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γ-rigid solution of the Bohr Hamiltonian with the β -soft potential and 0◦ ≤ γ ≤ 30◦ is worked out. The re-

sulting model, called T(4), provides a natural dynamical connection between the X(4) and the Z(4) critical point

symmetries, which thus serves as the critical point symmetry of the spherical to γ-rigidly deformed shape phase

transition. This point is further justified through comparing the model dynamics with those of the interacting

boson model. As a preliminary test, the low-lying structures of 158Er are taken to compare the theoretical cal-

culations, and the results indicate that this nucleus could be considered as the candidate of the T(4) model with

an intermediate γ-deformation.

PACS numbers: 21.60.Ev, 21.60.Fw, 21.10.Re

1. Introduction

Critical point symmetries (CPSs) in nuclear structure have

attracted a lot of attentions [1–13] since the CPSs provide the

parameter-free (up to an overall scale) predictions about the

structural properties of nuclei in the transitional region [14,

15]. The typical CPSs include, for example, the CPS of the

spherical to γ-unstable shape phase transition E(5) [1], the

CPS of the spherical to axially deformed shape phase tran-

sition X(5) [2], the CPS of the axial to triaxial shape phase

transition Y(5) [3], and the CPS of the prolate to oblate shape

phase transition Z(5) [4], etc, which have been widely con-

firmed in experiment [15]. Generally, these CPSs come ex-

actly or approximately [16] from the Bohr Hamiltonian [17]

with suitable β - and γ-potentials based on the physical situa-

tions studied.

Most recently, a new four-dimensional CPS model [13],

called X(4), has been introduced [13, 18, 19]. It was sug-

gested that the X(4) model can be applied to describe the

critical point of the U(5)-SU(3) shape phase transition (or the

spherical to axially-deformed shape phase transition) in the in-

teracting boson model (IBM) [20]. Another four-dimensional

CPS model [5], called Z(4), which is obtained from the Bohr

Hamiltonian with γ frozen at γ = 30◦, is shown to have spec-

tral properties similar to those of the E(5) CPS [1] since γ-

unstable models and γ-rigid models may yield similar predic-

tions for most observables if the averaged value of γ of the for-

mer, γav, is equal to γrigid of the latter [21, 22]. It means that the

Z(4) model can also serve as the CPS of the U(5)-O(6) shape

phase transition (or the spherical to γ-unstable shape phase

transition) in the IBM [20]. The X(4) and Z(4) CPSs [5, 13]

have some common features: Both models employ the infi-

nite square well potential to simulate the β -soft situation in

the transitional region; and the effective model space of the

two models is both four dimensional. It is imperative to ex-

plore the dynamical symmetry in between the X(4) and the

Z(4), which may provide a hallmark for the critical points of

more general transitions from spherical to γ-rigidly deformed

or to the γ-unstable shape.

In this work, a Bohr Hamiltonian with the suitable β -soft

potential and for a fixed value of γ with 0◦ ≤ γ ≤ 30◦ as used

in Ref. [23] will be studied, which is called T(4) in accordance

to the previous terminology. It will be shown that the T(4)

model provides a natural dynamical connection between the

X(4) and the Z(4) CPSs [5, 13], and thus serves as the CPS

for the more general spherical to γ-rigidly deformed or to the

γ-unstable shape phase transitions.

2. The model

In the model of Davydov and Chaban [23], the Bohr Hamil-

tonian with a γ-rigid deformation is written as

H = − h̄2

2B

[ 1

β 3

∂

∂β
β 3 ∂

∂β
− 1

4β 2 ∑
k

L′2
k

sin2(γ − 2
3
kπ)

]

(1)

+U(β ) ,

where β and γ are the usual collective coordinates, B is the

collective mass parameter, and L′
k (k = 1, 2, 3) are the pro-

jections of the angular momentum on the body-fixed k-axis.

In this case, the variable γ is treated as a parameter of the

axial asymmetry of a nucleus. Hence, the Hamiltonian only

depends on four variables (β ,θi), which means that only β vi-

brations of the nuclear surface and rotation of the nucleus are

considered [23]. Although the Hamiltonian (1) was originally

introduced to describe triaxially deformed nuclei [23] corre-

sponding to γ > 0, the axial-symmetry limit (γ = 0) is also

well-defined, which indicates that the parameter γ ∈ [0, 30◦]
is physically allowed for the Hamiltonian (1).

