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The role of relativistic corrections in heavy ion Coulomb scattering at intermediate energies
(Elab & 50 MeV/nucleon) is investigated by numerically solving a full set of coupled equations.
We compare two methods: (a) one involving an exact account of interaction retardation with (b) a
method based on the expansion of effective Lagrangians in powers of the ion velocities, v/c. Our
study allows to infer the relevance of kinematic corrections, of retardation, and of magnetic interac-
tions such as the Darwin force. We show that analytical formulas are able to describe all aspects of
experimental interest of relativistic effects in heavy ion Coulomb scattering at intermediate energies
without having to solve numerically the coupled equations.

INTRODUCTION

Properties of nuclei far from stability are not known
at the level needed for an accurate description of sev-
eral processes of interest for nuclear science. There-
fore, much of the experimental effort in nuclear physics
at present is dedicated to new radioactive beam facili-
ties, the most expensive of them using secondary beams
with high energy fragments obtained from primary col-
lisions. By high energy here we mean energies of the
order of 50 MeV/nucleon and above such as those in use
at RIKEN/Japan, GANIL/France, GSI/Germany and
NSCL/USA. New facilities are under construction, e.g.,
the FAIR facility in Germany and the FRIB facility in
the USA. High energy radioactive beams have fostered
the use of indirect techniques using reactions of rare nu-
clear isotopes with the purpose of studying the structure
of exotic nuclei [1, 2] and nuclear astrophysics [3, 4].

Coulomb excitation is one of the main indirect tech-
niques used in radioactive beam facilities mainly because
the Coulomb interaction is well understood and also be-
cause it is intimately related to processes involving real
photons like photo-absorption and gamma-decay of in-
terest for studying nuclear structure and many processes
of astrophysical interest [2]. Recent experiments with
Coulomb excitation have been used to unravel the physics
of pigmy dipole resonances, dipole polarizability, energy
density functionals, neutron skins, equation of state of
nuclear matter, etc [5–14]. Experimental analyses as-
sume that Coulomb scattering dominates the reaction
process at forward angles, which is supported by the-
ory for the scattering of heavy ions and of light nuclei
with small binding energies [1, 2]. In particular, elastic
scattering of heavy ions is dominated by the Coulomb
interaction up to the rainbow angle which reflects the
onset of the nuclear interaction [15]. Since the analy-
sis of Coulomb excitation experiments is based on the
same premises, and since such reactions are carried out
with kinetic energies consisting of a sizable fraction of
the projectile’s rest mass, it is imperative to account for

relativistic effects not only in the kinematics (which is
usually done in the experimental analysis), but also in
the reaction dynamics. This has often been overlooked
both in theory and in experiments, except for a few theo-
retical studies [16, 17]. It is the goal of this work to make
a detailed assessment of this problem and to propose best
ways to account for relativistic effects in Coulomb scat-
tering of nuclei at intermediate and high energies colli-
sions (Elab & 50 MeV/nucleon).

At low energies when the velocity of the projectile is
much smaller than the speed of light, v � c, heavy ion
collisions are well described by Rutherford scattering for-
mulas except for minor corrections caused by Coulomb
excitation, electron screening, or vacuum polarization.
However, at intermediate and high energies when the
speed of the projectile is comparable to the speed of light,
relativistic effects play a significant role. Therefore, an
accurate knowledge of elastic Coulomb scattering at in-
termediate and high energy collisions is of great relevance
for calibration of nuclear reaction experiments and to ex-
tract excitation amplitudes induced by the Coulomb in-
teraction. Coulomb excitation at intermediate and high
energy collisions of heavy ions is a very important tool in
experimental nuclear physics and experimental analyses
depend on a good understanding of dynamical relativistic
effects [15].

