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Abstract

We compare the methods of amplitude reconstruction, for a complete experiment and a truncated

partial-wave analysis, applied to the electroproduction of pseudoscalar mesons off nucleon targets.

We give examples which show, in detail, how the amplitude reconstruction (observables measured

at a single energy and angle) is related to a truncated partial-wave analysis (observables measured

at a single energy and a number of angles). A connection is made to existing data.
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I. INTRODUCTION AND MOTIVATION

There have been numerous recent efforts to extract maximal information, unbiased by

any particular model, from experimental pseudoscalar photoproduction data. These have

included the study of complete experiment analyses [1] (CEA) and truncated partial-wave

analyses [2] (TPWA). Legendre analyses directly applied to data [3] have the same motiva-

tion. The CEA determines helicity or transversity amplitudes at a single energy and angle,

up to an overall (energy and angle dependent) phase. The TPWA introduces a cutoff to the

partial-wave series, obtaining multipoles for a fixed energy, with an overall unknown phase

dependent only on energy.

The methods used to study the photoproduction of pseudoscalar mesons from nucleon

targets can be extended to the case of electroproduction, with the introduction of longi-

tudinal amplitudes associated with the incoming virtual photon. An examination of the

CEA was performed by Dmitrasinovic, Donnelly and Gross [4] who considered the required

polarization measurements. They concluded that a CEA, determining the electroproduction

transversity amplitudes up to an overall phase, was not possible with either recoil or target

polarization measurements alone, but required at least one measurement from the other

polarization set. They further concluded that a CEA could be constructed without the need

for more complicated measurements involving both a polarized target and recoil polarization

detection. These conclusions assumed that all structure functions could be separated in a set

of measurements. As in all such studies, it was also implicitly assumed that measurements

could be made arbitrarily precise.

Here we generalize our recent study [2] of the CEA and TPWA in photoproduction to

electroproduction. While the study in Ref. [4] focused on the CEA, in practice, one desires

multipole amplitudes that can be associated with resonance contributions. These cannot

be directly obtained from a complete set of transversity amplitudes and the methods used

in solving the CEA and TPWA problems are quite different, as was discussed in detail in

Ref. [2].

The electroproduction reaction, unlike photoproduction, requires detailed knowledge of

the electron scattering process producing the interacting virtual photon. As the electron

scattering and outgoing hadronic particles define two different planes, a second angle defining

their relative orientation is required, as shown in Fig. 1. The virtual photon can have a non-
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FIG. 1. Kinematics of an electroproduction experiment. The scattering plane {1,3} is defined by

the respective incoming and outgoing electron momenta ~ki, ~kf with the electron scattering angle

Θe. The reaction plane is spanned by the virtual photon ~q and the outgoing meson ~k, scattered

by the angle θ. The reaction plane is tilted versus the scattering plane by the azimuthal angle φ.

zero value for its 4-momentum squared, which allows for the independent variation of photon

energy and momentum. This non-zero value also complicates the spin structure, requiring

the introduction of both longitudinal and transverse components, as described in Refs. [5, 6].

Below, we first review the electroproduction formalism. We then consider both simple and

more realistic examples of the CEA and TPWA process, showing how the experimental

requirements change.

II. CROSS SECTION AND POLARIZATION DEGREES OF FREEDOM

Here we follow the notation of Ref. [6] to describe the pseudoscalar meson electroproduc-

tion process. As denoted in Fig. 1, Θe is the electron scattering angle while q and k are

the respective 4-vectors for the virtual photon and outgoing meson, with q2 = ω2 − q2, ω

and q being the photon energy and 3-momentum. The momentum transfer is denoted by

Q2 = −q2 and the “photon equivalent energy” is given by klabγ = (W 2 −m2
i )/2mi, where W

is the center-of-mass energy of the hadronic system and mi is the mass of the initial nucleon.

The degree of transverse polarization of the virtual photon is

ε =

(
1 +

2q2

Q2
tan2 Θe

2

)−1
, (1)
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FIG. 2. Frames for polarization vectors. Target and recoil polarization are commonly defined as

{x, y, z} and {x′, y′, z′} in the c.m. frame, with the z′ direction along the outgoing meson π(k).

The virtual photon γ(q) can carry different types of polarization, including the linear and circular

polarizations, PT in the {x, y} plane and P� along the z axis, as in photoproduction. In addition,

the longitudinal photon carries a polarization, εL, with further polarization types appearing in the

LT interferences of Eq. (3).

with q and Θe expressible in either the lab or c.m. frame. The longitudinal polarization,

εL =
Q2

ω2
ε , (2)

is frame dependent.

