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We present the formalism for consistently transforming transition operators within the in-medium
similarity renormalization group framework. We implement the operator transformation in both
the equations-of-motion and valence-space variants, and present first results for electromagnetic
transitions and moments in medium-mass nuclei using consistently-evolved operators, including the
induced two-body parts. These results are compared to experimental values, and—where possible—
the results of no-core shell model calculations using the same input chiral interaction. We find
good agreement between the equations-of-motion and valence space approaches. Magnetic dipole
observables are generally in reasonable agreement with experiment, while the more collective electric
quadrupole and octupole observables are significantly underpredicted, often by over an order of
magnitude, indicating missing physics at the present level of truncation.

I. INTRODUCTION

Understanding the observed properties of atomic nu-
clei based upon the underlying hadronic degrees of free-
dom has long been a major goal of nuclear structure the-
ory. Achieving this goal has become especially important
as nuclei become laboratories in the search for physics
beyond the Standard Model [1–5]. In the treatment
of the nuclear physics relevant for these searches, the
more traditional phenomenological approaches to nuclear
physics—despite their tremendous success in predicting
and interpreting existing nuclear data [6, 7]—suffer from
a lack of guidance as to how to incorporate new physics
and make meaningful predictions. This is largely due to
the fact that, by definition, there is no data for these
processes upon which to fix phenomenological parame-
ters. One promising path forward is to construct nuclei
ab initio, starting from the underlying degrees of freedom
rooted in the Standard Model. The two main tasks in
this approach are the formulation of appropriate interac-
tions between nucleons, and the solution of the resulting
many-body problem with sufficient accuracy. Substantial
progress has been made on the former difficulty by the
application of chiral effective field theory (EFT) [8–12],
though much work certainly remains.

On the many-body front, methods such as the no-core
shell model (NCSM) [13–15] and quantum Monte Carlo
(QMC) [16] provide exact solutions for p-shell nuclei up
to finite basis effects and sampling errors. While the
application of renormalization group ideas [17–20] has
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helped extend the reach of the NCSM, both of these
methods encounter prohibitive computational scaling for
medium-mass nuclei.

Another class of approximate but systematically
improvable many-body methods, namely coupled-
cluster (CC) [21–23], self-consistent Green’s func-
tions (SCGF) [24–27], many-body perturbation theory
(MBPT) [28–31], and the in-medium similarity renor-
malization group (IMSRG) [32–35], have enabled appli-
cations to nuclei beyond the fp-shell [31, 36–40]. Each
of these methods may be formulated in terms of summed
Goldstone diagrams (including some classes of diagrams
to all orders), and each employs normal ordering with
respect to a reference state in order to approximately
treat three- and higher-body terms. With these meth-
ods, immense progress has been made in the calculation
of nuclear binding energies, radii, and excited state spec-
tra, where it is now possible to calculate these observ-
able quantities consistently using two- and three-nucleon
forces throughout the expanses of the medium-mass nu-
clear landscape. At the present time, the deficiencies in
the nuclear interactions have become the main source of
error for many calculations, as opposed to truncation er-
rors in the solution of the many-body problem.

As alluded to above, a major advantage of ab initio
methods which start from chiral EFT is the possibility
to obtain transition operators consistent with a given in-
teraction. A consistent treatment of operators is essen-
tial to address open questions in nuclear physics such as
the source of axial-vector quenching in-medium [41, 42]
, and to do away with phenomenological concepts such
as effective charges for E2 transitions. It will also be
indispensable for reliably calculating quantities relevant
for searches for physics beyond the Standard Model, such
as neutrinoless double beta decay [5]. Finally, it remains
to be demonstrated that the success of diagrammatic-
expansion methods in calculating energies and radii car-
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ries over to other observables.
The effort to obtain consistent effective operators for

use in nuclear structure calculations is certainly not
new (see, e.g., [43–47]), and has long been a difficult
problem for nuclear theory, though some progress has
been made in recent years [48–53]. The IMSRG presents
a straightforward framework for deriving consistent ef-
fective operators, because it is formulated in terms of
a series of unitary transformations. In order to reduce
the storage needed for calculations, the IMSRG, like the
other diagrammatic expansion methods, is generally for-
mulated in an angular momentum coupled basis. As a
result, additional formal developments are required for
the treatment of spherical tensor operators—i.e., oper-
ators that carry angular momentum—which are neces-
sary for the calculation of transition strengths, electro-
magnetic moments and response functions. In this work,
we present a streamlined effective operator formalism for
spherical tensors, using the recently developed equations-
of-motion IMSRG [54] (EOM-IMSRG) and valence-space
IMSRG [34, 55, 56] (VS-IMSRG). The two methods of-
fer complementary approaches to the problems of nuclear
spectroscopy and decay, each with different benefits and
drawbacks: The EOM-IMSRG works with large single-
particle spaces, but limits the type of particle-hole ex-
citations, while VS-IMSRG treats all particle-hole exci-
tations in a small single-particle valence space exactly,
but relies on a truncated IMSRG decoupling to account
for excitations outside of that valence space. As we will
discuss in the following, operators that appear in the
IMSRG flow equations are truncated at the two-body
level, and higher induced operators are neglected. We
will demonstrate that both methods are capable of con-
sistently describing excited states and transitions for a
certain class of states. In some cases we find results con-
sistent with experiment, while in others we make note of
discrepancies.

This work is organized as follows. In section II, we give
the relevant commutator expressions for the calculation
of effective tensor operators, and lay out the formalism
for the EOM-IMSRG and VS-IMSRG. In section III, we
present results of calculations of transitions and moments
for several nuclei ranging in mass from the deuteron to
60Ni, and we present conclusions in section IV.

II. FORMALISM

Here, we lay out the framework for evaluating matrix
elements of spherical tensor operators in the IMSRG. For
a review of the theory and formalism of IMSRG, we refer
the reader to Ref. [33].

A. Commutator expressions

The main new development required for the transfor-
mation of tensor operators is the expression for the com-

mutator between an operator of spherical tensor rank λ
with a scalar operator (λ = 0). We truncate all oper-
ators at the two-body level in the following discussion.
We write a scalar operator S in normal-ordered form as

S = S0b +
∑
pq

Spq{a†paq}+
1

4

∑
pqrs

S̆Jpqrs{a†pa†qasar}. (1)

The braces {} indicate normal ordering with respect to
the reference state |Φ0〉. The zero-body term is given

by S0b = 〈Φ0|S|Φ0〉. The coefficients Spq and S̆Jpqrs are
defined by

Spq ≡ 〈p|S|q〉 (2)

S̆Jpqrs ≡ 〈(pq)J |S̆|(rs)J〉 . (3)

Our two-body states are antisymmetrized but unnormal-
ized, so that expressions may be written in terms of un-
restricted sums. The unnormalized two-body matrix el-
ements, indicated by a breve1 ˘, are related to conven-
tional normalized matrix elements via

S̆Jpqrs ≡
√

(1 + δpq)(1 + δrs)S
J
pqrs (4)

We write a spherical tensor operator T λµ of rank λ and
projection µ as

T λµ = Tλ0b +
∑
pq

Tλpq
[a†p × ãq]λµ√

2λ+ 1

+
1

4

∑
pqrs

∑
J1J2

T̆ (J1J2)λ
pqrs

[
A†J1pq × ÃJ2rs

]λ
µ√

2λ+ 1
,

(5)

where [×] indicates a tensor product. Note that a ten-
sor operator (λ 6= 0) that is normal-ordered with respect
to a spherical reference state (as used in all calculations
here) will have a zero-body piece Tλ0b = 0. The tilde in
eq. (5) indicates the usual transformation of the annihi-
lation operator ap to a spherical tensor operator [57, 58]:

ãp ≡ ã(jp,mp) = (−1)jp+mpa(jp,−mp). (6)

A†JMpq is a creation operator for a two-particle state with
total angular momentum J and projection M :

A†JMpq |0〉 ≡
[
a†p × a†q

]J
M
|0〉

= |(pq)JM〉
, (7)

with a corresponding definition for ÃJMrs

ÃJMrs = [ãs × ãr]JM = (−1)J−MAJ−Mrs . (8)

1 In previous works, we have indicated unnormalized two-body
matrix elements with a tilde (∼). However, to avoid confusion in
the present work we reserve the tilde to indicate spherical tensor
annihilation operators.
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The coefficients Tλpq and T̆
(J1J2)λ
pqrs are defined by the fol-

lowing reduced matrix elements, using the convention of
Edmonds [58, 59],

Tλpq ≡ 〈p‖Tλ‖q〉 (9)

T̆ (J1J2)λ
pqrs ≡ 〈(pq)J1‖T̆λ‖(rs)J2〉. (10)

The commutator Cλµ of the operators S and T λµ will be a
spherical-tensor operator of rank λ:

Cλµ ≡ [S, T λµ ] = ST λµ − T λµ S (11)

The coefficients Cλpq and C̆
(J1J2)λ
pqrs are given by equations

(B2) and (B3) in appendix B.

