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Abstract

We use the Coulomb dissociation (CD) method to calculate the rate of the 36Mg(n, γ)37Mg radiative

capture reaction. The CD cross sections of the 37Mg nucleus on a 208Pb target at the beam energy of

244 MeV/nucleon, for which new experimental data have recently become available, have been calculated

within the framework of a finite range distorted wave Born approximation theory that is extended to include

the projectile deformation effects. Invoking the principle of detailed balance, these cross sections are used

to determine the excitation function and subsequently the rate of the 36Mg(n, γ)37Mg reaction. We compare

these rates with those of the 36Mg(α, n)39Si reaction calculated within a Hauser-Feshbach model. We find

that for T9 as large as up to 1.0 (in the units of 109 K) the 36Mg(n, γ)37Mg reaction is much faster than the

36Mg(α, n)39Si one. The inclusion of the effects of 37Mg projectile deformation in the breakup calculations,

enhances the (n, γ) reaction rate even further. Therefore, it is highly unlikely that the (n, γ) β-decay r-process

flow will be broken at the 36Mg isotope by the α-process.
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I. INTRODUCTION

It is generally believed that the r-process that synthesized the heavy isotopes, occurs under

explosive conditions at high neutron densities and high temperatures [1–3]. The post-collapse

phase of a type II or type Ib supernova could provide such a situation [4, 5]. In the early expanding

phase, starting with a He-rich environment, the mass-8 gap would be bridged by either α + α +

α→12C or α + α + n→9Be reactions. The α-capture reactions would continue until temperatures

and densities become relatively low and the charged particle reactions almost cease. At this stage

a very neutron-rich freeze-out takes place, that triggers further synthesis of the elements by the

radiative neutron-capture process [6].

For calculations of the r-process nucleosynthesis the inclusion of neutron-rich light nuclei in the

reaction network, has been shown to be important - they can change the heavy element abundances

by as much as an order of magnitude [6, 7]. The r-process path involving neutron-rich nuclei can

in principle, go up to the drip line isotope once equilibrium between (n, γ) and (γ, n) processes is

established. If, however, the (α, n) reaction becomes faster than the (n, γ) reaction on some “pre-

drip line” neutron-rich isotope, then the r-process flow of the radiative neutron capture reaction

followed by the β-decay is broken and the reaction path will skip the isotope on the drip line.

The abundance yields of extremely neutron rich nuclei show that the largest abundance is ex-

hibited by the isotope of a given atomic number Z that is on or very close to the corresponding

neutron-drip line. However, 18C and 36Mg are exceptions to this observation. Both these isotopes

are still away from the respective drip lines of the corresponding Z values. For the carbon nucleus

the drip line isotope is known to be 22C [8, 9], while for magnesium the drip line is extended

upto 40Mg [10]. It is speculated in Ref. [6] that even at low temperatures (around T9 = 0.62), the

rates of 18C(α, n)21O and 36Mg(α, n)39Si reactions could be larger than those of 18C(n, γ)19C and

36Mg(n, γ)37Mg reactions, respectively. To confirm this observation the precise determination of

the rates of these reactions is of crucial importance.

The aim of this paper is to determine the rates of the 36Mg(n, γ)37Mg reaction at the interaction

kinetic energies that correspond to temperatures in the astrophysically interesting region (T9 = 0.5 -

10). Since, 36Mg has a very small half-life (≈ 5 ms) [11], a direct measurement of the cross section

of the reaction 36Mg(n, γ)37Mg is not feasible at present. The situation is further complicated by

the fact that temperatures T9 with values in the region of 0.5 - 10 correspond roughly to the center-

of-mass (c.m.) energies in the range of 50 keV to 1.0 MeV. Thus rates of the 36Mg(n, γ)37Mg
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reaction are of astrophysical importance for such low neutron kinetic energies, where performing

measurements is prohibitively difficult.