Experiments with three types of polarization can be performed in meson electroproduc-

tion: electron beam polarization, polarization of the target nucleon and polarization of the

recoil nucleon. Target polarization will be described in the frame {x, y, z}, with the z-axis

pointing in the direction of the photon momentum q̂, the y-axis perpendicular to the reac-

tion plane, ŷ = q̂× k̂/ sin θ, where k̂ is the direction of the outgoing meson, and the x-axis

given by x̂ = ŷ× ẑ. For recoil polarization we will use the frame {x′, y′, z′}, with the z′-axis

defined by the momentum vector of the outgoing meson, the y′-axis parallel to ŷ, and the

x′-axis given by x̂′ = ŷ′ × ẑ′. These frames are displayed in Fig. 2.

The most general expression for a coincidence experiment considering all three types of

polarization is

dσv
dΩ

=
|~k|
kcmγ

PαPβ

{
Rβα
T + εLR

βα
L

+ [2εL (1 + ε)]1/2 (cRβα
LT cosφ+sRβα

LT sinφ)
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+ ε(cRβα
TT cos 2φ+sRβα

TT sin 2φ)

+ h [2εL(1− ε)]1/2 (cRβα
LT ′ cosφ+sRβα

LT ′ sinφ)

+ h(1− ε2)1/2Rβα
TT ′

}
, (3)

where h is the helicity of the incoming electron, Pα = (1, ~P )α and Pβ = (1, ~P ′)β. Here

~P = (Px, Py, Pz) denotes the target and ~P ′ = (Px′ , Py′ , Pz′) the recoil polarization vector.

The zero components, P0 = 1, lead to contributions in the cross section which are present

in the polarized as well as the unpolarized case. In an experiment without target and recoil

polarization, α = β = 0 and the only remaining contributions are R00
i . The functions

Rβα
i describe the response of the hadronic system in the process. Summation over Greek

indices (0,1,2,3) is implied. An additional superscript s or c on the left indicates a sine

or cosine dependence of the respective contribution on the azimuthal angle. Some response

functions vanish identically (see Table I of Ref. [6] for a systematic overview). The number of

different response functions is further reduced by equalities, as shown in Table I, and in the

most general electroproduction experiment, 36 polarization observables can be determined.

The response functions Rβα
i are real or imaginary parts of bilinear forms of the CGLN [7]

amplitudes depending on the scattering angle θ.

III. AMPLITUDES USED IN PSEUDOSCALAR MESON ELECTROPRODUC-

TION

Before comparing the CEA and TPWA approaches, we continue with a review of notation

used for the underlying amplitudes. The multipoles and CGLN [7] F -amplitudes are related

by

F1 =
∑
`≥0

[
(`M`+ + E`+)P ′`+1 + ((`+ 1)M`− + E`−)P ′`−1

]
, (4a)

F2 =
∑
`≥1

[(`+ 1)M`+ + `M`−]P ′` , (4b)

F3 =
∑
`≥1

[
(E`+ −M`+)P ′′`+1 + (E`− +M`−)P ′′`−1

]
, (4c)

F4 =
∑
`≥2

[M`+ − E`+ −M`− − E`−]P ′′` , (4d)

F5 =
∑
`≥0

[
(`+ 1)L`+P

′
`+1 − ` L`−P ′`−1

]
, (4e)
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F6 =
∑
`≥1

[` L`− − (`+ 1)L`+]P ′` . (4f)

The definition of helicity amplitudes is subject to phase conventions. Here, we choose the

conventions of [8], which were also used by Walker in [9] for photoproduction. Without loss

of generality, we set φ = 0,

H1 = − 1√
2

sin θ cos
θ

2
(F3 + F4) , (5a)

H2 =
√

2 cos
θ

2

(
F2 − F1 + (F3 − F4) sin2 θ

2

)
, (5b)

H3 =
1√
2

sin θ sin
θ

2
(F3 − F4) , (5c)

H4 =
√

2 sin
θ

2

(
F1 + F2 + (F3 + F4) cos2

θ

2

)
, (5d)

H5 = cos
θ

2
(F5 + F6) , (5e)

H6 = − sin
θ

2
(F5 − F6) . (5f)

Finally, transversity amplitudes can be constructed [4, 10] from these helicity amplitudes,

b1 =
1

2
[(H1 +H4) + i (H2 −H3)] , (6a)

b2 =
1

2
[(H1 +H4) − i (H2 −H3)] , (6b)

b3 =
1

2
[(H1 −H4) − i (H2 +H3)] , (6c)

b4 =
1

2
[(H1 −H4) + i (H2 +H3)] , (6d)

b5 =
1√
2

[H5 + i H6] , (6e)

b6 =
1√
2

[H5 − i H6] . (6f)

Here we note that the definitions of both helicity and transversity amplitudes are not unique.

Apart from phase conventions, different numbering choices can also be found in the literature.

