈ 2120] [2100 ∼ 2200] [≈ 2100]

ΓR [MeV] 450 ± 10 540± 7 433± 33 450 ± 33 450± 9

[300 ∼ 700]

ΛR [MeV] 1644 ± 21 1564 ± 36 1726 ± 58 936 ± 13 1431 ± 31
√
βΛK∗A1/2 [10−3 GeV−1/2] −2.87 ± 0.81 3.12± 0.85 4.53± 0.38 5.21 ± 0.33 −7.22± 1.40

√
βΛK∗A3/2 [10−3 GeV−1/2] −1.04 ± 0.29 7.87± 2.13 7.84± 0.65 3.71 ± 0.24

sible sets of resonance combinations which result in fits
with χ2/N . 2.18 and these fits are visually in good
agreement with the data. All these five sets require a
common resonance, N(2060)5/2−. The other resonance

is one of the N(2000)5/2
+
, N(2040)3/2

+
, N(2100)1/2

+
,

N(2120)3/2
−
, and N(2190)7/2

−
resonances. The other

combinations of two resonances all ended up in χ2/N &
2.50, noticeably of inferior quality even with the naked
eye as they fail to reproduce the shape of the measured
angular distribution near threshold. Hence, they are not
considered as acceptable fit results. A comparison of the
fit results with two resonances, one with χ2/N = 2.18
(accepted result corresponding to model V as it will be
discussed later) and another with χ2/N = 2.50 (un-
accepted result with the resonances N(2000)5/2+ and
N(2040)3/2+), is shown in Fig. 3. The difference in the
fit quality is clearly seen even with the naked eye. Now, if
three resonances are considered, the χ2/N improves only
slightly by less than 12% compared with that with two
resonances. Therefore, in the present work we do not pur-
sue the analysis with three or more resonances further.
This will be postponed until the data for spin observables
become also available. These will impose more stringent
constraints on the resonance contents which, in turn, will
restricts the number of possible resonance combinations
with three or more resonances. With this in mind, we

conclude that one needs at least two resonances to obtain
a reasonable fit of the cross section data for γp → K∗+Λ
in the present approach.

We now turn to the discussion of the details of our anal-
ysis of the data with two nucleon resonances included. As
mentioned above, in this case there are five different sets
of the resonance combination which result in fits describ-
ing the differential cross section data of K∗+ photopro-
duction reaction satisfactorily according to our criterium
of χ2/N < 2.5. The fitted values of all the adjustable pa-
rameters in those five models are listed in Table I. There,
the stars below the resonance names denote the overall
status of these resonances evaluated by the most recent
review by the PDG [11], and the numbers in brackets be-
low the resonance masses and widths represent the corre-
sponding estimates given by the PDG. The uncertainties
in the resulting parameters are estimates arising from the
uncertainties (error bars) associated with the fitted ex-
perimental differential cross section data points. For each
resonance, apart from its mass, total width and cutoff pa-
rameter in the form factor, the table also shows the cor-
responding reduced helicity amplitudes

√
βΛK∗Aj , where

βΛK∗ denotes the branching ratio to the decay channel
ΛK∗ and Aj stands for the helicity amplitude with spin
j. We mention that only the product of these two quan-
tities can be well constrained in the present work as the
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FIG. 3. (Color online) Differential cross sections for γp → K∗+Λ as a function of cos θ in the center-of-mass frame in the near
threshold region. The black solid lines correspond to the fit result including the N(2000)5/2+ and N(2040)3/2+ resonances
with χ2/N = 2.50. The blue dashed lines represent the results from model V with χ2/N = 2.18. The scattered symbols are
the most recent data from CLAS Collaboration [9]. The numbers in parentheses denote the photon laboratory incident energy
(left number) and the total center-of-mass energy of the system (right number), in MeV.

s-channel (resonance) amplitudes are sensitive only to
the product of the hadronic and electromagnetic coupling
constants, a feature common to single channel calcula-
tions. Following Ref. [26], here we have assumed a radia-
tive branching ratio of βpγ = 0.2% for all the resonances
to calculate the corresponding helicity amplitudes from
the associated product of the hadronic and electromag-
netic coupling constants. It is seen from Table I that the

coupling g
(1)
Σ∗Λγ varies much from one model to another.

