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Abstract

Determination of the proper power-counting scheme is an important issue for the systematic

application of Chiral Effective Field Theory in nuclear physics. We analyze the cutoff dependence

of three-nucleon observables (the neutron-deuteron scattering lengths and the triton binding en-

ergy) at the leading and next-to-leading orders of a power counting that ensures order-by-order

renormalization in the two-nucleon system. Our results confirm that, as usually assumed in the

literature, three-body forces are not needed for renormalization of the three-nucleon system up to

next-to-leading order.

PACS numbers: 21.30.Cb, 13.75.Cs, 21.45.-v

∗yhsong@ibs.re.kr
†rimantas.lazauskas@ires.in2p3.fr
‡vankolck@ipno.in2p3.fr

1



I. INTRODUCTION

Hadronic effective field theories (EFTs) provide a representation of QCD at the relatively

large distances involved in nuclear dynamics. Chiral EFT, which includes nucleons, pions

and the lightest baryon excited states as active degrees of freedom, aims at an expansion of

nuclear amplitudes in powers of Q/MQCD, where the typical external momentum is of the

order of the pion mass, Q ∼ mπ, and MQCD ∼ 1 GeV is the characteristic scale of QCD.

The investigation of nuclear forces and currents in Chiral EFT was initiated in the early

1990s [1–8], based on a two-step scheme proposed by Weinberg. The first step is to calculate

the nuclear potential and currents — the sum of “irreducible” diagrams — up to a given

order, that is, a given power of Q/MQCD. The contributions of each order are given by the

usual power counting of ChPT, assuming that short-range nuclear interactions obey the same

naive dimensional analysis (NDA) [9] used in the purely perturbative problems involving at

most one nucleon. The second step is to solve the Schrödinger or Lippmann-Schwinger (LS)

equations exactly with the potential truncated at the desired order, which corresponds to

the non-perturbative iteration of the potential subdiagrams. Following the initial successes

in explaining some of the qualitative features of models [2–8], the application of ChPT to

nuclear forces and currents has reached the point where a very accurate description of data

can be achieved — see, for example, Refs. [10–12] and references therein.

Renormalization-group invariance (RGI) is the crucial ingredient that separates nuclear

EFTs from the phenomenological models that preceded them. RGI guarantees control over

arbitrary choices made during the regularization procedure, such as the functional form

of the regulator and the numerical value of the regulator parameter(s). Although initial

numerical results using Gaussian regulators with a cutoff in the range Λ = 500→ 1000 MeV

seemed to indicate only moderate cutoff dependence [8], examples have accumulated since

the mid-90s showing that Weinberg’s scheme is not consistent with RGI in the two-nucleon

sector.

In the spin-singlet S wave (1S0), NDA prescribes a single chiral-invariant counterterm

at leading order (LO) together with one-pion exchange (OPE), but RGI demands also a

chiral-breaking counterterm [13, 14], which according to NDA would appear only at rela-
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tive O(Q2/M2
QCD), or next-to-next-to-leading order (N2LO) 1. Contrary to the LO chiral-

invariant counterterm, this chiral-breaking interaction involves pions. Its enhancement over

NDA affects processes with external pions, but has only mild effects on the two-nucleon

amplitude at a fixed pion mass. However, other two-nucleon channels suffer from larger

cutoff effects stemming from the singular nature of the OPE tensor force. In each spin-

triplet channel, where the OPE tensor force is attractive, the solution of the LS equation

generates bound states that cross threshold as the cutoff Λ increases beyond about 1 GeV

[15, 16]. In Weinberg’s scheme OPE is iterated in all waves, but NDA prescribes an LO

counterterm only in the 3S1 wave. NDA erroneously assigns counterterms in the attractive

P , D, ... waves to N2LO, N4LO, ..., respectively. At higher orders in Weinberg’s scheme,

cutoff dependence does not disappear [17–21].

One way to achieve RGI is to relegate pion exchange to higher orders, which are treated in

perturbation theory at the amplitude level [22, 23]. Unfortunately, in the spin-triplet partial

waves where OPE is attractive, pions do not seem perturbative for momenta Q>∼ 100 MeV

[24]. Indeed, a careful argument [25] indicates that pions are non-perturbative within the

EFT regime in the 3S1-3D1, 3P0, 3P2-3F2, and possibly 3D2 and 3D3-3G3 waves. Thus, one

should iterate OPE only in the waves where iteration is needed, together with a chiral-

invariant counterterm in each of these waves [15]. RGI, as well as a reasonable description

of data, can be maintained at higher orders as long as these corrections are treated at

the amplitude level in distorted-wave perturbation theory [26–30], as advocated in Refs.

[14, 15, 31, 32].

Given the failure of NDA in the two-nucleon sector of Chiral EFT, it is important to

ascertain if few-body forces are not enhanced as is the case for Pionless EFT [33–35]. Under

the assumption of NDA, three-body forces appear only at subleading orders, and more-body

forces at even higher orders [3–5, 7]. Virtually every application of ChPT in nuclear physics

[10–12] has assumed this to be appropriate.

Here we use RGI as a diagnostic tool for the appearance of three-nucleon forces. A pre-

liminary study of this question was made in Ref. [15] where the triton binding energy was

shown to approach a constant for cutoff values up to 4 GeV with a separable momentum

1 Note that in part of the literature [11, 12] this order is denoted as next-to-leading order (NLO) because

under the assumption of NDA parity and time reversal ensure that O(Q/MQCD) contributions vanish.