B. Equations-of-motion IMSRG

In the equations-of-motion (EOM) formulation of the
IMSRG, we first perform a single reference ground state
calculation, which maps the reference |Φ0〉 to the ground
state |Ψ0〉 via a continuous sequence of unitary trans-
formations U(s) that are labeled by the flow parameter
s. We then describe the excited states in the IMSRG-
transformed frame using a ladder operator X̄†ν acting on
the reference state

U(∞)|Ψν〉 = X̄†ν(JΠ)|Φ0〉. (12)

Here the bar indicates that the ladder operator is ex-
pressed in the transformed frame. The Schrödinger equa-
tion for the IMSRG rotated Hamiltonian H̄ may then be
written as

[H̄, X̄†ν(JΠ)]|Φ0〉 = (Eν − E0)X̄†ν(JΠ)|Φ0〉. (13)

As a result of the ground-state decoupling, there is no
correlation between the ground state and excited states
in the rotated frame, so X̄†ν(JΠ) will consist only of

excitation operators of the form a†aa
†
b · · · aiaj · · · , where

a, b, c, . . . and i, j, k, . . . denote orbitals that are unoccu-
pied and occupied, respectively, in the reference state.
Note that evaluating the l.h.s. of (13) requires a scalar-
tensor commutator as defined in (11).

Calculations of this type are subject to two sources
of systematically improvable error, namely truncations
of the IMSRG equations and truncations of the EOM
ladder operator. In this work, both truncations will
be made at the two-body level (EOM(2)-IMSRG(2) ≡
EOM-IMSRG(2,2)). The normal ordering with respect
to the reference state is crucially important to control
the quality of these truncations, because it allows us to
retain in-medium contributions from 3N forces in the nor-
mal ordered zero-, one-, and two- body pieces of our op-
erators. Beyond the IMSRG framework, the truncation
of input interactions and operators at the normal-ordered
two-body level is known as the normal-ordered two-body
(NO2B) approximation [60–63].

Our ladder operators are linear combinations of one-
and two-body excitation operators coupled to desired
spin JΠ

X̄†ν(JΠM) =
∑
ai

XJ
ai(ν)

[a†a × ãi]JM√
2J + 1

+
1

4

∑
abij

∑
J1J2

X̆
(J1J2)J
abij (ν)

[
A†J2ab × Ã

J1
ij

]J
M√

2J + 1
.

(14)

The amplitudes XJ
ai(ν) and X̆

(J1J2)J
abij (ν), as well as exci-

tation energies, are obtained by solving the eigenvalue
problem (13). Note that this formulation is equiva-
lent to configuration interaction with singles and doubles
(CISD), i.e. diagonalizing the transformed Hamiltonian
in the space of 1p1h and 2p2h excitations out of |Φ0〉.

To quantify the importance of the EOM ladder opera-
tor truncation, we compute the 1p1h partial norms,

nν(1p1h) =

√∑
ia

|X̄J
ai(ν)|2. (15)

For states with nν(1p1h) near one, we expect small error
in the EOM portion of the calculation. A small 1p1h
partial norm indicates that the rotated wave-function for
the state in question contains higher-order many-body
excitations which are not captured by the ladder operator
in (14).

Operator matrix elements for transitions to the ground
state may be written

M0ν = 〈Φ0||[Ōλ × X̄†ν(JΠ
ν )]0||Φ0〉

= δλJν (−1)Jν

[∑
ai

Xai(ν, J
Π
ν )√

2J + 1
Oai(λ,Π)

+
1

4

∑
abij

∑
J1J2

X̆J1J2
abij (ν, JΠ

ν )
√

2J + 1
ŎJ1J2abij (λ,Π)

]
,

(16)

and for transitions between excited states, or expectation
values of excited states,

Mµν = 〈Φ0||[X̄µ(JΠ
µ )× [Ōλ × X̄†ν(JΠ

ν )]Jµ ]0||Φ0〉 . (17)

Equation (17) requires the calculation of the full tensor
product

YJM ≡ [Ōλ × X̄†ν(Jν)]JM =
∑
Mνµ

CλJνJµMνM
ŌλµX̄†ν(JνMν).

(18)
The matrix elements of Y are given by equations B7
and B8 in appendix B. In equations (16)–(18), we use
a transition operator which is transformed consistently
with the Hamiltonian. To achieve this, we express the
unitary transformation as the exponential of an anti-
Hermitian generator: U = eΩ, with Ω† = −Ω [64]. Any
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operator Oλ can then be consistently transformed by

Ōλ = eΩOλe−Ω

= Oλ + [Ω,Oλ] +
1

2
[Ω, [Ω,Oλ]] + . . .

(19)

where we again use the scalar-tensor commutators of
(11).

In the formulas presented in Appendix B, transition
operators are assumed to be normal-ordered with respect
to the reference |Φ0〉. If Oλ is initially a one-body oper-
ator with λ 6= 0, then this requires no additional work.
If Oλ has a two-body component—as is the case if we
include meson-exchange currents, or if the bare operator
has been SRG evolved in free space—then we need the
formula for obtaining the normal-ordered form (indicated
N λ) of Oλ:

N λ
ij = Oλij +

∑
aJJ ′

na(−1)ja+ji−J′−λ
{
J J ′ λ
jj ji ja

}
OJJ

′λ
iaja ,

N JJ ′λ
ijkl = OJJ

′λ
ijkl .

(20)
This may be obtained by beginning with the usual m-
scheme formula [33] and applying (C1). Here na is the
occupation fraction of orbit a, defined so that 0 ≤ na ≤ 1.

C. Valence space IMSRG

In the valence-space (VS) formulation of the IMSRG,
the unitary transformation U decouples a valence space
HamiltonianHVS from the remainder of the Hilbert space
(the excluded space) Hexcl,

H̄ = UHU† = H̄VS + H̄excl. (21)

The eigenstates are obtained by a subsequent diagonal-
ization of H̄VS within the valence space.

The expectation value of Oλ between initial state |ψi〉
and final state |ψf 〉 may be obtained by combining the
matrix elements ofOλ with the one- and two-body transi-
tion densities (working with the consistently-transformed
valence-space operators and wave functions)

〈ψf‖Oλ‖ψi〉 = O0bδfi +
∑
pq

OλpqOBTDλ
pq(ψf , ψi)

+
1

4

∑
pqrs

∑
J1J2

ŎJ1J2λpqrs TBTDJ1J2λ
pqrs (ψf , ψi).

(22)

The one-body transition densities are defined by

OBTDλ
pq(ψf , ψi) ≡

〈ψf‖[a†p × ãq]λ‖ψi〉√
2λ+ 1

(23)

and the two-body transition densities are

TBTDJ1J2λ
pqrs (ψf , ψi) ≡

〈ψf‖[A†J1pq × ÃJ2rs ]λ‖ψi〉√
2λ+ 1

. (24)

There is a clear parallel between (22) and (16), due to

the fact that the amplitudes XJ
ai(ν) and X̆

(J1J2)J
abij (ν) cor-

respond to the one- and two-body transition densities,
respectively, between |Ψν〉 and the ground state. For
all the valence space results presented here, the diag-
onalizations were performed with the shell model code
NuShellX@MSU [65]. As NuShellX does not provide
functionality to calculate the two-body transition den-
sities for spherical tensor operators, an additional code
has been developed [66].

For open-shell nuclei, we use the ensemble normal or-
dering (ENO) approach presented in Ref. [56]. After the
valence space is decoupled, we change the normal order-
ing reference to be the core of the valence space, which
requires the use of (20).

We note that the only approximation made in this pro-
cedure is the truncation to normal-ordered two-body op-
erators. Of course, the quality of this approximation de-
pends on the choice of reference and valence space.