This is simply because the u-channel Σ∗(1385) exchange
has negligible contribution to the reaction γp → K∗+Λ
(cf. Fig. 5 and Fig. 6 discussed later in this section). The
fitted values of ΛK , the cutoff parameter in the K-meson
exchange contribution, are very close to each other in
models I-V — they are all around 1.0 GeV. This value
is determined mainly by the data in the high energy re-
gion, where the K meson exchange dominates the whole
amplitude of this reaction (cf. Fig. 5 and Fig. 6). The
fitted values of the mass of N(2060)5/2− from various
models are also very close to each other, while those of
its decay width are not. In each of the models I-V, the
value of the fitted mass of the other resonance is compat-
ible with that quoted in PDG [11]. The fit result for the
width of the four-star N(2190)7/2− is compatible with
the PDG estimate which has a large range. The widths
of the N(2000)5/2+, N(2040)3/2+, N(2120)3/2−, and
N(2100)1/2+ resonances obtained in the present work
are somewhat larger than those obtained in the other
analyses listed in the PDG. We note that the reduced

helicity amplitudes for N(2060)5/2
−

corresponding to
model II are much smaller than those corresponding to
the other models. This is caused by the smaller value of
the resulting resonance mass of 2009± 5 MeV for model
II, leading to a much smaller branching ratio βΛK∗ . Note
that the R → ΛK∗ decay threshold is 2007 MeV, thus,
for model II, the N(2060)5/2− resonance is only 2 MeV
above the threshold. We will discuss further details be-
low in connection with the differential cross section re-
sults shown in Figs. 4-5 and the total cross section results
shown in Fig. 6.

The results for differential cross sections correspond-
ing to the model parameters listed in Table I are shown
in Fig. 4, where the black solid lines, green dash-double-
dotted lines, black solid lines, red dash-dotted lines and
cyan dotted lines represent the results from models I-
V, respectively. One sees that the overall description
of the CLAS high-statistics angular distribution data is
fairly satisfactory in all of the five models. In particular,
the angular dependence of the differential cross sections
near the ΛK∗ threshold is qualitatively in good agree-
ment with the data, much better than the description
of Ref. [16] (cf. Fig. 1). This is because in all our
models I-V, there is a significant contribution from the
N(2060)5/2

−
resonance in the low energy region that is

responsible for reproducing the observed shape of the an-
gular distribution through an interference with the large
K-meson exchange contribution near the ΛK∗ thresh-
old (cf. Fig. 5). In contrast, Ref. [16] has a rather
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FIG. 4. (Color online) Differential cross sections for γp → K∗+Λ as a function of cos θ in the center-of-mass from models I
(black solid lines), II (green dash-double-dotted lines), III (black solid lines), IV (red dash-dotted lines) and V (cyan dotted
lines). The scattered symbols denote the CLAS data [9]. The photon incident energy binning is 100 MeV. The numbers
in parentheses denote the centroid value of the photon laboratory incident energy (left number) and the corresponding total
center-of-mass energy of the system (right number), in MeV.
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FIG. 5. (Color online) Differential cross sections for γp → K∗+Λ as a function of cos θ in the center-of-mass from model I
(black solid lines). The scattered symbols denote the CLAS data [9]. The blue dashed, green dash-double-dotted, and magenta
dash-dotted lines represent the individual contributions from K, N(2060)5/2− and N(2000)5/2+ exchanges, respectively. The
photon incident energy binning is 100 MeV. The numbers in parentheses denote the centroid value of the photon laboratory
incident energy (left number) and the corresponding total center-of-mass energy of the system (right number), in MeV.
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small contribution of N(2060)5/2
−

and clear discrep-
ancies are seen in its description of the near thresh-
old differential cross section data (cf. Fig. 1). This

consideration explains why the mass of N(2060)5/2
−

is
fairly well constrained as can be seen from the result-
ing values in Table I for models I-V. Figure 5 shows
the individual contributions in model I, where the black
solid lines correspond to the total contribution (coherent
sum of all the individual contributions), the blue dashed
lines represent the contribution from the t-channel K-
meson exchange, the green dash-double-dotted lines, the
s-channelN(2060)5/2− exchange, and the magenta dash-
dotted lines denote the contribution from the s-channel
N(2000)5/2+ resonance exchange. The contributions
from the other terms are too small to be clearly seen
with the scale used, and thus, they are not plotted. We
note that the contributions other than the N(2060)5/2