We prefer to denote O(Qn/Mn
QCD) corrections as NnLO to accommodate the known violation of NDA.
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regulator of the form f4(p/Λ) = exp[−p4/Λ4], after the two-nucleon problem was properly

renormalized. We extend the LO cutoff dependence analysis of Nogga et al. [15] significantly.

For the same regulator function, we extend the two-nucleon renormalization to cutoff val-

ues as high as 10 GeV. We also examine the effects of a change in regulator function to

f2(p/Λ) = exp[−p2/Λ2] and f6(p/Λ) = exp[−p6/Λ6]. Our results for the triton binding en-

ergy are consistent with those of Nogga et al. and we find similar cutoff dependence for the

quartet and doublet neutron-deuteron scattering lengths. An analysis of the residual cutoff

dependence of two- and three-nucleon observables confirms that RGI does not require an LO

three-body force, but does indicate the appearance of an NLO correction in the 1S0 channel,

as pointed out by Long and Yang [30]. Then, we extend our analysis to include this NLO

correction. Again we find convergence of three-nucleon observables with increasing cutoff,

which suggests that the three-body force is at least N2LO. However, there is some indirect

evidence that this three-body force might be numerically significant.

Of course we can only calculate a limited set of three-nucleon observables 2 and cannot

exclude the possibility that other observables show relevant cutoff dependence. However,

being sensitive to many interactions, the observables we study are likely to be a good di-

agnostic of incomplete renormalization. Very recently Kievsky et al. [36] have argued that

for consistency with Pionless EFT a three-nucleon force should be included at LO in Chi-

ral EFT as well. Although a higher-order interaction can always be promoted in order to

improve agreement with data, we find no renormalization rationale for promotion of the

three-nucleon force in Chiral EFT, as in Pionless EFT [33–35].

This paper is organized as follows. In Sec. II, the RGI formulation of Chiral EFT at LO

and NLO is presented, together with the details of our calculation. Our numerical results

are shown in Sec. III, and Sec. IV offers a summary and conclusions.

II. THEORETICAL FRAMEWORK

An EFT is based on the most general Lagrangian (or Hamiltonian) built from the relevant

low-energy degrees of freedom, which is constrained only by some assumed symmetries. Here

we are interested in typical momenta Q ∼ mπ, so we consider nucleons and pions (the lightest

2 From here on, unless noted otherwise, by “three-nucleon observables” we mean the triton binding energy

and the quartet and doublet neutron-deuteron scattering lengths.
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nucleon excitations contributing only beyond NLO) under the QCD symmetries, including

an SU(2)L × SU(2)R chiral symmetry explicitly broken by the quark masses.

The basic assumption of EFT is that dynamics at a low-energy scale does not depend

on detailed assumptions about the short-range dynamics, which is encrypted in the inter-

action strengths, or low-energy constants (LECs). The LECs depend on the regularization

parameter Λ so that observables, obtained from scattering amplitudes, are insensitive to

the arbitrary regularization function. Here we denote the breakdown scale of the current

version of Chiral EFT as Mhi
<∼MQCD, and we will be concerned with the LECs that encode

short-range two- and three-nucleon interactions.

Because the EFT includes an infinite number of interactions, it is imperative to organize

them according to their importance to amplitudes. We estimate the importance of contri-

butions according to the power of Q/Mhi, and refer to the relation between this power and

the interactions in the Lagrangian as power counting. Power counting offers a rationale to

truncate the expansion of observables with a relative error (Q/Mhi)
n, where n ≥ 1 is the

power of the next corrections. We use some observables to fix the dependence of the LECs

on Λ; these observables remain exactly cutoff independent. The residual cutoff dependence

of other observables will be considered small as long as it is of the form (Q/Λ)n. In this

case, variation for the cutoff from Mhi to a much larger value gives an estimate of the overall

systematic error of the truncation.

A. Leading order

In the original power counting scheme of Weinberg [1], the LO potential includes OPE

between two nucleons. Denoting the spin (isospin) of nucleon i by σi/2 (~τi/2) and the

momentum transfer by q = p′−p, where p (p′) is the initial (final) relative momentum, the

expression of OPE potential in momentum space is written as

V
(0)

1π (p′,p) = − 1

(2π)3

g2
A

4f 2
π

~τ1 · ~τ2
σ1 · q σ2 · q
q2 +m2

π

(1)

where gA = 1.29 is the pion-nucleon axial coupling, fπ = 92.4 MeV is the pion decay

constant, and mπ = 138 MeV is the pion mass. This potential has central and tensor

components.

NDA suggests that at the same order one should supplement the 1S0 and 3S1 partial waves
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with contact interactions. In contrast, the analysis of Ref. [15] shows that RGI requires the

presence of contact interactions at LO in all waves where the singular pion tensor force

is attractive and treated non-perturbatively. Still, as the centrifugal barrier increases, the

low-energy effects of the tensor force diminish, and for large angular momentum l OPE

does not need to be iterated within the regime of validity of the EFT. Only now is it being

investigated how the l suppression compares with the Q/Mhi expansion, and so far results

are limited to spin-singlet channels [37]. Since neither the l suppression nor the value of Mhi

are known precisely, one is not able to make a sharp separation between waves where OPE

is non-perturbative or perturbative.