However, with a beam of 37Mg it is possible to measure the cross section of the reverse reaction

37Mg(γ, n)36Mg (photodisintegration process), and use the principle of detailed balance to deduce

from it the cross sections of the 36Mg(n, γ)37Mg reaction. A very promising way of studying the

photodisintegration process is provided by the virtual photons acting on a fast charged nuclear

projectile passing through the Coulomb field of a heavy target nucleus [12–14]. The advantage

of this Coulomb dissociation (CD) method, in which the valence neutron is removed from a fast

projectile in the Coulomb field of heavy target nuclei, is that here measurements can be performed

at higher beam energies, which enhances the cross sections considerably. At higher energies the

fragments in the final channel emerge with larger velocities that facilitates their more accurate

detection. Furthermore, the choice of the adequate kinematical condition of the coincidence mea-

surements allows the study of the low relative energies of the final state fragments and ensures that

the target nucleus remains in the ground state during the reaction (see, e.g., Refs. [15, 16]).

With the advent of new generation of radioactive ion beam facilities, it has become possible to

produce a beam of 37Mg of sufficient quality to perform the measurements for the cross sections

of the one-neutron removal reaction off this nucleus on a 208Pb target at a beam energy of 244

MeV/nucleon [17]. The corresponding data have been analyzed within a post-form finite range

distorted-wave Born approximation (FRDWBA) theory that is extended to include projectile de-

formation effects [18, 19]. From comparison of calculations with the available experimental data

it was concluded that the likely configuration of the 37Mg ground state is either 36Mg(0+)⊗2p3/2n

or 36Mg(0+)⊗2s1/2n with the one neutron separation energy (S n) values of 0.35 ± 0.06 MeV and

0.50 ± 0.07 MeV, respectively. These values have been found to be strongly dependent on the

spectroscopic factors (C2S ) and the deformation of the respective configuration.

In this work we have used the Coulomb breakup cross section of 37Mg on a 208Pb target cal-

culated within the FRDWBA theory as described above, to determine the photoabsorption cross

sections 37Mg(γ, n)36Mg by following the method of virtual photon number [12]. The later was

then converted to (n, γ) capture cross section on 36Mg using the principle of detailed balance.

We have adopted the cross sections of the 36Mg(α, n)39Si reaction as obtained from the Hauser-

Feshbach (HF) code NON-SMOKER in Ref. [20].

In the next section we present our formalism, where the features of the FRDWBA theory as

used in the calculations of the Coulomb dissociation cross sections are briefly described. We also
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outline the virtual photon number method for extracting the photo-dissociation cross sections from

those of the Coulomb dissociation process. In section III we present our results and discuss them.

The summary and conclusions of our study are given in section IV.

II. FORMALISM

For non-degenerate stellar matter the rate (R) of a nuclear reaction where two nuclei b and c

(36Mg and n, respectively, in our example) interact with relative energy Ebc to form a composite

nucleus a (37Mg) via a radiative capture process (to be represented as [b(c, γ)a], is given by (see,

e.g., Refs. [7, 21]),

R = NA〈σcγ(vbc)vbc〉, (1)

where σcγ(vbc) is the cross section of the reaction between nuclei b and c with the relative velocity

vbc (that corresponds to relative energy Ebc), and NA is the Avogadro number (= 6.02×1023 mole−1).

In Eq. (1) the product σcγ(vbc)vbc is averaged over the Maxwell- Boltzmann velocity distribution.

〈σcγ(vbc)vbc〉 is written as

〈σcγ(vbc)vbc〉 =

√

8

(kBT )3πµbc

∫ ∞

0

σcγ(Ebc) Ebc exp(−
Ebc

kBT
) dEbc, (2)

where µbc is the reduced mass of the interacting nuclei, kB is the Boltzmann constant and T is the

temperature of the stellar medium.

The prime nuclear physics input for calculating the rate of a particular radiative capture reaction

is the cross section σcγ(Ebc) at the relative energy Ebc - this energy is usually in the range of a few

keV to a few MeV for most of the astrophysical sites. The direct measurement of this cross section

in laboratory is extremely difficult at these low energies. Even more serious is the fact that for most

reactions of interest the target nuclei are radioactive having a very short half lives.

However, by invoking the principle of detailed balance, the capture cross section (σcγ), can be

calculated from the cross section σγc of the time reversed reaction a(γ, c)b, (photodisintegration

cross section of a) as,

σcγ =
2(2 ja + 1)

(2 jb + 1)(2 jc + 1)

k2
γ

k2
bc

σγc, (3)

where ja, jb and jc are the spins of particles a, b and c, respectively. kγ is the photon wave number

and kbc is that of the relative motion between b and c.
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Now, the two-body photodisintegration cross section can be related to relative energy spectra

of the three-body elastic Coulomb breakup reaction (a + t → b + c + t, t being a heavy target) as

(see, e.g., Ref. [22])

dσ

dEbc

=
1

Eγ
ΣλnΠλσγc, (4)

where nΠλ is the virtual photon number of type Π (electric or magnetic) and multipolarity λ. The

photon energy is given by Eγ = Ebc + S n, with S n being the nucleon separation energy of the

projectile a. The relative energy between the fragments b and c in the final channel is denoted by

Ebc.

