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Radiative neutron capture is an important nuclear reaction whose accurate description is needed
for many applications ranging from nuclear technology to nuclear astrophysics. The description of
such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential,
level density and γ-strength function as model inputs. It has recently been suggested that the M1
scissors mode may explain discrepancies between theoretical calculations and evaluated data. We
explore statistical model calculations with the strength of the M1 scissors mode estimated to be
dependent on the nuclear deformation of the compound system. We show that the form of the M1
scissors mode improves the theoretical description of evaluated data and the match to experiment
in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few
keV ∼ a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that
participate in the rapid neutron capture process of nucleosynthesis. We comment on the possible
impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M1
scissors mode active.

PACS numbers: 24.60.Dr, 25.40.Lw

I. INTRODUCTION

The neutron radiative capture reaction on medium to
heavy nuclei is a relatively simple process, compared to
nuclear fission that involves a large number of degree-of-
freedom to calculate [1]. Nevertheless, our capability to
accurately calculate neutron capture cross sections is not
yet well established, despite this process being one of the
most important nuclear reactions for many applications
from nuclear technology [2] and nuclear based medicine
[3] to nuclear astrophysics [4].

In neutron radiative capture, an incoming neutron in-
teracts with a target nucleus to form a compound nu-
cleus (CN), which then decays by emitting γ-rays. The
compound formation process is determined primarily by
the optical potential, while the decay process is governed
by two important nuclear properties, namely the nu-
clear level density (NLD) and the γ-ray (photon) strength
function (γSF). The latter two quantities are key ingredi-
ents in the statistical Hauser-Feshbach theory [5] for the
neutron capture reaction, and accurate prediction of the
radiative capture cross section relies on how well these
nuclear properties are estimated. The level densities for
stable nuclei are relatively well measured, as experimen-
tal data of average resonance spacing D0 are available for
many cases, and the level density can be extracted with
an assumption for the spin and parity distributions.
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There are many available (almost exclusively phe-
nomenological) γSF models, see e.g. RIPL-3 [6], which
can be used in calculation of the statistical decay. Both
the phenomenological nature of the description and the
variation between models contribute to the uncertainty
in the prediction of capture cross sections [7] which is
further compounded by the choice of implementation in
Hauser-Feshbach codes [8]. Among these models, one of
the most widely used is the Generalized Lorentzian model
of Kopecky et al. [9]. A significant issue arises in the
capture reaction calculation for deformed nuclei, where a
standard Lorentzian form for the giant dipole resonance
(GDR) for E1 transition often under-predicts measured
capture cross section. Kopecky, Uhl, and Chrien [10]
proposed an enhanced generalized Lorentzian shape to
expand the E1 GDR width to overcome this problem,
although this representation includes an adjustable pa-
rameter. Watanabe et al. [11] demonstrated a similar
deficiency in calculating neutron capture cross sections
for nuclei in the fission product (FP) region, and they re-
ported that the available Hauser-Feshbach codes tend to
underestimate measured capture cross sections when re-
normalization of 〈Γγ〉 to an experimentally or empirically
estimated value is not performed.

Recent attention to the γ-ray strength function has
focused on the magnetic dipole excitation, M1. This
mode was first predicted by the theoretical work of Lo
Iudice & Palumbo using the two-rotor model [12]. Fur-
ther extensions of this seminal framework was carried out
by Iachello using the interacting boson model [13]. Nu-
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clear deformation was shown to be responsible for the
coupling of this mode to the isovector giant quadrupole
resonance leading Lipparini and Stringari to postulate a
dependence of excitation energy on quadrupole deforma-
tion and mass number A from a consideration of sum-
rule techniques [14]. The low lying M1 scissors mode
was first observed in ground-state transitions in electron
scattering experiments [15] and in photon scattering (also
called nuclear resonance fluorescence) experiments [16].
Studies performed by Ziegler et al. [17] and Margraf et
al. [18] laid the ground work for a correlation between
M1 strength and nuclear deformation in the Sm and Nd
isotopic chains respectively. The first observation of the
M1 scissors mode in odd-A nuclei (163Dy) was explored
by Bauske et al. [19] and additional FP nuclei were stud-
ied by Pietralla et al. [20]. Later, experimental data from
neutron radiative capture reactions clearly indicated that
the scissors mode is present in transitions between ex-
cited states at least up to transitions starting at neutron
separation energy [21]. The interpretation of these find-
ings was attributed to the M1 scissors mode which can be
represented by a counter-rotational or out-of-phase oscil-
lation of protons and neutrons in the nucleus. The ampli-
tude of this collective oscillation is expected to be small
at low excitation energies. For a comprehensive review
of this subject see the article by Heyde, von Neumann-
Cosel, and Richter [22].

