
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Semiclassical calculations for the ^{156}Gd (p,d) reaction
Hafez A. Radi, John O. Rasmussen, and Raul J. Donangelo
Phys. Rev. C 96, 034602 — Published  1 September 2017

DOI: 10.1103/PhysRevC.96.034602

http://dx.doi.org/10.1103/PhysRevC.96.034602


PHYSICAL REVIEW C xx, xxxxxx (20xx) 

xxxxxxxxxxxxx xxxxxx-1 ©20xx American Physical Society 

Semi-classical calculations for 156Gd (p,d) reaction 
 

Hafez A. Radi* 
October University for Modern Sciences and Arts (MSA), Giza, Egypt, 

 and 
University of California at Berkeley, Lawrence Berkeley National Lab, Nuclear Science Division, California 94720, USA 

 
John O. Rasmussen† 

University of California at Berkeley, Lawrence Berkeley National Lab, Nuclear Science Division, California 94720, USA 
 

Raul J. Donangelo‡ 
Instituto de Fısica, Facultad de Ingenieria,C.C. 30, C.P. 11000, Montevideo, Uruguay 

 
 Numerical semi-classical calculations are carried out to study the angular distribution of 
deuterons from the p,d pickup reaction of 25 MeV protons incident on the nucleus 156Gd and also its 
proton elastic scattering. It is found that, due to the rapid fall of the real optical potential in the 
vicinity of the target nucleus, the classical trajectories are very sensitive to the proton impact 
parameters. A selection of 276,983 trajectories is used for protons with impact parameters pb  
satisfying p7.23018 fm 10 fmb≤ ≤  with steps of 510 fm− . Using the imaginary part of the optical 
potential for protons, a simple quantum approach is constructed to evaluate the probability of a 
surviving proton throughout its path. In addition, a simple three-body quantum approach is 
developed to calculate the probability of a neutron transfer by a surviving proton at closest approach. 
The formed deuteron is then allowed to start its trajectory while keeping its identity until detected. 
Throughout this journey, the deuteron trajectory is under the influence of its Coulomb and real 
optical potential, while its absorption is determined by the imaginary optical potential component. 
Within estimated uncertainties, the resulting theoretical angular distribution achieves a comparable 
fit with experimental results for the angular momentum transfer L=0 compared to other theoretical 
models, and concludes that the strong p,d cross sections are due to the dominant s1/2 component of the 
Nilsson 1

2
+ [400] level in 155Gd.  

DOI: xxxxxxxxxx  PACS number(s):25.40.Hs,25.60.Bx,21.60.Cs 

 
I. INTRODUCTION 

 Serious efforts have been made in recent years for the 
measurement of nuclear-reactions involving deformed 
nuclei. Still, a large amount of information and theoretical 
questions remain. 
 Inspired by the doctoral thesis of Tim Ross [1] under 
the guidance of Prof. Con Beausang, and the data in their 
three publications with colleagues [2,3,4] we have 
undertaken to develop a semi-classical theoretical model to 
both the 156Gd (p,p) and 156Gd (p,d) reactions. The 
experimental data mostly come from collaboration at 
cyclotrons at Lawrence Berkeley National Lab and at the 
Texas A & M cyclotron in College Station, TX. Unlike to 
Ref. [5], where a neutron is considered to form a compound 
nucleus, we avoided considering cases when protons with 
small impact parameters interact with the rotational Gd 
nucleus to form a compound nucleus. 
 Also, in this study we treated semi-classical calculations 
for both neutron-pickup and elastic scattering for 25 MeV 
_______ 
*hradi@msa.eun.eg 
†oxras@berkeley.edu 
‡donangel@fing.edu.uy 

protons incident on 156Gd  nuclei. With this model, we did 
not attempt to calculate a two-neutron pick-up and compare 
it with other work [6,7,8]. 
 It is rare to consider semi-classical calculations as a 
solution to the problem at hand. However, considerable 
theoretical classical-trajectory calculations have produced 
reliable results in many studies such as Radi et al. [9].  
  Here we make comparison with DWBA angular 
distribution results in earlier publications [10, 4].  
 Experimental p,d relative cross sections for Gd targets, 
labeled by the mass number of the final nucleus are shown 
in Fig. 1 (see Fig. 63 of Ref. [1]). This figure shows that the 
1
2

+ [400] band is the most highly populated in 155,157Gd via 
the (p,d) reaction. 
 We attempt to rationalize some of the patterns of Fig. 2 
[10,4], but without invoking the double-BCS model of S.Y. 
Chu et al. [6] in which the BCS equations are applied 
separately to the upgoing and downgoing Nilsson levels as 
quadrupole deformation increases. We note the dominance 
of orbitals 1

2
+ [400] and 3

2
+ [402] from below the 82 shell 

gap. They both have  substantial wave functions at the 
north and south poles of the target nucleus.  
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 FIG. 1. Relative cross sections for p,d reactions on three even-
even Gd targets (from T. Ross et al.[2]). The excitation energy of 
the Nilsson band-head energies for 155Gd are also taken from data 
in Allmond et al. [10] work.  

 

 
 FIG. 2. (Top) The experimental angular momentum transfer 
L=0 data of Allmond et al. [10] and L=0 DWBA [11] angular 
distributions for the direct population of the 367-keV, 1

2
+ [400]. 

(Bottom) The experimental data of the level 729 keV are the 
colored dots with error bars and are taken from Fig. 7 (e) of T. 
Ross et al. [4]. The graph shows the DWBA angular distributions 
fit which is best characterized by L=0,1,4. The three different L 
values are: solid black for L=0; colored line running through the 
highest point for L=1, and a dot-dash black line for L=4. 

 The p,d reaction states 1
2

+ [400] in 155,157Gd and their 
relative intensities of Ref. [10, 4], are shown in Table I.  

     TABLE I. Experimental results from TABLE III of Ref. [10]
and VII of Ref. [4]. The relative yields for levels directly
populated by the 156Gd(p,d)155Gd and 158Gd(p,d)157Gd reactions
are indicated. Yields (Irel) are shown relative to the state with the
highest cross section, the 1

2 [400]+ . Relative yields are measured
between 33◦ and 55◦ with respect to the beam axis. 

Nucleus (keV)E∗
relI  J π  [ ]zNnπΩ Λ  

155Gd 367.66(10) 100(16) 1
2

+
 1

2 [400]+  
157Gd 682.90 (4) 100(4) 1

2
+

 1
2 [400]+  

 
 Motivated by these results and the fact that the 
wavelength of the incoming proton is considerably smaller 
than the nuclear size, we can simplify the theoretical 
treatment of L=0 for the 156Gd target by considering a semi-
classical approach as denoted previously. Also, the code 
developed by this treatment is simpler than earlier 
computer program codes: such as the DWUCK [11], 
CHUCK [12], PTOLEMY [13], and FRESCO [14] codes. 

II. NUCLEAR DEFORMATION AND 
POTENTIAL 

 The p,d reaction of a 25 MeV proton with 156Gd is 
mainly a peripheral one. This will be evident from this 
study. We consider quadrupole and hexadecapole 
deformations of a prolate spheroidal Gd nucleus. When an 
angle χ  is measured from the nuclear major axis, the 
radius of the nucleus at any angle 0 2χ π≤ ≤  is given by: 

 T T 2 20 4 40( ) [1 Y ( ) Y ( )]R Rχ β χ β χ
°

= + + , (1) 

where we used the monopole radius 1/3
T TR r A=° °  (with 

1.2 fmr° �  [15,16]), 2 0.271β = , and 4 0.088β =  [17]. In 
addition, we assume that transfer occurs at the point of 
closest approach (CA), which is indicated by a distance CAr  
from the center of the target nucleus (see Fig. 3). In the lab, 
we consider a stationary 156Gd target nucleus and a proton 
coming from infinity at t = 0 with a speed pv  and impact 
parameter pb  (see Fig. 3). 