Here we follow the definitions of Barker et al. [10]. In Table I, expressions for the response

functions, appearing in Eq. (3), are given in terms of both the helicity and transversity

amplitudes. In the following, we will suppress the superscripts c and s for interference terms.

As can be seen in Table I, for a specific polarization, the assignment of this superscript is

always unique.
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TABLE I. Spin observables expressed in terms of helicity and transversity amplitudes. Also listed

are alternate (ALT) observables, differing by at most a sign in their definition, and associated

photoproduction observables (γ). Note, that these expressions are not uniquely defined. We follow

the conventions of Refs. [9, 10].

Obs ALT γ Helicity Transversity

representation representation

R00
T −cRy

′y
TT I 1

2 (|H1|2 + |H2|2 + |H3|2 + |H4|2) 1
2(|b1|2 + |b2|2 + |b3|2 + |b4|2)

R0y
T −cRy

′0
TT Ť −Im(H2H

∗
1 +H4H

∗
3 ) 1

2(|b1|2 − |b2|2 − |b3|2 + |b4|2)

Ry
′0
T −cR0y

TT P̌ Im(H3H
∗
1 +H4H

∗
2 ) 1

2(|b1|2 − |b2|2 + |b3|2 − |b4|2)

Rx
′x
T −cRz′zTT Ťx′ Re(H4H

∗
1 +H3H

∗
2 ) Re(b1b

∗
2 − b4b∗3)

Rx
′z
T

cRz
′x
TT −Ľx′ Re(H3H

∗
1 −H4H

∗
2 ) Im(b4b

∗
3 − b1b∗2)

Rz
′x
T

cRx
′z
TT Ťz′ Re(H2H

∗
1 −H4H

∗
3 ) Im(b1b

∗
2 + b4b

∗
3)

Rz
′z
T −cRx′xTT Ľz′

1
2(|H1|2 − |H2|2 − |H3|2 + |H4|2) Re(b1b

∗
2 + b4b

∗
3)

R00
L −Ry

′y
L |H5|2 + |H6|2 |b5|2 + |b6|2

R0y
L −Ry

′0
L −2Im(H6H

∗
5 ) |b5|2 − |b6|2

Rx
′x
L −Rz′zL −|H5|2 + |H6|2 −2Re(b6b

∗
5)

Rz
′x
L Rx

′z
L 2Re(H6H

∗
5 ) −2Im(b6b

∗
5)

cR00
LT −cR

y′y
LT

1√
2
Re ((H1 −H4)H

∗
5 + (H2 +H3)H

∗
6 ) Re(b6b

∗
3 + b5b

∗
4)

sR0x
LT

cRy
′z
LT ′

1√
2
Im((H3 −H2)H

∗
5 − (H1 +H4)H

∗
6 ) Re(b1b

∗
6 − b5b∗2)

cR0y
LT −cR

y′0
LT − 1√

2
Im((H2 +H3)H

∗
5 − (H1 −H4)H

∗
6 ) Re(b5b

∗
4 − b6b∗3)

sR0z
LT −cR

y′x
LT ′ − 1√

2
Im((H1 +H4)H

∗
5 − (H2 −H3)H

∗
6 ) Im(b5b

∗
2 − b1b∗6)

sRx
′0
LT −cR

z′y
LT ′

1√
2
Im((H2 −H3)H

∗
5 − (H1 +H4)H

∗
6 ) Re(b6b

∗
2 − b1b∗5)

sRz
′0
LT

cRx
′y
LT ′ − 1√

2
Im((H1 +H4)H

∗
5 + (H2 −H3)H

∗
6 ) Im(b6b

∗
2 − b1b∗5)

cRx
′x
LT −cRz

′z
LT − 1√

2
Re((H1 −H4)H

∗
5 − (H2 +H3)H

∗
6 ) −Re(b5b

∗
3 + b6b

∗
4)

cRz
′x
LT

cRx
′z
LT

1√
2
Re((H2 +H3)H

∗
5 + (H1 −H4)H

∗
6 ) Im(b5b

∗
3 − b6b∗4)

Transversity amplitudes often simplify the discussion of amplitude reconstruction in pho-

toproduction, as the unpolarized and single-polarization observables determine their moduli.