As a result of these investigations, the M1 scissors
mode needs to be considered in calculation of the radia-
tive capture cross sections. In the past it was believed
that M1 has a modest contribution to the calculated cap-
ture cross section, since the M1 spin-flip mode at around
7–10 MeV excitation is often under the tail of larger E1
GDR. However, more recently, Ullmann et al. [23] showed
that the calculated neutron capture cross sections in the
fast energy range are significantly enhanced by the ad-
dition of M1 strength. In this study of 238U, Ullmann
et al. estimated the M1 scissors strength from the exper-
imental capture cross section as well as the γ-ray mul-
tiplicity distributions measured with the DANCE (De-
tector for Advanced Neutron Capture Experiment) spec-
trometer at LANSCE (Los Alamos Neutron Science Cen-
ter). A similar improvement when adding the M1 scissors
mode was also reported by Guttormsen et al. for other
nearby actinides [24]. The observation seen in the FP
region [11] is consistent with the finding for the actinide
cases which suggests that the M1 scissors mode may im-
pact capture cross sections of deformed or transitional
nuclei throughout the chart of nuclides.

In this work we investigate a correlation between the
nuclear deformation and the scissors mode strength by
analyzing the neutron capture data in the FP region,
where a large variation of nuclear deformation is found.
Since the fission channel is not involved, and charged par-
ticle emission is strongly suppressed by the Coulomb bar-
rier, the nuclear reaction mechanism we have to deal with
is relatively simple, and a standard Hauser-Feshbach the-
ory with the coupled-channels framework [25] works well.

From data gathered in the FP region, we posit a standard
Lorentzian form for the M1 scissors mode and assume the
center of the strength of the mode to be dependent on the
nuclear deformation. This form of the M1 scissors mode
yields a low energy increase to the γSF in the range of
a few keV to a few MeV. We find that this form of the
M1 scissors seems to improve the theoretical description
of both evaluated data and the match to experiment in
the FP region. With the improved predictive capability
in our statistical Hauser-Feshbach model, we expand our
initial investigation outside the FP region to find regions
where the M1 scissors mode may enhance capture cross
sections and could be explored in future studies. We also
report on the impact of the scissors mode on studies in
astrophysics.

II. THEORY

A. Hauser-Feshbach theory for neutron radiative
capture

Here we consider neutron and γ-ray channels only. The
Hauser-Feshbach formula with the width fluctuation cor-
rection for the neutron radiative capture process is writ-
ten in the form

σcapt(En) =
π

k2
n

∑
JΠ

gc
TnTγ
Tn + Tγ

Wnγ , (1)

where En is the incident neutron energy, gc is the spin
statistical factor, kn is the wave-number of the incoming
neutron, Tn is the neutron transmission coefficient, Tγ is
the lumped γ-ray transmission coefficient, and Wnγ is the
width fluctuation correction factor. To calculate Wnγ ,
we use the model of Moldauer [26] with the Gaussian
Orthogonal Ensemble (GOE) parameterization [27]. The
sum runs over the possible compound state spin J and
parity Π.

The capture cross section is related to the γ-ray
strength function through the lumped γ-ray transmission
as

Tγ =
∑
J′XL

∫ E0

0

2πE2L+1
γ fXL(Eγ)ρ(Ex, J

′)dEx , (2)

where E0 = Sn + En is the total excitation energy of
the compound nucleus, Ex is the excitation energy of
residual nucleus, Sn is the neutron separation energy,
Eγ = E0 − Ex is the emitted γ-ray energy, fXL(Eγ) is
the γ-ray strength function of multipolarity L and type
X being E (electric) or M (magnetic), and ρ(Ex, J) is the
level density in the compound nucleus. The summation
again runs over all allowed spin and parity combinations.
When the final states of γ-decay are in discrete states, the
integration in Eq. (2) is replaced by a corresponding dis-
crete sum. Note that in our actual calculation we do not
use the lumped γ-ray transmission coefficient in Eq. (2),
but the continuum in a residual nucleus is discretized in
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order to calculate the width fluctuation correction prop-
erly [28].