In both the vibration to axially deformed and to γ-unstable

shape phase transition regions, the deformation of nucleus

is more or less β -soft. Here β -softness means that the β -

deformation of nucleus is soft within a confined range of
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β values thus connected with a flat potential bottom rather

than a fully β -independent structure, which is actually consis-

tent with the "confined β -soft" (CBS) situation proposed by

Pietralla and Gorbachenko in [11]. To describe this feature,

the β -potential is usually assumed as [1, 2, 11]

U(β ) =

{

0 , β ≤ βW ,
∞ , β > βW .

(2)

By introducing reduced energy ε = 2BE/h̄2 and reduced po-

tential u = 2BU/h̄2 [2, 4], the separation of variables for the

differential equation HΨ(β ,θi) = EΨ(β ,θi) with Ψ(β ,θi) =
ηL(β )ϕ

L
M,s(θi), where θi (i = 1, 2, 3) are the Euler angles,

leads to two equations:

[

− 1

β 3

∂

∂β
β 3 ∂

∂β
+

rL

4β 2
+ u(β )

]

ηL(β ) = εβ ηL(β ) (3)

and

∑
k

L′2
k

sin2(γ − 2
3
kπ)

ϕL
M,s(θi) = rLs ϕ

L
M,s(θi) , (4)

where rL is the eigenvalue of the rotational energy.

The rotational wave function ϕL
M,s(θ ) can further be ex-

pressed as [12]

ϕL
M,s(θi) = ∑

K

CL
s,K χL

M,K(θi) (5)

with

χL
M,K(θi) =

√

2L+ 1

16π2(1+ δK,0)

× [DL
M,K(θi)+ (−1)LDL

M,−K(θi)] , (6)

where DL
M,K(θi) is the Wigner D-function. The expansion co-

efficients CL
s,K are determined by Eq. (4), and s is used to label

the s-th eigenstate for given L and M with [12]

s = 1, 2, 3, 4, ...,
2L+ 3(−1)L+ 1

4
. (7)

In case of γ = 0◦, the value of rL is analytically given as

rL(0
◦) =

4

3
L(L+ 1) . (8)

The resulting model just corresponds to the X(4) CPS [13].

The present result shows that the X(4) CPS can be alterna-

tively explained as the γ → 0◦ solution of the model. The exact

axial-symmetry in case of γ = 0◦ requires that arbitrary rota-

tion around the symmetric axis of the system is quantum me-

chanically undetectable [24, 25], which indicates that only the

K = 0 bands are allowed in this case. It should be mentioned

that a more rigorous derivation of the Bohr Hamiltonian with

γ frozen at γ = 0◦ before its quantization leads to the X(3)

Hamiltonian [6] rather than the X(4) Hamiltonian [13], since

the γ-rigid condition γ̇ = 0 and the axial-symmetry condition

γ = 0◦ imposed on the classical form of the Bohr Hamiltonian

may reduce the system directly to that with three degrees of

freedom [6]. For γ = 30◦, one can derive

rL(30◦) = 4L(L+ 1)− 3α2 (9)

with α being the projection of the angular momentum on

the body-fixed 1-axis. In this case, the resulting model cor-

responds to the Z(4) CPS [5]. The above discussions indi-

cate that the original X(4) and Z(4) CPSs are the two limit

situations of the model. It is undoubtable that the solutions

of the Hamiltonian (1) with β -potential expressed in Eq. (2)

and γ ∈ [0◦,30◦] provide a dynamical connection between the

X(4) and the Z(4) CPSs. We refer thus this model as the T(4)

model.

For cases with 0◦ < γ < 30◦, the values of rL can only be

numerically but exactly solved from Eq. (4). Particularly, rLs

with s≤ 2 for some low L values can be expressed analytically

[26, 27], viz.

r0s=1
(γ) = 0, (10)

r2s=1
(γ) =

18− 6

√

9− 8sin2(3γ)

sin2(3γ)
, (11)

r2s=2
(γ) =

18+ 6

√

9− 8sin2(3γ)

sin2(3γ)
, (12)

r3s=1
(γ) =

36

sin2(3γ)
, (13)

r5s=1
(γ) =

90− 18

√

9− 8sin2(3γ)

sin2(3γ)
, (14)

r5s=2
(γ) =

90+ 18

√

9− 8sin2(3γ)

sin2(3γ)
. (15)

The corresponding expansion coefficients CL
s,K defined in

Eq. (5) can be analytically written as

C0
1,0(γ) = 1, (16)