 
 FIG. 3. Schematic diagram for the scattering trajectory of a 
proton on a deformed Gd nucleus (exaggerated scale). 
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 The simplest spherical liquid-drop density model is 
given by a constant nucleon density oρ  out to a radius RT. 
For a nucleus of any mass number AT, this density has 
nearly the value 3

o 0.138 nucleon/fmρ = [18,19,20]. The 
sharp-surface model can be improved if we allow the 
surface to be diffuse. This can be done by considering the 
following well-known, two-parameter Wood-Saxon 
distribution [21]: 

  T
o

T( )/ nuclear diffuseness( )  [ ]
1 r R ar a

e

ρρ −= =
+

. (2) 

 The value of a determines the nuclear-skin thickness 
4  l n 3t a= , at which T ( )rρ  decreases from o0.9ρ  to o0.1ρ . 

From Atomic Data and Nuclear Data Tables, we take the 
value 0.576 fma =  [21,22,23,24,25], which gives 

2.53 fmt = . For a deformed 156Gd with 1/3
T TR r A=° °  

6.46 fm= , Eq. (1) gives a major axis (north pole) with 
value T max( ) 8.045 fmR =  and a minor axis (equator) with 
value T min( ) 6.088 fmR = . Fig. 4 shows the variation of 
nuclear density along the major axis (a) and minor axis (b).  

 
 FIG. 4. (a) Variation of the nuclear density of a 156Gd nucleus 
along the major axis and (b) along the minor axis.  
 For a general treatment of the problem, we consider the 
reaction T(p,o)R, where T is the 156Gd target nucleus (mass 

Tm ), p is the incoming proton (mass pm ), o is the 
outgoing particle (mass om ), and R is the residual nucleus 
(mass Rm ). The center of mass (c.m.) of the system has a 
constant velocity c.m.

p ppT tot( )/m m=v v , where to tm  is the 
total mass of the system. The initial lab kinetic energy of 
the proton is lab lab 21p p p p2( )K E m= = v . Therefore, the initial 
kinetic energy of the system in the center of mass frame is:  

 ( )2c.m. c.m.1
pT tot pT2K m= v . (3) 

 The initial relative kinetic energy is the difference 

between the two energies and will be the energy available 
for the collision of the proton with the target nucleus. Thus:  

 c.m 21
pT pT p2E μ= v , (4) 

where pT p pT T/( )m m m mμ = +  is the reduced mass of the 
proton (p) colliding with the target nucleus (T).  
 For (p,p) and (p,d) reactions, conservation of energy of 
the system for the incoming (in) and outgoing (out) 
channels leads to:  

2 lab1 ppTpT2c.m. 21
pT pT p2 2 lab1 oR ooR2

[in & out]

[out]

( , ),  

( , ),  

U r E
E

U r E

μ
μ

μ

⎧ +⎪= =⎨
+⎪⎩

v
v

v
, (5) 

where v  is the speed at any distance r  from the center of 
the nucleus CA( )r r≤ ≤ ∞  for the proton or the outgoing 
particle. For classical trajectories, the terms pTU  and oRU  
are the total Coulomb plus only the real part of the optical 
potentials for the proton-target interacting system and 
outgoing-residual interacting system, respectively.  
 Based on the C. Perey and F. Perey [26] compilation, 
this potential depends on the energy of the interacting 
particle and the constituents of the nucleus. The total 
potential can be written as a sum of a Coulomb-potential 
term plus a complex optical-potential term. For the proton 
interaction, we have:  

   C Opt Optlab lab lab
p p ppT pT pT pT( , ) ( ) ( , ) ( , )U r E V r V r E iW r E= + + . (6) 

For a proton interacting with a nucleus of atomic number 
ZT and mass number AT, a uniform spherical charge 
distribution is considered [26] for the Coulomb term by 
taking the nuclear radius to be C 1/3C

p p TR r A= , with 
C
p 1.25 fmr = . Thus:  

( )

2
p T C

p

C
pT 2 2

p T C
pC C 2

p p

1             ( )
4

( )
1 3  ( )

4 2 ( )

Z Z e
r R

r
V r

Z Z e r r R
R R

π

π

°

°

⎧ ≥⎪⎪= ⎨
⎪ − ≤⎪⎩

ε

ε

. (7) 

Here we accept the non-dependence of the quadrupole and 
hexadecapole contributions to the Coulomb interaction. 
 The real part of the optical potential contains a spin-
independent central potential (indicated by the superscript 
“ce”) plus a spin-orbit potential (indicated by the 
superscript “so”). Based on Ref [26], the real and 
imaginary parts of the optical potential can be written as:  

so
pTOpt lab ce lab ce so 2 so

p ppT pT pT p pTsop

2( , ) ( ) ( ) ( )x
raV r E V E f x V e f x=− − ,(8) 

D
pTOpt lab 2 DWppT pp pT T pT( , ) ( ) 4 ( )D xW r E W f x W e f x= − − , (9) 

where  

n
pTn

pT

n n 1/3 n
pT p T pT

(n ce,so, W,D)
( ) 1/ 1 ,

( ) /

xf x e

x r r A a
=

⎡ ⎤ ⎫= + ⎪⎣ ⎦ ⎬
⎪= − ⎭

. (10) 
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 In case of an outgoing particle o (deuteron, tritium, etc.) 
interacting with a residual nucleus R, a similar relation to 
Eqs. (6)-(10) holds, except the subscript pT is replaced by 
the subscript oR. Thus: 

 lab C Opt lab Opt lab
o o ooR oR oR oR( , ) ( ) ( , ) ( , )U r E V r V r E iW r E= + + . (11) 

 Table II [26] lists the parameters of the proton’s optical 
potential for the real part and imaginary part, Eq. (6). Table 
III [26,27] lists the parameters used in the optical potential 
when the outgoing particle is a deuteron (d) interacting 
with a residual nucleus R

R RR
A

NZ , Eq. (11). In the deuteron 
case, the parameters that have no values are indicated by 
the symbol ∅ . We used the monopole radius 1/3

R RR r A=° °  
with [15,16]. For displaying the residual nucleus 
shape, 155Gd, we will use 2 0.252β = , and 4 0.083β =  [17]. 
 Fig. 5 shows the results of using the real parameters of 
Table II and Table III in calculating the real optical 
potential for 156Gd(p,p)156Gd, Eq. (6), and 156Gd(p,d)155Gd, 
Eq.(11), when lab

p 25 MeVE = .  

 
 FIG. 5. (a) Values of the real optical potential (central + spin-
orbit) for protons (red) and deuterons (black) [26]. The assumed 
sharp maximum and minimum radii of the target and residual 
nuclei and their corresponding potential values are displayed. (b) 
The small contribution of the spin-orbit term to the total real 
optical potential for protons is displayed in a smaller window. 

 Figure 5 indicates that the attractive real optical 
potential is of the order of 5 MeV−  when the proton 
touches the nuclear surface at the north pole and we assume 

a sharp-nuclear-surface of the target. If the proton touches 
the equator, the optical potential goes to a much greater 
negative value of about 33 MeV− . Therefore, a peripheral 
reaction near the equator is much less probable due to the 
strength of the nuclear attraction. When we study proton 
trajectories with different impact parameters, we will find 
that a peripheral reaction is more probable near the north 
and south poles of the prolate nucleus. 
 For deuterons, Fig. 5 showes that the attractive real 
optical potential is of the order of 10 MeV−  when the 
deuteron is formed at the north pole of the nuclear surface. 
If the deuteron is formed near the equator, where the real 
optical potential is about 52 MeV− , then one should expect 
that the deuteron will be attracted to the residual nucleus. 