Combining Eqs. (3) and (4) we can express σcγ in terms of dσ
dEbc

as

σcγ =
2(2 ja + 1)

(2 jb + 1)(2 jc + 1)
2µbc

E3
γ

Ebc

1

nΠλ

dσ

dEbc

, (5)

where we have assumed that the Coulomb breakup cross section gets contribution from a single

multipolarity and type, Πλ.

For application to the calculations of the reaction of interest in the present work, we use a fully

quantum mechanical theory of Coulomb breakup reactions to calculate the Coulomb dissociation

of 37Mg, which is then used to extract the rate of the capture reaction 36Mg(n,γ)37Mg. The theory

of CD reactions used by us is formulated within the post form finite range distorted wave Born

approximation (FRDWBA) [23] where the electromagnetic interaction between the fragments and

the target nucleus is included to all orders and the breakup contributions from the entire non-

resonant continuum corresponding to all the multipoles and the relative orbital angular momenta

between the fragments are taken into account. This theory has been extended in Refs. [18, 19]

so that it can also be used to calculate the CD of those nuclei that have deformed ground states.

Full ground state wave function of the projectile, of any orbital angular momentum configuration,

enters as an input into this theory, where we explicitly require only the ground state wave function

of the projectile as an input.

Within the FRDWBA theory the cross sections for relative energy spectra for the elastic breakup

reaction, a + t → b + c + t, where projectile a (assumed to have a core b plus a valence particle c

configuration) breaks up into fragments b and c in the Coulomb field of a target t, can be written

as,

dσ

dEbc

=

∫

Ωbc,Ωat

dΩbcdΩat















∑

lm

1

(2ℓ + 1)
|βℓm|

2















2π

~vat

µbcµat pbc pat

h6
, (6)
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where vat is the a–t relative velocity in the entrance channel, Ωbc and Ωat are solid angles, µbc

and µat are reduced masses, and pbc and pat are appropriate linear momenta corresponding to the

b–c and a–t systems, respectively. ℓ and m are the relative orbital angular momentum and its

projection, respectively. It may be noted that the projectile a can also be deformed.

If one of the fragments (say c) is uncharged, the reduced transition amplitude, βℓm, for this

reaction is given by [19]

βℓm =
〈

ei(γqc−αK).r1 |Vbc(r1)| φℓma (r1)
〉 〈

χ
(−)

b
(qb, ri)e

iδqc.ri |χ(+)
a (qa, ri)

〉

. (7)

The ground state wave function of the projectile φℓma (r1) appears in the first term (vertex func-

tion), while the second term that describes the dynamics of the reaction, contains the Coulomb

distorted waves χ(±). This can be expressed in terms of the bremsstrahlung integral. α, γ and δ are

the mass factors pertaining to the three-body Jacobi coordinate system (see Fig. 1 of Ref. [19]).

In Eq. (7), K is an effective local momentum appropriate to the core-target relative system and qi

(i = a, b, c) are the Jacobi wave vectors of the respective particles.

Vbc(r1) [in Eq. (7)] is the interaction between b and c, in the initial channel. We introduce an

axially symmetric quadrupole-deformed potential, as

Vbc(r1) = V0 f (r1) − β2RV0

d f (r1)

dr1

Y0
2 (r̂1), (8)

where V0 is the depth of the spherical Woods-Saxon potential and the shape function f (r1) =

[1 + exp( r1−R

a0
)]−1, with R = r0A1/3 where r0 and a0 are the radius and diffuseness parameters,

respectively. β2 is the quadrupole deformation parameter. The first part of the Eq. (8) is the

spherical Woods-Saxon potential Vs(r1). Because of the deformation, the radial wave function of a

given ℓ corresponding to the full potential Vbc, has an admixture of wave functions corresponding

the other ℓ values of the same parity. However, we calculate the radial part of the ground state

wave function of the projectile using the undeformed Woods-Saxon potential - this allows us to

evaluate the structure part of the amplitude in Eq. (7) analytically. This approximation is justified

because it has been shown in Ref. [24] that in a realistic deformed potential the relative motion

wave function of the neutron is dominated by the lowest angular momentum component in the

limit of small binding energy of the valence neutron, which is independent of the extent of the

deformation.