C2
1,0(γ) = cos(Γ), C2

1,2(γ) =−sin(Γ), (17)

C2
2,0(γ) = sin(Γ), C2

2,2(γ) = cos(Γ), (18)

C3
1,2(γ) = 1, (19)

C5
1,2(γ) = cos(Γ), C5

1,4(γ) =−sin(Γ), (20)

C5
2,2(γ) = sin(Γ), C5

2,4(γ) = cos(Γ), (21)

where [27]

Γ =−1

2
arccos

[cos(4γ)+ 2cos(2γ)
√

9− 8sin2(3γ)

]

. (22)

Substituting F(β ) = β η(β ) and z = β kβ with kβ =
√

εβ ,

one can transform Eq. (3) inside the well into the Bessel equa-

tion

d2F

dz2
+

1

z

dF

dz
+
[

1− v2

z2

]

F = 0 (23)
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with

v =

√

rL

4
+ 1 . (24)

The boundary condition η(βW ) = 0 determines the eigenval-

ues

εβ ;ξ ,s,L = (kξ ,v)
2, kξ ,v =

(xξ ,v

βW

)

, (25)

and the eigenfunction

ηξ ,s,L(β ) = cξ ,vβ−1Jv(kξ ,vβ ) , (26)

where xξ ,v is the ξ -th zero of the Bessel function Jv(z), and

the normalization constants cξ ,v are determined by

∫ βw

0
β 3η2

ξ ,s,L(β )dβ = 1 . (27)

B(E2) values can be calculated by taking the quadrupole

operator

T E2
u = tβ [D

(2)
u,0(θi)cos(γ)

+
1√
2
(D

(2)
u,2(θi)+D

(2)
u,−2(θi))sin(γ)] , (28)

where t is a scale factor. Specifically, we have

B(E2;Liξisi
→ L f ξ f s f

) =
| 〈ξ f L f s f ‖ T E2 ‖ ξiLisi〉 |2

2Li + 1
. (29)

In the calculation, the integral over β takes the form

Iβ (ξi, si, Li; ξ f , s f , L f )

=

∫ βw

0
β ηξi,si,Li(β )ηξ f ,s f ,L f (β )β

3dβ , (30)

while the integral over the Euler angles θi can be obtained

by making use of the formula involving three Wigner D-

functions [28]. The final result is given as

B(E2;Liξisi
→ L f ξ f s f

)

= t2I2
β (ξi,si,Li;ξ f ,s f ,L f )

×
{

∑
Ki ,K f

√

1

(1+ δKi0)(1+ δK f 0)

×C
Li
siKi

C
L f

s f K f
[cos(γ)〈20LiKi|L f K f 〉δKiK f

+
1√
2

sin(γ)〈2− 2LiKi|L f K f 〉δKiK f +2

+
1√
2

sin(γ)〈22LiKi|L f K f 〉δKiK f −2]
}2

. (31)

Since the rotational function ϕL
M,s(θi) with L = 0, 2, 3, 5 de-

fined in Eq. (5) can be analytically solved from Eq. (4), the

related B(E2) ratios can be explicitly expressed as

B(E2;3ξi1
→ 2ξ f 2)

B(E2;2ξi1
→ 0ξ f 1)

=
25I2

β (ξi,1,3;ξ f ,2,2)

14I2
β (ξi,1,2;ξ f ,1,0)

, (32)

B(E2;3ξi1
→ 2ξ f 1)

B(E2;2ξi2
→ 0ξ f 1)

=
25I2

β (ξi,1,3;ξ f ,1,2)

14I2
β (ξi,2,2;ξ f ,1,0)

, (33)

B(E2;5ξi1
→ 3ξ f 1)

B(E2;2ξi1
→ 0ξ f 1)

=
21I2

β (ξi,1,5;ξ f ,1,3)

22I2
β
(ξi,1,2;ξ f ,1,0)

, (34)

B(E2;5ξi2
→ 3ξ f 1)

B(E2;2ξi2
→ 0ξ f 1)

=
21I2

β (ξi,2,5;ξ f ,1,3)

22I2
β (ξi,2,2;ξ f ,1,0)

, (35)

B(E2;2ξi2
→ 0ξ f 1)

B(E2;2ξi1
→ 0ξ f 1)

=
I2
β (ξi,2,2;ξ f ,1,0)

I2
β
(ξi,1,2;ξ f ,1,0)

tan2(γ +Γ), (36)

B(E2;2ξi2
→ 2ξ f 1)

B(E2;2ξi2
→ 0ξ f 1)

=
10I2

β (ξi,2,2;ξ f ,1,2)

7I2
β
(ξi,2,2;ξ f ,1,0)

sin2(γ − 2Γ)

sin2(γ +Γ)
.