−

resonance and K-meson exchange are practically negli-
gible in the low-energy region. The contributions from
individual terms in models I-V as a function of energy
can be better seen in the total cross section (cf. Fig. 6).
In Fig. 5, one sees that the K-meson exchange is very
important in the whole energy region considered. Espe-
cially, it plays a crucial role in reproducing the observed
forward-peaked angular distribution at higher energies.
This is a general feature observed in many reactions at
high energies, where the t-channel mechanism accounts
for the behavior of the cross section at small t. This
explains why the cutoff parameter values (ΛK), which
is the only adjustable parameter for K-meson exchange,
are close to each other in all of our models I-V. In other
words, ourK-meson exchange contribution – which prac-
tically exhausts the calculated non-resonant background
in the entire energy region – is largely constrained by the
data at high energies. This leads to a much more un-
ambiguous determination of the resonance contributions
in the present model. On the other hand, it is also very
interesting to see how the Regge trajectory description
of the present reaction would affect the strong angular
dependence at very forward angles at high energies ex-
hibited by the K-meson exchange mechanism where no
data exist due to the limitations in the forward-angle ac-
ceptance of the CLAS detector [9]. The gauge-invariant
dynamical Regge approach put forward in Ref. [19] seems
well suited for this purpose; however, this is left for a fu-
ture investigation.

Before we leave the discussion of the differential cross
section results, we mention that, although the present
calculation describes the differential cross section data
quite well overall and much better than any of the earlier
calculations, the agreement with the data is not perfect.
Indeed, the details of the observed angular behavior at
W = 2.217 GeV is not quite described by any of our
models I-V. Also, our models show a slight tendency to
miss the data at the neighboring energies of W = 2.174
and 2.259 GeV. As mentioned before, the inclusion of one
more resonance didn’t help improve much the fit quality.
A further investigation is required here.
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FIG. 6. (Color online) Total cross sections with individual
(resonance, Born term, K) contributions for γp → K∗+Λ.
The panels from top to bottom correspond to the results of
mode I-V, as indicated. The data are from CLAS [9] but not
included in the fit.
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FIG. 7. (Color online) Same as in Fig. 6 for model I. The
blue dash-dotted line corresponds to the results with reso-
nance N(2060)5/2− switched off, while the green dashed line
to those with N(2000)5/2+ switched off. The black solid line
is the results of model I shown in Fig. 6.
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FIG. 8. (Color online) Same as in Fig. 6 for model IV, except
that it has been artificially forced to better reproduce the
measured differential cross section at W = 2.217 GeV (red
solid line). The black dashed line is the results of model IV
shown in Fig. 6.

Figure 6 shows the predicted total cross sections (black
solid line) together with the individual contributions
from the K-exchange (orange dash-dotted line), Born
term (blue double-dash-dotted line) and the resonances
(green dash-double-dotted line and cyan dashed line) ob-
tained by integrating the corresponding results for differ-
ential cross sections from our models I-V. We recall that
the Born term consists of the coherent sum of all the con-
tributions other than the s-channel resonance exchanges,
i.e., the coherent sum of the s-channel N exchange, the t-
channel K, K∗ and κ exchanges, the u-channel Λ, Σ and
Σ∗(1385) exchanges, and the generalized contact current.
Note that the total cross section data are not included in
our fits. In this regard, it should be emphasized that the
CLAS total cross section data have been obtained by inte-
grating the measured differential cross sections and suffer
from the limited forward-angle acceptance of the CLAS

detector [9], especially at high energies where the cross
section exhibits a strong angular dependence at very for-
ward angles (cf. Figs. 4-5). The lack of differential cross
section data at very forward angles and high energies re-
flects in less accurate CLAS total cross section data at
these energies. Hence, caution must be exercised when
confronting these data with theoretical predictions. One
sees from Fig. 6 that in all of our models I-V, the pre-
dicted total cross sections are in fairly good agreement
with the data over the entire energy region considered,
with one exception that, in model IV, the predicted to-
tal cross sections exhibit a small valley structure around
W ∼ 2.2 GeV; we come back to this point later. The K
meson exchange is seen to play an important role in the
whole energy region, especially at high energies. Its con-
tribution in all of the models I-V is more or less similar to
each other, as the only adjustable parameter for K me-
son exchange, the cutoff mass ΛK in the form factor, is
constrained by the differential cross section data at high
energies, where this contribution practically dominates
this observable. We observe that our total cross section
predictions exhibit a slight tendency to overestimate the
data at very high energies, although the data are much
less accurate and may suffer from the limitations in the
CLAS detector acceptance as mentioned above. Nev-
ertheless, as mentions previously in connection to the
discussion of the differential cross sections, it would be
interesting to see how the Regge trajectory description of
the present reaction along the lines suggested in Ref. [19]
would affect the cross section at these high energies. The
contributions from the non-resonant terms other than the
K-meson exchange are negligible, as can be seen by com-
paring the Born term (red dash-double-dotted line) with
the K exchange (blue short dashed line) contribution.
The negligible contribution of the u-channel Σ∗(1385)
exchange – which is a part of the non-resonant term –

explains why the coupling g
(1)
Σ∗Λγ varies so much from

one model to another in Table I with roughly similar fit
qualities.