When an average γ-ray width 〈Γγ〉 is available from
the experimental resonance parameters, the level density
ρ(Ex, J) and the lumped γ-ray transmission Tγ are con-
nected by

Tγ = 2π
〈Γγ〉
D0

, (3)

D0 =

{ 1
ρ(Sn,1/2) (I = 0)

1
2

(
1

ρ(Sn,I+1/2) + 1
ρ(Sn,I−1/2)

)
(I 6= 0)

, (4)

where I is the target nucleus spin, and D0 is the average
resonance spacing for s-wave neutrons. Here we omitted
the trivial parity selection. This relation, however, is not
fulfilled due to inconsistency between the employed γ-ray
strength function and 〈Γγ〉. Under such circumstances,
an empirical re-normalization is applied to the strength
function.

B. γ-ray strength function for deformed nuclei

The Hauser-Feshbach theory smooths out the detailed
energy dependence of fXL(Eγ) by the integration of
Eq. (2). This integration also couples the NLD, thus
making it difficult to extract an exact functional form
of fXL(Eγ) from capture cross section data alone. De-
spite this, a rough estimate for the magnitude of strength
function up to the neutron separation energy can still
be obtained by comparing experimental neutron capture
data.

For the largest E1 giant dipole resonance (GDR), we
adopt the generalized Lorentzian (GLO) form of Kopecky
and Uhl [29]

fE1(Eγ) = 8.67× 10−8σE1ΓE1

× { EγΓK(Eγ , T )

(E2
E1 − E2

γ)2 + E2
γΓK(Eγ , T )2

+ 0.7
ΓK(0, T )

E3
E1

} , (5)

where Eγ is the energy of the γ-ray and EE1, σE1, and
ΓE1 are the GDR parameters. The units of the numeri-
cal constant are mb−1MeV−2, σ in mb, and the units of
width and energy are in MeV. This leads, in general, to
the strength function in units of MeV−(2L+1). The tem-
perature dependent width ΓK(E, T ) is characterized by
the level density parameter a as

ΓK(Eγ , T ) =
(
E2
γ + 4π2T 2

) Γ

E2
, (6)

T =

√
Sn − Eγ

a
, (7)

where Sn is the neutron separation energy. The so-called
enhanced generalized Lorentzian (EGLO) [10], which
might be an alternative choice, is unsuitable for our pur-
pose, since it already includes an empirical enhancement

in the deformed region. We employ the double-humped
GDR parameters of Herman et al. [30].

The expression in Eq. (7) is a little ambiguous when
the a parameter is energy dependent due to the shell-
correction effect [31, 32]. The Hauser-Feshbach model
code CoH3 [33] employs the Gilbert-Cameron level den-
sity formula [34], which combines the constant temper-
ature model ρT at the low excitation energies and the
Fermi gas model ρG in the higher energy region. The
shell correction mentioned above modifies the original
Gilbert-Cameron level density in our calculation, and the
model parameters have recently been updated [35]. The
energy-dependent a parameter is calculated as

a(U) = a∗
{

1 +
δW

U

(
1− e−γU

)}
, (8)

U = Ex −∆ , (9)

where ∆ is the pairing energy, δW is the shell correction
energy, a∗ is the asymptotic level density parameter, and
γ = 0.31A−1/3 is the damping factor. When the excita-
tion energy Ex is inside the constant temperature regime,
the a parameter is evaluated at the conjunction energy
of ρT and ρG.

Motivated by the observation of the M1 scissors mode
in the actinide region [23, 24], we add a small Lorentzian
to represent the scissors mode;

fM1(Eγ) = 8.67× 10−8σM1ΓM1

× EM1ΓM1

(E2
γ − E2

M1)2 + E2
γΓ2

M1

, (10)

where Eγ is the energy of the γ-ray and the other quan-
tities are parameters of the scissors mode. For the loca-
tion of M1 scissors, we assume a mass-dependence pro-
portional to A−1/3. We also assume that the oscillation
amplitude is proportional to the deformation parameter,
β2, in the compound nucleus. From our previous study
on 238U [23], we have

EM1 = 80|β2|A−1/3 MeV , (11)

which is similar to the theoretical prediction of 66δA−1/3,
where δ is the Nilsson deformation [36]. While the calcu-
lated capture cross section is sensitive to this extra M1,
it stays almost the same unless the product σM1ΓM1 be-
comes very different. This product (or a Lorentzian area)
is an adjustable parameter in our study. In addition to
the E1 and M1 aforementioned, we include the standard
Lorentzian profile for the M1 spin-flip mode and E2, with
the systematic study on GDR in RIPL-3 [6]. The nuclear
deformation parameter β2 is taken from the Finite-Range
Droplet Model (FRDM) [37, 38].