(37)

It is clear that the results for the ground band and γ band are

given by those with ξ = 1, while the results for the β band are

those with ξ = 2.

3. Numerical examination

As mentioned above, the present model may provide a dy-

namical connection between the X(4) and the Z(4) CPSs. To

demonstrate the connection, some typical energy ratios and

B(E2) ratios calculated from related models are given in Ta-

ble I. As shown in Table I, the T(4) results in the γ = 0◦

and γ = 30◦ limits indeed reproduce those of the X(4) and the

Z(4) CPSs, respectively. Specifically, the ratios EL1
/E21

and

ELξ
/E21

in the present T(4) model decrease monotonously

from the X(4) limit (γ = 0◦) to the Z(4) limit (γ = 30◦), while

the approximately constant behavior of E(81)/E(0ξ ) ∼ 1.8
for all γ values indicates that this feature can be regarded as

a signal of the T(4) CPS, which may be observed experimen-

tally. In short, the T(4) solutions as a function of γ provide

a smooth structural evolution from the X(4) CPS to the Z(4)

CPS. Since the two CPSs can be applied to describe the nuclei

around the critical points of the U(5)-SU(3) and the U(5)-O(6)

shape phase transitions [5, 13], respectively, it is thus expect

that the T(4) model may play a role as the CPS for more gen-

eral spherical-deformed shape phase transition in between the

U(5)-SU(3) and U(5)-O(6) ones. Typical quadrupole shapes

and the associated shape transitions in the IBM are tradition-

ally described by a consistent-Q Hamiltonian [29, 30], which

is written as

Ĥ(η , χ) = ε0

[

(1−η)n̂d −
η

4N
Q̂χ · Q̂χ

]

, (38)

where Q̂χ = (d†s+ s†d̃)(2)+ χ(d†d̃)(2) is the quadrupole op-

erator, η and χ are the control parameters with η ∈ [0,1] and

χ ∈ [−
√

7/2,0], and ε0 is a scale factor. It can be proved
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TABLE I: Typical energy ratios and B(E2) ratios for the ground band and the ξ = 2 band calculated in the T(4) model with various γ values

and compared with the corresponding quantities in the X(4) [13] and the Z(4) [5] as well as those calculated in the U(5), the O(6) and the

SU(3) limit of the IBM for N = 10. The results with Lξ correspond to those with L = 2τ in the first excited families in the U(5) and the O(6)

limit, such as the σ = N −2 family in the O(6)limit, where σ and τ represent the quantum numbers of the O(6) and the O(5), respectively.

X(4) T(4) Z(4) U(5) O(6) SU(3)

γ = 0◦ γ = 5◦ γ = 10◦ γ = 15◦ γ = 20◦ γ = 25◦ γ = 30◦

E41
/E21

2.71 2.71 2.71 2.69 2.65 2.54 2.34 2.23 2.23 2.00 2.50 3.33

E61
/E21

4.90 4.90 4.89 4.85 4.68 4.31 3.88 3.67 3.67 3.00 4.50 7.00

E81
/E21

7.50 7.50 7.49 7.39 7.00 6.30 5.62 5.32 5.32 4.00 7.00 12.00

E81
/E0ξ

1.80 1.80 1.82 1.87 1.88 1.85 1.82 1.80 1.80 2.00 0.64 0.47

E0ξ
/E21

4.16 4.16 4.11 3.95 3.71 3.40 3.10 2.95 2.95 2.00 11.00 25.33

E2ξ
/E21

6.04 6.04 5.98 5.82 5.57 5.26 4.95 4.80 4.80 3.00 12.00 26.33

E4ξ
/E21

9.01 9.01 8.94 8.75 8.42 7.90 7.25 6.89 6.89 4.00 13.50 28.67
B(E2; 41→21)
B(E2; 21→01)

1.70 1.70 1.71 1.71 1.75 1.78 1.74 1.71 1.71 1.80 1.38 1.40

B(E2; 61→41)
B(E2; 21→01)