In this work we consider an LO contact potential

V
(0)
ct (p′,p) =

1

(2π)3

[
C̃1S0

P1S0
+ C̃3S1

P3S1
+ C3P0

p′pP3P0
+ C3P2

p′pP3P2

+C3D2
p′2p2 P3D2

+ C3D3
p′2p2 P3D3

]
, (2)

where CX = CX(Λ) and PX are, respectively, a LEC in and the projector onto partial wave

X. Several comments are in order:

• OPE has a chiral-invariant delta-function singularity in coordinate space that con-

tributes in both 1S0 and 3S1 waves. NDA prescribes chiral-symmetric contact interac-

tions in these waves at LO, and we absorb the OPE delta function in the corresponding

LECs. The remaining part of OPE in 1S0 (a Yukawa function) is not singular in itself,

but together with the chiral-symmetric contact interaction produces an m2
π ln Λ diver-

gence, which requires at least one chiral-breaking counterterm [13, 14]. Although this

interaction has a different form than the chiral-symmetric contact interaction, since

it involves also pion fields, nevertheless it does not produce new effects up to NLO in

the processes of interest here, as long as the pion mass is fixed. In Eq. (2) we denote

by C̃1S0
, C̃3S1

the original chiral-invariant LECs together with the OPE delta-function

coefficient and (in 1S0) the chiral-breaking LEC.

• Numerical experimentation [15] and a semi-analytical argument [25] suggest that OPE

is non-perturbative in all P waves. OPE is not singular in 1P1 and the tensor force is

repulsive in 3P1. Thus, of the P waves, only 3P0 and 3P2 require counterterms C3P0

and C3P2
, respectively, at LO — although from NDA they would be expected only

at N2LO. In the uncoupled 3P0 wave OPE is attractive and almost as strong as in
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the coupled 3S1-3D1 channels: as we are going to see shortly, without counterterms

spurious 3P0 bound states start appearing for cutoff values which are only slightly

larger than the ones spawning spurious states in the 3S1-3D1 coupled channels [15].

The behavior in the coupled 3P2-3F2 channels is similar to 3S1-3D1, i.e. each of them

contains one attractive and one repulsive eigenchannel. Spurious bound states appear

in the 3P2-3F2 channels for much larger cutoffs, meaning a weaker singular potential

[15].

• The situation is less obvious for the D waves. As in other singlet channels, in 1D2 OPE

is not singular. In the uncoupled 3D2 wave without counterterm, the spurious states

appear after 3P0 but before 3P2-3F2 [15]. In contrast, the coupled 3D3-3G3 channels

are even less favorable to spurious states than 3P2-3F2 [15, 38]. This is consistent with

the smallness of the 3D3 phase shift at low energies. Still, the estimates from Ref. [25]

clearly suggest the presence of non-perturbative pions in D waves. To be conservative,

we treat OPE non-perturbatively in all D waves, which requires the additional LO

counterterms C3D2
, C3D3

, even though they would be expected only at N4LO on the

basis of NDA.

• Pion exchange is likely to be perturbative for l ≥ 3 [39, 40], where phase shifts are

small. But if OPE is iterated, none of these waves (including 3F4-3H4 and 3G4 where

OPE’s tensor force is attractive) accommodates spurious bound states in the range

of cutoff values we investigate below (up to 10 GeV). This is consistent with the

corresponding weakness of OPE [25]. In the following, we study low-energy neutron-

deuteron scattering including neutron-proton partial waves non-perturbatively up to

total angular momentum j = 4, as in Ref. [38]. We will show that including such high

angular-momentum components in the low-energy three-nucleon system is unneces-

sary. By including them, we are merely keeping some contributions of higher order

that do not introduce harmful cutoff dependence in the cutoff range we consider.

The solution of the dynamical equations involving the above potentials, which are highly

singular, requires regularization. We replace the potential by a regularized one,

V (0)(p′,p) = V
(0)

1π (p′,p) + V
(0)
ct (p′,p)→ V

(0)
Λ (p′,p) = fn(p′/Λ)V (0)(p′,p) fn(p/Λ) (3)
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with the regulator function fn(x) in form of exponentials,

fn(x) = exp (−xn) , n = 2, 4, 6. (4)

This form is easily decomposed into partial waves, ensuring no additional mixing among

waves. We will use the regulator with n = 4, unless otherwise mentioned. Regulator

(in)dependence will be discussed later.

We study the two-body system (neutron-proton scattering and deuteron bound state) by

solving the LS equation for the LO T matrix,

T (0)(p′,p) = V
(0)

Λ (p′,p) +

∫
d3k V

(0)
Λ (p′,k)

mN

p2 − k2 + iε
T (0)(k,p), (5)

where mN = 938.9 MeV is the nucleon mass. The on-shell amplitude T (p) in a certain

partial wave then gives the LO phase shift in that wave,

δ(0)(p) = − i
2

ln
[
1− iπmNp T

(0)(p)
]
. (6)

There are many ways to fix the values of counterterms at each cutoff. In this work, we

choose the following ways to determine them:

• All counterterms, except C3D3
, are fitted to PWA93 phase-shift data [41] at a labora-

tory energy TL = 5 MeV or 10 MeV. In contrast, the 3D3 phase shifts are too small

at low energies to perform a reliable fit. Therefore for this wave we perform a global

fit of phase shifts up to TL = 200 MeV through χ2 minimization, in a similar way as

it was done in Ref. [38].