Another simplification is the property

b2(θ) = −b1(−θ) , b4(θ) = −b3(−θ) , and b6(θ) = b5(−θ) , (7)
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TABLE I. (continued)

Obs ALT γ Helicity Transversity

representation representation

cR00
TT −R

y′y
T −Σ̌ Re(H3H

∗
2 −H4H

∗
1 ) 1

2(−|b1|2 − |b2|2 + |b3|2 + |b4|2)
sR0x
TT Ry

′z
TT ′ Ȟ Im(H3H

∗
1 −H4H

∗
2 ) Re(b1b

∗
3 − b4b∗2)

sR0z
TT −R

y′x
TT ′ −Ǧ −Im(H4H

∗
1 +H3H

∗
2 ) Im(b4b

∗
2 − b1b∗3)

sRx
′0
TT −R

z′y
TT ′ Ǒx Im(H2H

∗
1 −H4H

∗
3 ) Re(b3b

∗
2 − b1b∗4)

sRz
′0
TT Rx

′y
TT ′ Ǒz Im(H3H

∗
2 −H4H

∗
1 ) Im(b3b

∗
2 − b1b∗4)

sR00
LT ′ −sRy

′y
LT ′ − 1√

2
Im((H1 −H4)H

∗
5 + (H2 +H3)H

∗
6 ) Im(b6b

∗
3 + b5b

∗
4)

cR0x
LT ′ −sRy

′z
LT

1√
2
Re((H2 −H3)H

∗
5 + (H1 +H4)H

∗
6 ) Im(b1b

∗
6 + b5b

∗
2)

sR0y
LT ′ −sRy

′0
LT ′ − 1√

2
Re((H2 +H3)H

∗
5 + (H4 −H1)H

∗
6 ) Im(b5b

∗
4 − b6b∗3)

cR0z
LT ′

sRy
′x
LT

1√
2
Re((H1 +H4)H

∗
5 + (H3 −H2)H

∗
6 ) Re(b1b

∗
6 + b5b

∗
2)

cRx
′0
LT ′

sRz
′y
LT

1√
2
Re((H3 −H2)H

∗
5 + (H1 +H4)H

∗
6 ) −Im(b1b

∗
5 + b6b

∗
2)

cRz
′0
LT ′ −sRx

′y
LT

1√
2
Re((H1 +H4)H

∗
5 + (H2 −H3)H

∗
6 ) Re(b1b

∗
5 + b6b

∗
2)

sRx
′x
LT ′ −sRz

′z
LT ′

1√
2
Im((H1 −H4)H

∗
5 − (H2 +H3)H

∗
6 ) −Im(b5b

∗
3 + b6b

∗
4)

sRz
′x
LT ′

sRx
′z
LT ′ − 1√

2
Im((H2 +H3)H

∗
5 + (H1 −H4)H

∗
6 ) Re(b6b

∗
4 − b5b∗3)

R0x
TT ′ −sRy

′z
TT F̌ Re(H2H

∗
1 +H4H

∗
3 ) Im(b1b

∗
3 + b4b

∗
2)

R0z
TT ′

sRy
′x
TT −Ě 1

2(|H1|2 − |H2|2 + |H3|2 − |H4|2) Re(b1b
∗
3 + b4b

∗
2)

Rx
′0
TT ′

sRz
′y
TT −Čx′ Re(H3H

∗
1 +H4H

∗
2 ) −Im(b1b

∗
4 + b3b

∗
2)

Rz
′0
TT ′ −sRx

′y
TT −Čz′

1
2(|H1|2 + |H2|2 − |H3|2 − |H4|2) Re(b1b

∗
4 + b3b

∗
2)

which allows one to parameterize only three of the six transversity amplitudes. The form

introduced by Omelaenko [11],

b1 = c a2L
eiθ/2

(1 + x2)L

2L∏
i=1

(x− αi) , (8a)

b3 = −c a2L
eiθ/2

(1 + x2)L

2L∏
i=1

(x− βi) , (8b)

with x = tan(θ/2) and L being the upper limit for `, is convenient for a truncated partial-

wave analysis, as the ambiguities can be linked to the conjugation of the complex roots of
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the above relations, with a constraint

2L∏
i=1

αi =
2L∏
i=1

βi . (9)

The quantity c is a constant and a2L is proportional to the backward photoproduction

cross section [2, 11]. The choice of an appropriate L value is reaction dependent. For pion

photoproduction, a low value of L is better suited to neutral pion production.

For the amplitudes b5 and b6, which are present in electroproduction in addition to the

four transverse amplitudes, it is feasible to write a linear-factor decomposition according to

Omelaenko, similar to expressions (8a) and (8b). As the resulting non-redundant transver-

sity amplitude, we pick here b6 and the expression is

b6 = c d2L
eiθ/2

(1 + x2)L

2L∏
i=1

(x− γi) . (10)

The amplitude b5 is then specified via the constraint given in (7). The 2L complex roots γi

determine the purely longitudinal amplitudes b5 and b6, while the constant c is the same as

in (8a) and (8b). The quantity d2L is another polynomial normalization coefficient, which

may differ from a2L.

However, no constraint among the γ-roots has been found which would be analogous to

Omelaenko’s relation (9) for the α- and β-roots and we conjecture that no such additional

constraint for the γi exists. This may be substantiated by the fact that the number of real

degrees of freedom for the parameterizations of b5 and b6 in terms of multipoles, as well as

in terms of roots, exactly match.