III. PROTON AND DEUTERON 
TRAJECTORIES 

 In addition to energy conservation given by Eq.(5), the 
angular momentum of the proton with respect to the c.m. is 
also considered to be conserved. This approximation is 
accepted for grazing trajectories since the nuclear potential 
has a small effect on the conservation of angular 
momentum. We use the relation between the magnitude of 
the proton’s angular momentum at the initial point i i( , )r θ  
and at any point ( , )r θ  (see Fig. 3) and applying the real 
upper part of equation Eq. (5), to find the following: 

 lab
ppT2

p p
p( , , )d r

dt
b

F r Eb
r

= ±
v

, and (12) 

 lab
ppT p( , , )dr

d F r Ebθ = ± , (13) 

where the function pTF  depends on the proton’s position, 
impact parameter, lab energy, the kind of target nucleus 
under consideration, and can be written as: 

( )
2 lab2 ppTlab

ppT CM
pT

p
p

p

Re ( , )
( , , ) 1

U r EbrF r Eb
r Eb

⎡ ⎤⎡ ⎤ ⎣ ⎦= − −⎢ ⎥⎣ ⎦
.(14) 

Eq. (13) is an ordinary first-order differential equation that 
cannot be solved analytically due to the existence of a 
complicated potential in the square root of the right hand 
side of Eq. (14). On the other hand, Eq. (13) can be solved 
numerically for the incoming-proton channel and/or the 
outgoing proton or deuteron channels. 

TABLE II. Optical potential parameters used when a proton interacts with a target nucleus T
TT TA

Z N [26]. 
ce

pTV  1/3labp T T T TT[ ]54 0.32 24( ) / 0.4( / )  MeVE N Z A Z A− + − +  ce
pr  1.17 fm  ce

pa  0.75 fm  
so

pV  6.2 MeV  so
pr  1.01 fm  so

pa  0.75 fm  
pW  labp[ ]0.22 2.7  MeVE −  W

pr  1.32 fm  W
pTa  T T T[0.51 0.7(N ) / ] fmZ A+ −  

D
pTW  labp T T T[ ]11.8 0.25 12(N ) /  MeVE Z A− + −  D

pr  1.32 fm  D
pTa  T T T[0.51 0.7(N ) / ] fmZ A+ −  

  C
pr  1.25 fm    

1.2 fmr =°
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 For the incoming channel with an impact parameter pb , 
we start from an initial large angle i 179.96θ = °  and 
calculate the initial values (see Fig. 3): 

 p

p

ii

i

/ sin( ) 10,000 fm,
/ tan( ) 10,000 fm.

r b
D b

π θ
π θ

= − >
= − >

 (15) 

Then we integrate Eq. (13) until we reach the point of 
closest approach CA CA( , )r θ , i.e., i CA( )θ θ θ≤ ≤ . Since both 
r  and θ  decrease in the incoming channel, the positive 
sign of Eq. (13) is selected. Thus: 

 lab
ppT p( , , )dr

d F r Ebθ = + , (incoming proton). (16) 

When the proton reaches the point of CA, its velocity will 
be tangent to its trajectory and the condition CA/ 0dr dθ =  
must be fulfilled. This will lead to the following relation: 

 
lab
ppT CA

p CA CM
pT

Re ( , )
1

U r E
b r

E
⎡ ⎤⎣ ⎦= − . (17) 

 For the outgoing-proton channel, we start from the point 
of closest approach CA CA( , )r θ  and integrate Eq. (13) to the 
final values f f( , )r θ , where 6

f 2 10 fmr ≈ ×  and CA fθ θ θ≤ ≤ . 
Since r  increases while θ  decreases, the negative sign of 
Eq. (13) must be selected. Thus: 

 lab
ppT p( , , )dr

d F r Ebθ = − ,   (outgoing proton). (18) 

 We consider cases for a particular range of pb  that 
produces CA points that lie within the short-range-tails  of 
the nuclear matter. When a proton (p) reaches the point of 
CA at a distance CAr , there is a chance that this proton can 
pick up a neutron. Then, the c.m. energy of the formed 
deuteron (d) in the outgoing channel will be: 

 c.m. c.m.
excpTdRE E Q E= + − , (19) 

where Q  is the Q-value of the T(p,d)R reaction and excE  
is the excitation energy of the residual nucleus R. This c.m. 
energy c.m.

d RE  must correspond to a deuteron coming from 
infinity with a speed dv , impact parameter db  and lab 
energy lab

dE  given by: 

 lab c.m.
Rd Rd pT exc( )( ) / mm mE E Q E+= + − . (20) 

Thus, in the deuteron outgoing channel, we start from the 
CA of the deuteron and solve the differential equation: 

 lab
d R dd outgoing deuteron( , , ),  ( )dr

d F r Ebθ = − , (21) 

where the function d RF  depends on the position, energy, 

the calculated impact parameter of the deuteron (as well as 
the constituents of the residual nucleus R), and is given by: 

( )
lab22 dR dlab

dR d CM
dR

d
d

d

Re ( , )
( , , ) 1

U r Er bF r Eb
r Eb

⎡ ⎤⎡ ⎤ ⎣ ⎦= − −⎢ ⎥⎣ ⎦
.(22) 

Additionally, we consider the deuteron’s CA point to 
coincide with the proton’s CA point, i.e., CAr  is common to 
both the proton and deuteron trajectories at a given impact 
parameter. At this point, the deuteron’s velocity will be 
tangent to its trajectory and the condition CA/ 0dr dθ =  for 
the outgoing deuteron must be fulfilled. This will lead to 
the following relation for db : 

 
lab

dR dCA
d CA CM

dR

Re ( , )
1

U r E
b r

E
⎡ ⎤⎣ ⎦= − . (23) 

 The numerical solutions of Eq. (18) produce proton 
trajectories that penetrate the nuclear matter when the 
impact parameters satisfies p 6.911227 fmb ≤  For the range 

p6.911228fm 6.912695fmb< < , the proton’s trajectories 
will not penetrate the nuclear matter, but produce the 
proton’s final deflection that is less than 90− ° . Of course 
these protons cannot be detected. For an impact satisfying

p6.912695 fm 7.076 fmb≤ ≤ , we get deflections in the 
range p90 0θ− ° ≤ ≤ ° .  
 The restriction established for proton trajectories also 
applies to deuterons at the CA if p 7.229271 fmb < . This 
results from satisfying the condition of choosing one 
common point for the proton’s and deuteron’s CA, as if 
forcing the deuteron to come from infinity and reach this 
particular common value CAr . From p 7.229271 fmb =  to 
the value p 7.230175 fmb < , the solution produces 
deuterons at CA but with final angles less than d 90θ < − ° . 
We get deuterons in the forward direction when the 
proton’s impact satisfies p 7.23018 fmb ≥ . This allows us 
to conclude that the neutron pick-up process occurs mostly 
near the poles of the nucleus for this value of energy 

lab
p 25MeVE = . 

 Figure 6 displays the proton’s trajectories when only 
five selected impact parameters are chosen, pb = 7.24, 7.26, 
7.28, 7.30, and 7.32 fm. At the point of CA, we considered 
the possibility that the incoming proton trajectory might 
either continue as an outgoing proton trajectory, or result in 
an outgoing deuteron trajectory when the proton picks up a 
neutron. So, figure 6 displays both possibilities of 
existence. The range of the proton deflection angle pθΔ  is 
relatively small (from 9.45°  to about 12.65° );

TABLE III. The optical-model parameters used when a deuteron interacts with a residual nucleus R
R RRA

Z N  [26,27]. 
ce

dRV  1/3lab
d R R[ ]81 0.22 2( / )  MeVE Z A− +  ce

dr  1.15 fm  ce
da  0.81 fm  

so
dV  ∅  ( )so

dr  ∅  so
da  ∅  

D
dW  lab

d[ ]14.4 0.24  MeVE−  D
dr    1.34 fm    D

da  0.68 fm
  C

dr    1.15 fm   
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while due to the relatively strong attractive optical 
potential, the range of the deuteron deflection angle dθΔ  is 
relatively larger (from 58.5− °  to 12.45− ° ). In the same 
figure we represent the point of the CA by a small red dot. 
At this point, and for the five selected impact parameters, 
the average Coulomb potential is about 10 MeV  and the 
average real optical potential for the protons and deuterons 
are respectively about 1.5 MeV− and 2.9 MeV− . As 
expected, protons with big impact parameters, p 10 fmb > , 
will suffer small deflections and their chance to pick-up a 
neutron from the Gd nucleus is extremely small. On the 
other hand, if the proton encountered the nucleus from the 
south pole, the angles of the outgoing protons will be 
negative, while the deuteron angles will be positive. In this 
work we consider only protons with impact parameters that 
lie in the yz plane and above the y-axis. Rotating the y-axis 
by 90 degrees produces trajectories that can be viewed 
experimentally in an xz plane. 