• Alternatively, for S waves (1S0 or 3S1) we may adjust the counterterms to reproduce

singlet (as = −23.75 fm) and triplet (at = 5.42 fm) scattering lengths. Another option

for the 3S1 counterterm is to adjust it by fitting the deuteron binding energy.

We will discuss the dependence on the fitting method in detail in the next section. As

we are going to see, renormalization guarantees that no bound states cross the zero-energy

threshold, so phase shifts remain essentially cutoff independent. Instead, deep bound states,

which are beyond the region of validity of the EFT, appear at certain cutoffs [15].

With the two-nucleon system properly renormalized, the three-nucleon system is studied

by solving the Faddeev equations in configuration space with the LO EFT potential. In par-

ticular, we calculate the triton binding energy and neutron-deuteron scattering lengths. The
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configuration-space two-nucleon potential is obtained by carrying out a numerical Fourier

transformation of its momentum-space counterpart. We remove the spurious deep two-body

bound states by using an orthogonalizing pseudo-potential technique, see Refs. [15, 42].

That is, we replace the two-body potential,

V
(0)

Λ → Ṽ
(0)

Λ = V
(0)

Λ +
∑
n

|ψn〉λn〈ψn|, (7)

where the sum runs over the deep states with wavefunctions ψn, and λn are large (positive)

numbers. A three-body force is not included in these calculations; instead, we analyze the

cutoff dependence of three-body observables to check whether a three-body counterterm is

missing at LO.

The three-body wavefunction, Ψ(0), is written in terms of Faddeev components, ψ
(0)
k ,

Ψ(0)(x,y) = ψ
(0)
1 (x1,y1) + ψ

(0)
2 (x2,y2) + ψ

(0)
3 (x3,y3), (8)

where a set of Jacobi coordinates, defined by xk = (rj−ri) and yk = (2rk−ri−rj)/
√

3 with

particle indices i, j, k = 1, 2, 3, is used. Given isospin symmetry at LO, the three Faddeev

equations become formally identical, and read(
E −H0 − Ṽ (0)

Λij

)
ψ

(0)
k = Ṽ

(0)
Λij

(
ψ

(0)
i + ψ

(0)
j

)
, (9)

where E is the three-body energy, H0 is the three-particle kinetic energy operator in the

center-of-mass frame, and Ṽ
(0)

Λij is the LO two-body interaction between particles i and j.

By using the operator Pij for a permutation of particles i and j, the Faddeev components

can also be written as

ψ
(0)
i + ψ

(0)
j = (P12P23 + P23P12)ψ

(0)
k . (10)

The angular and spin-isospin dependence of the Faddeev components is described using

a bipolar harmonic basis, and the partial Faddeev amplitude Fα(xk, yk) is defined from

ψ
(0)
k (xk,yk) =

∑
α

Fα(xk, yk)

xkyk

∣∣∣(lx (sisj)sx
)
jx

(lysk)jy

〉
JM
⊗
∣∣(titj)tx tk〉TTz , (11)

where the index α represents all allowed combinations of the quantum numbers present in

the kets; si and ti are, respectively, the spins and isospins of the individual particles; sx and

tx are, respectively, the total spin and isospin of the two particles associated with the Jacobi

coordinate x; lx and ly (jx and jy) are the orbital (total) angular momenta associated with
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the corresponding Jacobi coordinates; and J and M (T and Tz) are, respectively, the total

angular momentum (isospin) and its third component. For neutron-deuteron scattering at

zero energy, the Faddeev component satisfies the following boundary condition for ynd →∞:

ψ
(0)
knd=0(xk,yk) =

∑
α

δly ,0√
3

(
1− 2

2J+1a
(0)
nd√

3yk

)
fdα(xk)

xk

∣∣∣∣(lα (sisj)sd

)
jd

(lysk)jk

〉
JM

⊗
∣∣∣(titj)td tk〉TTz ,

(12)

where fdα is the deuteron’s wavefunction component for orbital angular-momentum com-

ponent lα dependent on coordinate xk; sd = 1, jd = 1, and td = 0 are, respectively, the

deuteron’s spin, angular momentum, and isospin; and 2J+1a
(0)
nd is the LO scattering length

for either doublet (J = 1/2) or quartet (J = 3/2) channels. Details of the numerical methods

employed here can be found in Ref. [43–45].

B. Next-to-leading order

By performing the renormalization procedure the essential cutoff dependence of observ-

ables is absorbed by counterterms. The effects of the residual cutoff dependence are compa-

rable to the size of higher-order interaction terms. According to the analysis performed by

Long and Yang [30], the LO residual cutoff dependence in the 1S0 partial wave is ∝ Q/Λ,

and thus requires a counterterm at O(Q/Mhi). This is consistent with our numerical analysis

of the residual cutoff dependence in 1S0 phase shifts, shown below. The argument here is

the same as used in Pionless EFT [10], while NDA would assign this counterterm to N2LO.

Therefore, for RGI, we introduce a new counterterm in the 1S0 channel at NLO, which

gives rise to a short-range contribution to the effective range. We write the NLO two-nucleon

potential as

V
(1)
ct (p′,p) =

1

(2π)3

[
C̃

(1)
1S0

+ D̃
(1)
1S0

(p′2 + p2)
]
P1S0

, (13)

where D̃
(1)
1S0

is the new counterterm needed at NLO, while C̃
(1)
1S0

is an NLO correction to the

LO counterterm C̃
(0)
1S0

. As before, we regulate the NLO potential,

V
(1)
ct (p′,p)→ V

(1)
Λ (p′,p) = fn(p′/Λ)V

(1)
ct (p′,p) fn(p/Λ), (14)

with the regulator functions (4).