2.16 2.16 2.17 2.20 2.30 2.43 2.29 2.41 2.41 2.40 1.52 1.48

B(E2; 81→61)
B(E2; 21→01)

2.51 2.51 2.52 2.58 2.76 2.99 3.02 2.91 2.91 2.80 1.55 1.45

B(E2; 0ξ→21)

B(E2; 21→01)
0.95 0.95 0.96 0.98 1.01 1.06 1.12 1.15 1.15 1.80 0.00 0.00

B(E2; 2ξ→0ξ )

B(E2; 21→01)
0.81 0.81 0.81 0.81 0.80 0.79 0.78 0.77 0.77 1.12 0.68 0.74
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FIG. 1: (Color online) Selected energy ratios and B(E2) ratios of the T(4) model and IBM for N = 10 as functions of γ (in degree) with the

assumption γ(χ) = π
3
√

7
χ + π

6 for the IBM.

that the Hamiltonian is in the U(5) symmetry limit corre-

sponding to spherical vibration when η = 0, the O(6) sym-

metry limit corresponding to γ-unstable rotation when η = 1

and χ = 0, and the SU(3) symmetry limit corresponding to

axially-symmetric rotation when η = 1 and χ =−
√

7/2. This

Hamiltonian can be used to describe the phase transitions from

the spherical shape (corresponding to the U(5) limit) to the de-

formed shape (corresponding to either the SU(3) limit or the

O(6) limit or their mixing). As shown in Table I, the energy

ratios and the B(E2) ratios in the T(4) model almost all lo-

cate in between those around the U(5) point and those in the

SU(3) limit or the O(6) limit, which in turn hints that T(4)

may be suitable to describe more general spherical-deformed

shape phase transitions.

To realize the calculation of γ dependence explicitly in the

IBM, for instance the SU(3)-O(6) crossover [20, 31], we pro-

pose a linear relation between γ and χ with γ(χ) = π
3
√

7
χ + π

6
,
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FIG. 2: (Color online) Transitional behaviors of typical energy ra-

tions and B(E2) ratios as functions of η in the IBM for N = 10

solved from the Hamiltonian (38) with χ = −
√

7/4 and the corre-

sponding results obtained from the T(4) model at γ = π/12 based on

the assumption γ(χ) = π
3
√

7
χ + π

6 .

which agrees with the point that the SU(3) limit (χ =−
√

7/2)

describes the prolate-rotor corresponding to γ = 0 and the

O(6) limit (χ = 0) corresponds to the algebraical triaxial rotor

with γav = π/6 since, in the mean-field level, it has γ-flat po-

tential oscillating uniformly over γ from 0 and π/3 [21, 22].

This simple assumption also agrees with the point that the

SU(3) limit (χ =
√

7/2) corresponds to the oblate-rotor with

γ = π/3. We can thus carry out the calculation and make

a comparison between our T(4) model and the IBM within

γ ∈ [0, 30◦]. Some typical quantities calculated in the two

models as functions of γ are shown in Fig. 1.

It can be seen from Fig. 1 that the results in the U(5) limit

keep as the constants as expected and those in the T(4) model

and the IBM along the SU(3)-O(6) transition line may either

dramatically or slightly change as functions of γ . More impor-

tantly, the energy ratios and B(E2) ratios in the T(4) model al-

most all locate between the counterparts of the U(5) limit and

the SU(3)-O(6) line for any value of γ ∈ [0◦, 30◦], which fur-

ther confirms that the T(4) model with a given γ value, similar

to Z(4) and X(4), is reasonable to be taken as the CPS of a

more general spherical-deformed shape transition (transition

from the U(5) point to a point on the SU(3)-O(6) line). One

can further observe that the energy ratio E2γ/E21
may be taken

as an indicator of the γ value for the T(4) model because this

quantity is very sensitive to γ . Once the γ value is fixed by fit-

ting the experimental energy ratio E2γ/E21
, the whole spectral

structure is determined by the model up to an overall scale fac-

tor. However, the γ-rigid nature of the T(4) model makes the

values of E2γ/E21
with γ < 6◦ are too high to accommodate a

realistic situation as seen from Fig. 1(b). It means that the T(4)

model in a very small γ-deformation or the axially-symmetric

case (γ = 0◦) corresponding to X(4) cannot be used to describe

γ-vibration in experiments. In contrast, all the other quantities

in the T(4) model change little with γ ∈ [0◦, 6◦], which in turn

indicates that the cases within γ ∈ [6◦, 30◦] may cover all the

realistic situations in the T(4) model including the reasonable

γ-vibration.