 
 FIG. 6. The figure shows five incoming proton trajectories 
with a difference of 0.02 fm between each value of pb . After the 
CA, the outgoing proton trajectories acquire a small range of 
deflection pθΔ . If the proton picks up a neutron at CA, the 
range of deuteron deflection dθΔ  is much bigger than pθΔ  due 
to the greater attraction of the nuclear potential at the CA. 

 At CA 96.1α θ= = ° , if the proton deflects without 
picking up a neutron, the nucleus remains 156Gd. However, 
if the proton picks up a neutron, the nucleus becomes 
155Gd. Since the size of 156Gd is almost identical to 155Gd, 
the nucleus drawn in Fig. 7 can be taken to represent either. 
 Table IV lists the values of the parameters used and 
quantities obtained to assemble Figure 6. For the elastic 
156Gd(p,p)156Gd reaction, the common values used for the 
calculations are lab

p 25MeVE =  and c.m.
Gdp 24.84MeVE = . In 

addition, for the 156Gd(p,d)155Gd reaction, the common 
values used for the calculations are c.m.

Gdd 18.529MeVE =  and 

lab
d 18.768MeVE = . The last two values are based on Eq. 

(19) and Eq. (20) after taking 6.312 MeVQ=− . 

TABLE IV. Different values of pb  and their resulting final values 
as depicted in Fig. 6  

p (fm)b p(deg)θ d (fm)b d(deg)θ  CA (fm )r deg( )α
7.24 10.32 7.024 -47.68 8.99 95.4 
7.26 11.11 7.025 -29.59 9.03 95.8 
7.28 11.82 7.027 -20.93 9.06 96.2 
7.30 12.45 7.029 -15.20 9.09 96.5 
7.32 13.11 7.033 -10.89 9.12 96.8 

 
 We calculated 276,983 trajectories for protons with 
impact parameters satisfying p7.23018 fm 10 fmb≤ ≤  with 
steps of 510 fm− . This range of pb  is suitable for forming 
deuterons since CAr values lie in the nuclear tail. 
 Part (a) of Fig. 7 shows the variation of the proton’s 
final deflection angle pθ  with respect to p .b All deflection 
angles have positive values with a maximum of about 
22.6°  at about 8.5 fm . 
 Part (b) of Fig. 7 shows the variations of the deuteron 
final deflection dθ  with pb  (assuming deuterons are 
produced in this range). For p7.235 fm 7.41fmb≤ ≤ , the 
deuteron angles are negative and increase rapidly in the 
range d89 0 .θ− ° ≤ ≤ °  After that region, dθ reaches a 
maximum of about 26°  at about 8.9 fm . Then, dθ  starts 
to decrease slightly with increasing p .b  
 The attempts made in Figure 7 should be supplemented 
with a quantum study (in the next sections) in order to 
calculate the probability of forming a deuteron at the CA, 
and also to consider the proton and deuteron absorption due 
to the imaginary part of the optical potential. 

 
 FIG. 7 Final deflection angles of 276,983 protons and 
deuterons with respect to the proton impact parameter pb . 
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IV. SPHERICAL SQUARE-WELL POTENTIAL 
APPROXIMATION 

 In order to introduce quantum-mechanical effects into 
this theoretical treatment, we employ a simple description 
for the neutron-tunneling process, avoiding complicated 
nuclear potentials as in Ref. [28], target deformations as in 
Ref. [15], and detailed analysis of neutron orbitals based on 
realistic Nilsson diagrams based on a rounded Wood-Saxon 
potential [29]. This is done by assuming a spherical square 
well for the neutron-nucleus potential of the heavy nucleus 
(referred to as 1) and neutron-proton potential of the 
deuteron (referred to as 2). These potentials have the form: 

 0 ,
( )

0,
ii

i
i

V r R
V r

r R

− <⎧= ⎨ >⎩
    ( 1, 2)i = , (24) 

where 1R  is the radius of the heavy nucleus and 01V  is its 
potential depth. Similarly, 2R  is the radius of the deuteron 
and 02V  is its potential depth. The distance r  is the 
separation between the neutron and the center of the core of 
the heavy nucleus for the first system and in the second 
system it is between the neutron and proton in the deuteron. 
 Ignoring the nucleon’s spin, let us consider the time-
independent Schrödinger’s equation of only a single 
neutron in the potential given by Eq. (24) as: 

 
2

2
b( ) ( ) ( ) ( )

2 i i i ii
i

r V r r rφ φ φ
μ

− ∇ + =h r r r
E , ( 1, 2)i = , (25) 

where n n/ ( )i i im M m Mμ = +  is the reduced mass, nm  is 
the neutron mass, iM  is the mass of the heavy nucleus (if 
i=1) or the proton (if i=2), and rr  is the relative position of 
the neutron with respect to the center of mass of the heavy 
nucleus (i=1) or the proton (i=2). As known from 
elementary studies, the solution of the wave function for 
central potentials can be separated into radial and angular 
parts as ( ) ( ) ( , )mnii r R r Yφ θ φ= ll . For the case of a ground- 
state solution ( 1, 0n = =l ), we substitute with the form 

( ) ( ) /n iiR r u r r=l  in Eq. (25) to obtain the acceptable 
solutions of ( )i rφ  in the two regions of r  as: 

   
sin( )

,
( )

,

i

i i

i

k ri

i
i

r
r

e
r

A r R
r

B r R

κ

φ
−

⎧ ≤⎪= ⎨
⎪ ≥⎩

   ( 1, 2)i =  (26) 

where iκ , ik , iA , and iB  (with i=1,2) are given by: 

 n0
2 2

b b2 ( | |) 2 |
,    i i i i

i i
V m

k
μ

κ
−

= =
h h

E |E
,  

sin( )21 2,
1 14 4

i i i

i i

i ik Ri

i i
i i

Rk kA B e
k R k R

κ
π π

= =
+ +

. 

 Finiteness of ( )i rφ  and the continuity of ( )iu r  and 
( )/idu r dr  leads to the transcendental equation: 

 cot i
i i

i

k R
αα = − ,  where i i iRα κ= . (27) 

 When assuming a spherical 156Gd nucleus of radius 
1/3

1R r A=
° , with 1.24 fmr° = , this choice gives 1 6.69 fmR = , 

which is between the values of minT( )R  and maxT( )R , see 
Fig. 4. With this model, it is proposed to search for a 
neutron energy level near the top of the potential well that 
matches the experimental neutron separation energy, 

n 8.536 MeVS = [30]. Consequently, the variation of the 
depth 01V  will lead to this energy level when solving the 
transcendental equation given by Eq. (27) and finding 
values of 1α  that result from the intersection of the two 
functions 1cot α  and 1 1 1/k R α− . The nuclear potential 
depth 01 48.718 M eVV =  produces this top energy level. 
This level has 1 9.240 radα =  and is categorized by the 
values 1 1.388 rad/fmκ =  and 1 0.640 rad/fmk = . 
 The stable weakly-bound deuteron that can be described 
by using Eq. (24) has a binding energy b2 2.2245 MeV=E  
and a matter radius 2 1.975 fmR = . Using these two well-
known values, we solve the transcendental equation Eq. 
(27) and plot both the two functions 2cot α  and 

2 2 2/k R α−  versus 2α . The two functions intersect at one 
value 2 1.817 radα = , which gives 02 37.3 M eVV = , 

2 0.92 rad/fmκ = , and 2 0.232 rad/fmk = . 