An early work on the effects of retardation in Coulomb
scattering has been carried out by Matzdorf et al. [16] us-
ing classical trajectories which are well justified for heavy
ion collisions. Another publication by Aguiar et al. [17]
tackled the same problem using a perturbation expansion
of the relativistic Lagrangian for the two-body Coulomb
scattering. In Ref. [16] retardation effects on the tra-
jectory of one particle upon another via their mutual
time-dependent electromagnetic fields were accounted for
in a covariant way, accompanied by simplifying approx-
imations to make the problem more manageable. They
have investigated deflection angles, differential cross sec-
tions and the deviations of the time-dependent trajec-
tory from non-relativistic Rutherford scattering. They
also reported that the action of mutual magnetic fields
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are rather small in the velocity range from 0.1c to 0.99c.
This was shown specifically for Xe + U reaction. How-
ever, the relativistic mass correction effect was reported
to be quite significant. Analytic formulas for light pro-
jectiles colliding with heavy targets have been obtained
which are quite useful for a quick estimate of relativistic
corrections in elastic differential cross sections. We show
that such formulas also work exceptionally well for more
symmetric systems.

Aguiar et al. [17] have also studied relativistic effects in
Coulomb scattering at intermediate energies. They have
used an effective theory approach based on the expansion
of the classical electromagnetic Lagrangian in powers of
v/c, where v is the projectile velocity and c the speed of
light. They have considered corrections of the classical
Lagrangian up to order (v/c)2. But for particles with
equal charge to mass ratio they have extended the for-
malism to include corrections up to (v/c)4. Analytical
formulas have also been proposed to estimate the rela-
tivistic corrections and their contribution to differential
cross sections.

In view of the large experimental interest of reactions
in radioactive beam facilities, and the relevance of the
Coulomb interaction for experiments, we have studied in
this work the relativistic effects in Coulomb scattering of
nuclei. Much of our analysis is based on a comparison of
the two different approaches to relativistic corrections in
Coulomb scattering presented in Refs. [16] and [17] for
elastic collisions at intermediate and high beam energies.
We have made qualitative and quantitative predictions
for reactions with symmetric and asymmetric systems.
Most importantly, we have shown that the problem is
treatable with basic analytical methods. In the next sec-
tion we present a summary of the theoretical methods
involving a full account of retardation and another using
effective Lagrangians.

THEORETICAL FORMALISM

Covariant formulation

In the following, the target is assumed to be located
at the center of the coordinate system and the projectile
is assumed to move towards the target parallel to the
x-axis. The covariant equation of motion for a charged
particle moving in an external electromagnetic field of
another charged particle is given by [18]

dpα

dτ
=
q

c
FαβUβ , (1)

where pα and Uβ are the 4-momentum and the 4-velocity
respectively. q is the charge of one of the particles, τ is
the proper time of the considered particle and Fαβ is
field strength tensor, which can be written in terms of
the components of the electric and magnetic fields E and

B due to the other particle. To solve this equation of
motion for the two-body scattering it is assumed that
a projectile with charge qp moves in the external field
generated by target and vice versa. In terms of electric,
E(t), and magnetic, B(t), fields of the target acting on
the projectile, the coupled set of equations for motion
for the projectile can be written as [18].

γ4(u · u̇) = γ
qp
mpc

E(t) · u

u̇γ2 + γ4u(u · u̇) = γ
qp
mpc

(
E(t) + u×B(t)

)
(2)

where u = (u1, u2, u3) = ẋ/c is the projectile velocity, x

is its position, mp its rest mass, and γ = 1/
√

1− β2 is the
Lorentz factor, with β = u/c representing the projectile
velocity in units of c. The electric and magnetic fields
are calculated at the retarded time T defined in the text
after Eq. (3) below. Since the motion is restricted to a
scattering plane, only two of the coordinates, e.g., x and
y, need to be considered.

In Ref. [16] it was shown that the above equations, to-
gether with similar equations for the target motion, lead
to a full set of coupled equations for the motion of the
projectile and the target. Numerically, one first looks at
the effect of the retarded E(t) and B(t) fields generated by
the target at the position of the projectile and then, after
a time step, one corrects for the position of the target by
reversing the roles of the target and the projectile in the
equations above. This procedure is repeated from the
initial position of the system until the effects of the fields
at large distances become negligible. It was also shown
that if one neglects the magnetic field in the equations
above one obtains a much simpler set of coupled equa-
tions for the projectile and target motion in the x − y
plane. A full and detailed derivation of these equations
are provided in Ref. [16], where it was also shown that
the inclusion of the magnetic field B amounts to a less
than 1% change for the scattering deflection angle and
cross sections.