C. Hauser-Feshbach calculation with M1 scissors
mode

In order to extract the M1 scissors mode strength in
a wide mass range, we compare the Hauser-Feshbach
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calculation with the evaluated cross sections of FPs in
ENDF/B-VII.1 [39] and JENDL-4 [40], instead of di-
rectly comparing with the experimental data. The con-
ventional evaluation procedure does not include the M1
scissors mode. Instead, the calculated average γ-ray
width in Eq. (3) is scaled to match the calculated cap-
ture cross section with the experimental data available at
some neutron incident energies. This procedure gives a
reasonable excitation function of neutron capture, while
the strength of E1 GDR could be far from experimen-
tal photon absorption cross sections. Generally speaking
the evaluated cross sections well represent experimental
capture cross section data in the fast energy range when-
ever they are available, while the shape of the excitation
function is often taken from the Hauser-Feshbach calcu-
lation. In other words, the evaluated data provide rea-
sonable interpolation and extrapolation of experimental
information by applying theoretical models.

We choose the neutron incident energy of 200 keV at
which we compare our calculation with the evaluated val-
ues in the evaluated files. This energy could be higher
than the resolved resonance region, and be lower than
the region where the direct/semidirect capture process
starts contributing to some extent. We select 106 nuclei
in the FP region, for which evaluation of capture cross
section is based on experimental data. If we employ a
normal set of γ-ray strength functions, namely without
the scissors M1, the calculated capture cross section at
200 keV often results in lower value than the evaluated
cross section. This underestimation is shown in Fig. 1
labeled by “without M1,” as a ratio of calculated cross
sections to the evaluated ones. We attribute this under-
estimation to the missing M1 strength coming from the
nuclear deformation effect, although this assumption is
somewhat crude. By adding an extra M1 strength given
in Eq. (10), we are able to estimate the missing strength
required to reproduce the 200-keV data.

The cross section calculation is performed with ver-
sion 3.5.1 of the CoH3 statistical Hauser-Feshbach code
[33], which includes both the coupled-channels model for
the neutron entrance channel and the Hauser-Feshbach
model with width fluctuation correction for the statistical
decay channels. The Engelbrecht-Weidenmüller trans-
formation [41] is performed to take the direct inelastic
scattering channels into account correctly in the width
fluctuation calculation [25]. We adopt the global coupled-
channels optical potential of Kunieda et al. [42] for calcu-
lating the neutron transmission coefficients of deformed
nuclei and otherwise use the Koning-Delaroche global op-
tical potential [43].

Since the level density parameters for the compound
nucleus are adjusted to reproduce the compiled D0 val-
ues [6, 44], the remaining competing channels in our cal-
culations are compound elastic and inelastic scattering.
These two channels are largely determined by the optical
potential employed. Unfortunately, pinning down these
cross sections by experiment is difficult. However, since
we empirically know that the adopted optical potentials
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FIG. 1. (Color online) Ratios of the calculated capture cross
sections at 200 keV to the selected evaluated cross sections in
ENDF/B-VII.1 and JENDL-4. The triangles show the case
when the Hauser-Feshbach calculations do not include the M1
scissors mode. The circles are with the scissors mode.

give reasonable total cross sections, together with the
fact the competing inelastic scattering channels are not
so many at 200 keV in general, the inclusion of compet-
ing neutron emission channels does not change our final
result. Conversely, the addition of the M1 scissors mode
does not have an influence on these channels.

There are other level density formulas found in the
literature that could be used in our study. We expect
these level density formulas will also show similar results
because we adjust the level densities to the observed D0

values. Further limiting the impact of the level density on
our results is the observation that this quantity increases
monotonously (constant temperature behavior) up to the
neutron separation energy. This observation is supported
by the results of Ref. [45] where the back-shifted Fermi
gas and HFB level density formulas were compared.