V. PICKUP-UP OF A NEUTRON AT THE 
POINT OF CA IN A (p,d) REACTION 

 In the 156Gd(p,d)155Gd reaction, we study the interaction 
of a proton with the nucleus until it reaches the point of 
closest approach (CA). Then we consider the pick-up of a 
loosely bound neutron at CA. This can be done if the 156Gd 
nucleus is considered to consist of a 155Gd nucleus core 
plus a valence neutron. This reaction is illustrated as: 

 156 155 155
near CAp + Gd  p + (n + Gd)  d + Gd⎯⎯⎯→ =  (28) 

Therefore, if we consider a quasi-break-up process, then 
away from the CA we deal only with a two-body problem 
as shown in Fig. 3, while near the CA, we deal with a three-
body problem. We let rr  be the position of the proton with 
respect to the center of the nucleus. 
 To treat the interaction generally in the incoming 
channel for ACr r≤ < ∞ , we immediately see that the total 
Hamiltonian contains two interactions. The first interaction 
is determined by the Hamiltonian p( )H rr , which deals 
with the proton until a point near the CA and does not 
consider a neutron pickup. The real part of p( )H rr  governs 
the proton’s motion; whereas the imaginary part represents 
the absorptive component and facilitates the absorption of 
protons and becomes effective in the vicinity of nuclear 
matter. Explicitly, this Hamiltonian contains the real and 
imaginary potentials given by Eq. (6), which includes the 
Coulomb potential, Eq. (7), plus the real and imaginary 
optical potentials, Eq. (8) and Eq. (9). Formally, we write: 
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2

C Opt Optp lab lab
p pp pT pT pT

p

ˆ
( ) ( ) ( , ) ( , ).

2
P

H r V r V r E iW r E
m

= + + +r
r

(29) 

The time-dependent Schrodinger equation of the proton is: 

 p p p( , ) ( ) ( , )ti r t H r r t∂
∂ Ψ = Ψh

r r r . (30) 

The technique of separation of variables allows us to have: 

 p p p( , ) ( ) ( )r t t rχ φΨ =r r . (31) 

We make the ansatz solutions of the wave function p( )rφ r
 

and p( )tχ  as follows: 

  
2

C Optp lab
ppT pT p p

p

ˆ
( ) ( , ) ( ) ( )

2
P

V r V r E r E r
m

φ φ
⎡ ⎤
⎢ ⎥+ + =
⎢ ⎥
⎣ ⎦

r r
r

, (32) 

 p p
/( ) ( ) e i E tt a tχ −= h , (33) 

where CM
pTE E≡  is the proton’s c.m. energy and p( )a t  is the 

probability amplitude at time t  that the proton has not been 
absorbed by the imaginary optical potential. Initially, at 

0t = , when r = ∞ , we must have p(0) 1a =  since the 
imaginary optical potential is zero at infinity. 

A. Probability of a surviving proton near CA 

 Eq. (32) is very difficult to solve due to the complicated 
form of the optical potential. Instead, we use the results of 
the classical trajectories presented in section III, 
specifically the variation of r  with time t . When 
substituting from Eq. (31) into Eq. (30), with p ( )tχ  given 
by Eq. (33), and then employing Eq. (32), we get: 

 Opt lab
pp p pT( ) ( ) ( , ).d

d ti a t i a t W r E=h  (34) 

Fig. 8 shows the variation of Opt
pTW W≡  and Opt

oRW W≡ . 

 
 FIG. 8. For 0 12 fmr< ≤ , the negative values of the 
imaginary optical potential W  are displayed for protons (red), Eq. 
(9), and with similar equation for the deuteron (black) [26]. 

 Integrating Eq. (34) from 0t =  to CAt t=  and then to 

any value t  will give the probability amplitude that the 
proton would survive being absorbed until time t . Thus: 

 Opt1 lab
ppTp

0

( ) exp ( ( ), )
t

a t W r t E dt−⎡ ⎤= ⎢ ⎥⎣ ⎦∫h , 0 t≤ ≤ ∞ . (35) 

 For p 7.230175 fmb = , Fig. 9 displays the variation of 
( )r t , Opt lab

ppT ( ( ), )W r t E , the integration in Eq. (35), and the 
survival probability of protons 2

p| ( )|a t  with respect to t  (in 
yocto seconds, 1ys= 2410 s− ) and in a region where 0W ≠ . 

 
 FIG. 9. Variation with time t  when 550 ys 950 yst≤ ≤  for (a) 
r , (b) Opt

pTW , (c) 0
Opt

pT
t W dt∫ , and (d) 2

p| ( )|a t . For the regions 
630 yst <  and 875yst > , almost no proton absorption occurs. 

An offset of 149, 236 ys  is taken to correspond the zero 
time in Fig. 9. This represents the elapsed time from 0t =  
until Opt lab

ppT ( ( ), ) 0W r t E � . At CA we have CA 734.4 yst = , 
CA 8.98 fmr = , Opt

pT 1.59 MeVW =− , CA
0

Opt
pT 98.5 MeV yst W dt∫ =− ⋅ , 

and a probability of about 74.1 %  that the proton would 
survive absorption by the imaginary optical potential. At 
infinity, the probability decreases to about 55 % . 

B. Probability of neutron transfer near CA 

 The second important interaction in the incoming 
channel for ACr r≤ < ∞ , is near the target nuclear matter 
and particularly near the CA. This interaction describes the 
possible transfer of a loosely-bound neutron from the heavy 
nucleus to the proton, forming a deuteron. 
 With respect to the arbitrary origin o and at a time t , 
we let 1r

r  and 2r
r  be the c.m. positions of the target and 

proton, respectively, see Fig. 10. In this figure, rr and nrr  
are the positions of the proton with respect to the target 
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nucleus and neutron with respect to o, respectively. If we 
take o at the center of the target, then 1 0r =r  and 2r r=r r . 

 
 FIG. 10. At time t  near the point of CA, and with respect to 
an arbitrary origin o, the positions of the proton and the loosely- 
bound neutron are 2r

r  and nrr , respectively. The figure displays an 
exaggerated deuteron size. 

 The total Hamiltonian of the system can be written as: 

 pn n n( , ) ( ) ( , )H r r H r H r r= +r r r r r , (36) 

and this satisfies the time-dependent Schrodinger equation: 

pn n n n( , , ) [ ( ) ( , )] ( , , )ti r r t H r H r r r r t∂
∂ Ψ = + Ψh

r r r r r r r
, (37) 

where the total wave function n( , , )r r tΨ r r  is the product of 
the proton and neutron wave functions: 

 p nn n( , , ) ( , ) ( , )r r t r t r tΨ =Ψ Ψr r r r . (38) 

The Hamiltonian of the neutron in the region of the closest 
approach can considered as: 

2
n

1 1 2 2
n

n n n n

ˆ
( , ) (| |) (| |)

2
PH r r V r r V r r
m

= + − + −r r r r r r
r

, (39) 

where nm  is the mass of neutron. We assumed that 
1 1n(| |)V r r−r r  is the real potential felt by the neutron when it 

interacts with the target nucleus. Similarly, 2 2n(| |)V r r−r r  is 
real potential when it interacts with the proton. 
Consequently, the time-dependent Schrödinger equation 
that describes the neutron is: 

2
n n

1 1 2 2 n
n

n
n n n

ˆ( , )
(| |) (| |) ( , )

2
r t Pi V r r V r r r t
t m

∂Ψ ⎡ ⎤
= + − + − Ψ⎢ ⎥∂ ⎣ ⎦

h

r
r r r r r

r
.(40) 

It is possible to separate the variables in n n( , )r tΨ r  as a 
product of space and time functions. For the space- 
dependence part, we denote 1 1n(| |)r rφ −r r

 to be the neutron 
real wave function in the target nucleus, and we denote 

2 2n(| |)r rφ −r r
 to be the neutron wave function in the 

deuteron. The two wave functions ,( 1,2)i iφ =  are assumed 
to satisfy the Schrödinger equations: 

2
n

n
n n n

ˆ
(| |) (| |) (| |)