For the projectile motion, these simplifications lead to
the equations of motion

u̇1 =
qpqt

m
(p)
0 γ3

(γ−2 + u22)n1 − u1u2n2
R2[(γ−2 + u21)(γ−2 + u22)− u21u22]

u̇2 =
qpqt

m
(p)
0 γ3

(γ−2 + u21)n2 − u1u2n1
R2[(γ−2 + u21)(γ−2 + u22)− u21u22]

(3)

where R = x − r(T ) is the radius vector of the projec-
tile location with respect to the target at position r(T )
at the retarded time T , satisfying the retardation condi-
tion (t − T ) − R/c = 0. R is magnitude of the radius
vector and n1, n2 are x and y components of the unit
vector n along the R direction. A similar set of equa-
tions as in (3) is solved for the target motion with the
roles of the projectile and target reversed. This yields
4 coupled equations to be solved simultaneously. The
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Lienard-Wiechert acceleration terms are not included in
these equations because the modifications of Coulomb
trajectories in heavy ion collisions due to the emission of
radiation are extremely small. It is worthwhile noticing
that for u� 1 and γ → 1, these equations reduce to the
well-known non-relativistic equations for the motion of
a charged particle in the electromagnetic field generated
by another charged particle.

Numerically the scattering angle is obtained as follows

Θ( t→ +∞) = arctan
dy

dx
(t) (4)

by starting monitoring the scattering at a very large neg-
ative time for a collision with impact parameter b. Re-
peating the procedure for several impact parameters, the
differential scattering cross section can be calculated from

dσ

dΩ
=
b(Θ)

sin Θ

∣∣∣∣ dbdΘ

∣∣∣∣ . (5)

A simplified analytical formula was presented in Ref.
[16], valid when one collision partner remains nearly at
rest, i.e. when the mass of the projectile is much smaller
than the mass of target. In this case, the analytical ap-
proximations for the scattering angle and the differential
cross section are given by

Θ = π − 2arccot(k)√
1− k2(b)β2

, (6)

where here β = v∞/c, and

dσ

dΩ
=

b2

sin Θ

∣∣∣∣∣∣∣∣
(1 + k2(b))ξ2

2(1 + k2(b))k2(b)β2

(
π −Θ

2

)
− 2ξk(b)

∣∣∣∣∣∣∣∣ ,
(7)

with k(b) = (d/2b)
√

1− β2, d = 2qpqt/(mpv
2
∞) and

ξ(b) =
√

1− k2(b)β2.
Contrary to what was stated in Ref. [16], we will show

that these equations reproduce with high precision the
numerical results obtained with Eqs. (3) even for sym-
metric systems, i.e. when the masses of the particles are
comparable. This is achieved by replacing the projectile
mass in the definition of the variable d by the reduced
mass of the system. There is no ab-initio justification for
this step, except that we know that Eq. (2) reduces to
the usual Coulomb scattering when γ → 1 and u→ 0, as
can be readily verified. Solving these equations numeri-
cally for the projectile motion and for the target motion
simultaneously yields the practical net result of a one-
body motion with a reduced mass, as is well known in
non-relativistic classical mechanics.

Effective Lagrangian method

Ref. [17] has also studied the influence of relativistic
corrections in Coulomb scattering at intermediate and

high energies by means of an expansion of the classi-
cal Langrangian to leading-oder (LO), next-to-leading or-
der (NLO) and next-to-next-to-leading-order (NNLO) in
powers of v/c, L = L(LO) + L(NLO) + L(NNLO) with

L(LO) =
1

2
µv2 − qtqp

r
,

L(NLO) =
µ4

8c2

[
1

m3
p

+
1

m3
t

]
v4 − µ2qtqp

2mpmtc2r
(v2 + v2r),

L(NNLO) =
mv6

512c2
+

qtqp
16c2r

[
1

8
(v4 − 3v4r + 2v2rv

2)

+
qtqp
mr

(3v2r − v2) +
4q2t q

2
p

m2r2

]
, (8)

with µ equal to the reduced mass, vr = v ·r/r and v(t) is
relative velocity. The L(NNLO) Lagrangian is only valid
for symmetric systems with mp = mt = m.