III. RESULTS

For all of the calculations presented here, with the ex-
ception of the results in section III E, we employ the chi-
ral NN interaction of Entem and Machleidt [67] at N3LO
with a cutoff ΛNN = 500 MeV, and the local 3N interac-
tion of Refs. [61, 68, 69] at N2LO with a cutoff Λ3N = 400
MeV. We use an additional three-body energy truncation
E3max ≡ e1 + e2 + e3 ≤ 14, where ei = 2ni + li corre-
sponds to the ith single particle shell in the harmonic
oscillator basis. The interactions are consistently SRG
evolved [17, 20] to a scale λSRG = 2.0 fm−1. This interac-
tion has been shown to give an excellent reproduction of
the binding energies in the vicinity of the oxygen isotopes
[24, 26, 70], but it produces radii which are too small
by roughly 10% [71]. Since we consider E2 transitions
and moments, and the E2 operator goes as r2Y (2), we
might expect quadrupole moments and B(E2) strengths
to be too small by 20% and 35%, respectively. However,
because these observables are dominated by the parti-
cles near the Fermi surface, while the radii are a bulk
property, it is not obvious that this naive scaling should
actually apply.

In most of the figures presented in the following, we
present an observable calculated for various values of
model space truncation emax and basis frequency ~ω. If
the result is converged with respect to the model space
truncation, it should not change as emax is increased,
and it should be independent of ~ω, corresponding to a
horizontal line in our figures.

A. Center-of-mass factorization

Before presenting results for electromagnetic moments
and transitions, we investigate the role of center-of-mass
motion for our calculations. The structure of self-bound
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nuclei is governed by a translationally-invariant Hamilto-
nian, which is why we expect factorization of the intrinsic
and center-of-mass (c.m.) components of the wave func-
tion:

|Ψ〉 = |ψ〉in ⊗ |ψ〉c.m.. (25)

This is particularly important for our current investi-
gation because we do not use translationally-invariant
transition operators Oλ in order to avoid the inclusion
of cumbersome recoil corrections [72]. If the c.m. wave
function has angular momentum Λc.m. = 0, then by the
Wigner-Eckart theorem,

〈ψc.m.(Λc.m. = 0)|Oλc.m.|ψc.m.(Λc.m. = 0)〉 = 0, (26)

and there is no error incurred by including the c.m. part
of the operator. The IMSRG is formulated in a lab-frame
harmonic oscillator basis with a truncation on the single
particle energies (2n + l ≤ emax), and consequently we
cannot ensure rigorous factorization of the c.m. and in-
trinsic wave functions. We seek instead to demonstrate
approximate factorization and, if necessary, project out
spurious c.m. contamination.

1. Calculation of Hc.m.

The form of the c.m. Hamiltonian is taken to be that
of a harmonic trap, with the zero-point energy removed:

Hc.m.(ω̃) =
P2

2mA
+

1

2
mAω̃2R2 − 3

2
~ω̃. (27)

We can compute properties of the c.m. wave function in
a manner similar to the discussion in Refs. [33] and [74].
If the center-of-mass wave function is a Gaussian with
oscillator length b, then it will have

〈R2
c.m.〉 = 3

2b
2, and 〈P 2

c.m.〉 = 3
2
~2

b2
, (28)

which implies

ξc.m. ≡
√
〈R2

c.m.〉〈P 2
c.m.〉/~−

3

2
= 0. (29)

The deviation of ξc.m. in (29) from zero indicates the de-
viation of the c.m. wave function from a pure Gaussian.
Once the Gaussian form is confirmed, the appropriate
trapping frequency ~ω̃ may be obtained from (28), with
b2 = ~/Amω̃ or, equivalently,

~ω̃ =
4

3
〈Tc.m.〉. (30)

Figure 1 shows ξc.m. results from IMSRG ground-state
calculations for 14C. Also shown are two ways of estimat-
ing ~ω̃ from the expectation values of Tc.m. and R2

c.m..
The right column of Figure 1 shows the same quantities,
but with a c.m. trap (as described in the next section)
with β = 3 and ~ω̃ = 16 MeV. Clearly, the trap makes
the c.m. wave function more Gaussian, though not per-
fectly Gaussian, and it speeds up the convergence of the
c.m. wave function.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

ξ c
.m

.
(%

)

β = 0 (a) β = 3 (b)

h̄ω̃ = 16

12

14

16

18

20

4〈T
c.

m
.〉/

3

12 16 20 24 28
h̄ω (MeV)

12

14

16
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20

h̄
ω̃

(〈R
2 c.

m
.〉)

12 16 20 24 28
h̄ω (MeV)

14C

emax = 6

emax = 8

emax = 10

emax = 12

FIG. 1. The quantity ξc.m., which gives an indication of the
degree to which the c.m. wave function is a Gaussian (see
text), calculated for the ground state of 14C. Also plotted are
two methods of estimating the trapping frequency ~ω̃ (MeV).
Column (a) is without a c.m. trap, while column (b) is with
β = 3 at a frequency ~ω̃ = 16 MeV.

2. Treatment for excited states

Spurious excited states manifest as nearly degenerate
intrinsic states in nuclear spectra. These states can be re-
moved via the Lawson-Gloeckner method [75], where the
intrinsic Hamiltonian is augmented with a scaled center-
of-mass trap of the form of eq. 27,

H = Hin + βHc.m.. (31)

Here, the scale factor β can be taken to arbitrarily large
values if sufficient factorization is achieved in calculations
using Hin only. This process effectively shifts spurious
states out of the spectrum by adding a large c.m. exci-
tation energy.

Figure 2 demonstrates this procedure for 14C, for the
ground state, first 2+ excited state, and B(E2) value.
Quantities are calculated with the EOM-IMSRG(2,2)
method. The energies are approximately independent of
β, which may be taken naively as evidence of factoriza-
tion for these states. However, the B(E2) value under-
goes a sudden downward shift as the Lawson-Gloeckner
term is introduced, but it saturates eventually and dis-
plays β-independence as we go to higher β. Of course,
the quadrupole operator is more sensitive to structural
details of the wave function than the energy, and since we
do not use it in a translationally-invariant form, it is not
surprising that the B(E2) value would be affected by the
imperfect factorization of the wave functions. The fact
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FIG. 2. Ground state, 2+
1 excitation energy, and B(E2) val-

ues (in e2fm4) calculated at several values of the Lawson-
Gloeckner scaling parameter β, for 14C with the EOM-
IMSRG.

that we eventually obtain a β-independent result sug-
gests that the Lawson-Gloeckner method is an adequate
alternative to explicitly including recoil corrections in the
operator [72].

Table I gives the computed Ec.m. for calculations with
and without explicit inclusion of a center-of-mass trap
via the Lawson-Gloeckner term. We expect a perfectly

TABLE I. Ec.m. for intrinsic ground state and first 2+ state
of 14C, computed at emax=14 and ~ω = 20 MeV with EOM-
IMSRG(2,2). Values are given for calculations using Hin

(β=0), and Hin + βHc.m. (β=1).

β Ec.m.(0
+
gs) (MeV) Ec.m.(2

+
1 ) (MeV)

0 0.099 1.298
1 0.068 0.046

factorized wave-function to have Ec.m.=0 MeV, since our
choice of Hc.m. ensures that the c.m. ground state has
zero energy. For either case, the ground state wave func-
tion demonstrates limited contamination from spurious
c.m. excitations, with Ec.m. < 100 keV. The 2+ state
of Hin does not exhibit this level of factorization, with
Ec.m.=1.298 MeV, indicating a small admixture of spuri-
ous states. This level of contamination is ostensibly negli-
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FIG. 3. Ground state properties of the deuteron calculated
with a full diagonalization (labeled FCI), compared to the
same properties calculated in the 0s valence space using op-
erators transformed with the IMSRG. Also shown is the result
obtained by diagonalizing in a Jacobi basis with emax = 20
and 200, in order to gauge convergence. Note that VS-IMSRG
and FCI values are nearly the same.

gible for excitation energies, but evidently has important
effects when the state is probed by the quadrupole oper-
ator. When the c.m. trap is explicitly added, Ec.m.(2

+
1 )

is diminished to below 100 keV and accordingly, we see
a shift in the B(E2) value which corresponds to a re-
coil correction. For the results presented below, we have
checked and found that 14C is the only system where the
c.m. trap has a noticeable effect.