The broad bump exhibited by the total cross section
is caused by the coherent sum of the considered two res-
onances and K-meson exchange contributions. In all of
the models I-V, the sharp rise of the cross section from
the threshold up to W ∼ 2.15 GeV is caused by the
K-meson exchange and N(2060)5/2

−
resonance. The

other resonance contributes mostly at higher energies.
These are better seen in Fig. 7, where the effects of the
N(2060)5/2− and N(2000)5/2+ on the total cross sec-
tion are shown by switching off these resonances one at
a time. One clearly sees that the K-meson exchange is
responsible for the sharp raise of the total cross section
right from the threshold followed by the build up due
to N(2060)5/2

−
as the energy increases up to W ∼ 2.1

GeV. In Ref. [16], the differential cross section near the
ΛK∗ threshold is not well described (cf. Fig. 1), and con-
sequently, the total cross section in this energy region is,
to some extent, underestimated. There, the broad bump
is mainly described by the sum of the contributions of
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FIG. 9. (Color online) Photon beam asymmetries as functions of cosine of the K∗ emission angle θ in the center-of-mass
system at two energies for the γp → K∗+Λ reaction. The numbers in parentheses denote the photon laboratory incident energy
(left number) and the total center-of-mass energy of the system (right number), in MeV. The blue double-dash-dotted curve,
green dashed curve, black solid curve, cyan dash-dotted curve, and orange dash-double-dotted curve represent the predictions
corresponding to the models I-V, respectively.
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FIG. 10. (Color online) Same as in Fig. 9 for target nucleon asymmetries.

N(2120)3/2
−
, N(2060)5/2−, and N(2190)7/2

−
, and the

sharp rise of the total cross section from the threshold
is dominantly caused by the combination of the contri-
butions from the N(2120)3/2

−
resonance and the Born

term. We mention that the contribution of the K meson
exchange in our models is a little bit different from that
in Ref. [16], not only because the cutoff mass ΛK is fit-
ted to be around 1.0 GeV in our model while it is fixed
to be 1.1 GeV in Ref. [16], but also due to the pseudo-
vector coupling chosen in our models for the ΛNK vertex
(see Eq. (23)) in contrast to the pseudo-scalar coupling
adopted in Ref. [16].

We now come back to the issue of the dip structure
exhibited by the total cross section result of model IV
which is caused by the interference of the N(2060)5/2

+

and N(2190)7/2
−
resonances as can be seen from Fig. 6.

Clearly, the data do not show such a structure. A careful
inspection of the differential cross section fit results of
model IV reveals that this structure is due to the model

not being able to quite describe the measured differential
cross section data at one energy, namely, at W = 2.217
GeV. We note that, actually, not only model IV, but
all the other models are unable to quite reproduce the
angular behavior exhibited by the data at this energy.
The relevant difference between the results of model IV
and the other models that causes the valley structure in
model IV is that model IV under-predicts the data in the
angular region of 0 . cos θ . 0.5, while the other models
also under-predict in this angular region but over-predict
for other angles. As a result, the total cross section pre-
dictions for other models agree with the data but it is
under-predicted by model IV at this energy. In fact, if
one forces to describe the differential cross section better
at W = 2.217 GeV (at the expenses of a slightly dete-
riorating description for the neighboring energies), the
dip structure in the prediction of model IV disappears
completely as illustrated in Fig. 8.