The NLO Lagrangian is obtained by neglecting radi-
ation and assuming instantaneous interactions between
the particles [18]. The first term accounts for the in-
crease of masses due to relativity and the second term
arises from the magnetic interaction between the parti-
cles. It is known as the Darwin interaction. When parti-
cles have the same charge to mass ratio, as in the case of
identical particles, the dipole radiation vanishes and it is
possible to derive the above NNLO Lagrangian from the
Lagrangian of the two-particle classical electrodynamics
[18]. The first term is again another correction to the rel-
ativistic mass and the following one is due the corrections
to the Darwing interaction.

Inserting Eqs. (8) into Euler-Lagrangian equations one
gets a set of coupled equations for the relative position
and momentum (velocity) of the particles as a function
of time as discussed in detail in Ref.[17]. Numerically the
scattering angle and differential cross sections are deter-
mined by making use of Eqs. (4) and (5). It is worthwhile
mentioning that the modifications of Coulomb trajecto-
ries of heavy ion collisions due to the emission of radiation
are extremely small [19]. This justifies the use of both
methods employed in Refs. [16, 17] without the inclusion
of radiation.

Ref. [17] has also proposed analytic formulae when the
mass of the projectile is much smaller than the mass of
the target i.e. mp � mt. They obtained an analytical
formula for the scattering angle given by the same equa-
tion as Eq. (6). Their analytical approximation for the
differential cross section is given by

dσ(v/c,Θ)

dΩ
=

[
qpqt

2µv2 sin2(Θ/2)

]2 [
1 + g(Θ)

v2

c2

+ O
(
v4

c4

)]
(9)

where here v ≡ v∞ is a short notation for the pro-
jectile velocity in the laboratory system at large
distances, µ is reduced mass of the system and



4

0 10 20 30 40 50 60
3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5
208

Pb+
208

Pb

E
lab

=100 MeV/nucleon

 

|Θ
 -

 Θ
N

R
| 
/ 
Θ

N
R
  
[%

]

b (fm)

 Matzdorf

 Aguiar 

FIG. 1. Absolute value of the relative difference (in per-
cent) between the methods of Matzdorf et al. [16] and of
Aguiar et al. [17] with the non-relativistic scattering angle
ΘNR = 2 arctan (qpqt/µv

2
∞b) for 208Pb + 208Pb collisions at

the laboratory energy of 100 MeV/nucleon. The dashed line is
a numerical caclulation following the method of Aguiar et al.
[17] considering relativistic corrections up to order (v/c)4 and
the solid line is a numerical calculation for the corresponding
method of Matzdorf et al. [16]. The horizontal axis represents
the impact parameter b (in fm).

g(Θ) = 3−
[
2 + {1 + (π −Θ) cot Θ} tan2(Θ/2)

]
.

RESULTS AND DISCUSSION

The coupled equations of motion, Eqs. (3), have been
solved numerically by using an adaptive stepsize control
Runge-Kutta method [20]. As initial condition it is as-
sumed that the target is at rest at the origin of the cood-
inate system and at time t = −∞ the impact param-
eter is b( t→ −∞) = y(t) with the projectile moving
towards the target along the x -axis with velocity v∞. As
the projectile approaches the target the Coulomb inter-
action deflects it to a scattering angle at time t = +∞.
Through out the calculations the total trajectory length
is kept around 80,000 fm to account for the long range of
the Coulomb interaction. The calculation is repeated for
several impact parameters b varied from the sum of the

nuclear radii RP +RT , with Ri = 1.2A
1/3
i fm, to 100 fm

in very small, ∆b = 0.1 fm, interval steps. The precision
of the computed differential cross section using Eqs. (4)
and (5) is checked by comparison with the well-known
non relativistic domain, the Rutherford differential cross
section. In each case the relative error was found to be
less than 1 part in 104.

In Figure 1 we plot the relative difference (in per-

cent) between the numerical calculations following the
methods of Matzdorf et al. [16] and of Aguiar et al.
[17] with the non-relativistic scattering angle ΘNR =
2 arctan (qpqt/µv

2
∞b) for 208Pb + 208Pb collisions at the

laboratory energy of 100 MeV/nucleon. The dashed line
is a numerical calculation following the method of Aguiar
et al. [17] considering relativistic corrections up to order
(v/c)4 and the solid line is the numerical result for the
corresponding model of Matzdorf et al. [16]. The hori-
zontal axis represents the impact parameter b (in fm).
We observe that the method adopted by Matzdorf et
al. yields a reduced correction for the non-relativistic
scattering angle as compared to the method adopted by
Aguiar et al. Since magnetic interactions are known to
be small, the difference can be ascribed to the correct
account of retardation implicit in the method adopted
by Ref. [16]. It is also worthwhile noticing that the de-
viation from the classical Rutherford scattering angle is
smaller at smaller impact parameters, though not negligi-
ble either. The relativistic corrections increase and reach
a nearly constant value of ∼ 6.5 − 7% at larger impact
parameters, i.e. at very forward scattering.