2 i i i i i i i
P V r r r r r r
m

φ φ⎡ ⎤+ − − = −⎢ ⎥⎣ ⎦
r r r r r r

r
E , (41) 

where 1E  and 2E  are the binding energies of the neutron 
in the heavy nucleus and deuteron, respectively. In Eq. (41), 
the reduced masses are not used because we are taking the 
c.m. vectors 1r

r  and 2r
r  as being fixed in space at time t  and 

also we are also neglecting the recoil effects. 
 Based on the proposed approximate spherical square-
well potential given by Eq. (24), the two forms displayed in 
Eq. (26) are based on an origin at the center of the heavy 
nucleus. These two forms can be modified to consider the 
origin o shown in Fig. 10. Therefore, expressions of 

n(| |)ii r rφ −r r
 can be written as: 

  
n

n

n

n

n

n
n| |

sin | |

| |
, | |

(| |)

, | || |

i i

i

i

i

i

i

i i

i i

i i
ik r r

r r

r r

e
r r

A r r R
r r

B r r R

κ

φ
− −

−

−
⎧ − ≤⎪⎪− = ⎨
⎪ − ≥⎪⎩ −

r

r

r

r r

r

r
r

r
r

r
r r

r
. (42) 

For the time dependence part of n n( , )r tΨ r
, we separate the 

position dependence in nr
r

 and time t  by: 

n 1 1 1 2 2 2n n n( , ) ( ) (| |) ( ) (| |)r t t r r t r rχ φ χ φ′ ′Ψ = − + −r r r r r . (43) 

The separation of variables technique will allow us to write 
the time-dependent function ( )n tχ ′  as: 

 / ( 1, 2)( ) ( ) ,   n n
ni t nt a t eχ − =′ ′= hE , (44) 

where 1( )a t′  is the probability amplitude at time t  of a 
neutron being in the heavy nucleus and 2( )a t′  is that at the 
same time for being picked up by the proton. Initially, at 

0t = , we have 1( 0) 1a t′ = =  and 2 ( 0) 0a t′ = = . Moreover, 
1 CA( )a t t′ =  is the probability amplitude at CA when the 

neutron stays in the target nucleus, while CA2 ( )a t t′ =  is that 
when the neutron is captured by the proton at CA.  
Substituting with p ( , )r tΨ r

, given by Eq. (31), and 
n n( , )r tΨ r

, given by Eq. (43), into Eq. (38) we get the 
following total wave function of the system: 

 1 1 1

p2 2 2

n n

n

( , , ) ( ) (| |)

( ) (| |) ( ),

[
]

r r t t r r
t r r r

χ φ
χ φ φ

Ψ = − +

− ×

r r r r
r r r  (45) 

where p1 1( ) ( ) ( )t t tχ χ χ′=  and p2 2( ) ( ) ( )t t tχ χ χ′= . From 
Eq. (44) and Eq. (33) we have:  

 ( ) / ( 1,2)( ) ( ) ,   n n
ni E t nt a t eχ − + == hE

, (46) 

where p( ) ( ) ( ),  ( 1,2)n na t a t a t n′= = . Now, 1( )a t  is the 
probability amplitude, at time t , a neutron that has not 
been picked up by a proton which has not been absorbed by 
the imaginary optical potential. Initially, at 0t = , we have 

p1 1(0) (0) (0) 1a a a′= = . Additionally, 2( )a t  is the probability 
amplitude that, at time t , a neutron that is being picked up 
by a proton which has not being absorbed by the imaginary 
part of the optical potential. Initially, p2 2(0) (0) (0) 0a a a′= =  
at 0t = . Likewise, 2 CA( )a t  is the probability amplitude at 
the CA of picking up a neutron by a surviving proton. 

p
2R

1R

o2V

o1V

1r
r

2r
r

o

rr

n 2r r−
r r

n

pv

nr
r

n 1r r−r r
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 Substituting Eq. (45) into Eq. (37), and after some 
algebra we arrive to the following differential equation: 

( )
( )1( ) ( ) ( )

m n

n n m n n m m

ti
a t X iW a t Y e a t

i

−−⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
h

h&
E E

, (47) 

where Opt
pTW W≡ , 

 
2

2

12 ]
1 12

12
1 12

nm

nm

nmn nmmX

nnm mnmY

< >−< > < >=
− < >

< > − < > < >=
− < >

,
1,  2
or

2,  1

n m

n m

= =

= =

⎧⎪
⎨
⎪⎩

, (48) 

and we used the bra-ket notation to represent the resulting 
overlap integrals shown in Table V.  
TABLE V. Shorthand symbols for the bra-ket notation. 

 Overlap integral Shorthand symbol 

21 1| |Vφ φ< >  121< >  
2 21| |Vφ φ< >  212< >  
2 2 1| |Vφ φ< > = 1 2 2| |Vφ φ< >  221 122< >=< >  
1 21| |Vφ φ< > = 2 11| |Vφ φ< >  112 211< >=< >  

1 2 2 1| |φ φ φ φ< > = < >  12 21< >=< >  
 
 In all overlap integrals, n(| |)ii r rφ −r r

 of Eq. (42) is used 
to find n mX  and nmY  analytically. For convenience we use 
the dimensionless parameters ji j ik Rα = , 12i ik rβ = , 

i ii Rγ κ= , 12i i rδ κ= , and 12/i iF R r= , where if 1i =  then 
2j =  or if 2i =  then 1j = . The analytical expressions of 

121< >  and 212< >  are evaluated and combined as: 

( )

22
0 2

2

1 1,3,..

1,  2
or

2,  1

sin ( ) 1
(1 ) ln

1 1

( 2 )
2 , .

( )! !( 2)

j i j
j j

j

nn
i j

n

ii
i

ii
i j

i j

V e F
i j i F F

F

F
n n

αβ γ
α

β +∞

= =

= =

= =

⎡ +
< > = − −⎢+ −⎢⎣

⎧⎤− ⎪+ ⎥ ⎨− + ⎥ ⎪⎦ ⎩
∑ ∑

l

l l l l

 (49) 

where the summation term converges rapidly after about 
reaching 30 to 50 terms. The analytical expressions of 

112< >  and 122< >  can take the following combined 
form (with the alteration of i  and j  as defined previously): 

     
0

2 2
11 22

2 sin
1 2

(1 )(1 ) ( )

sin cosh cos sinh .

i

i j

j
j i

j

j i ji i i ji

j jV e
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α β
γ β

βα α δ β

β γ α δ γ α

−

< >= ×
+ + +

⎡ ⎤−⎣ ⎦

 (50) 

 The analytical integration of 1 2|φ φ< >  is divided into 
three parts. The first part is carried out when the neutron of 
Fig. 10 lies inside the heavy nucleus domain. The domain 
of the second part is taken when the neutron lies inside the 
deuteron. The integration of the third part is carried out 
when the neutron is outside both the heavy nucleus and the 
deuteron. By taking the origin in Fig. 10 in this case at the 
heavy nucleus, we allow nr

r
 to cover the whole domain D 

given by 1 nR r≤ ≤ ∞r
, 0 θ π≤ ≤ , and 0 2φ π≤ ≤  even 

when 22n| |r r R− <rr
. Of course, this domain D will cover 

the unwanted region of the deuteron. Since the size of the 
deuteron is negligible with respect to the huge domain D, 
this choice of integration is perfectly valid. Accordingly, 
the analytical integration of 1 2| 12φ φ< >=< >  will be: 
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 (51) 

 We now turn back to the coupled-first-order linear 
differential equations, Eq.(47). We can write them as: 

 1 11 1 12 2

2 21 1 22 2

( ) ( ) ( ),

( ) ( ) ( ),

i

i

t

t

a t g a t g a t

a t g a t g a t

e
e

ω

ω

−

+

= +

= +
&
&

 (52) 

where 2 121/ ( ) /ω = = −h hE E E . The g’s are related to the 
coefficients nmX , nmY , and the imaginary optical potential 
W  by the following relations: 

 
1 1

11 12 12 12

1 1
21 21 22 21

( ) ( ), ( ) ,

( ) , ( ) ( ).