To further check the CPS role played by the T(4) model, we

take the spherical-deformed transitional line in the IBM char-

acterized with χ = −
√

7/4 and η ∈ [0, 1] as an example, of

which the parameter trajectory is located in between the one of

U(5)-SU(3) transition corresponding to χ = −
√

7/2 and that

of U(5)-O(6) transition corresponding to χ = 0. Specifically,

the evolutional behaviors of several typical quantities as func-

tions of η calculated from IBM for N = 10 are shown in Fig. 2

to compare with the corresponding results in the T(4) model

at γ = π/12 (15◦) based on the relation γ(χ) = π
3
√

7
χ + π

6
de-

fined above. As seen from Fig. 2, all quantities in the IBM

as functions of η show rapid changes within the range of

η ≃ 0.35 ∼ 0.75 denoted by the dark area, which could be

regarded as the precursors of the spherical-deformed shape

phase transition in a finite-N case [30]. More importantly, the

T(4) results (see the crossing point between T(4) and IBM)

are almost all located in the rapidly changing region of the

spherical-deformed transition in the IBM, which further jus-

tifies that the T(4) model should be qualified to be taken the

CPS for a more general spherical-deformed shape phase tran-

sitions in nuclei.

Similar to the original T(5) model [12], the T(4) model

may also behave as the β -soft triaxial rotor. However, the

γ variable in the T(4) model is a deformation parameter in-

dicating the axial-asymmetry of the system, which makes the

model exactly solvable, while γ is a dynamical variable in the

T(5) model, of which only approximate solutions can be ob-

tained [12]. It is worth mentioning that it may become possi-

ble to obtain accurate numerical solutions of the X(5) or the

T(5)-like models [32] due to the development of numerical

diagonalization methods for the Bohr Hamiltonian [32–37].

In addition, the Z(4) limit or the large γ cases in the T(4)

CPS model may be applied to describe the E(5)-like nuclei

since the predictions of the energy ratios and B(E2) ratios of

the Z(4) CPS are in close agreement with those of the E(5)
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FIG. 3: (Color online) The energy ratios E0n
/E21

, E8n
/E21

, E0n
/E02

and E8n
/E81

calculated in the T(4) model for γ = 5◦, 15◦, 25◦, where E0n

with n = 1, 2, 3, 4, 5 are the bandhead energies, and E8n
with n = 1, 2, 3, 4 represent the energy values of the states with Lξ , s = 8n, 1.

CPS [5]. While the cases with large γ values in the T(5) CPS

are suitable to describe the O(6)-like nuclei, such as the Pt

isotopes with A = 192-196 [4, 12].

Another point worth to be mentioned is that the constant

behavior E81
/E0β

∼ 1.8 in the T(4) model is due to the fact

that vT(4) in Eq. (24) for both L = 0 and L = 8 changes little

with variation of γ value. As a further analysis, the related en-

ergy ratios calculated with several typical γ values are shown

in Fig. 3. One can see from Fig. 3(a) that the bandhead ener-

gies E0n with n = 2, 3, 4, 5 all monotonically increase with

the decreasing of γ if they are normalized to E21
. However,

if these bandhead energies are normalized to E02
as shown in

Fig. 3(c), they all keep to be respective constant independent

of γ , which approximately coincides with the rule [38, 39]

with

E0n = E0(n− 1)(n+ 3/2), (39)

where E0 is an overall scale factor independent of γ . The rule

in Eq. (39) is actually the reflection of E(4) dynamical symme-

try as analyzed in Ref. [38, 39], which in turn indicates that

the T(4) solutions may serve as a partial dynamical symme-

try of type I (some of the states follow exactly the dynamical

symmetry) [40]. The similar situation also occurs for E8n with

n = 1, 2, 3, 4 as shown in Fig. 3(b) and Fig. 3(d), where E8n

decrease as functions of γ when normalized to E21
, but ap-

proximately constants if been normalized to E81
.

4. Comparison to experiment

As shown in previous sections, the T(4) model may pro-

vide a dynamical connection between the X(4) CPS [13] and

the Z(4) CPS [5] via γ deformation from γ = 0◦ to γ = 30◦.

Since the Z(4) and X(4) CPS, which correspond to the max-

imally triaxial limit (γ = 30◦), the axially-symmetric limit

(γ = 0◦), respectively, of our T(4) model, have been experi-

mentally confirmed [5, 13], it would be significant to test the

validity of the model with an intermediate γ-deformation.