While we compute the LO T matrix T (0) nonperturbatively by solving the LS equation

with the LO potential, we obtain the perturbative NLO correction T (1) using the distorted-
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wave Born approximation (DWBA) [30],

T (1)(p′,p) = V
(1)

Λ (p′,p)

−
∫
d3k

mN

k2 − p2 − iε

[
V

(1)
Λ (p′,k)T (0)(k,p) + T (0)(p′,k)V

(1)
Λ (k,p)

]
+

∫
d3k′

∫
d3k T (0)(p′,k′)

mN

k′2 − p2 − iε
V

(1)
Λ (k′,k)

mN

k2 − p2 − iε
T (0)(k,p). (15)

The NLO correction to the 1S0 phase shift, δ(1), is then obtained from the on-shell amplitude

by

δ(1)(p) = −πmNp

2
Re
[
e−2iδ(0)(p) T (1)(p)

]
, (16)

where δ(0) is the LO phase shift (6).

For a given LO counterterm C̃
(0)
1S0

, the NLO counterterm D̃
(1)
1S0

is determined by fitting the

PWA93 phase shift at a different energy or, alternatively, the effective range (rs = 2.77 fm).

The NLO counterterm C̃
(1)
1S0

ensures that the NLO correction vanishes for the observables

used in fitting the LO counterterm.

NLO corrections to three-body observables are calculated in first-order perturbation the-

ory. The correction to the three-body binding energy is

∆E(1) = 〈Ψ(0)|
∑
ij

V
(1)

Λij |Ψ
(0)〉, (17)

where Ψ(0) is the normalized three-body bound-state wavefunction due to LO potential.

Similarly, for the correction to the scattering length,

∆a
(1)
nd =

√
3

4

mN

~2
〈Ψ(0)

knd=0|
∑
ij

V
(1)

Λij |Ψ
(0)
knd=0〉, (18)

where Ψ
(0)
knd=0 is the LO three-body wavefunction for neutron-deuteron scattering at zero

energy which is normalized to have unit flux as Eq. (12).

We emphasize that NLO is strictly treated as a perturbation, i.e. one insertion of the

NLO potential (14). This is done regardless of the size of the NLO potential relative to

LO, which is not an observable since both potentials are singular and cutoff-dependent. A

perturbative calculation of course does not reflect the results of an exact solution of the

LS and Faddeev equations with the sum of LO and NLO potentials. An exact solution

includes all insertions of the NLO potential but not the associated counterterms, so it leads,

in general, to a non-renormalizable amplitude. For example, two insertions of the NLO
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potential is an N2LO effect, whose renormalization requires an N2LO interaction with four

powers of momenta. The latter is missing if we iterate the NLO potential. In Pionless EFT,

it can be shown analytically that the two-body amplitude is not renormalizable for positive

effective range if the NLO potential is treated exactly [46], a manifestation of Wigner’s

bound [47]. Thus renormalization at the two-nucleon level forces us here, as in Pionless

EFT [48–50], into a perturbative evaluation of NLO corrections in few-body systems.

As in any perturbation theory, the DWBA calculation of the NLO T matrix will explicitly

break the unitarity of the S matrix. The definition of the phase shift we use (Eq. (16)) is

not unique. However, the error coming from the breaking of unitarity, or alternatively from

different definitions of the NLO phase shift, can be considered an N2LO effect. The amount

of this breaking is one of the components of our total NLO error. While the difference

between LO and NLO seems considerable at the level of the 1S0 phase shifts, we are going

to see only relatively minor changes in the three-body observables we calculate. Were this

not the case, we would have been forced to consider an even larger departure from NDA:

we would have to elevate 1S0 range effects to LO, which at present can be done without

violation of RGI only through a dibaryon field [51].

III. RESULTS

A. Two-nucleon system at LO

In order to understand the effects of the counterterms at LO we study neutron-proton

scattering phase shifts and the deuteron binding energy. Phase shifts and their cutoff de-

pendence are obtained by solving the LS equation in each partial wave with the LO Chiral

EFT potential as an input. The results of Ref. [15] are reproduced with cutoffs up to 4

GeV, and the cutoff range is extended to 10 GeV. Our results are similar to those reported

in Refs. [38, 52].

We plot the cutoff dependence of selected np phase shifts in Fig. 1 for a pure OPE

potential, with the n = 4 regulator (4) but without any counterterm. The 1S0 phase shift is

typical of other singlet channels in that it converges as the cutoff increases. Phase shifts in

triplet channels where the OPE tensor force is repulsive also converge, but in those where

the tensor force is attractive (3S1, 3P0, 3P2, 3D2, 3D3) oscillations covering the range of phase

12



0 2 4 6 8 10
40

30

20

10

0

10

20
δ 

[d
e
g
]

1S0

0 2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

3S1

0 2 4 6 8 10
100

50

0

50

100

3P0

0 2 4 6 8 10
Λ [GeV]

100

50

0

50

100

δ 
[d

e
g
]

3D2

0 2 4 6 8 10
Λ [GeV]

100

50

0

50

100

3P2

0 2 4 6 8 10
Λ [GeV]

20

10

0

10

20

30

3D3

FIG. 1: (Color Online) Cutoff dependence of the phase shifts in 1S0 and attractive tensor channels

(3S1, 3P0, 3D2, 3P2, 3D3) without counterterms, with the n = 4 regulator. Results are given for

different lab kinetic energies: 10 MeV (red solid line), 50 MeV (green dashed line), 100 MeV (blue

dotted line), and 200 MeV (magenta dot-dashed line).

shift values are seen. These oscillations are a reflection of bound states crossing threshold,

as observed in Fig. 2 where the cutoff dependence of binding energies is displayed.