For every truncation order L, one has 2L + 1 complex longitudinal multipoles, i.e. the

S-wave L0+ and two new multipoles L`± for every new order in `. This corresponds in

terms of mulipoles to 4L+ 2 real degrees of freedom. In terms of roots, one has the γi which

comprise a set of 2L complex variables or 4L real degrees of freedom. In addition to this, the

complex normalization coefficient d2L also defines b5 and b6, which brings the total number

of real variables to 4L+ 2 in this case as well.

The only issue not considered until now is the overall phase, either of (for instance) L0+,

in case of the multipole-parametrization, or d2L in case of roots, which remains undeter-

mined if only longitudinal observables are measured. This would reduce the number of real

degrees of freedom by one. However, in electroproduction, the mixed observables of type

9



LT can very well fix this overall phase, leaving the unknown phase information in one of

the quantities specifying the purely transverse amplitudes, e.g. E0+. Therefore, the number

4L + 2 real variables for longitudinal multipoles remains true for the most general case in

electroproduction.

For the transverse multipoles, the situation is the same as in photoproduction with 4L

multipoles, i.e. the S-wave E0+, the P -waves E1+,M1+,M1− and four new multipoles

E`±,M`± for every new order in `. If we subtract the overall free phase, which is typi-

cally assumed for the E0+ multipole, we have 8L − 1 real values to be determined by the

experiment.

Altogether with longitudinal and transverse multipoles, the most general case in electro-

production is described by 6L + 1 E,M,L multipoles, and 12L + 1 real values have to be

determined by the experiment. And one of those, e.g. E0+, can be chosen to be positive.

IV. COMPLETE EXPERIMENT ANALYSIS (CEA)

In electroproduction, the CEA needs to determine six complex amplitudes at a given

energy and angle, e.g. helicity amplitudes H1,...,6 or transversity amplitudes b1,...,6 up to

an overall phase, which is naturally also energy and angle dependent. This requires the

determination of 11 real numbers, where one of them can be chosen to be positive. In

principle this could work with 11 observables, but due to quadrant ambiguities, a minimum

of 12 will be generally required.

Choosing 12 observables out of 36 will allow more than a billion different sets. Even

restricting to meaningful sets, including transverse, longitudinal and LT interference terms,

still gives millions of non-trivial sets that need to be checked for completeness.

Two strategies seem to work straightforwardly. First, one would select the six observables

that are defined only by moduli of transversity amplitudes, R00
T , R

0y
T , R

y′0
T , R00

L , R
0y
L , R

00
TT .

Then five relative angles need to be defined from six out of the remaining 30 interference

terms. Even if thousands of such sets will lead to complete sets of 12 observables, it is not

obvious how these observables should be chosen. As can be seen in Table I, except for b5b
∗
6,

all interference terms appear as linear combinations, e.g. b1b
∗
2± b3b∗4 and a direct separation

would always require a measurement of both ± combinations. Therefore, a separation of 5

angles as cosine and sine functions would naively require 10 observables, leading altogether
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to 16, and it is nontrivial to reduce this number by four observables to find the minimum

number of eight.

A second approach is to start with a complete set of 8 observables for the transverse

amplitudes b1, b2, b3, b4 in a CEA of photoproduction. Such studies are also nontrivial, but

have been intensively studied in the literature, and the most comprehensive study was done

by Chiang and Tabakin [1]. Having chosen any of almost 4500 possible complete sets of

8 observables leads to a unique determination of four moduli and 3 relative angles. Then

with four additional LT interference terms, such as Re(b1b
∗
5 ± b2b∗6) and Im(b1b

∗
5 ± b2b∗6), the

remaining moduli |b5|, |b6| and the relative phases of b5 and b6 to the already known transverse

amplitudes b1, b2 are uniquely determined. This leads to, for example, the complete set of

12 observables R00
T , R

0y
T , R

y0
T , R

00
TT , R

0x
TT , R

0x
TT ′ , Rz′0

TT , R
z′0
TT ′ , Rx′0

LT , R
z′0
LT , R

x′0
LT ′ , Rz′0

LT ′ . In this case

four LT interference terms with beam-recoil polarization have been used.

Alternatively, another three combinations can be chosen with b2b
∗
5 ± b1b

∗
6, b3b

∗
5 ± b4b

∗
6

and b4b
∗
5 ± b3b∗6. Looking at Table I, one finds that the first set, b1b

∗
5 ± b2b∗6, requires recoil

polarization, the second one, b2b
∗
5 ± b1b∗6, target polarization and the third one, b3b

∗
5 ± b4b∗6,

would even require both target and recoil polarization. The last one, b4b
∗
5±b3b∗6, corresponds

to the observables R00
LT , R

0y
LT , R

00
LT ′ , R

0y
LT ′ which is identical to R00

LT , R
y′0
LT , R

00
LT ′ , R

y′0
LT ′ and can

therefore be measured with either target or recoil polarization.