III. RESULTS AND DISCUSSIONS

A. Estimation of M1 scissors strength

The Lorentzian strength, σM1ΓM1, is estimated by
comparing the capture cross section at 200 keV, and the
result is shown in Fig. 2 as a function of the nuclear de-
formation β2. Although the derived values are rather
scattered, we can see some dependence on the deforma-
tion parameter. Assuming a quadratic form in β2, which
is reported by Ziegler et al. [17], Margraf et al. [18], and
Heyde et al. [22], the least-squares fitting yields

σM1ΓM1 = (42.4± 5.0)β2
2 mb MeV . (12)
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FIG. 2. (Color online) Additional M1 strength σM1ΓM1 re-
quired to reproduce the evaluated capture cross section at
200 keV for selected nuclei in the fission product region. The
quadratic curve is the least-squares fitting to the symbols, and
the dashed curves are the 1-σ band. The filled points are for
the gadolinium (Z = 64, Gd) isotopes.

Provided ΓM1 = 1.5 MeV we re-calculated the 200-keV
capture cross sections with this relation and assuming,
which are shown in Fig. 1 labeled by “with M1.” Overall
the underestimated capture cross sections are reconciled,
yet an overshooting is seen slightly above A = 180.

By summing up all the γ-ray strength functions in-
cluding M1, the average γ-ray width 〈Γγ〉 is calculated
by Eqs. (2) and (4). We compare the calculated 〈Γγ〉 in
the wider mass range with the resonance analysis values
stored in RIPL-3 [6], which is shown in Fig. 3. Whereas
the calculated 〈Γγ〉 values without the M1 strength are
systematically lower than the resonance data in the mass
A = 100 ∼ 200 region, inclusion of M1 improves this
deficient situation significantly, particularly in the mass
A = 150 ∼ 200 region where the nuclei tend to be de-
formed strongly. In the lower mass region, although our
estimated M1 improves the agreement between the reso-
nance data and the calculations, too much scatter in the
data make our argument inconclusive. A possible im-
pact from other photon strengths, such as the E1 pygmy
dipole resonances, makes the situation more complicated
in the low mass region.

The dashed curve in Fig. 3 is represented by '
3000A−2 eV which is a fit to the evaluated 〈Γγ〉 values.
If we re-scale the calculated Tγ to reproduce this simple
relation, the calculated capture cross section won’t be so
unreasonable. In fact, this technique is often adopted for
estimating unknown capture cross sections. However, the
re-scaling the whole γ-ray strength functions could cause
unacceptable GDR parameters for E1. By adding M1, it
is possible to avoid such artificial re-normalization of the
γ-ray strength function.
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FIG. 3. (Color online) Comparison of the calculated average
photon width 〈Γγ〉 with the compiled values in the RIPL-3
database. The filled circles are the evaluated values in RIPL-
3, the × symbols are the calculated 〈Γγ〉 without the scissors
mode, and the + symbols are with the scissors mode. The
dashed curve is a fit to the compiled 〈Γγ〉 values.

B. Comparison with experimental capture cross
section data

1. Fission product region

The gadolinium (Z = 64, Gd) isotopic chain has many
highly deformed isotopes with measured capture cross
sections making it an ideal candidate use for compari-
son between calculation and data in the FP region. The
calculated capture cross sections for the Gd isotopes are
compared with experimental data [46] in Fig. 4. The
agreement is significantly improved by including the the
M1 strength of Eq. (12) with assumed ΓM1 = 1.5 MeV.
The lighter isotopes of 152Gd and 154Gd, for which de-
formation is smaller than heavier isotopes, seem to need
more enhancement to reproduce the experimental data.
As seen in Fig. 2 by the filled data points, the Gd isotopes
do not reveal clear β2 dependency.

By fitting the Hauser-Feshbach calculation to the ex-
perimental data of Wisshak et al. [46], we obtained
σM1ΓM1 = 4.1 and 5.5 mb MeV for 152Gd and 154Gd,
respectively. They are shown by the dotted curves in
Fig. 4. These strengths are 2.2 times larger than the
values given by Eq. (12).

There is no experimental data for 153Gd in the fast
energy range. A recommended value of Maxwellian aver-
age cross section (MACS) in the KADoNiS database [47]
is 4550± 700 mb at the temperature of 30 keV, while
Eq. (12) gives the MACS of 3322 mb. Considering the
local deviation seen in 152Gd and 154Gd, we estimate
σM1ΓM1 = 4.3 mb MeV for 153Gd, and this yields the
MACS of 3836 mb.
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FIG. 4. (Color online) Comparison of the calculated capture cross sections with experimental data of Wisshak et al. [46]. The
dashed lines are calculated without M1 scissors, while the solid lines include M1. The dotted lines for 152Gd and 154Gd are the
Hauser-Feshbach calculations fitted to the experimental data.