As noted in Ref. [15], the appearance of unphysical bound states is due to the singular

nature of the OPE potential in the attractive tensor channels. To achieve RGI one is

obliged to introduce counterterms at LO in these channels. In 3S1, the counterterm is the

one prescribed by NDA, but counterterms are needed in all attractive tensor channels where

pions are treated non-perturbatively. Other channels do not contain spurious bound states

and reveal moderate cutoff dependence in phase shifts up to Λ ∼ 10 GeV. Nevertheless, in

1S0 a counterterm is suggested by NDA and should also be included, since there seems to

be no argument for its demotion from LO.

Once the counterterms in attractive tensor channels are included at LO, they can be

fitted to reproduce PWA93 phase shifts at low energy. In Fig. 3 the cutoff dependence of

the counterterms, which are fitted to PWA93 at a laboratory energy of 10 MeV (except for

the 3D3 channel which is fitted globally), is presented.
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FIG. 2: Cutoff dependence of the binding energies of unphysical bound states in attractive tensor

channels without counterterms, with the n = 4 regulator.
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FIG. 3: Cutoff dependence of LO counterterms with the n = 4 regulator. Counterterms are fitted

to PWA93 phase shifts at 10 MeV, except for the 3D3 channel which is globally fitted to phase

shifts up to 200 MeV.
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Because the counterterms absorb most of the cutoff dependence in phase shifts, we now

observe convergence at large cutoff values. Figures 4 and 5 show the residual cutoff de-

pendence of phase shifts in uncoupled and coupled channels, respectively. As expected in

an EFT, the residual cutoff dependence is largest at the largest energies. For cutoff values

larger than 2 GeV the bulk of the low-energy phase shifts becomes cutoff independent. The

mixing angle ε2 at TL = 150 MeV retains the strongest cutoff dependence, nevertheless it

becomes pretty small for Λ>∼ 4 GeV. Note that the 3F4-3H4 coupled channels, dominated

by the strong centrifugal barrier, do not require any counterterm up to Λ ∼ 10 GeV: they

show essentially no cutoff dependence, regardless of the fact that it is an attractive tensor

channel. Of course, were the cutoff to be increased further, cutoff dependence would even-

tually appear. To investigate observables at such cutoff values one should include another

LEC or, more appropriately, treat OPE in these channels as a subleading correction, that

is, in DWBA.

After the renormalization procedure, the cutoff dependence of the binding energies of

spurious bound states also changes completely, see Fig. 6. Only a single low-energy bound

state appears, the deuteron in the 3S1 channel, and its binding energy is nearly cutoff

independent. Deep bound states exist, which also converge as the cutoff increases, but

they correspond to states outside the applicability of EFT. These unphysical states must be

removed when considering the three-nucleon problem. Turning the binding energy of the

shallowest of these states, the least-bound 3P0 state (≈ 170 MeV), into an estimate of the

breakdown scale, we find Mhi ∼ 400 MeV. This is somewhat low, but a better estimate

requires a careful study of the convergence of observables with order in the EFT expansion.

The energy dependence of the LO phase shifts in each partial wave is shown in Fig. 7 for

uncoupled channels and in Fig. 8 for coupled channels. The largest deviation in comparison

with PWA93 is in the 1S0 partial wave, for which corrections appear at NLO. As we will see

later, this deviation is indeed mitigated at NLO.

RGI requires not only independence of observables on the numerical value of the cutoff

Λ but also independence on the form of the regulator function itself. In Fig. 9 the cutoff

dependence of phase shifts is compared for the regulator functions fn(x) in Eq. (4) with

n = 2, 4, 6. Dependence on the regulator function becomes negligible for large cutoffs but,

as expected, it is still relevant at small cutoff values. The regulator-function dependence is

in all cases not larger than the Λ variation for each regulator in the region Λ>∼ 1 GeV. Our
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FIG. 4: (Color Online) Cutoff dependence of LO phase shifts in uncoupled channels up to total

angular momentum j = 4, with the n = 4 regulator. Curves as in Fig. 1.

results demonstrate that at large cutoff values phase shifts become essentially independent

of the choice of regulator function.

More generally, RGI ensures that physical observables are insensitive to the arbitrary

separation of long-range and short-range dynamics. Because the long-range part of the

potential is dominated by the OPE interaction, we can expect insensitivity to details of the
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FIG. 5: (Color Online) Cutoff dependence of LO phase shifts in coupled channels up to total

angular momentum j = 4, with the n = 4 regulator. Curves as in Fig. 1.

fitting procedure, as long as they are used to reproduce low-energy observables. In this work,

we check the sensitivity on the fitting procedure by comparing results with counterterms

that are fitted at different energies, with the n = 4 regulator. Table I lists our four fitting

choices, labeled (I), (II), (III), and (IV).