By this rather simple strategy, we have already found four times the number of possible

complete photoproduction sets, which amounts to almost 18000 complete sets of electropro-

duction.

Using the Mathematica NSolve function and integer algebra for randomly chosen real

and imaginary parts of amplitudes, we can test any given set of 12 observables for complete-

ness. Given the enormous number of possibilities with hundreds of millions of sets with 12

observables (where only R00
T is set), we have not yet performed a systematic search for all

possible complete sets as was done for photoproduction in our previous work [2].
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V. AMPLITUDE RECONSTRUCTION

A. Simplest case: L = 0

In photoproduction this case is trivial, involving only a single multipole amplitude. Here,

in Set 1 of Table II, there are two multipoles (E0+ and L0+), producing two independent

helicity or transversity amplitudes, requiring only 3 measurements (e.g. R00
T , R0y

LT , R0y
LT ′) at a

single energy and angle, which solves both the CEA and TPWA. This is a special case, where

the absolute squares of the two multipoles are not mixed together, but already separated in

R00
T = |E0+|2 and R00

L = |L0+|2. Therefore, R00
T gives directly the E0+ multipole, which can

freely be taken with a positive value, and for the absolute value |L0+| and the relative angle,

the two selected LT interference terms are sufficient.

It should be noted, however, that in principle, through the Rosenbluth separation of RT

and RL, the determination of RT gives also RL, and therefore the three observable case is

essentially academic; in practice a fourth measurement needs to be done. We will return to

this Rosenbluth issue later on.

B. Case: J = 1/2

Here, in Set 2 of Table II, there are four multipoles involved (E0+, M1−, L0+, L1−) produc-

ing four independent helicity or transversity amplitudes. The separation into longitudinal

and transverse pairs suggests two strategies for finding a complete set of eight measurements

for a CEA in this case. Sets of four observables would determine either the transverse or

longitudinal pairs, up to an overall phase, but would leave the relative phase between the

pairs undetermined. One method: Take the set of four measurements determining (E0+ and

M1−) up to an overall phase (R00
T , Ry′0

T , Rx′z
T , Rz′z

T ). Add to this a set of four measurements

defining the relative phases of L0+ and L1− to E0+ and M1− respectively (R0y
LT , Rx′x

LT , Rz′0
LT ,

R0y
LT ′). Second method: Take the sets of four measurements defining the longitudinal and

transverse pairs up to an overall phase. Remove one measurement from each set and replace

with a pair of interference terms. This leads, for example, to the set (R00
T , Ry′0

T , Rz′z
T , R00

L ,

R0y
L , Rz′x

L , R00
LT , R00

LT ′).

Furthermore, longitudinal observables Rβα
L can be avoided by getting the same informa-

tion from LT interference terms, and a solution is found with a minimum number of five
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observables, with some of these measured at two angles.

As a general rule, for n complex multipoles we need 2n independent measurements. Due

to the free overall phase (we always assume E0+ real and positive), there are 2n − 1 free

parameters. However, in order to solve the quadrant ambiguity, we generally need one more

measurement. In the special case of L = 0 (Set 1) this was not needed but, as was mentioned,

this case is exceptional.

C. Comparing CEA and TPWA beyond J = 1/2

In Set 3 of Table II, we study a purely longitudinal model, with two complex helicity

(H5, H6) or transversity amplitudes (b5, b6), four possible polarization observables, see Table I

and 2L + 1 complex multipoles L`±. With all four observables, a CEA is possible and can

determine the two complex amplitudes up to a phase. But a TPWA with three multipoles

requires six measurements and is therefore not possible at a single angle. However, we find

a solution with four observables at maximally two angles, and also with a minimal number

of three observables, measured at maximally three angles, a solution exists.

Set 4 is identical to the photoproduction case. Here only electric and magnetic multi-

poles contribute, and as discussed in our previous paper [2] a TPWA at a single angle is not

possible. This set can be uniquely resolved with only four observables requiring only beam

and target polarization: R00
T [3], R00

TT [1], R0x
TT [2], R0x

TT ′ [2], which are identical to the photopro-

duction observables I[3] , Σ̌[1] , Ȟ[2] , F̌ [2].

In Set 5, we discuss a model with six multipoles and six non-vanishing amplitudes. In this

case the CEA and TPWA are equivalent and both can be resolved with the same number of

12 observables measured at a single angle. Again, when the information from more than one

angle is available, the number of observables can be drastically reduced to only five, which

need to be measured at maximally three angles.