To substantiate this point further, we show in Fig. 1 the wave function [ru(r)] obtained by solv-

ing the Schrödinger equation with the potential given by Eq. 7, taking the S n value of 0.35 MeV.
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FIG. 1. Comparison of the wave functions calculated by solving the Schrödinger equation with potential

given by Eq. 7. The S n value is taken to be 0.35 MeV for the state 2p3/2. The wave function [ru(r)] obtained

with the deformations parameter β2 = 0.0 (i.e. calculated with spherical potential) is shown by the solid

line. ru(r) obtained with β2 = 0.2 but including only the component corresponding to ℓ = 1 and j = 3/2 is

shown by the dashed line while that including components with ℓ = 1, 3, 5 and all the allowed j values is

displayed by the dashed-dotted line. All the wave functions are normalized to unity.

All the parameters of the potential were taken to be the same as those described above. We show

results for β2 = 0.0 (solid line) and 0.2 (dashed and dashed-doted lines). The dashed line corre-

sponds to the case when for β2 = 0.2, only ℓ = 1 and j = 3/2 component was included, while

the dashed-dotted line represents the wave function where for β2 = 0.2, all the components corre-

sponding to ℓ = 1, 3 and 5 with all the allowed j values are included. All the three wavefunctions

are normalized to 1 to make the comparison easier. We see that the solid and dashed curves are

almost identical. The differences between solid and dashed-dotted curves are also insignificant.

This signifies that the deformation effects leave the wave functions calculated with the spherical

potentials unchanged. Furthermore, contributions of ℓ > 1 components to 2p3/2 wave function are

negligibly small.

Therefore, we have performed our CD calculations with the spherical wave function corre-

sponding to the orbital angular momentum of 1 (2p3/2 component), but taking Eq. 8 for the poten-

tial Vbc. One advantage of our this choice is that this allows us to calculate a substantial portion of
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our amplitude analytically. We emphasize that the deformation parameter (β2) still enters into the

amplitude via Vbc in Eq. (7). For more details on the Coulomb dissociation formalism we refer to

Ref. [19].

One can then relate the cross section in Eq. (6) to the photodissociation cross section, σγc, for

the reaction a(γ, c)b, by using Eq. (5). The virtual photon number appearing in this equation has

been calculated by following the same method as that used in Ref. [25].

Of course, the procedure of relating the CD cross section to that of the photodisintegration is

valid only when transitions of a single multipolarity and type dominate the breakup cross sec-

tion and the nuclear breakup effects are negligible. The validity of both these assumptions has

been checked in several previous studies of the Coulomb dissociation reactions [see, eg., Ref.

[13, 22, 26–29]]. Nevertheless, in the context of the reaction studied in this paper, we have checked

that the breakup cross sections are indeed dominated by the E1 multipolarity by evaluating the

Coulomb dissociation cross sections within the first order Coulomb excitation theory [25]. Be-

cause the higher order effects that are included in the FRDWBA theory are negligible at higher

beam energies as is shown in Ref. [30], this procedure should be sufficient to satisfy that the FRD-

WBA cross sections are indeed dominated by the E1 multipolarity. Furthermore, at higher beam

energies and forward angles (where the breakup data studied in Ref. [19] have been taken), the

nuclear breakup effects are negligible. Therefore, necessary conditions for the validity of Eq. (4)

are fulfilled for the present case. We emphasize, however that in general, the validity of Eq. (4)

must be checked in each case before using this to extract the photodissociation cross section.

Once the photodissociation cross sections are determined, one can extract the radiative capture

cross sections by using Eq. (3) and use them in Eq. (2) to determine the rate of the reaction.