The 3P0, 3P2 and 3D2 counterterms are fitted to PWA93 phase shifts at TL = 5 MeV
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FIG. 6: Cutoff dependence of binding energies in attractive tensor channels after including a

counterterm in each channel, with the n = 4 regulator.

index 1S0 LO 3S1 LO l > 0 LO 1S0 NLO

(I) δ10 δ10 δ10 δ10,δ20

(II) δ5 δ5 δ5 δ5,δ10

(III) as at δ10 as, rs

(IV) as Ed δ5 as, rs

TABLE I: The four choices of fitting procedure employed in this work at LO and NLO, for 1S0,

3S1, and l > 0 counterterms. δE represents the PWA93 phase shift at kinetic energy E MeV; as,t

(rs) stands for the singlet/triplet scattering lengths (singlet effective range); and Ed is deuteron

binding energy. In all cases the 3D3 counterterm is determined by a global χ2 minimization for

phase shifts up to 200 MeV.

or 10 MeV. Figure 10 shows a comparison of the cutoff dependence for l > 0 phase shifts

at several energies, for fitting procedures (I) and (II). The 1S0 and 3S1 counterterms are

fitted to phase shifts at TL = 5 MeV or 10 MeV, or to scattering lengths or (for 3S1) the

deuteron binding energy. Figure 11 shows the 3S1 phase shifts as a function of the cutoff

with counterterms fitted following strategies (I), (II), (III), and (IV), while Fig. 12 shows
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FIG. 7: (Color Online) Lab energy dependence of LO phase shifts in uncoupled channels up to

j = 4, with the n = 4 regulator. Results are given for cutoff values of 600 MeV (green dashed

line), 1 GeV (blue dotted line), 4 GeV (magenta dot-dashed line), and 10 GeV (black dots), and

compared with PWA93 data (red solid line).

the analogous results for the 1S0 phase shifts for strategies (I), (II), and (III). Though all

cases show cutoff independence at large cutoff values, the low-energy 1S0 phase shifts are

somewhat sensitive to the fitting method. This is because of the large deviation of the LO
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FIG. 8: (Color Online) Lab energy dependence of LO phase shifts in coupled channels up to j = 4,

with the n = 4 regulator. Curves as in Fig. 7.

phase shift from PWA93 data in 1S0 even at low energies. This uncertainty is expected

to be reduced once higher-order corrections are included. For all other channels the fitting

procedure has very little impact on the phase shifts. This impact increases with energy but

is not larger than the cutoff variation for Λ>∼ 1 GeV.

The residual cutoff dependence may be related to the order of missing higher-order cor-
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FIG. 9: (Color Online) Cutoff dependence of selected LO phase shifts for different regulators. Left,

middle and right graphs correspond to regulators in Eq. (4) with, respectively, n = 2, 4, 6. Curves

as in Fig. 1.
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FIG. 10: (Color Online) Cutoff dependence of LO phase shifts for l > 0 partial waves with the

n = 4 regulator, for different fitting energies. The graphs on the left column are obtained with

counterterms fitted at TL = 10 MeV and those on the right column, with counterterms fitted at

TL = 5 MeV. Curves as in Fig. 1.

rections. As an example, let us consider the cutoff dependence of the 1S0 scattering length

in the cutoff range Λ ≥ 1.2 GeV for the n = 4 regulator, when the counterterm is fitted to

the phase shift at TL = 5 MeV. We fit the cutoff dependence with a power series

a(0)
s (Λ) = a(0)

s (∞)

1 +
p

(0)
s1

Λ
+

(
p

(0)
s2

Λ

)2

+

(
p

(0)
s3

Λ

)3

+ · · ·

 , (19)

truncating the series at successively larger powers. The fitting parameters a
(0)
s (∞) and p

(0)
s1,2,3
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FIG. 11: (Color Online) Cutoff dependence of the LO 3S1 phase shift with the n = 4 regulator,

for different fitting methods. Graphs are obtained with counterterms fitted to PWA93 phase shifts

at 10 MeV (upper left) or 5 MeV (upper right), to the scattering length (lower left), and to the

deuteron binding energy (lower right). Curves as in Fig. 1.
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FIG. 12: (Color Online) Cutoff dependence of the LO 1S0 phase shift with the n = 4 regulator, for

different fitting methods. Graphs are obtained with counterterms fitted to PWA93 phase shifts at

10 MeV (left) or 5 MeV (middle), and to the scattering length (right). Curves as in Fig. 1.
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LO NLO

a
(0)
s (∞) p

(0)
s1 p

(0)
s2 p

(0)
s3 a

(1)
s (∞) p

(1)
s1 p

(1)
s2 p

(1)
s3

−12.5 47.0(0.3) - - −18.1 35.4(0.3) - -

−12.6 37.5(0.1) 111(11) - −18.1 30.2(0.9) 82.8(34) -

−12.6 38.3(0.3) 100(28) 124(86) −18.1 32.5(2.8) 8.1(88) 176(183)

TABLE II: Parameters of fits using Eqs. (19) and (22) to the leading-order and next-to-leading-

order results for the 1S0 scattering length from fitting procedure (II) for cutoff values Λ ≥ 1.2

GeV. The parameters a
(m)
s (∞) and p

(m)
s1,2,3 (m = 0, 1) are in fm and MeV, respectively. Numbers

in parentheses represent fitting errors.

are summarized in Table II and the corresponding fits are shown in the left panel of Fig.