Finally, in Set 6, we discuss the full set of seven S, P wave multipoles, which requires

14 measurements for a unique solution. In this case we find a minimal number of six

observables, where again recoil polarization can be completely avoided. A similar set is also

possible that completely avoids target polarization. With a total number of 36 observables,

a huge number of possibilities exist that could be used to resolve all ambiguities.

The results of Set 6 with 14 measurements of six observables and two angles for L = 1

13



TABLE II. Examples of measurements at a single energy for CEA and TPWA. The number

of different measurements (n), different observables (m) and different angles (k) needed for a

complete analysis are given as n(m)k. Entries with a † do not allow the comparison CEA ↔

TPWA. For cases with only one angle, the CEA and TPWA are equivalent. The number of

necessary distinct angular measurements is given in brackets.

Set Included Partial Waves CEA TPWA Complete Sets for TPWA

1 L = 0 (E0+, L0+) 3(3) 3(3)1 R00
T [1], R0y

LT [1], R0y
LT ′ [1]

2 S wave multipoles

2 J = 1/2 (E0+,M1−, L0+, L1−) 8(8) 8(8)1 R00
T [1], Ry

′0
T [1], Rz

′z
T [1], R00

L [1], R0y
L [1], Rz

′x
L [1],

4 S, P wave multipoles R00
LT [1], R00

LT ′ [1]

8(8) 8(8)1 R00
T [1], Ry

′0
T [1], Rx

′z
T [1], Rz

′z
T [1], R0y

LT [1], R0z
LT [1],

Rx
′x
LT [1], R0y

LT ′ [1]

8(5)2 R00
T [2], Ry

′0
T [1], R00

LT [1], R0x
LT [2], R0x

LT ′ [2]

3 L = 0, 1 (L0+, L1−, L1+) † TPWA at 1 angle not possible

full set of 3 longitudinal 7(4)2 R00
L [2], R0y

L [2], Rx
′x
L [1], Rz

′x
L [2]

S, P wave multipoles 6(3)3 R00
L [3], R0y

L [2], Rx
′x
L [1]

4 L = 0, 1 (E0+,M1−, E1+,M1+) † TPWA at 1 angle not possible

full set of 4 transverse 8(5)2 R00
T [2], R0y

T [2], Ry
′0
T [2], R00

TT [1], R0x
TT ′ [1]

S, P wave multipoles 8(4)3 R00
T [3], R00

TT [1], R0x
TT [2], R0x

TT ′ [2]

5 L = 0, 1, 2 (E0+,M1−, E1+, E2−, 12(12) 12(12)1 R00
T [1], R0y

T [1], Ry
′0
T [1], R00

L [1], R0y
L [1], Rx

′x
L [1],

L0+, L1−) R00
LT [1], R0z

LT [1], Rx
′0
LT [1], R00

TT [1], R00
TT ′ [1], R0x

TT ′ [1]

set of 6 S, P,D wave multipoles 12(5)3 R00
T [3], R0y

T [2], R00
LT [2], R0y

LT [3], R00
LT ′ [2]

6 L = 0, 1 (E0+,M1−, E1+,M1+, † TPWA at 1 angle not possible

L0+, L1−, L1+) 14(7)2 R00
T [2], R0y

T [2], Rx
′x
T [2], R00

L [2], R0y
L [2], R00

LT [2],

full set of 7 S, P wave multipoles R0x
LT [2]

14(6)3 R00
T [3], R0y

T [2], R00
LT [2], R0x

LT [3], R00
LT ′ [2], R0x

LT ′ [2]

can be generalized theoretically for arbitrary L, as was found in photoproduction [2, 11,

12]. For each additional angular momentum, `, each observable obtains two more Legendre

coefficients, and therefore allows for two additional independent angular measurements. The
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number of multipoles increases with 6L + 1 and the number of different measurements by

n = 12L + 2. With six observables, the number of measurements increases by 12 for each

additional angular momentum, therefore there is no principal limit for L. In practice this

is, however, very different. Our present numerical simulations are approaching a limit for

L = 3. All examples with L = 1 are calculated with the Mathematica NSolve function,

giving exact solutions within integer algebra. This approach was no longer successful for

L = 2, therefore, instead of finding exact solutions, we have done a minimization of the

coupled equations using the Mathematica NMinimize function and random search methods.

This worked very well and for the solutions with L = 2 the squared numerical deviation was

found to be of the order 10−20, in agreement with our work on photoproduction.