g i X iW g i Y

g i Y g i X iW

− −

− −

= + =

= = +

h h

h h
 (53) 

We cannot solve these coupled-first-order differential 
equations using the normal procedure of matrix algebra 
since some coefficients are time-dependent. When using 
the technique of the Laplace transform, we can find the 
probability at time AC0 t t≤ ≤  of picking-up a neutron by a 
surviving proton as: 

 2 2
2

2 /| ( ) | 1 [1 sin ( )]W ta t C f te= − −h , AC0 t t≤ ≤ , (54) 

where due to the negative values of the imaginary optical 
potential W  (see Fig. 8), the attenuation factor 2 /Wte h  
goes from 1 to a smaller value CA /2W te h  when t  goes from 
0 to ACt . The values of f  and the factor C  in Eq. (54) are 
related to the predefined coefficients and are given by: 
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1
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= + = + +
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= + −

h

h

h

E

E

E

(55) 
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The numerical values of f and D are very close to each 
other (usually of the order of 3 14 10 (ys)− −×  for most of the 
impact parameters in this study). Therefore, C has a very 
small value or zero. In addition, even with the violent 
fluctuation of 2sin ( )f t  in the time scale of 530 yst > , we 
end up with a simpler probability formula (with a second 
term that is similar to the well-known WKB penetration 
probability) for picking-up a neutron by a survived proton: 

 12
2

2| ( ) | 1 W ta t e −
− h� ,  AC0 t t≤ ≤ . (56) 

 Similar steps to Eq. (29) until Eq. (34) can be applied to 
the deuteron after the CA. These steps will give the 
probability amplitude, d( )a t , that the deuteron would 
survive from being absorbed by the deuteron optical 
potential an any time CAt t≥ . Therefore: 

 
CA

Opt1 lab
dR dd ( ) exp ( ( ), )

t

a t W r t E dt−
∞⎡ ⎤= ⎢ ⎥

⎣ ⎦∫h . (57) 

 For the incoming channel ( ACt t≤ ) and for three 
different impact parameters, the left rising part of Fig. 11 
displays 2

2| ( ) |a t  as a function of time t  (in ys), when 
using the same offset time 149, 236 ys  as in Fig. 9. All 
trajectories start at 0t =  when the distance D  in Fig. 3 is 
about 410 fm . For the smallest selected value, p 7.23 fmb = , 
Fig. 11 indicates that the probability starts to increase 
gradually after 600 yst ≈ . The probability that a surviving 
proton can pick-up a neutron and form a deuteron is about 
38.6% at CA when the proton reaches CA 8.98 fmr =  at 

CA 734 yst � . For the selected value, p 7.60 fmb = , the 
bottom blue curve of the figure shows the same trend of 
increase. The probability of forming a deuteron is about 
16% when the proton reaches CA 9.50 fmr �  at CA 720 yst � . 
Thus, for large impact parameters, the chance of forming a 
deuteron near the CA decreases as expected.  

 
 FIG. 11. Graph of the variation of 2

AC2| ( ) | ,  (0 )a t t t≤ ≤  and 
ACd ( ),  ( )a t t t≥  for three selected impact parameters. 

 For the outgoing channel ( ACt t≥ ), the attenuated right 
part of the same figure displays 2

d| ( ) |a t  as a function of 
time for t  (in ys). For the small value p 7.23 fmb = , Fig 11 
indicated that the deuteron imaginary optical potential has 
considerable effect on absorbing the deuterons. As a 
comparison, this effect goes away much less than the 
absorption that occurs for the case of the proton, as seen in 
Fig. 9. The probability of creating a deuteron drops from 
38.6% at CA to only 34.4% when detected at infinity. The 
figure indicates that larger impact parameters have a 
limited effect on absorbing deuterons after their formation 
at CA. In other words, the absorption effect on the formed 
deuterons is not appreciable when the protons have 
relatively large impact parameters. 

C. Angular distribution weighted by probability 

 Based on the formulations of the subsections A and B, 
we calculated 276,983 weighted trajectories for protons and 
a similar number of deuterons created at CA. Figure 12 (a) 
shows the probability that a proton was not absorbed by the 
imaginary optical potential as a function of the impact 
parameter. Since deuterons can be created in the forward 
direction only when p 7.23018 fmb ≥ , this part of the figure 
starts with the proton probability loss of 0.55 when 
detected. As pb  increases, the survival probability 
increases and reaches a value near to 1 when p 10 fmb =  
(no proton loss). 

 
 FIG. 12. The survival probability as a function of the impact 
parameter is plotted for protons (a) and deuterons (b).  

Figure 12 (b) shows the probability of a neutron that is 
being picked up by a proton which is not being absorbed by 
the imaginary optical potential, and hence forming a 
deuteron. At p 7.23487 fmb = , the probability of creating a 
deuteron at CA and then detected at infinity is 0.35. As pb  
increases, the deuteron’s probability decreases and when 

p 10 fmb = , it reaches a very small value of 0.003. 
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 Figure 13 (a) displays the number of detected protons at 
infinity, pN , weighted by their survival probability as a 
function of pθ  (with a bin size p 1.5θΔ = ° ). Here one can 
see a smooth gradual increase followed by a sharp increase 
in the number of protons. The change in angles occurs in 
the range p11 21.5θ° °  with the number of protons in 
the range p2 173,000N . 

 
 FIG. 13. Each point on the abscissa represents a bin size of 

p d 1.5θ θΔ = Δ = ° . (a) Angular distribution weighted by a proton’s 
survival probability. (b) The same as (a), but for deuterons 
weighted by their creation probability at CA and then surviving 
from being absorbed by the imaginary optical potential after the 
CA and then detected. A smaller window is added to show the 
number of deuterons in the experimental range. 

 Figure 13 (b) displays, as a function of dθ  (with a bin 
size d 1.5θΔ = ° ), the number of detected deuterons dN , 
weighted by their probability (after the creation at CA and 
detected at infinity). The number of deuterons becomes 
significant after d 70θ > − °  and increases gradually in the 
beginning and then violently to a peak at about d 25θ °�  
when d 11,500N � . The trajectory calculations show that 
when p* 7.40091fmb =  we get final angles p 15.215θ °�  
and d 0θ = ° . This is indicated by the two arrows in both 
parts of figure 13. For values greater than p*b , dθ  is 
positive and reaches a maximum of d 25θ °� . 
 As displayed in both the top and bottom parts of Fig. 2, 
the observed experimental results are for angles greater 
than 30°  and less than 60°  [10, 4]. Therefore, we need to 
plot the calculated theoretical number  for only part of 
the angles in Fig. 13 (b) that fall within the experimental 
measurements. 
 To get a good fit with the experimental results, the 
calculated values for the ground state of 155Gd in Fig. 13 (b) 
are scaled up by a factor of 1.35 and plotted in Fig. 14. To 
get the curve of the 367.6 keV level to overlap with the 
ground-state curve of Fig. 14, a scaling-up factor of 1.48 is 
used. This indicates that, for the excited 155Gd nucleus, the 

number of detected deuterons is smaller. Thus, exciting 
155Gd nucleus to higher Nilsson levels contributes fewer 
detected deuterons than that with the ground energy. 

 
 FIG. 14. Comparison between the deuterons angular 
distributions of the present calculations with the experimental 
angular momentum transfer L=0 data for the direct population of 
the ground state and the level 367-keV, 1

2
+ [400] of Allmond et al. 

[10] and L=0 DWBA calculations [11]. 