As can be seen in Figs. 4-5 and as has been discussed
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FIG. 11. (Color online) Same as in Fig. 9 for recoil Λ asymmetries.

above, the models I-V describe the most recent CLAS
data on the differential cross sections for K∗+ photopro-
duction fairly well overall and with similar fit qualities
in the full energy-range considered. However, they ex-
hibit quite different resonance contents, as indicated in
Table I and clearly seen in the total cross section predic-
tions shown in Fig. 6. By now, it is a well known fact that
the cross section data alone (even with high-statistics) do
not impose enough stringent constraints on the fits to pin
down the model parameters, especially, on the resonance
contents and associated resonance parameters. Such a
feature has also been found and discussed in Ref. [39]
in a study of η′ photoproduction. One expects that the
spin observables may be more sensitive to the dynami-
cal contents of different models. In Figs. 9-11, we show
the predictions of the photon beam asymmetry (Σ), tar-
get nucleon asymmetry (T ), and recoil Λ asymmetry (P )
corresponding to our models I-V. As we can see, unlike
the cross sections, the predictions for spin observables
vary considerably among different models. For energies
where the photon beam asymmetry is less sensitive to
the models, the target nucleon asymmetry and the recoil
Λ asymmetry are quite sensitive, and vice versa. There-
fore, overall, a combined analysis of the data of these spin
observables is expected to impose much more stringent
constraints on the resonance contents and help determine
better the model parameters for γp → K∗+Λ. We hope
that these spin observables can be measured in experi-
ments in the near future.

IV. SUMMARY AND CONCLUSION

In the present work, we have analyzed the most recent
high-statistic cross section data reported by the CLAS
Collaboration for the γp → K∗+Λ reaction [9]. The
analysis has been based on an effective Lagrangian ap-
proach in the tree-level approximation. Apart from the
t-channelK, κ, K∗ exchanges, the s-channel nucleon (N)
exchange, the u-channel Λ, Σ, Σ∗(1385) exchanges, and

the generalized contact current, the contributions from
the near-threshold nucleon resonances in the s-channel
have been also taken into account in constructing the
reaction amplitude. The generalized contact current in-
troduced in the present work ensures that the reaction
amplitude in our model is fully gauge invariant as it obeys
the generalized Ward-Takahashi identity [23–26].

It is found that to obtain a satisfactory description
of the high-statistics differential cross section data from
CLAS, at least two nucleon resonances should be in-
cluded in the s-channel interaction diagrams. Further-
more, we have found five distinct sets of resonances
that describe these data with similar accuracies in the
whole energy range of 1.75 GeV 6 Eγ 6 3.85 GeV.
One of these two resonances, common to all five sets,
is the N(2060)5/2

−
; the other resonance in each of the

five sets is N(2000)5/2
+
, N(2040)3/2

+
, N(2100)1/2

+
,

N(2120)3/2− and N(2190)7/2−, respectively. The dif-
ferential cross section data near the ΛK∗ threshold is for
the first time described quite satisfactorily. The resulting
resonance masses are compatible with those advocated
by the Particle Data Group (PDG) [11]. Although the
CLAS total cross section data – which are obtained by
integrating the measured differential cross sections – may
suffer from the limited angular acceptance of the CLAS
detector for forward angles, the predicted total cross sec-
tions are in good agreement with these data.

It is shown that, together with the K-meson exchange,
theN(2060)5/2

−
resonance practically determine the dy-

namics of the γp → K∗+Λ reaction in the low-energy re-
gion in the present model. In particular, they are respon-
sible for the observed shape of the angular distribution
and for the sharp raise of the total cross section from
the threshold up to W ∼ 2.1 GeV. The other resonance,
in each of the five sets, contribute significantly at higher
energies. The K meson exchange provides a very signif-
icant contribution to the cross sections in the entire en-
ergy range considered, especially at high energies where
it dominates the cross section to a large extent, while
the contributions from the other non-resonant terms are
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found to be negligible.
The predicted photon beam asymmetry, target nucleon

asymmetry, and recoil Λ asymmetry are found to vary
considerably from one model to another, indicating their
sensitivity to the details of the models, in particular, to
the different resonance contents that cannot be distin-
guished by the cross section alone. It is expected that the
data for these spin observables would impose more strin-
gent constraints on the models than the cross sections
and help understand better the reaction mechanism and
determine better the resonance contents and associated
resonance parameters in the γp → K∗+Λ reaction. We
hope that these data can be measured in experiments in
the near future.
We should also mention that although the present cal-

culation describes the differential cross section data quite
well overall and much better than any of the earlier cal-
culations, the agreement with the data is not perfect. In
particular, the details of the observed angular behavior
at W = 2.217 GeV is not quite described by any of our
models I-V. As mentioned in Sec. III, the inclusion of
one more resonance doesn’t help improve much the fit
quality. A further investigation is required here.
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jin in China and the Jülich Supercomputing Center at
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