D. TPWA without Rosenbluth separation

So far, we have always assumed that a complete separation of all observables (response

functions) of Eq. (3) has been obtained in a first preparatory step. For most of these, e.g.

with φ dependence or beam polarization h, this is straightforward and has been applied

very successfully in the past. A problem is the so-called Rosenbluth separation between

RT and RL, which is experimentally very challenging and has only been done in a very few

cases [13, 14]. However, for a TPWA the combination Rβ,α
T + εLR

β,α
L can be used and a

separation is not necessary. In many cases that are discussed in Table II, the observables

Rβ,α
T can be replaced by the Rosenbluth combinations

Rβ,α
RB = Rβ,α

T + εLR
β,α
L , (11)

and we find a unique solution for all included partial waves. In the special case of Set 1,

with only three observables, this is not possible and a fourth observable is needed.

In 2005, the Hall A Collaboration at JLab published a measurement on ‘Recoil Polar-

ization for ∆ Excitation in Pion Electroproduction’, where 14 separated response func-

tions plus two Rosenbluth combinations had been observed in full angular distributions at

W = 1.23 GeV and Q2 = 1.0 (GeV/c)2 [15]. In our notation, these are

R00
RB, R

y′0
RB, (12)

R00
TT , R

x′0
TT , R

y′0
TT , R

z′0
TT ,

R00
LT , R

x′0
LT , R

y′0
LT , R

z′0
LT ,
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R00
LT ′ , Rx′0

LT ′ , R
y′0
LT ′ , R

z′0
LT ′ ,

Rx′0
TT ′ , Rz′0

TT ′ .

For a CEA, this set of observables is not complete. A complete experiment analysis for

electroproduction needs a minimum of 12 observables including both target and recoil po-

larization. In fact, with two more observables involving also target polarization, a CEA

would be possible. These are e.g. R0x
LT , R

0z
LT or R0x

TT , R
0z
TT or R0x

LT , R
0x
TT or many other com-

binations.

For a TPWA, however, the 16 observables from the Hall A experiment are by far complete.

Only a subset of 6 observables, at maximally 3 angles, is needed for a unique solution of

all S, P wave multipoles, e.g. R00
RB[3], Ry′0

RB[2], R00
LT [2], Rx′0

LT [2], R00
LT ′ [2], Rx′0

LT ′ [3]. In the fits of

Ref. [15], several truncation levels were tried with L = 1 and L = 2, where some multipoles

were fixed. In Table III of this work, the cutoff value of L was varied and a comparison of

multipole ratios, associated with the ∆(1232) resonance, was presented.

VI. CONCLUSIONS

We have explored the CEA and TPWA approaches to pseudoscalar-meson electroproduc-

tion, extending our previous study of photoproduction. Simple examples, corresponding to

a low angular momentum cutoff, simplify the discussion and allow one to see how the CEA

and TPWA are related. As in photoproduction, the TPWA can be accomplished with fewer

observable types supplemented by additional angular measurements. The resulting TPWA

(multipole) amplitudes have an undetermined phase depending on energy while the CEA

(transversity or helicity) amplitudes are found with an unknown overall phase depending on

both energy and angle. Comparisons are given for representative cases in Table II.

The CEA requires measurements involving both polarized targets and recoil polarization,

as was stressed in the study of Ref. [4]. This is similar to the finding, for CEA analyses

and photoproduction, that measurements are required from two out of the three groups

containing beam-target, beam-recoil, and target-recoil observables. Triple polarization ex-

periments give no further information in photoproduction, which is different from electropro-

duction. For purely transverse observables it is the same, but for purely longitudinal L and

longitudinal-transverse interference terms LT and LT ′ this is different. Already the terms

without target and recoil polarization, R00
L , R00

LT and R00
LT ′ have to be counted as single beam
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polarizations with a polarized virtual photon. By this way of counting, there are six triple

polarization observables, see Table I, all of which can be measured in an alternative triple

polarization measurement. In electroproduction, as in photoproduction, all 36 observables

can be measured in an alternative way, giving in total 72 possibilities for allowed measure-

ments. However, as was found in Ref. [2], the TPWA can be accomplished without involving

observables having both polarized targets and recoil polarization. This is not the case for a

CEA, where at least 2 observables have to be chosen from another group. This finding from

photoproduction carries over to electroproduction without further modification.

The present formalism can be immediately applied to data. In fact, there exists a

dataset [15] which measured 16 observables, mostly with recoil polarization but was con-

ducted without a polarized target. Even though this set was not complete for a CEA, it was

by far enough to fulfill the requirements of a complete TPWA.

Our principal goal in the amplitude reconstruction has been a model-independent partial-

wave analysis. This can only be done at fixed energy W and fixed Q2. The remaining

angle dependence is then expanded in the partial-wave series. In practice, this has to be

repeated first at fixed Q2, for several energies, and finally for several Q2 values. If the data

are not complete or not sufficiently accurate, model assumptions are helpful and in most

previous analyses this has been done. For the Q2 dependence, dipole form factors, modified

with power series, have been used and for the energy dependence, isobar models are most

commonly used.
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