B. The deuteron

As a first illustration, we consider ground-state prop-
erties of the deuteron. This is useful for a few reasons.
First, the system consists of only two particles and so in-
duced three-body forces are irrelevant. Further, the ref-
erence is taken to be the true vacuum, so the neglected
three body forces do not feed back into the two body
terms. We should therefore expect the IMSRG(2) to be
exact. Second, full configuration interaction (FCI) calcu-
lations are easily performed for modest model spaces, al-
lowing a direct evaluation of the precision of the IMSRG
transformation. Finally, we may treat the deuteron in
the 0s valence space where the bare quadrupole moment
is identically zero. In this case, any non-zero quadrupole
moment we obtain is entirely due to effects of the IM-
SRG evolution. Figure 3 shows the ground-state energy,
root-mean-square charge radius, quadrupole moment and
magnetic moment of the deuteron, computed both with
FCI and using the IMSRG to decouple the 0s valence
space, followed by a trivial diagonalization. We can see
that the IMSRG calculation indeed reproduces the FCI.

Here again we see the effect of c.m. spuriosities in the
deuteron wave function. While the energy and dipole mo-
ment converge to the exact values with little alteration
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from c.m. contamination, the charge radius overshoots it
drastically. Although we have not reached convergence
for the charge radius, it is evident that Lawson-Gloeckner
scaling significantly reduces its value. To get a sense of
the rate of convergence for these observables in an os-
cillator basis, we have performed calculations in a rela-
tive Jacobi basis, where it is possible to go much higher
in emax. We observe that the charge radius converges
slowly in the Jacobi basis as well.

C. p-shell nuclei: comparison with NCSM

The deuteron is, of course, an exceptionally simple
case, due to the fact that there is not really a “medium”,
and so the IMSRG is really a free-space SRG evolution.
Once additional particles are considered, the NO2B ap-
proximation is used, and the IMSRG is no longer ex-
act. To test this approximation, we consider p-shell nu-
clei which may also be treated in the no-core shell model
(NCSM). For these calculations, we use the same input
Hamiltonian and include the 3N force completely, with-
out using the NO2B approximation2 The NCSM calcu-
lations are presented as a function of the truncation pa-
rameter Nmax which limits the total number of oscilla-
tor quanta allowed above the minimum value. For the
A = 14 systems, the Nmax = 8 results have been ob-
tained using an importance truncation [76]. We note
that in the NCSM, the c.m. factorization is exact for
any Nmax truncation.

We begin by considering 6Li, which was previously
studied in Ref. [52] in the context of consistently-
transformed electromagnetic transition operators using
the Okubo-Lee-Suzuki method. Figure 4 presents sev-
eral observables for 6Li, calculated with the valence-space
IMSRG, compared to NCSM and experiment. We first
observe that there is overall good agreement between the
VS-IMSRG and NCSM, as well as with experiment, for
the energy and quadrupole moment of the ground state.
In Ref. [80], where an effective p-shell E2 operator was
obtained via an Okubo-Lee-Suzuki transformation, the
small ground-state quadrupole moment was found to be
the result of cancellations between the one and two-body
pieces of the effective E2 operator. We find a similar ef-
fect in this work3, though even greater in magnitude – for
example, for the emax = 12, ~ω=20 calculation we find
Q1b = −0.454 eb and Q2b = 0.301 eb. The results for
observables involving the unbound 3+ excited state con-
verge much more slowly in the NCSM, indicating missing

2 Errors from the NO2B approximation in NCSM calculations will
be different from those in IMSRG(2) calculations, as additional
NO2B errors accumulate during the IMSRG(2) flow due to in-
duced many-body forces.

3 Since the IMSRG and Okubo-Lee-Suzuki transformations are not
identical, there is no requirement that the breakdown into one-
and two-body operators be the same in both approaches.
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n) of 6Li. The VS-
IMSRG method (column (b)) is compared with NCSM results
(column (a)) and experiment [77–79].

continuum effects. Such effects could be included using
the NCSM with continuum [81, 82], but for our present
concerns, this is unnecessary. Despite the importance of
continuum effects, the VS-IMSRG(2) converges rapidly
for observables involving the 3+ state. This indicates
that errors incurred through the NO2B truncation hide
the effects of the continuum. This produces excellent con-
vergence properties by mistake; the VS-IMSRG(2) con-
verges to an incorrect result without continuum degrees
of freedom.

A striking disagreement is found between experiment
and the calculations of the B(E2; 3+

1 → 1+
1 ) strength. As

we will see, this will be a recurring observation. Finally,
we note that the M1 transition strength displays reason-
able convergence and good agreement with experiment.

Another interesting case in the p shell is 6He, which in
the naive shell model consists of two neutrons outside a
4He core. In this picture, any electric multipole observ-
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ables are identically zero because all valence particles are
electrically neutral. This problem has historically been
addressed by the introduction of an effective charge for
the neutrons [57]. As in the deuteron case, 6He therefore
allows us to test how the IMSRG evolution incorporates
physics from outside of the valence space into the evolved
operator, building up an effective charge in the process.

Figure 5 shows the results of VS-IMSRG and NCSM
calculations for the ground-state energy, 2+ excitation
energy, and B(E2; 2+

1 → 0+
1 ) for 6He. Like 6Li, the

excited states of this nucleus are unbound, and in ad-
dition, the 6He ground state can be characterized as a
two-neutron halo [83], which is difficult to describe in
a truncated oscillator basis. Nevertheless, we see that
the ground state energy displays excellent agreement be-
tween the VS-IMSRG, NCSM, and experiment. There
is reasonable agreement as well for the energy of the 2+

state, although the NCSM result is not converged with
respect to Nmax (again likely reflecting missing contin-
uum effects). However, for the B(E2), there is serious dis-
agreement between all three. The NCSM result is much
lower than the experimental value, and shows no sign of
convergence with respect to Nmax. This is perhaps not
surprising, as the E2 operator is of long range, and there-
fore more sensitive to the halo effects. The VS-IMSRG
result appears converged with respect to emax, but is
smaller than the NCSM result as well as experiment—
the latter by a factor of approximately 15—indicating
that the NO2B approximation is insufficient in this case.

As a third test in the p shell, we consider 14C. Be-
cause this is a closed-shell nucleus, we may employ the
EOM-IMSRG as well as the VS-IMSRG, and a system
of 14 particles is still feasible with the NCSM. Fig-
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FIG. 6. Convergence of the first 2+ excitation energy and
B(E2) (in e2fm4) to ground state of 14C. VS- and EOM-
IMSRG methods (columns (b) and (c) respectively) are com-
pared with NCSM (column (a)) and experiment [79].

ure 6 displays results for the 2+
1 excitation energy and

B(E2; 2+
1 → 0+

1 ) for 14C. Here, we find excellent agree-
ment between NCSM and both variants of the IMSRG.
We remind the reader that the IMSRG calculations are
performed with an explicit center-of-mass trap, as in
eq. 31, using β = 1.0 for 14C. This treatment only serves
to remove spurious c.m. contamination of the 2+

1 state.

Of note are the excellent convergence properties of
the IMSRG calculations. For the EOM-IMSRG, observ-
ables are nearly independent of the specified ~ω for the
single-particle basis. VS-IMSRG calculations have not
used the exhaustive model spaces of the EOM-IMSRG,
but they too demonstrate desirable convergence features.
The NCSM has begun to show convergence at Nmax=8,
but extrapolation methods must be used to reveal fully
converged values. Hence the utility of the IMSRG: For
light nuclei such as 14C, convergence is obtainable with-
out extrapolation, and for heavier nuclei, we expect to
be able to identify convergence trends clearly enough to
make extrapolation procedures relatively painless com-
pared to the prohibitively large uncertainties one would
incur when exact methods such as NCSM are used. Of
course, the effect of the additional NO2B approximation
must be fully investigated.

As a final test in the p shell, we analyze the isobaric
neighbor nucleus 14N. Here the EOM-IMSRG requires
the use of a charge-exchange formalism, i.e., ladder oper-
ators which exchange one neutron for a proton. Figure 7
displays the 0+

1 excitation energy for 14N, the ground
state magnetic dipole moment, and the M1 transition
strengths B(M1; 0+

1 → 1+
1 ) and B(M1; 1+

2 → 0+
1 ). The

agreement among methods is moderate, with the excep-
tion of the transition B(M1; 0+

1 → 1+
1 ) to the ground

state. We note that this relatively weak transition, which
is an analogue of the Gamow-Teller beta decay of 14C,
was found to result from a subtle cancellation between
various contributions [63, 85], so that small errors on an
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absolute scale appear large on a relative scale. Regard-
less, the disagreement between VS-IMSRG and EOM-
IMSRG will be investigated in the future.