C. Comparison with DANCE multi-step cascade
experiments

The behavior of the γ-ray strength in the MeV-region
can be visible when the capture γ-ray spectrum is sorted
by an individual multiplicity [23]. We compare the esti-
mated scissors mode strength with the DANCE experi-
mental data of gadolinium isotopes [45]. The multi-step
cascade (MSC) simulation that includes the M1 strength
was performed with the DICEBOX code. See Ref. [45]
for the details of the calculation. The calculated two
and three step cascade γ-ray spectra from 156Gd and
157Gd are compared with the DANCE experimental data
in Figs. 5 and 6. The experimental data are shown by
the red and green histograms, and the simulated MSC
spectra are represented by the gray area. Although the
simulated spectra in the 2–6 MeV range do not repro-
duce the experimental data, we must emphasize that the
large enhancement in the spectra in that energy region
cannot be obtained without the M1 scissors mode, and
our estimation indeed moves the simulation toward the
right direction.

For the neutron-induced reaction on 155Gd, Eq. (11)
suggests the M1 Lorentzian may locate at 3.7 MeV, which

can be seen as a peak-position in the simulated spectra.
The experimental data show that it could be in the 2–
3 MeV region. We understand this shift is due to the un-
certainty in the crude energy estimate in Eq. (11), and
obviously a better estimation could improve the peak-
position. The uncertainty in the M1 location also de-
pends on β2. When we assume β2 = 0.2, a reduction in
the deformation from the prediction of FRDM, the M1
Lorentzian will be shifted below 3 MeV, and the M = 2
spectrum will be split into two-peaks as the experimental
data.

The calculated MSC spectra for the 156Gd reaction
is in a similar situation. The estimated M1 position is
higher by several hundred keV than the experimentally
observed location. Because our aim is to estimate phe-
nomenologically the global behavior of the M1 scissors
mode without hefty computation that prevents large-
scale nuclear data applications, we do not intend to fit the
MSC spectrum to a particular experiment by adjusting
the Lorentzian parameters in this study.
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FIG. 5. (Color online) Calculated capture γ-ray spectra of the
(a) two step cascade and the (b) three step cascade for the
neutron-induced reaction on 155Gd, comparing the DANCE
experimental data. The gray area is the simulated result,
and the red and green histograms are the experimental γ-ray
spectra from the two different resonances; the red is for the
first J = 1− resonance, while the green is for the 5-th J = 1−

resonance.
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FIG. 6. (Color online) Calculated capture γ-ray spectra of the
(a) two step cascade and the (b) three step cascade for the
neutron-induced reaction on 156Gd, comparing the DANCE
experimental data. The gray area is the simulated result,
and the red and green histograms are the experimental γ-ray
spectra from the two different resonances; the red is for the
second J = (1/2)+ resonance, while the green is for the 4-th
J = (1/2)+ resonance.

1. Extrapolation to actinide region

Figure 7 is a magnified plot of the 〈Γγ〉 comparison in
the actinide region. The prediction of 〈Γγ〉 is also im-
proved by adding M1. Here we compare the calculated
〈Γγ〉 with the compiled values in Ref. [44]. It is worth
stressing that we derived the M1 scissors strength in the
fission product region, and did not include any actinide
data. Figure 7 is a pure extrapolation to the heavier mass
range. Although we overestimate the 〈Γγ〉 values by 15–
25% for 237Np and 241,243Am, our calculations are gener-
ally in good agreement with the evaluated values without
any additional tweaks of model parameters. This also
suggests the calculated capture cross sections with the
M1 strength should reasonably reproduce the measured
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FIG. 7. (Color online) Comparison of the calculated average
photon width 〈Γγ〉 with the compiled values in Ref. [44]. The
filled circles are the evaluated values and the open circles are
the calculated 〈Γγ〉 with the scissors mode.

data in the fast energy region, when the fission channel
is negligible. This is shown in Ref. [23], although not
exactly the same parameterization we proposed in this
paper.