III. RESULTS AND DISCUSSIONS

As discussed above, in the calculations of the CD cross sections within our theory, we require

the single-particle wave function that describes the c − b relative motion in the ground state of

the projectile for a given neutron-core configuration. This is obtained by solving the Schrödinger

equation with a central Woods-Saxon type of potential with parameters r0 and a0 having values

of 1.24 fm and 0.62 fm, respectively. The depth of this well is adjusted to reproduce the valence

neutron separation energy corresponding to the adopted configuration. In Ref. [19], it has been

concluded that the ground state of 37Mg can have either of the configurations 36Mg(0+)⊗2p3/2n and
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FIG. 2. Direct capture (DC) cross sections to the ground state (GS) of 37Mg, obtained by calculating the

Coulomb dissociation of 37Mg on a 208Pb target at the beam energy of 244 MeV/nucleon for different values

of one neutron separation energies (S n). Results for S n values of 0.10 MeV, 0.35 MeV, 0.50 MeV and 0.70

MeV, are shown by dotted, solid, dashed, and dashed-dotted lines, respectively. In these calculation the

deformation parameter of the 37Mg ground state was taken to be 0 through out. The spectroscopic factor

C2S was unity in each case.

36Mg(0+)⊗2s1/2n, with S n values of 0.35 ± 0.06 MeV or 0.50 ± 0.07 MeV, respectively and a C2S

of 1. However, for the configuration 36Mg(0+)⊗2p3/2n the calculated one-neutron removal cross

section overlaps with the corresponding experimental data band for the quadrupole deformation

parameter (β2) below 0.32, which is in line with the predictions of the Nilsson model calculations

of Ref. [31]. On the other hand, with the configuration 36Mg(0+)⊗2s1/2n, the calculations of

Ref. [19] is unable to put any constraint on the parameter β2. Therefore, we have adopted the

configuration 36Mg(0+) ⊗2p3/2n with a S n value of 0.35 MeV and a C2S of 1 for the n−36Mg

relative motion in the ground state of 37Mg. The values of the searched depths of the Woods-Saxon

well with shape parameters as given above, were found to be 44.42 MeV, 45.21 MeV, 45.94 MeV

and 46.60 MeV for S n values of 0.10 MeV, 0.35 MeV, 0.50 MeV and 0.70 MeV, respectively. It

should, however, be mentioned here that the extracted value of S n is sensitively dependent on C2S

as well as on the deformation parameter β2 of the 37Mg ground state. Since, definite knowledge

about the later two quantities are still lacking we have chosen to show results for a range of S n and
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FIG. 3. (a) The Coulomb dissociation cross section dσ/dEc.m. calculated for different values of S n as a

function of Ec.m.. (b) The kinematical factor F(Ec.m.) = [(Ec.m. + S n)3/Ec.m.] as a function of Ec.m. for

various values of S n. (c) The product of F(Ec.m.) and dσ/dEc.m. as a function of Ec.m. for various values of

S n.

β2 values.

We have calculated the capture cross sections (σn,γ) of the 36Mg(n,γ)37Mg reaction as a function

of the c.m. relative energy (Ebc = Ec.m.) between neutron and 36Mg ground state [36Mg(0+)] for

several values of S n and β2, using the Coulomb breakup cross section obtained in our FRDWBA

model. In Fig. 2, we show σn,γ as a function of Ec.m. (in the range of 0 - 3 MeV) for S n values of

0.10 MeV, 0.35 MeV, 0.50 MeV and 0.70 MeV corresponding to a fixed β2 parameter of 0.0. We

note in this figure that while for Ec.m. below 1 MeV, σn,γ are larger for smaller values of S n, this

trend is reversed for Ec.m. larger than 1 MeV, where the cross sections increase with increasing S n.

The reason for this observation is discussed below.

To understand the behavior of the σn,γ as a function of Ec.m. and S n as seen in Fig. 2, we
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FIG. 4. Same as in Fig. 2 obtained by using CD cross sections calculated with different β2 values for a

fixed S n of 0.35 MeV. Results for β2 values of 0.0, 0.2, 0.4 and 0.5, are shown by solid, dotted, dashed, and

dashed-dotted lines, respectively.

note from Eq. (5) that the capture cross sections obtained from the Coulomb dissociation method

involves together with the CD cross section, the kinematical factor F(Ec.m.) = [(Ec.m. + S n)3/Ec.m.]

and the inverse of the virtual photon number nΠλ. In Fig. 3, we show the CD cross section [in

part (a)], the kinematical factor F(Ec.m.) [in part (b)], and their product, X(Ec.m.) [in part (c)], as a

function of Ec.m. for various values of S n.