D. sd and fp shell systems

Ultimately, the power of IMSRG approaches to excited
states and effective operators will be the ability to de-
scribe these properties in medium- to heavy-mass regions
where exact methods are not computationally tractable.
In this section we investigate the quality of these calcu-
lations for several medium-mass nuclei, again using the
electric quadrupole and magnetic dipole operators as case
studies.

1. Electric quadrupole observables

Figure 8 displays the first 2+ excitation energies and
B(E2; 2+

1 → 0+
1 ) strengths for several nuclei in the sd

and pf shells. We find excellent convergence properties,
as we did in the p shell, and we see reasonable agree-
ment with experiment for the excitation energies. How-
ever, transition strengths are generally underpredicted
by an order of magnitude. These results are strikingly
consistent between the two methods. A tentative ex-
planation for the diminished strength in 22O and 48Ca
is provided by the lack of valence protons. In order to
describe the transition in these nuclei, valence neutrons

must be dressed consistently as quasi-neutrons possessing
an effective charge.
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FIG. 8. Results of EOM-IMSRG(2,2) and VS-IMSRG(2) cal-
culations of the 2+

1 excitation energy (a), and the B(E2; 2+
1 →

0+
1 ) value (b) for several closed-shell nuclei in the sd and pf

shells. Due to experimental values that vary by several orders
of magnitude, the B(E2) values are scaled such that experi-
ment is unity. Computations are performed at ~ω = 20 MeV
and emax = 12. Experimental results are taken from [79].

The absence of any appreciable strength in the two IM-
SRG calculations appears to be convincing evidence that
IMSRG evolutions, when restricted to the two-body op-
erator level (i.e., VS-IMSRG(2) and EOM-IMSRG(2,2)),
do not sufficiently renormalize the neutron charges. How-
ever, this discrepancy is evident in many nuclei, regard-
less of shell structure; we see the same underpredictions
in 32S, and 56,60Ni, which lie in middle of their respective
major shells, with plenty of valence protons to model an
electromagnetic transition.

Table II compiles the results from several of the cal-
culations presented here, where B(E2) corresponds to
B(E2; 2+

1 → 0+
1 ). In the far right column, we include

the the Weisskopf estimate for the transition [86]. The
Weisskopf estimate, given by

B(E2)W =
9r4

0

100π
A4/3e2fm4, (32)

models the transition as a single proton excitation from a
core with the empirical nuclear radius r0A

1/3, where r0 =
1.2 fm. Excitations that are dominated by a single 1p1h
transition will yield experimental B(E2) values near the
Weisskopf estimate. This picture certainly falls short of
describing those nuclei with magic proton numbers, such
as 22O, but it is nonetheless instructive to consider what
the single particle estimates are for even these nuclei, as
they describe neutrons with an effective charge in this
case.

We find that computed B(E2) values track with Weis-
skopf estimates rather than actual experimental values,
except in the case of a magic proton shell closure, where
computations are significantly smaller than the Weis-
skopf estimates, suggesting that indeed, the renormal-
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TABLE II. E2 transition strengths from first excited 2+ state
to 0+ ground state for even-even nuclei (in e2fm4). Exper-
iment [79] and Weisskopf [86] single particle estimates are
compared with IMSRG calculations.

Nucleus B(E2)exp B(E2)EOM B(E2)V S B(E2)W
6He 1.1(1) 0.07 0.6
14C 3.6(6) 4.1 3.9 2.0
22O 4.2(1.6) 0.5 0.4 3.7
32S 59(1) 7.2 11.3 6.0

48Ca 17(2) 2.6 2.0 10.4
56Ni 91(17) 30.7 12.7
60Ni 186(3) 16.2 14.0

ization of neutron effective charges may not be suffi-
cient in our IMSRG calculations. Moreover, the fact
that many of the experimental B(E2) values are signifi-
cantly larger than the single particle estimates indicates
that collectivity which is neglected by VS-IMSRG(2) and
EOM-IMSRG(2,2) calculations may be more critical to
E2 transition strengths than it is to excitation energies.

TABLE III. Effective charges for the E2 operator, obtained
by decoupling the sd shell with a reference of 17O for neutrons
(δeν) and 17F for protons (δeπ), and taking the ratio with the
bare matrix elements for protons.

a b δeν δeπ
0d5/2 0d5/2 0.213 0.026
0d5/2 0d3/2 0.248 0.075
0d5/2 1s1/2 0.184 0.039
0d3/2 0d3/2 0.120 −0.003
0d3/2 1s1/2 0.111 −0.007

As a further illustration, we present in Table III the
orbit-dependent effective charges for the one-body piece
of E2 operator, obtained in a VS-IMSRG(2) calculation
of 17O. Here, we define the effective charges so that

eπ = 1 + δeπ, eν = δeν . (33)

The values listed correspond to a model space trunca-
tion emax = 12, and a basis frequency of ~ω = 20 MeV.
(The bare matrix elements are evaluated in the Hartree-
Fock basis, so these results are essentially independent of
the basis frequency). We obtain neutron effective charge
of approximately 0.1–0.2, considerably smaller than the
standard phenomenological value of 0.5. We repeat the
exercise for the proton effective charge, using 17F as the
reference, and we obtain very small (and even negative)
values of δeπ. This discrepancy between proton and neu-
tron effective charges is similar to the effect seen in sec-
ond order perturbation theory in Ref. [87], and will be
investigated in a future work.

Another possible explanation for diminished E2 ob-
servables is deficiencies in the input interactions. As pre-
viously discussed, the NN+3N(400) interaction system-
atically underpredicts nuclear radii, which is tied to its
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FIG. 9. Convergence of the 1+
1 excitation energy,
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1 ) (in µ2
N ) and 2+

1 magnetic dipole moment
(µN ) of 32S. VS-IMSRG (column (a)) and EOM-IMSRG (col-
umn (b)) methods are compared with experiment [78, 89].

inability to reproduce nuclear saturation. Since the elec-
tric quadrupole operator has the same radial dependence
as the point-nucleon radius operator, we might naively
expect an increase in predicted B(E2) values when us-
ing an input interaction which properly reproduces radii,
such as N2LOsat [88]. We computed B(E2)s for the nu-
clei shown in fig. 8 with this interaction, using EOM-
IMSRG(2,2). We found that a small enhancement is in-
deed observed (∼50% increase), but N2LOsat still sys-
tematically underpredicts B(E2) values for these nuclei,
indicating that while the interaction does play an im-
portant role, missing correlations are still likely to be a
major source of error.

2. Magnetic dipole observables

We now turn to M1 observables, where the Weisskopf
estimate (1.79 µ2

N ) is independent of A, and we there-
fore expect the transition to have similar properties from
nucleus to nucleus, unlike E2 observables. We have cal-
culated B(M1) values in 14C and 22O, where we have
observed excellent consistency between VS- and EOM-
IMSRG, as we did for E2 observables. Our predictions
for B(M1; 1+

1 → 0+
1 ) are in the vicinity of 1 µ2

N for both
nuclei. The experimental value for 14C is 0.3938±0.895
µ2
N , a difference which could potentially be accounted for

by missing meson-exchange currents in our dipole tran-
sition operators.

We also compute M1 observables for the 1+
1 and 2+

1

states in 32S. Figure 9 shows results from these calcula-
tions. We find good agreement between the methods for
the magnetic moment of the 2+ state, and with experi-
ment, which is on the order of the naive shell-model esti-
mate. There is some disagreement between the methods
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for the B(M1) transition strength, which is three orders
of magnitude smaller than the Weisskopf estimate. As
with the M1 transition in 14N, this is likely due to subtle
cancellations, and the apparent error is amplified.

In addition, we investigate 32Cl, whose ground state
can be thought of as a charge-exchange excitation of 32S,
where a neutron is exchanged for a proton. Experimen-
tally, 32Cl is observed to have a 1+ ground state with a
nearly degenerate 2+ state at 89.9 keV [90]. Both IMSRG
methods fail to properly order these states with the em-
ployed interaction, instead producing a 2+ ground state
with a 1+ excited state at 660 and 430 keV for VS- and
EOM-IMSRG, respectively.

Figure 10 shows convergence of the energy and mag-
netic dipole moment of the 1+ state, as well as predictions
for the M1 transition strength between the 1+ and 2+

states. The energy is given here as an excitation from
the 32S ground state, as it is calculated in the EOM-
IMSRG as an excited state of 32S with a charge-exchange
excitation operator. Disagreement between EOM- and
VS-IMSRG is more notable here than for other nuclei,
though both methods show qualitative agreement with
experiment where available. Particularly troubling is the
disagreement in the B(M1) value, which suggests a large
discrepancy in the way higher-order correlations are in-
corporated into the 2+ state by the two methods.