The deviations from the classical Rutherford scattering
increase with the bombarding energy, as expected. This
is shown explicitly in Fig. 2 for a collision at grazing
impact parameter b = RP +RT , as a function of the lab-
oratory energy Elab (in MeV/nucleon). Not only the rela-
tivistic corrections become more important as the energy
increases, but the effects of retardation also modify these
corrections appreciably. The consideration of the rela-
tivistic mass increase without a corresponding account
of retardation, overshoots the corrections due to relativ-
ity, as displayed by the dashed line obtained with the
method of Ref. [17].

The deviations from the non-relativistic predictions are
more evident for the elastic differential cross sections.
This is visible in Fig. 3 where we show the relative dif-
ference (in percent) between the numerical solutions fol-
lowing the methods of Matzdorf et al. [16] and of Aguiar
et al. [17] with the non-relativistic Rutherford scattering
cross section, dσNR/dΩ, for 208Pb + 208Pb collisions at
the laboratory energy of 100 MeV/nucleon. The dashed
line follows the method of Aguiar et al. [17] considering
relativistic corrections up to order (v/c)4 and the solid
line is for the corresponding method of Matzdorf et al.
[16]. The horizontal axis represents the center of mass
scattering angle Θ (in degrees). The deviations from the
classical Rutherford formula clearly increase with the lab-
oratory energy, as seen in Fig. 4 for a collision at the
grazing impact parameter. The corrections are large, al-
most as large as the relative change in the mass of the
particles.

Now we turn to the precision of the analytical formu-
lations described in the previous section that allows one
to save time with numerical computations. In Fig. 5 we
plot the relative difference (in percent) between the an-
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FIG. 2. Same as Fig. 1, but for a collision at grazing impact
parameter b = RP +RT , as a function of the laboratory energy
Elab (in MeV/nucleon).
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FIG. 3. Relative difference (in percent) between the methods
of Matzdorf et al. [16] and of Aguiar et al. [17] with the non-
relativistic Rutherford scattering cross section, dσNR/dΩ, for
208Pb + 208Pb collisions at the laboratory energy of 100
MeV/nucleon. The dashed line is a numerical calculation fol-
lowing the method of Aguiar et al. [17] considering relativistic
corrections up to order (v/c)4 and the solid line is a numer-
ical calculation for the corresponding method of Matzdorf et
al. [16]. The horizontal axis represents the center of mass
scattering angle Θ (in degrees).

alytical formulas proposed by Matzdorf et al. [16] and
by Aguiar et al. [17] with the non-relativistic Ruther-
ford scattering cross section, dσNR/dΩ, for 17O + 208Pb
collisions at the laboratory energy of 100 MeV/nucleon.
The dashed line is for the analytical equation (9) and
the dashed line is for a numerical calculation following
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FIG. 4. Same as in Fig. 3, but for a collision at grazing
impact parameter b = RP + RT , as function of laboratory
energy Elab (in MeV/nucleon).

Ref. [17] considering relativistic corrections up to or-
der (v/c)2, respectively. We find that they are nearly
identical. The dotted line is the analytical formula (7)
predicted by Matzdorf et al. [16] which agrees within
less than 0.1% with the exact results (not shown). Two
clear conclusions from these calculations are worth men-
tioning: (a) the differences between the methods of Refs.
[17] and [16] decrease for asymmetric systems and (b)
both analytical formulations are in excellent agreement
with the corresponding models, within the range of va-
lidity of each of the two methods. The same conclusion
is reached for symmetric systems.