The Coulomb dissociation cross section shows the characteristics typical of the drip line nuclei

having small one neutron separation energies, where the breakup cross section is dominated by the

low lying dipole B(E1) strength (see, e.g., Ref. [32]), which leads to these cross sections peaking

strongly near the smaller binding energies. This implies that a low lying bound state leads to a

peak in the low lying continuum, and the width and location of that peak is directly related to the

location of the bound state pole. As the binding energy changes, the strength distribution changes

in both the shape and the absolute value, which is apparent from Fig 3(a).

In Fig. 3(b), we have shown the the kinematical factor F(Ec.m.) as a function of Ec.m. for various

values of S n. We note that F(Ec.m.) is smallest in magnitude for the lowest value of S n and it in-

creases gradually with Ec.m after some very small values of Ec.m.. As a result the product of F(Ec.m.)

and the CD cross sections [X(Ec.m.)], is still larger for smaller S n but only for Ec.m. < 1MeV . How-
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FIG. 5. Total wave function [ru(r)] for the ℓ = 1 and j = 3/2 state including components with ℓ = 1, 3, 5

and all the allowed j values for different β2 parameters. All the wave functions are normalized to unity.

ever, for Ec.m. larger than this value, this behavior is reversed - now X(Ec.m.) corresponding to the

larger S n becomes larger. This is understandable because the CD cross section remains approxi-

mately constant for Ec.m. > 1 MeV, while F(Ec.m.) is bigger for larger values of S n. Furthermore,

the virtual photon numbers have larger magnitudes for smaller S n for Ec.m. < 1 MeV, but they

are of almost of similar values for all S n for Ecm > 1 MeV. This combined with X(Ec.m.) leads

to the behavior of the capture cross sections shown in Fig. 2, which appears to have a different

S n dependence as compared to that of the Coulomb dissociation cross sections particularly for

Ec.m. > 1 MeV. However, the capture cross sections corresponding to lower S n is larger at Ec.m.

below 1 MeV.

In Fig. 4, we show σn,γ as a function of Ec.m. for the deformation parameter values of β2 of 0.0,

0.2, 0.4 and 0.5, corresponding to a fixed S n of 0.35 MeV and the spectroscopic factor of 1. In

this case sensitivity of the cross section to the deformation parameter is seen also for Ec.m. below

1.0 MeV. We see that σn,γ increases with increasing β2, which reflects the trend seen in the β2

dependence of the CD cross sections.

In our calculations the β2 dependence of the CD cross sections and hence that of the capture

cross section results primarily from the fact that this parameter enters into the reaction amplitude

explicitly through the potential Vbc (see Eq. 7). Had this not been the case, there would have been

no dependence of the cross sections on the β2 as these peripheral reactions are governed mainly
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by the asymptotic normalization coefficient (ANC), which is independent of the β2, as is shown in

table I for the p3/2 state wave function.

TABLE I. Asymptotic normalization constant (ANC) for the deformed 37Mg wave function for different

values of the deformation parameter β2. The deformed wave functions have been obtained by solving the

Schödinger equation with potential given by Eq. 7 with a S n value of 0.35 MeV. Results are shown only for

ℓ = 1 and j = 3/2 state for each value of the deformation parameter.

β2 ℓ j ANC

(fm−1/2 )

0.0 1 3/2 0.383

0.1 1 3/2 0.383

0.2 1 3/2 0.380

0.3 1 3/2 0.377

0.4 1 3/2 0.374

0.5 1 3/2 0.370

Moreover, even the asymptotic part of the total wave function (that has contributions from

components corresponding to ℓ = 1, 3 and 5 with all the allowed j values), is unaffected by changes

in β2. This is illustrated in Fig. 5 where we have plotted the total wave function corresponding to

different values of β2. The wave function in each case is normalized to 1 to make the comparison

easier and more meaningful. We see that the varying of β2 leaves the asymptotic part of the wave

function completely unchanged, which is in agreement with the results shown in Ref. [33]. This

further strengthens the fact that the β2 dependence of the CD cross section (and thus that of the

capture cross section) is mainly due to the explicit presence of this parameter into the reaction

amplitude.