To investigate this discrepancy, we attempt to ap-
proximately reconcile the different approximations made.
First, we restrict the VS-IMSRG calculation to allow only
one proton and no neutrons in the 0d3/2 orbit, corre-

sponding to the 1p1h part of the EOM-IMSRG ladder
operator, and we obtain B(M1) = 1.35 µ2

N . Next, we
allow two protons and one neutron in the 0d3/2 orbit,
which incorporates all 2p2h EOM-configurations in the
sd shell, as well as some 3p3h configurations, and we
obtain B(M1) = 0.41 µ2

N . Finally, we restrict the EOM-
IMSRG calculation to only allow sd-shell configurations,
and we obtain a minor suppression of B(M1) = 1.08 µ2

N .
From this, we conclude that the structure of the 2+ state
is sensitive to configuration mixing effects that are not
sufficiently captured with 1p1h and 2p2h excitations out
of 32S.

We have computed the magnetic dipole properties
of several nuclei, seeing reasonable consistency between
EOM- and VS-IMSRG for most observables considered.
Limiting ourselves to closed shell cases only, this corre-
sponds to what is seen for E2 observables. In order to
compare more precisely with experiment, we should also
include the effects of mesonic currents which occur within
the nucleus during the transition. Work in that direction
is underway.

E. Electric Octupole Transitions

The electric octupole transition offers an additional
test of the EOM-IMSRG. (The VS-IMSRG is not cur-
rently able to decouple multi-shell valence spaces, and
consequently cannot treat parity-changing operators).
We investigate the transition strengths from the first 3−

state to ground state for the doubly magic nuclei 16O and
40Ca. Figure 11 shows the convergence of this calculation
for 16O. This is an interesting case study, as the 3−1 exci-
tation energy has been shown to correlate with the 16O
charge radius and thus depends on saturation properties
of the interaction [88]. For this reason, we compare calcu-
lations with the NN+3N(400) interaction to those using
N2LOsat, which is fit to the 16O charge radius [88]. We
see an improvement of the excitation energy when using
N2LOsat, moving from 9.03 MeV with the NN+3N(400)
interaction to 6.90 MeV, in significantly better agreement
with the experimental value at 6.13 MeV. Both interac-
tions underpredict the B(E3) value for the transition to
the ground state, with the saturating interaction showing
greater strength than the NN+3N(400) interaction. De-
spite EOM partial norms indicating 90% 1p1h content
in the 3−1 wave-function, higher order correlations may
play a significant role in the structure pertinent to the
E3 transition, as α-clustering may be important to the
structure of the 3−1 state [91]. If this were true, EOM-
IMSRG(2,2) would not be an appropriate approximation
for such a state, and the suppressed E3 strength would
be an expected result owing to the missing collectivity.

A similar picture presents itself for 40Ca in Figure 12,
where again, N2LOsat improves the excitation energy but
underpredicts theB(E3) strength. For either interaction,
the discrepancy is less striking than that seen in 16O, but
the deviation is significant nonetheless. Notable is the
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FIG. 11. Excitation energies of the first 3− state of 16O,
along with corresponding B(E3) strength (in e2fm6) for the
transition to ground state. These values are computed using
the EOM-IMSRG(2,2) with N2LOsat (column (b)) and the
Entem and Machleidt NN(500)-3N(400) interaction (column
(a)), and are compared with experiment [92].
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FIG. 12. Excitation energies of the first 3− state of 40Ca,
along with corresponding B(E3) strength (in 102e2fm6) for
the transition to ground state. These values are computed
using the EOM-IMSRG(2,2) with N2LOsat (column (b)) and
the Entem and Machleidt NN(500)-3N(400) interaction (col-
umn (a)), and are compared with experiment [92].

poor convergence features exhibited by N2LOsat, where
results are seemingly dependent on the basis frequency
~ω for both energy and B(E3) value. For pf -shell nu-
clei and beyond, the E3max truncation has been shown
to be a significant source of errors in many-body calcula-
tions [39]. This is certainly the case here (we note the 3−

state of 40Ca is composed of excitations into the pf shell
in a naive shell model picture), where varying E3max be-
tween 12 and 14 produces shifts in the excitation energy
by 2-4 MeV, and shifts in the B(E3) value by several
hundred e2fm6 for N2LOsat. However, these errors are
not as dramatic for the NN+3N(400) interaction, where
the corresponding shifts are on the order of 10 keV and 10
e2fm6, for energies and B(E3) values respectively, hence
the more desirable convergence features.

Computed E3 strengths suffer from largely the same
shortcomings as E2 strengths, where we see a significant
reduction of the strength from that of experiment. The
Weisskopf single-particle estimates for 16O and 40Ca are
15.2 and 95.0 e2fm6 respectively. The immense size of
the experimental values compared with these estimates
indicates a strong level of collectivity in these 3−1 states,
which is apparently missing in our calculations, although
computed E3 strengths are indeed larger than the single-
particle estimates.

F. Comparing and contrasting methods

While we have seen remarkable agreement between the
VS-IMSRG(2) and EOM-IMSRG(2,2), there are some
discrepancies in the predictions made by either method.
These discrepancies are the result of some combination of
two sources of error: The two methods decouple different
sets of orbits—the EOM-IMSRG decouples a single ref-
erence determinant, while the VS-IMSRG decouples the
valence space and core, i.e., multiple states at once—and
this leads to different errors incurred by the NO2B ap-
proximation. Typically, the VS-IMSRG requires a more
substantial rotation and therefore is more susceptible to
error, though in cases with a small gap above the Fermi
surface the opposite may be true. On the other hand, the
EOM-IMSRG(2,2) lacks the ability to describe higher-
order correlations in states with minimal 1p1h character.
This underscores the fact that the two methods are com-
plementary, and different classes of states fall into the
sets that are best described by either method.

The VS-IMSRG takes into account all possible valence-
particle configurations within the specified valence space.
States that are described well by phenomenological shell-
model approaches should then be described appropriately
by the VS-IMSRG. As the shell model can describe collec-
tive properties such as deformation, states of this charac-
ter are well described by this method, provided that their
collectivity is restricted to the VS-IMSRG(2) decoupled
valence space. On the other hand, states with significant
contributions from multiple major shells, in particular
unnatural parity states, are unreachable by this method
in its current state. Methods to decouple a multi-shell
valence space are still under investigation.

The EOM-IMSRG is not restricted by the core/valence
space paradigm, but rather derives its computational
simplicity from a restriction of the configurations in-
cluded in the diagonalization. Natural- and unnatural-
parity states are therefore treated on the same footing;
however, any state will be poorly described if it is dom-
inated by particle-hole excitations that are left out of
the definition of the ladder operators. For the EOM-
IMSRG(2,2), we work with a space of 1p1h and 2p2h
configurations. In this case, states with strong 1p1h con-
tent with respect to the fully decoupled reference state
are best described by the method. States with 2p2h
dominant wave functions are accessible, but the ground-
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state-decoupled Hamiltonian still introduces strong cor-
relations between these states and 3p3h excitations. For
states with a relatively small admixture of 3p3h con-
figurations, we expect that perturbative corrections will
be sufficient for the inclusion of missing triples content
[54]. However, if the state couples strongly to triple ex-
citations, a full EOM-IMSRG(3,2) treatment is required.
Any state which has significant 4p4h or higher corre-
lations in its transformed wave function would require
EOM-IMSRG(4,2), and so on.

It is difficult to clearly determine a priori which method
will perform best for any given state because, at present,
there is no prescription to assign accurate theoretical er-
ror bars to these calculations. However, one can make
inferences about which method will perform best based
on parity arguments, the number of valence nucleons,
and the “magnitude” of the IMSRG transformation, in-
dicated by the norm ‖Ω‖ (cf. eq. (19)). Here it will
be important to develop a reliable measure of unitar-
ity to quantify IMSRG(2) truncation errors associated
with the aggressiveness of the decoupling scheme, e.g.,
targeting single or multiple states, enforcing additional
block-diagonality for the Hamiltonian, etc.