The discussion above shows that there is no need to
perform numerical calculations and solve the coupled
equations proposed both in Ref. [16] as well as in Ref.
[17] because their proposed analytical formulations, i.e.,
Eqs. (6) and (7), and (9), yield results very close to the
“exact” numerical values. Moreover, following our nu-
merical investigations, the method developed in Ref. [16]
is superior than that of Ref. [17] because it includes the
full effects of retardation, which apart from the relativis-
tic mass correction is the largest relativistic correction for
the scattering of two charged particles. We have verified
that the analytical formulas proposed in Ref. [16] both
for the scattering angle and for the differential cross sec-
tions agree with numerical solutions of Eqs. (3) to within
1 part in 103.

We have also studied the effects of relativity in de-
termining the distance of closest approach between two
charged particles. In Fig. 6 we show the relative dif-
ference between the distance of closest approach for a
given impact parameter b by solving Eqs. (2) and (3)
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FIG. 5. Relative difference (in percent) between the analytical
formulas proposed by Matzdorf et al. [16] and by Aguiar et
al. [17] with the non-relativistic Rutherford scattering cross
section, dσNR/dΩ, for 17O + 208Pb collisions at the labora-
tory energy of 100 MeV/nucleon. The dashed line uses the
analytical equation (9) and the solid line is for a numerical
calculation of the coupled equations following Ref. [17] con-
sidering relativistic corrections up to order (v/c)2. The dotted
line is for the analytical formula (7) predicted by Matzdorf et
al. [16] which agrees within less than 0.1% with the exact
results (not shown).

and comparing it with the equation

bc = a+
√
a2 + b2, with a = kb =

qpqt
γµv2∞

, (10)

which is a proposed generalization of the non-relativistic
relation where we replace a0 = qpqt/µv

2
∞ by a = kb =

a0/γ. In the figure we use the grazing impact parameter
b = Rp +Rt. We see that Eq. (10) reproduces the exact
values very well at the level of 1% or less.

Finally, we have determined the deviation of the actual
time-dependent trajectory R(t) for the distance between
the two charged particles from an analytical parametriza-
tion. Our parametrization is based on the same argument
leading to Eq. (10) and reads

x = a[coshw + ε], y = a
√
ε2 − 1 sinhw,

t =
a

v∞
[w + ε sinhw]. (11)

This is the same parametrization used in non-relativistic
collisions [21], but with the distance of closest approach
a0 replaced by a = kb = a0/γ. We have compared the
difference between this approximation and the exact so-
lution for several reaction partner combinations and en-
ergies in the range 50 − 250 MeV/nucleon. For large
times of the order of 80,000 fm we find deviations at the
level of 3% or less. But for collision times up to 5a/v∞
after passing the distance of closest approach the Eqs.
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FIG. 6. Relative difference (in percent) of the distance of clos-
est approach bc for a given impact parameter b obtained with
the full relativistic calculations and with the analytical for-
mula (10), as a function of laboratory energy in MeV/nucleon
and for different projectile target systems. We use the grazing
impact parameter b = Rp +Rt.

(11) work at a much better level of 1% or better. This
explains why the distance of closest approach is so well
described by the relation (10). This is also relevant for
Coulomb excitation experiments as the Coulomb field is
strongest when the trajectory is nearest to the closest ap-
proach distance, being more effective to induce nuclear
transitions.

CONCLUSIONS

In this work we have studied relativistic effects such
as retardation, relativistic mass change, and the inclu-
sion of magnetic interactions in the Coulomb scattering
of nuclei at intermediate and high energies (Elab & 50
MeV/nucleon). Several conclusions have been drawn
from this work. We have shown that the formalism de-
veloped in Ref. [16] provides a concise way to obtain
Coulomb scattering deflection angles and elastic differ-
ential cross sections. Their method is superior than the
one proposed in Ref. [17] with an effective Lagrangian
expansion in orders of v/c.

Most importantly, we have found that analytical equa-
tions are able to describe the exact results obtained with
the numerical solutions of Eqs. (3). The deflection angle
is well described by Eq. (6) while the differential cross
section is well described by Eq. (7). Finally, the distance
of closest approach for a given impact parameter b, as
well as the time dependence of the trajectory are in good
agreement with the Eqs. (10) and (11), respectively.

These findings are timely and of importance for the
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experimental analysis of numerous data being acquired in
radioactive beam facilities with laboratory energies in the
range of Elab & 50 MeV/nucleon. The determination of
Coulomb scattering angles and differential cross sections
are a crucial part of the simulations and the extraction
of reaction variables.
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