 As seen from Fig. 14, our theory fits the experimental 
values for all small angles except at the two large angles 
49.84o and 50.99o. The overall fit looks acceptable and 
describes the general features of the experimental results, 
even without considering the interference between 
deuterons created with negative and positive angles. This is 
because positive angles have a maximum value of about 

d 25θ = ° , see Fig. 13 (b). Therefore, deuterons with positive 
angles are considered to be in the direction of the proton’s 
beam. The L=0 DWBA curve displayed in Fig. 14 passes 
through the experimental curve at 38.31 deg and deviates 
most from the experiment at small and large angles. 
 According to the CCBA theory presented by Ascuitto 
and Glendenning for the stripping (d,p) reaction [31] and 
the two-neutron transfer (p,t) reaction [32], there are certain 
situations where one or two of the usual three assumptions 
for the DWBA are false when considering transfer 
reactions. This might explain why the DWBA cannot 
explain the experimental results of Fig. 14. On the other 
hand, the CCBA theory is more complex in its formalism 
than our simple semi-classical approach, which gives a 
reasonable fit to the experiment. Unfortunately, no 
published research literature relevant to CCBA is available 
in the case of 25 MeV proton incident on 156Gd nucleus in a 
(p,d) reaction. 

dN
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 Following the DWBA angular-distribution fit which is 
best characterized by angular momentum transfer L=0,1,2 
for the experimental work of Ref. [4], figure 15 shows the 
calculations for the 158Gd (p,d)157Gd reaction when 
considering the ground state and the two states shown in 
Table VI. 

TABLE VI. Experimental energy level of 157Gd. Taken from 
Table 6 of Ref. [33]. 

(keV)E∗  J π  [ ]zK Nn Λ  

682.84 (3) 1
2

+  1
2 [400]  

729.14 (3) 3
2

−  1
2 [521]  

 

 
 FIG. 15. Comparison between the experimental results of T. 
Ross et al. [4] and the present calculations for deuterons. 

 In Figure 15 we compare the results of our angular 
momentum transfer L=0 theory with experimental work of 
T. Ross et al. [4]. To get a good fit with the experimental 
work, the calculated values for the ground state are scaled 
down by a factor of 1/12. To get the curves of the 682.84 
keV and 729.14 keV levels to overlap with the ground state 
curve, a scaling-down factor of 1/10 is used.  
 Although the experimental work of Ross et al. [4] is not 
for L=0, the semi-classical calculations agrees with almost 
the highest 12 experimental angles and deviate in case of 
the two smallest angles.  
 For the comparison with the DWBA curves presented at 
729 keV in Fig. 7 of Ref. [4] and displayed in the bottom of 
Fig. 2 of this paper, we note that the L=0 DWBA curve 
does not fit the experiment and the L=1,4 curves fit the data 
for angles less than 45o but deviate for angles greater than 
45o. The comparison and agreement of our angular 
distribution with the experimental data presented in the 
bottom part of Fig. 2 is only for deflections greater than 30 
degrees. The DWBA curve does not show L=0 at smaller 

angles, but it looks as if it could be extrapolated up at 
smaller angles. We might hope that experimental data 
could be extended into smaller angles, despite interference 
from elastically-scattered protons. Again, the discrepancy 
between experiment and DWBA may be due to the strong 
coupling of inelastic channels to the ground in deformed 
nuclei, as indicated by the CCBA theory [31]. 

VI. Results and Discussion  

 Using the optical model parameters of C. Perey and F. 
Perey [26], we see that the p,d pickup reaction must take 
place near the nuclear surface at the poles. That condition 
favors filled neutron orbitals with relatively large wave 
functions with an angular momentum projection 1

2Ω =  will 
have finite probability at the nuclear poles. Due to 
conservation of energy, the pickup will favor filled orbitals 
below the Fermi surface near the 2.2245 MeV binding 
energy of the final state deuteron. The most strongly 
populated final state in both p,d products of 155Gd and 
157Gd is the 1

2
+ [400] state at 367.6keV in 155Gd and 682.8 

keV in 157Gd, which are a mix of s1/2 and d3/2 from the shell 
below N=82 (see Table 11 from T. Ross thesis [1]). The 
fact that this dominant band has by far predominant 
population in its spin 1

2  ground state, is a consequence of 
Coulomb excitation on the inward path of the proton being 
cancelled by that on the outward path of the formed 
deuteron. This is more evidence that most of the p,d pickup 
takes place near the poles.  
 One feature of the nuclear structure that has not been 
taken into account by T. Ross et al. [2] is the feature of 
“quadrupole pairing”, Chu et al. [6]. This feature proved to 
be a major factor in accounting for the low energy of the 
first-excited 0+ state in 154Gd. We note that Chu’s work [6] 
recognized that monopole pairing for solving the BCS-
mixing equations needs special treatment in systems where 
the Nilsson orbitals divide into two groups: down-going 
and up-going. The former involve the nucleon wave 
functions that mainly occupy the north and south polar 
regions, whereas the up-going orbitals mainly occupy the 
equatorial regions. An exception to this general rule are the 
two most heavily populated bands in the p,d reaction, 
namely, the 1

2
+ [400] and the 3

2
+ [402]. From the weak 

signature splitting in these bands we know that there is 
considerable mixing of the s1/2 and d3/2 orbitals. Thus, they 
both have amplitudes at the nuclear poles from the presence 
of the s1/2 orbital. Both of these Nilsson states are available 
for neutron pickup at their poles, though the 1

2
+ [400] is the 

greater at the poles. 
 In systems with BCS mixing, transition rates have a uv 
factor. In the case of the odd-A Gd the up-going orbitals 
from the shell below the 82 gap are mostly filled with 
neutrons and vn is near 1. For the orbitals near the Fermi 
energy most are downsloping (polar) and their BCS 
solution will have u (emptiness) and v (fullness) values of 
near square roots of 1

2 . This pairing influence gives an 
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enhancement to pick up from the up-going orbitals well 
below the Fermi energy, such as 1

2
+ [400] and 3

2
+ [402]. 

That is, the removal of a neutron from the upgoing neutron-
orbital will barely affect the BCS solution for the 
downgoing orbitals. 
 Both bands ( 1

2
+ [400] and 3

2
+ [402]) have the feature of 

a strong lobe in the wave function at the poles of the 
spheroid. This justifies our classical trajectories grazing the 
poles at 0 and 180 degrees latitude. Of more importance is 
that the proton beam energy, 25MeV, was chosen for the 
maximum pickup probability by DWBA theoretical 
calculations. We understand that at lower beam energies, 
the protons are below the Coulomb barrier at all latitudes. 
The lowest Coulomb barrier is at the poles, where most of 
the p,d pickup occurs. The decline of the pickup cross 
section in DWBA at higher energies may be attributed to 
the increasing speed of the grazing protons at the poles. 
 One concern in our theoretical trajectory work is that 
we have used the Perey and Perey [26] optical-model 
parameters, which are based on a uniform spherical charge 
distribution. More recent parameters, such as the global 
optical potential [34,35] can also be used, but they have the 
same spherical charge distribution feature. The actual 
radius of curvature at the poles should be somewhat smaller 
than at the spherical nuclei, and the Coulomb potential will 
differ slightly due to the deformed nucleus. The refinement 
of the code to non-spherical shapes is a future challenge. 

VII. Conclusions 

 We believe these semi-classical calculations for the 
dominant 1

2
+ [400] give a reasonable fit to experimental p,d 

angular distributions, which have only been measurable at 
angles larger than about 30 degrees, since smaller angles 
are flooded with scattered protons. The simple support for 
this conclusion is that the 1

2
+ [400] and 3

2
+ [402] are the 

most strongly populated states because they have the 
largest 2

jC l  coefficients for L=0 and 2, respectively, and 
the kinematics are such that the cross sections are largest at 
these angles for L=0 - 2. 
 Additionally, we believe that when the incoming proton 
wavelength is considerably smaller than the nuclear size, 
then this simplistic semi-classical code achieves a 
comparable fit with experimental results for the case of the 
angular momentum transfer L=0 as compared to the DWBA 
approach used by the standard codes [11,12,13,14]. Also, 
since the presented approach is particularly suited for 
describing the angular momentum transfer L=0, then it may 
provide an elegant framework for future investigations of 
excited 0+ states populated in: (a) the (p,t) reaction [2,4,36-
42], (b) the (t,p) reaction [43,44], (c) the (d,p) reaction [45], 
and (d) the more heavier projectile reaction such as 

3( He, )α [46-51]. 
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