G. The effects of consistent operator evolution

It is worth assessing the impact of consistently apply-
ing the IMSRG transformation to the operators discussed
thus far; if the bare operators give essentially the same
results, then this extra effort is unnecessary. By bare op-
erators, we mean operators expressed in the Hartree-Fock
basis, which have not been consistently evolved along
with free-space SRG softening. Because the interaction
has been softened with the free-space SRG, the opera-
tor evolution is not exactly consistent in the first place.
Despite that caveat, free-space softening transformations
are understood to have little effect on long-range opera-
tors such as the electromagnetic multipole operators dis-
cussed here, since the principal effect of SRG softening
is to renormalize short-range physics. Nonetheless, the
problem is being given increasing attention in the nuclear
physics community [48, 50, 53, 93].

The IMSRG transformation is expected to have a no-
ticeable effect on transition operators, as it renormalizes
dynamic correlations in the nucleus, which are crucial to
transition behavior. Figure 13 presents a few examples
of transition matrix elements computed with and with-
out consistent evolution of the operator. M1b

bare refers
to the reduced matrix element of the operator expressed
in the Hartree-Fock basis without consistent evolution,
(using wave functions computed with the evolved Hamil-

tonian), and M1b,2b
dressed refer to the same calculation with

consistently evolved operators. It is evident from these
values that IMSRG evolution transforms a bare one-body
operator into a many-body operator.

For EOM-IMSRG(2,2) calculations, the induced two-
body term generally contributes less than 10% of the to-
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FIG. 13. Transition matrix elements 〈0+
1 ‖E2‖2+

1 〉 and
〈0+

1 ‖M1‖1+
1 〉 computed for select nuclei using EOM-

IMSRG(2,2). Calculations are performed for bare operators
(orange bars) and operators dressed by consistent IMSRG
evolution, both the one-body part (green single-hashed bars)
and the one-body plus two-body part (blue double-hashed
bars) . Values are expressed in e fm2 and µN for E2 and M1
operators, respectively.

tal magnitude, suggesting that induced three-body terms
(neglected in this work) should have an even smaller ef-
fect in many cases. Consistently evolved M1 transition
matrix elements exhibit a 10-20% decrease in magnitude
compared with the bare operator, and the equivalent
comparison for E2 transitions show an increase in mag-
nitude of ∼20%, except in the case of 22O, where the
magnitude increases by 77.5%.

As the decoupling schemes of the VS- and EOM-
IMSRG are different, we include results for both meth-
ods. We note that the VS-IMSRG(2), despite employ-
ing a more substantial decoupling, produces a smaller
two-body contribution to the matrix elements for all
cases studied here. In several cases, the two-body con-
tributions in the VS-IMSRG destructively interfere with
the one-body contributions, although the one-body part
dominates. The VS-IMSRG results demonstrate the crit-
ical effect of charge renormalization in 22O, which has no
sd-shell protons, and thus vanishing strength when using
the bare operator.

From the results shown here, it is evident that consis-
tent operator evolution is indeed important in ab initio
nuclear structure calculations. The details of the opera-
tor evolution will of course depend on the system under
consideration, and on the correlations a given solution
method is able to describe. For example, if a given transi-
tion is dominated by shell-model like configurations, then
the effect of operator evolution should be small in the
VS-IMSRG. A similar argument applies for the EOM-
IMSRG for transitions that are dominated by 1p1h con-
tributions. On the other hand, in some cases—such as
22O in the VS-IMSRG—the bare operator will give no
contribution at all and the effects of operator evolution
are indispensable.
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IV. SUMMARY AND OUTLOOK

In this work we have compared and contrasted two re-
cently developed methods for the computation of excited-
state properties and related observables. The VS-
IMSRG uses IMSRG decoupling to create an effective
Hamiltonian for shell model diagonalization, while the
EOM-IMSRG performs an approximate, particle-hole
truncated diagonalization of the ground-state-decoupled
Hamiltonian. We applied both methods to computations
of electromagnetic moments and transition strengths.

It was observed that IMSRG ground-state decoupling
approximately factorizes the center of mass (c.m.) com-
ponent of excited state wave functions such that the ef-
fect of contamination on the energies is usually negligi-
ble. This factorization is not always sufficient for excited
states and electromagnetic strengths, which are sensitive
to c.m. contamination due to the operators being ex-
pressed in lab coordinates. We confirmed that the fac-
torization can be improved by placing the system in a
harmonic oscillator trap which only acts on the c.m. co-
ordinate.

The EOM-IMSRG and VS-IMSRG give consistent re-
sults in the majority of cases analyzed. While theoreti-
cal error bars are necessary for rigorous comparison, the
methods qualitatively agree with each other and also with
the NCSM, with a few noted exceptions. This latter fact
affords us confidence in the results of IMSRG excited-
state calculations in heavier nuclei, for instance in the sd
and pf shells.

Notably, experimental E2 observables were underpre-
dicted by roughly an order of magnitude in all nuclei
except 14C. Results of our calculations instead tracked
with Weisskopf single-particle estimates, indicating that
the inclusion of higher-order collective excitations will
be critical for a proper description of E2 observables.
A thorough investigation of the treatment of these ob-
servables will be forthcoming. E3 observables were com-
puted for doubly magic nuclei, where a similar pattern
was observed. M1 observables, while consistent between
employed methods, showed differences from experiment
that could potentially be accounted for by the inclusion
of meson exchange currents [94] in future works.

In general, electromagnetic observables are well con-
verged with respect to the size of the model space. The
main source of error in many of these calculations is
evidently truncation errors associated with the NO2B
approximation. IMSRG applications to excited states
will continue to improve as technical developments are
made regarding truncation errors and decoupling strate-
gies. For example, the EOM-IMSRG can be improved
significantly by the perturbative inclusion of 3p3h exci-
tations [54], and the range of applicability of this method
will be extended greatly upon extension to multireference
formalism. VS-IMSRG methods will continue to improve
as strategies for decoupling cross-shell valence spaces are
developed, enabling an explicit treatment of important
degrees of freedom. Results should also improve as we

devise strategies for the inclusion of neglected three-body
operators that are induced by the IMSRG evolution.
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Appendix A: Commutator relations in m-scheme

In m-scheme, the commutation relations for tensor op-
erators are identical to those for scalar operators. For
completeness, we give them here. We seek to compute
the commutator Z = [X,Y ], where X, Y , and Z have
zero-, one- and two-body parts. Z will also have a three-
body part, which we neglect in the present discussion, in
keeping with the NO2B approximation. The components
of Z are broken up into various contributions based on
the particle rank of the terms in X and Y . For example,
(A1) below indicates the contribution to the zero-body
piece of Z by the one-body pieces of X and Y . Addition-
ally, to facilitate the later angular momentum coupling,
(A8) and (A9) are broken up into contributions involving
particle-particle and hole-hole intermediates, as opposed
to particle-hole intermediates.

Z0(11→ 0) =
∑
pq

(np − nq)XpqYqp (A1)

Z0(22→ 0) =
1

2

∑
pqrs

(npnqn̄rn̄s)XpqrsYsrpq (A2)

Zpq(11→ 1) =
∑
r

(XprYrq − YprXrq) (A3)
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Zpq(12→ 1) =
∑
rs

(nr−ns)(XrsYsprq−YrsXsprq) (A4) Zpq(22→ 1) =
∑
rst

(nrnsn̄t + n̄rn̄snt)

×(XtprsYrstq − YtprsXrstq) (A5)

Zpqrs(12→ 2) =
∑
t

(XptYtqrs +XqtYptrs −XtrYpqts −XpsYpqrt) (A6)

Zpqrs(21→ 2) = −
∑
t

(YptXtqrs + YqtXptrs − YtrXpqts − YpsXpqrt) (A7)

Zpqrs(22→ 2; pp/hh) =
1

2

∑
tu

(1− nt − nu)(XpqtuYturs − YpqtuXturs) (A8)

Zpqrs(22→ 2; ph) = −
∑
tu

(nt − nu)(1− Ppq)(1− Prs)XputsYtqru (A9)

Appendix B: Expressions for tensor-scalar commutator and tensor-tensor product

The consistent evolution of effective spherical tensor operators, along with the computation of excited states using
EOM-IMSRG formalism require expressions for the commutator of a scalar operator and a spherical tensor operator
of arbitrary rank λ, given by

Cλµ ≡ ST λµ − T λµ S, (B1)

where

Cλpq =
∑
a

(
SpaT

λ
aq − TλpaSaq

)
−
∑
ab

(na − nb)

(
S̄λpq̄ab̄T

λ
ab − ĵaT̄

(λ0)λ

pq̄ab̄
Sab

)