D. Comment on the reduced M1 strength

It is common in the literature to compare the total re-
duced M1 strength, B(M1), between different theoretical
calculations as well as to experiment, see e.g. [14, 48–
50]. For theoretical calculations based off a Lorentzian
form, as in this work, the reduced M1 strength may be
calculated via the relation,

B(M1) =
9~c

32π2

σM1ΓM1

EM1
=

9~c
32π2

42.4β2
2

EM1
, (13)

where σM1 is the strength (in mb), σM1 is the width (in
MeV) and EM1 is the energy (in MeV) as above, and
the last equality comes from Eq. (12). The natural scale
for B(M1) is in Weisskopf units (µ2

N ) where µN is the
nuclear magneton. For the Gd isotopes found in the fis-
sion product region, we predict values on the order of
B(M1) ∼ 20µ2

N . In comparison, other calculations show
a range between B(M1) ∼ 1µ2

N to B(M1) ∼ 10µ2
N [51].

The discrepancy in these values calls to attention a cru-
cial detail in B(M1) comparisons: that is, the choice of
the E1 γSF is absolutely critical for the predicted scale
of B(M1) values [10]. For γSF’s that use the EGLO
formulation, as in Ref. [51], an additional term is in-
cluded which enhances the γSF at low energy. Therefore,
B(M1) values are consistently on the order of a few to
ten µ2

N . In contrast, our calculations assume no such low-
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energy enhancement to the γSF, leading to larger values
of σM1 for roughly the same values of ΓM1 and EM1, see
Eq. (13). Thus, from our choice of GLO E1 strength, our
B(M1) values are consistently higher than what is typi-
cally quoted in the literature. Most importantly for our
purposes, whether the additional strength is of E or M
character, the impact on the radiative capture remains
the same.

E. Application to neutron-rich nuclei

We now explore the impact of including the M1 scis-
sors mode to the neutron capture rates of neutron-rich
nuclei and discuss the implications for the rapid neutron
capture or r-process of nucleosynthesis.

1. M1 enhancement across the chart of nuclides

Figure 8 shows the ratio of neutron capture reaction
rates with and without the M1 scissors mode. The ra-
tio is calculated by taking the new reaction rate with
M1 scissors mode and dividing by the old reaction rate
without the additional M1 strength. For this figure, the
neutron capture reaction rates are evaluated at T = 1.0
GK, a rough estimate of the temperature the r process
may proceed through. With the M1 scissors mode active
around ∼ 1 MeV, neutron capture rates of neutron-rich
nuclei may increase up to a maximum factor of roughly 5
at T = 1.0 GK. We find that this enhancement from the
M1 scissors mode has a larger impact for nuclei that are
further from stability with the largest changes central-
ized in the transition regions just before or after closed
shells, similar to previous predictions [52].

At first glance, the distribution of increases to neu-
tron capture rates in Fig. 8 may seem a bit peculiar as
it does not follow in line with known maximums in β2

deformation for FRDM which occur near the mid-shells.
The reason for this unintuitive spread relies on how neu-
tron capture rates are calculated, recall Eq. (1). Neutron

capture cross sections are proportional to
TnTγ
Tn+Tγ

, and to

good approximation Tn dominates the sum in the denom-
inator, Tn + Tγ ≈ Tn. Thus, a relatively small change to
the photon width can have a potentially large impact on
the predicted neutron capture rates. Since this modifi-
cation depends both on the strength and its placement
in energy, which in our calculations are coupled to defor-
mation, the distribution of impacted nuclei follows more
closely the change to the average photon width, 〈Γγ〉,
rather than following nuclei with largest deformation.

2. Application to nucleosynthesis calculations

The astrophysical impact of additional low-lying γ-
strength on the neutron capture rates of neutron-rich nu-
clei has been suggested by several groups [53, 54]. In the

case of Low Energy MAgnetic Radiation (LEMAR), the
impact on the r process was first considered in Ref. [55].
In this study, systematic increases to neutron capture
rates in a small region beyond the N = 82 closed shell
were shown to have a localized impact on the final iso-
topic abundances in the fission product region. Here
we study the impact of the additional M1 scissors mode
strength which is coupled to deformation as in Eq. (11).
For each neutron-rich nucleus in the simulation, the neu-
tron capture rate was calculated with and without the
M1 scissors mode and a comparison was made between
the baseline set of rates to the ones with the scissors
mode.