The results for the capture cross sections shown in Figs. 2 and 4 correspond to the CD cross

sections obtained with the configuration of 36Mg(0+) ⊗2p3/2n for a C2S value of 1. However, in

Ref. [17] a C2S of 0.42±0.12 has been deduced for this configuration from an analyses of the data

on Coulomb breakup within a semiclassical theory of this reaction. Even though this result is quite

dependent on the theory of CD used in their analysis, had we used their value of C2S our results

would have been proportionately lower.
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FIG. 6. Capture rates for the 36Mg(n,γ)37Mg reaction as a function of temperature in units of 109K (T9) for

different values of S n for a fixed β2 of 0.0.

Reaction rates (R) calculated from the capture cross sections are plotted in Figs. 6 and 7 as a

function of T9 (the temperature equivalent of relative energy in units of 109K, calculated from the

relation Ec.m. = kBT ). We recall that the experimental cross sections for the Coulomb breakup

reaction 37Mg + Pb→ 36Mg + n + Pb, involve uncertainties of about 15-20% [17], which should

also be there in the calculated Coulomb dissociation cross sections that are fitted to these data.

Therefore, the (n, γ) capture cross sections and hence the rates of this reactions shown in Figs. 6

and 7 should also involve uncertainties of this order.

In Fig. 6 the reaction rate is shown for different values of S n for a fixed β2 of 0.0, while in Fig.7

it is shown for various values of β2 for a fixed S n of 0.35 MeV. The ground state configuration of

37Mg remains the same as that in Figs. 2 and 4. We note that the reaction rate changes from 10

cm3mole−1 s−1 to about 5000 cm3mole−1 s−1 as T9 goes from 0.05 to 10. Its value around T9 = 0.6

is approximately 200 cm3mole−1 s−1. The S n and β2 dependences of the reaction rate reflect the

trends seen in the dependences of the capture cross section on these quantities, in Figs. 2 and 4. It

may be noted that T9 in the range of 0.05 - 10 corresponds to Ec.m. approximately in the range 4

keV to 1 MeV.

As is evident from the integrand in Eq. (1), for a fixed stellar temperature, the maximum con-

tribution to the reaction rate is strongly dependent on the reaction cross section and in turn on the
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relative energy. This is substantiated in Fig. 8, where we show integrand of Eq. (1) as a function

of Ec.m. for the reaction 36Mg(n,γ)37Mg at different values of S n, but fixed β2 and T9 of 0.0 and 1,

respectively. We see that maximum contribution to the rate of this reaction comes from Ec.m. lying

roughly between 0.2 - 0.3 MeV. At this low energy it is extremely difficult to measure reaction

cross sections by direct methods. This is where the power of the CD method becomes evident as

an indirect method in nuclear astrophysics. With the recent advances in experimental techniques it

is possible to measure relative energy spectra at quite low relative energies in the CD experiments.

In Fig. 9, we show a comparison of the rates of 36Mg(n,γ)37Mg and 36Mg(α, n)39Si reactions

for the astrophysically relevant stellar temperature, T9, in the range of 0.05 - 10. In calculations

of the (n, γ) reaction the value of S n is taken to be 0.35 MeV. Results are shown for β2 of 0.0 and

0.5. The rates of the (α, n) reaction are calculated from the corresponding cross section given in

Ref. [20] obtained from the NON-SMOKER code. We note that for T9 ≥ 2 the 36Mg(α, n)39Si

reaction is faster. Therefore, for these temperatures α capture reactions are more efficient and the

formation of elements of higher charge number (Z) via the α induced processes is most important.

However, at temperatures T9 below 2, the (α, n) reaction becomes progressively slower and the

(n, γ) reaction starts becoming more and more important. At these temperatures the classical r-

process flow involving (n, γ) and (γ, n) reactions followed by β decay is much more probable. In

Fig. 9, we also note that the effect of projectile deformation is to increase the (n, γ) rates slightly
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over the no deformation case, but this is insignificant as for as main conclusion of this figure is

concerned.

Also shown in Fig. 9 are the rates of the 36Mg(n,γ)37Mg reaction obtained from the HF cross

section reported in Ref. [20]. We notice that CD (n, γ) rates are significantly larger than those

of the HF model. For T9 ≤ 1 the difference between CD and HF rates is quite drastic (several

orders of magnitude). However, the difference between them becomes relatively lesser and lesser

as T9 increases beyond 1. The similar observation was also made in Ref. [7] for the case of the

18C(n,γ)19C reaction. This emphasizes the need for accurate determination of the rates of the (n, γ)

reaction on neutron rich light nuclei where the CD method can play a crucial role.