+
1

2

∑
abc
J1J2

(nanbn̄c + n̄an̄bnc)Ĵ1Ĵ2(−1)jp+jc+J1+λ

{
J1 J2 λ
jq jp jc

}(
S̆J1cpabT̆

(J1J2)λ
abcq − T̆ (J1J2)λ

cpab S̆J2abcq

) (B2)

and

C̆(J1J2)λ
pqrs =

∑
a

(
SpaT̆

(J1J2)λ
aqrs + SqaT̆

(J1J2)λ
pars − T̆ (J1J2)λ

pqas Sar − T̆ (J1J2)λ
pqra Sas

)
− Ĵ1Ĵ2(−1)λ

∑
a

[
(1− Ppq(J1))(−1)jp+jq+J2

{
J2 J1 λ
jp ja jq

}
TλpaS̆

J2
aqrs

− (1− Prs(J2))(−1)jr+js−J1
{
J1 J2 λ
js ja jr

}
S̆J1pqraT

λ
as

]

+
1

2

∑
ab

(1− na − nb)(S̆J1pqabT̆
(J1J2)λ
abrs − T̆ (J1J2)λ

pqab S̆J2abrs)

+
∑
abJ3J4

Ĵ1Ĵ2Ĵ3Ĵ4(na − nb)

[
(1− Ppq(J1))(1− Prs(J2))(−1)jq+js+J2+J4

jp js J3

jq jr J4

J1 J2 λ

 S̄J3
ps̄ab̄

T̄
(J3J4)λ

ab̄rq̄

]
.

(B3)

In equations (B2) and (B3), Ĵ ≡
√

2J + 1, na is the occupancy of orbit a, with 0 ≤ na ≤ 1, and n̄a ≡ (1− na), and
Ppq(J) ≡ (−1)jp+jq−JPpq is the spherical-basis permutation operator. We have also employed the Pandya-transformed
operators defined by

S̄J1pq̄rs̄ = −
∑
J2

Ĵ2

{
jp jq J1

jr js J2

}
S̆J2psrq , (B4)
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T̄
(J1J2)λ
pq̄rs̄ = −

∑
J3J4

Ĵ1Ĵ2Ĵ3Ĵ4(−1)jq+js+J2+J4

jp js J3

jq jr J4

J1 J2 λ

 T̆ (J3J4)λ
psrq . (B5)

For computation of electromagnetic moments with EOM-IMSRG or transitions between multiple EOM excited
states, expressions for the product of two spherical tensors of arbitrary rank are needed. The tensor product is given
by

YJM ≡ [Oλ ×X†ν(Jν)]JM =
∑
Mνµ

CλJνJµMνM
OλµX†ν(JνMν). (B6)

where

Y Jpq = Ĵ(−1)(jp+jq)
∑
a

(OλpaX
Jν
aq (−1)J

{
λ Jν J
jq jp ja

}
n̄a −XJν

paO
λ
aq(−1)(λ+Jν)

{
λ Jν J
jp jq ja

}
na)

+
∑
ab

(
1

λ̂
OλbaX̄

(Jλ)Jν
pq̄bā +

(−1)(λ+Jν+J)

Ĵν
Ō

(JJν)λ

pq̄ab̄
XJν
ab )nbn̄a

− 1

2

∑
abc

∑
J1J2J3

Ĵ Ĵ1Ĵ3

{
jp jq J
J3 J1 jc

}{
λ Jν J
J3 J1 J2

}
Ŏ

(J1J2)λ
cpab X̆

(J2J3)Jν
abqc n̄an̄bnc

+
1

2
(−1)(λ+Jν+J)

∑
abc

∑
J1J2J3

Ĵ Ĵ1Ĵ3

{
jp jq J
J3 J1 jc

}{
Jν λ J
J3 J1 J2

}
X̆

(J1J2)Jν
cpab Ŏ

(J2J3)λ
abqc nanbn̄c

(B7)

and

Y̆ (J1J2)λ
pqrs = (1− Ppq(J1))(1− Prs(J2))λ̂λ̂1λ̂2

jp jr λ1

jq js λ2

J1 J2 λ

Oλ1
pr X̆

λ2
qs

+(1− Ppq(J1))λ̂Ĵ1

∑
a

∑
J3

Ĵ3(−1)(jp+jq+J1+J2+J3+λ1+λ)

{
jp jq J1

J3 λ1 ja

}{
λ1 λ2 λ
J2 J1 J3

}
Oλ1
paX̆

(J3J2)λ2
aqrs n̄a

+(1− Prs(J2))λ̂Ĵ2

∑
a

∑
J3

Ĵ3(−1)(J1+J3+λ2)

{
jr js J2

J3 λ1 ja

}{
λ1 λ2 λ
J1 J2 J3

}
Oλ1
ar X̆

(J1J3)λ2
pqsa na

−(1− Prs(J2))λ̂Ĵ2

∑
a

∑
J3

Ĵ3(−1)(J1+J3+λ2+λ)

{
jr js J2

J3 λ2 ja

}{
λ1 λ2 λ
J2 J1 J3

}
Xλ2
ar Ŏ

(J1J3)λ1
pqsa n̄a

−(1− Ppq(J1))λ̂Ĵ1

∑
a

∑
J3

Ĵ3(−1)(jp+jq+J1+J2+J3+λ1)

{
jp jq J1

J3 λ2 ja

}{
λ1 λ2 λ
J1 J2 J3

}
Xλ2
pa Ŏ

(J3J2)λ2
aqrs na

+
1

2
λ̂
∑
ab

∑
J3

(−1)(J1+J2+λ)

{
λ1 λ2 λ
J2 J1 J3

}
Ŏ

(J1J3)λ1

pqab X̆
(J3J2)λ2

abrs n̄an̄b

+
1

2
λ̂
∑
ab

∑
J3

(−1)(J1+J2+λ1+λ2)

{
λ1 λ2 λ
J1 J2 J3

}
X̆

(J1J3)λ2

pqab Ŏ
(J3J2)λ1

abrs nanb

+(1− Ppq(J1))(1− Prs(J2))λ̂Ĵ1Ĵ2

∑
J3J4J5

Ĵ3Ĵ5(−1)(js−jq+J3+λ)

×

jp jr J3

jq js J5

J1 J2 λ


{
λ1 λ2 λ
J5 J3 J4

}∑
ab

Ō
(J3J4)λ1

pr̄ab̄
X̄

(J4J5)λ2

ab̄sq̄
n̄anb

(B8)

Appendix C: Angular momentum coupling identities

The following identities are helpful in deriving the equations in Appendix B.∑
m1M1M2

Cj1j2J1m1m2M1
Cj1j3J2m1m3M2

CJ2J3J1M2M3M1
=
Ĵ2

1 Ĵ2

ĵ1
(−1)j1+j3+J1+J3

{
J1 J2 J3

j3 j2 j1

}
Cj3J3j2m3M3m2

(C1)
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∑
m1m2M1

Cj1j2J1m1m2M1
Cj3j4J1m3m4M1

Cj1J2j3m1M2m3
=
Ĵ2

1 ĵ3

ĵ2
(−1)j1+j2+J1

{
j3 j1 J2

j2 j4 J1

}
Cj4J2j1m4M2m2

(C2)

∑
m1

Cj1J1j2m1M1m2
Cj1j3J2m1m3M2

= (−1)j2+j3+J1+J2 ×
∑
J3M3

Ĵ2ĵ2

{
J2 J3 J1

j2 j1 j3

}
CJ2J1J3M2M1M3

Cj2j3J3m2m3M3 (C3)

∑
M1

Cj1j2J1m1−m2M1
Cj3j4J1m3−m4M1

=
∑
J2M2

Ĵ2
2

{
j1 j4 J2

j3 j2 J1

}
Cj1j4J2m1m4M2

Cj3j2J1m3m2M1 (C4)

∑
M1M2

Cj1j2J1m1−m2M1
Cj3j4J2m3−m4M2

CJ2J3J1M2M3M1
=
∑
J4J5
M4M5

Ĵ2
1 Ĵ2Ĵ4(−1)j2+j4+J1+J4

j1 j2 J1

j4 j3 J2

J4 J5 J3

× Cj1j4J4m1m4M4
Cj3j2J5m3m2M5

CJ5J3J4M5M3M4

(C5)
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103, 102502 (2009).
[70] H. Hergert, S. Binder, A. Calci, J. Langhammer, and

R. Roth, Phys. Rev. Lett. 110, 242501 (2013).
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