In the following, 158Er [41] is chosen as a candidate of the

T(4) model with an intermediate γ-deformation. Although
158Er and other rare-earth nuclei with the neuron number

Nn = 90 are allocated with the fixed β -values in [43] accord-

ing to a given formula (Eq. (2) in Ref. [43]), these nuclei could

be alternatively connected with the β -potential of a flat bottom

as they are usually considered to be close to the critical points

of spherical to deformed shape phase transitions [15, 44].

Moreover, the possible β -soft and triaxial deformation exist-

ing in 158Er is also consistent with the recent analysis of the

Er isotopes given in [45]. In the concrete calculations, the γ
value in the T(4) model is determined by a global fit to ex-

perimental values of 16 low-lying levels in 158Er based on the

root mean square defined as R =
√

1
n ∑n

i=1(A
i
theo.−Ai

exp.)
2. It

is found that T(4) with γ = 14.7◦ may provide a globally well

fit to the experimental data, with R = 0.15MeV. Notably, once

the γ value is given, the entire spectral structure of the T(4)

model would be fixed up to a scale factor. As a comparison,

calculations in the IBM are also carried out with the param-

eters N, η and χ in Eq. (38) taken from Ref. [42]. With the

same experimental data, it is given by R = 0.21MeV for the

IBM calculations under the parameters used in [42].

To have a close look at the related results, the low-lying

levels of the ground band, β band and γ band in 158Er and
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FIG. 4: (Color online) The low-lying level patten of 158Er [41] and those solved from the T(4) model and the IBM, where all level energies

have been normalized to E(21) in each case. In calculations, the γ value in the T(4) model is set as γ = 14.7◦, and the parameters in the IBM

Hamiltonian (38) are taken as N = 11, η = 0.63, and χ =−0.61, which are the same as those adopted in Ref. [42].

those obtained from the T(4) model and IBM are shown in

Fig. 4. Some typical energy ratios and B(E2) ratios in theo-

ries together with corresponding experimental data are listed

in Table II to make a further comparison. As seen from Fig. 4,

the spectral pattern in the T(4) model with γ = 14.7◦ shows

similar to the one obtained from the IBM, and both models

present generally well reproduction of the experimental data

for both band head positions and the band structures. In addi-

tion, it can be found that the spacing of level energies in the

β band is over predicted by both models, and this point can-

not be improved by adjusting the γ value in the T(4) model.

The similar situation is also encountered in the X(5) CPS [2]

when comparing the experimental data as the larger β -band

spacings in these models are mainly due to the steep finite

"wall" in the potential as a function of β [9]. This drawback

in the T(4) model can be removed to some extent either by

involving a sloped wall in the infinite potential as done in [9]

or by replacing the infinite square well with a potential with

a finite wall at large β like the Kratzer potential discussed

in [46]. The differences between the IBM and T(4) in the

present case are mainly embodied in the γ bands. In the IBM,

the levels in the γ band show strong odd-even staggering with

couples arranged as (2+γ ), (3+γ , 4+γ ), (5+γ , 6+γ ), .... In contrast,

only slightly odd-even staggering with the opposite sign is ob-

served in the T(4) model with the levels in the γ band coupled

as (2+γ , 3+γ ), (4+γ , 5+γ ), (6+γ , 7+γ ), .... In experiments, the odd-

even staggering effect in the γ band is relatively weak like

in the T(4) model but the sign of staggering is opposite to the

one in the T(4) model. Although the IBM description presents

stronger staggering than in the experiment, it has the right

sign. Band-mixing mechanism is often used to explain the

odd-even staggering in the γ band in different models. For ex-

ample, both the presence and sign of the odd-even staggering

effects in some heavy deformed nuclei can be well explained

by the ground-γ bands mixing in the framework of the vector

boson model with the SU(3) dynamical symmetry [47]. In the

SU(3) limit of the IBM [20], the odd-even staggering in the

γ band can be alternatively explained as the β -γ bands mix-

ing, through considering high-order interactions. One of the

common points in the above two methods is to find a way to

make all the states in the two mixing bands fall into the SU(3)

irreducible representation (λ , µ = 2) with λ ≫ µ , which in

turn guarantees that only the K = 0 and K = 2 bands are al-

lowed to exist in the same SU(3) representation. Here, the

staggering feature in the T(4) model could be associated with

the γ-rigid nature of the model and may be explained as the

the ground-γ bands mixing as in the Davydov rotor [26] based

on the analysis in [21] since both the ground band and γ band

correspond to ξ = 1 while the β band corresponds to ξ = 2 in

the T(4) model as discussed in Section 2. On the other hand,

the odd-even staggering effects in the present IBM calcula-

tions are mainly due to the O(6) components involving in the

Hamiltonian [21], while the O(6) dynamics up to two-body

interactions can be associated with a γ-independent potential

in the mean-field level [20].