To study the nucleosynthesis we use a fully dynam-
ical reaction network, Portable Routines for Integrated
nucleoSynthesis Modeling (PRISM), which was recently
developed at the University of Notre Dame [56]. This
network includes all relevant reaction channels from the
JINA REACLIB database, support for changing any rate
or property that goes into the network, as well as support
for fission. The nuclear properties from FRDM are used
in our network calculations as in Ref. [57]. By default the
fission for these calculations uses an approximate asym-
metric splitting schema [58] and is turned on for all as-
trophysical conditions. The region of nuclei which may
fission in the r process may only be reached in the case
of extremely neutron-rich outflows.

We consider three astrophysical conditions which in-
clude a low entropy hot r-process with a long duration
(n, γ) � (γ, n) equilibrium [57], a cold r-process from a
supernova scenario with some reheating [59] and a neu-
tron star merger outflow from Ref. [60]. The impact of
M1 enhancement for these three trajectories is shown in
Fig. 9. We find the impact over a wide range of atomic
mass units, with the cold and merger trajectories showing
the most change from the baseline set of rates without
the additional M1 scissors mode. We also note a slight
boost in the production of the rare earth region just be-
yond A ∼ 160 is observed, which is often underproduced
in r-process simulations relative to the larger peaks as-
sociated with closed neutron shells [61].

The constraint for an individual nucleus’ neutron cap-
ture rate to alter the final abundances is that it is out
of (n, γ) � (γ, n) equilibrium and it is sufficiently popu-
lated during the decay back to stability. In addition, the
population of the nucleus must also occur when neutron
capture is still feasible, i.e, when neutron capture has not
been limited by the amount of free neutrons or the as-
trophysical conditions. Further information on late-time
neutron capture and its impact in the r-process can be
found in Ref. [62] and citations therein.

IV. CONCLUSION

We studied the impact the M1 scissors mode has on
neutron capture cross sections given a dependency on
nuclear deformation. Assuming a simple Lorentzian form
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for the M1 scissors mode, the strength and position as a
function of deformation was extracted by comparing the
Hauser-Feshbach calculation with the evaluated nuclear
data libraries that represent experimental data. The
strength was found to be proportional to the square of
the compound nucleus’ deformation and the location in
energy of this mode was assumed to be proportional to
the absolute value of the compound nucleus’ deforma-
tion, as in Ref. [23] and previously predicted by Refs.
[14, 36].

We found the addition of the M1 scissors mode to
the conventional generalized Lorentzian γ-ray strength
function to provide an improvement in the prediction
of neutron radiative capture cross section, especially for
strongly deformed nuclei in the fission product region.
This improvement is reinforced by considering the com-
parison of average γ-ray widths in the fission product
region before and after the addition of the M1 scissors
mode. The additional M1 dipole strength can also be
applied to the nuclei in the actinide region, although,
the lack of experimental data here currently limits any
firm conclusions.

We added the predicted M1 scissors mode to the calcu-
lation of neutron capture rates of nuclei throughout the
chart of nuclides and explored the impact on r process
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abundance yields. A speeding up, or ‘M1 enhancement’,
of neutron capture reaction rates was found for nuclei
that lie in the transition regions before closed shells, but
not at points of maximum deformation as predicted by
the Finite-Range Droplet Model. The reason for this off-
set is because a neutron capture rate follows the change in
average γ-width relative to the baseline Hauser-Feshbach
calculation. We find the impact on the r-process abun-
dance yields to be relatively small compared to the im-
pact of other uncertain nuclear physics inputs, e.g. from
nuclear masses [62]. Still, the impact is large enough
that it should be taken into account when quoting the
theoretical uncertainty of final abundances.

Ongoing and future experimental campaigns, for in-
stance, those that could be performed with polarized pho-
tons from the free electron laser High Intensity Gamma-
ray Source (HIγS) at the Triangle Universities Nuclear
Laboratory (TUNL), will help to uncover the nature of
low-lying γ-strength. These challenging but promising

avenues coupled with devoted theoretical efforts, partic-
ularly with large-scale shell model calculations, will con-
tinue to illuminate this phenomenon and guide us to un-
derstanding the complex, collective motion that occur in
nuclei.
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vsan, F. Bečvář, T. A. Bredeweg, A. Chyzh, A. Cou-
ture, D. Dashdorj, R. C. Haight, M. Jandel, A. L. Keksis,
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