It is clear from Fig. 9 that around the equilibrium temperature, T9 = 0.62 where the main path

of the reaction network runs through very neutron-rich nuclei, the 36Mg(n,γ)37Mg reaction is much

faster than the 36Mg(α, n)39Si reaction. Therefore, the (n, γ) β-decay r-process is highly unlikely

to be broken at the 36Mg isotope by the α-process.

It is important to note that the while HF cross sections have contributions only from the com-

pound nuclear formations and decay mechanisms, the CD method produces only the direct capture

component. In principle both components coexist and need to be considered simultaneously when

they are of the same order of magnitude.
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FIG. 9. Comparison of the rates of 36Mg(n,γ)37Mg reaction calculated by the CD method using β2 pa-

rameters of 0 (solid line) and 0.2 (dashed line) (the neutron separation energy S n was 0.35 MeV in both

the cases), with those of the 36Mg(α, n)39Si (dashed-dotted line) and 36Mg(n,γ)37Mg (dotted line) reactions

obtained from the Hauser Feshbach (HF) cross sections adopted from the Ref. [20] where they have been

obtained from the code NON-SMOKER(NS). The x-axis represents the temperature T9.

IV. SUMMARY AND CONCLUSIONS

In summary, we have calculated the rate of the 36Mg(n,γ)37Mg reaction by studying the in-

verse photodissociation reaction in terms of the Coulomb dissociation of 37Mg on a 208Pb target

at the beam energy of 244 MeV/nucleon using a theory formulated within the post-form finite

range distorted-wave Born approximation that is extended to include the effects of the projectile

deformation. This capture reaction is important in deciding if the r-process reaction flow will be

sustained to Mg isotopes heavier than 36Mg. If the rate of this reaction is smaller than that of the

36Mg(α, n)39Si process, then the reaction flow will be broken at this point, thereby reducing the

production of Mg isotopes with mass numbers larger than 36.

The advantage of our theoretical method is that it is free from the uncertainties associated with

the multipole strength distributions of the projectile. In this approach measurements performed at

beam energies in the range of few tens of MeV to few hundreds of MeV are used to extract cross

sections of reactions at astrophysically relevant energies that usually lie in the range of few tens of

keV to few hundreds of keV. Measurements performed at higher beam energies enhance the cross
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sections considerably. At higher energies the fragments in the final channel emerge with larger

velocities, which facilitates their more accurate detection. By choosing adequate kinematical con-

ditions of the coincidence measurements, it becomes possible to study the final state fragments at

low relative energies, and to ensures that the target nucleus remains in the ground state during the

reaction.

Our calculations suggest that the consideration of the deformation of the projectile nucleus

in the Coulomb dissociation calculations, does not have any significant effect on the rate of the

36Mg(n,γ)37Mg reaction. Furthermore, the uncertainty in the value of one-neutron separation en-

ergy of the 37Mg nucleus also does not make any noticeable impact on the this rate.

We find that for stellar temperatures T9 above 2 the rates of the 36Mg(α, n)39Si reaction are

larger than those of the 36Mg(n,γ)37Mg reaction. This implies that at these temperatures the α-

capture reactions are more efficient than the neutron capture. Thus, α-process operates at tem-

peratures T9 ≥ 2. For lower temperatures (T9 below 2) however, the (α, n) reaction rates become

progressively smaller than those of the (n, γ) reaction. Eventually, the neutron capture becomes

predominant and the classical r-process like flow, [(n, γ) and (γ, n) reactions followed by the β

decay], becomes the key process.

It may be remarked that the Hauser-Feshbach model, which is adopted by us to get the rates of

the 36Mg(α, n)39Si reaction, may not be a good approximation for the neutron rich nuclei. Nev-

ertheless, we use these estimates because they are easy to obtain and their uncertainties are not

larger than the differences seen between and (n, γ) and (α, n) reaction rates in Fig. 7 [34].

Near the saturation temperature T9 = 0.62, the (n, γ) reaction rate is several orders of magnitude

larger than that of the 36Mg(α, n)39Si reaction. Therefore, the (n, γ) β-decay reaction flow is highly

unlikely to be broken at the 36Mg isotope and the reaction path of the r-process could go to Mg

isotopes with mass numbers larger than 36 that are even closer to the corresponding neutron-drip

line.
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