It can be further found in Table II that the typical energy

ratios and B(E2) ratios in experiments are generally well re-

produced in the IBM and the T(4) model. Particularly, the

ratio E8g/E0β
maintains approximately a constant 1.8 in both

experimental and theoretical cases. One can also find that

the intraband transitions in the T(4) model are qualitatively

stronger than those in the IBM but the global similarity be-

tween the two models are sustained. Anyway, it manifests

that the T(4) model indeed provides a reasonable description

of 158Er, which, in turn, indicates that possible triaxial defor-

mation may be involved to some extent in this critical point

nucleus.
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TABLE II: Some typical energy ratios and B(E2) ratios in 158Er [41]

and the ones calculated from the T(4) with γ = 14.7◦ model and the

IBM with N = 11, η = 0.63, χ − 0.61, where "—-" denotes the

corresponding quantity is not determined experimentally.

Energy ratios 158Er T(4) IBM B(E2) ratios 158Er T(4) IBM

E4g
/E2g

2.74 2.66 2.66
B(E2; 4g→2g)
B(E2; 2g→0g)

1.49 1.74 1.52

E6g
/E2g

5.05 4.70 4.89
B(E2; 6g→4g)
B(E2; 2g→0g)

2.02 2.29 1.73

E8g
/E0β

1.85 1.89 1.82
B(E2; 8g→0g)
B(E2; 2g→0g)

2.61 2.75 1.82

E0β
/E2g

4.20 3.72 4.18
B(E2; 0β→2g)
B(E2; 2g→0g)

—– 1.01 0.41

E2β
/E2g

5.15 5.59 6.44
B(E2; 2β→0β )

B(E2; 2g→0g)
—– 0.80 0.55

E2γ
/E2g

4.27 4.94 4.25
B(E2; 2γ→2g)
B(E2; 2g→0g)

—– 0.17 0.40

E3γ
/E2g

5.43 5.48 6.22
B(E2; 3γ→2γ )
B(E2; 2g→0g)

—– 2.73 0.92

5. Summary

In summary, the γ-rigid solutions of the Bohr Hamiltonian

with an infinite square well for the β -potential, called T(4),

have been worked out for γ ∈ [0◦, 30◦]. It was shown that the

original X(4) [13] and Z(4) CPSs [5] can be naturally realized

within the T(4) model in the γ = 0◦ and γ = 30◦ limit, respec-

tively. It thus offers a new and flexible CPS description of the

critical point symmetry nuclei in the spherical to γ-rigidly de-

formed or to γ-unstable shape phase transition. Comparison

to the IBM calculations further supports that the T(4) dynam-

ics with γ ∈ [0◦, 30◦] is appropriate to describe the transitions

between the spherical with U(5) and the deformed structures

like SU(3), O(6) or their mixing. Some key spectral features

of the T(4) model are also identified. In experiments, 158Er

provides the possible candidate of the T(4) CPS with an inter-

mediate γ-deformation through comparing the experimental

data with those theoretical calculations, which confirms that

the T(4) CPS can indeed provide a simple but effective way

to describe the nuclei close to the critical point of the general

spherical-deformed transition.

Our previous work shows that the algebraic model based

on the Euclidean dynamical symmetry [48], called F(5), can

build a link between the E(5) and the X(5) CPS dynamics,

which, thus, provides a unified description of the structural

evolution in the spherical to deformed shape phase transitions.

The present T(4) model provides an alternative way to de-

scribe the similar physical situation. A comparison between

the two different schemes should be interesting. In addition,

the T(4) solution may provide a convenient starting point to

establish an alternative CPS description for triaxial odd-A nu-

clei in the transitional region in contrast to those shown in

Ref. [49–55], which have been mostly applied to the axially-

deformed or the γ-unstable situations. While the T(4) model

enables to describe the critical point of the shape phase tran-

sition in between the two. Related works are in progress.
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