13. (Results are similar for other cutoff ranges, regulators, and fitting strategies.) The

parameters are relatively stable as the number of fit parameters increases. For the four-

parameter fit, the parameters a
(0)
s (∞) and p

(0)
s1,2 have nearly converged (within errors), while

the large p
(0)
s3 error suggests that fits with more parameters are meaningless.

As expected, the momenta p
(0)
s1,2,3 are given by low-energy scales: while p

(0)
s2,3 ∼ mπ, p

(0)
s1 is

somewhat smaller, possibly as a consequence of the fine tuning in this channel, but definitely

non-vanishing. The residual cutoff dependence ∝ Λ−1 is consistent with the argument in

Ref. [30], which implies a Q/Mhi counterterm. Also, note that with this input the LO

potential does not reproduce the scattering length — that is, the long-range component of

the wavefunction — well. The introduction of an NLO correction will give more accurate

values for the scattering length and the effective range.

In summary, our two-nucleon results are consistent with the results of Ref. [15], and also

demonstrate that regulator-independence is obtained up to cutoff values as large as 10 GeV

for all partial waves. We turn now to the LO cutoff dependence of three-nucleon low-energy

observables.

B. Three-nucleon system at LO

In order to check the cutoff dependence of the three-nucleon system with the LO Chi-

ral EFT potential, we calculate neutron-deuteron scattering lengths and the triton binding

energy by solving the Faddeev equation in configuration space. The two-nucleon EFT po-
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FIG. 13: (Color Online) Cutoff dependence of the 1S0 scattering length at LO (left) and NLO

(right) with the n = 4 regulator and fitting procedure (II). The blue, magenta, and black solid

lines are, respectively, two-, three-, and four-parameter fits with Eqs. (19) and (22) to results for

Λ ≥ 1.2 GeV.

tential at LO is Fourier-transformed numerically from momentum space. There appears

a small oscillating cutoff dependence in three-body results at large cutoff values. Similar

oscillations also show up in the deuteron binding energy when calculated in configuration

space, see Fig. 14. These oscillations are absent if the deuteron binding energy is calculated

directly in momentum space, and thus can be attributed to errors in the numerical Fourier

transformation.

Figure 15 shows the cutoff dependence of the triton binding energy and neutron-deuteron

scattering lengths in doublet and quartet channels, when they are computed using the LO

potential with counterterms fitted at TL = 10 MeV and the n = 4 regulator. To see the three-

nucleon effects of two-nucleon partial waves, we introduce a maximum total two-nucleon

angular momentum jmax in the two-nucleon interaction, such that Ṽ
(0)

Λij (x) = 0 if jx > jmax.

Variation of jmax from 1 to 4 indicates that adding two-nucleon partial waves leads to small

effects, which are negligible for jmax ≥ 2. This is consistent with the perturbativeness of

l ≥ 3 two-nucleon partial waves. For definiteness, below we show results for jmax = 4. We

see that cutoff independence is achieved in low-energy three-body observables: they vary by

less than about 10% for Λ>∼ 2 GeV.

In addition, three-nucleon observables are insensitive to the form of the regulator, Eq.

(4), as shown in Fig. 16. Essentially the same converged values are achieved regardless of
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FIG. 14: (Color Online) Cutoff dependence of the LO deuteron energy with the n = 4 regulator.

Results are shown for momentum-space (green dashed line) and configuration-space (blue dotted

line) calculations, in comparison with experiment (red solid line).
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FIG. 15: (Color Online) Cutoff dependence of the triton energy (left), and J = 1/2 (middle)

and J = 3/2 (right) neutron-deuteron scattering lengths at LO, for the n = 4 regulator. Results

are shown for various jmax values in the two-nucleon interaction: jmax = 1 (green dashed line),

jmax = 2 (blue dotted line), jmax = 3 (magenta dot-dashed line), and jmax = 4 (black dots), in

comparison with experiment (red solid line).

the regulator choice, although as expected there is some regulator dependence at low cutoff

values. The larger oscillations of n = 6 results can be attributed to artifacts from the

numerical Fourier transformation.

We find that the triton is underbound and the nd scattering length in the doublet channel

is rather large when compared to experiment. This is consistent with the underbinding of
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FIG. 16: (Color Online) Cutoff dependence of deuteron (top left) and triton (top right) energies,

and J = 1/2 (bottom left) and J = 3/2 (bottom right) neutron-deuteron scattering lengths at LO,

for different regulator choices, Eq. (4). Results are shown for n = 2 (green dashed line), n = 4

(blue dotted line), and n = 6 (magenta dot-dashed line), in comparison with experiment (red solid

line).

the deuteron and the poor description of 1S0 phase shifts at LO. Thus, we compare results

from the different choices of fitting procedure for S-wave counterterms shown in Table I.

Figure 17 shows that cutoff independence is achieved for the three-nucleon system in all

cases, but with some dependence on the counterterm fitting method. This dependence is

comparable to the variation coming from cutoff values Λ>∼ 1 GeV. The deuteron binding

energy and the nd quartet scattering length are closely correlated with the 3S1 counterterm.

As the latter changes such as to provide more attraction, the nd quartet scattering length

decreases and crosses the experimental value. The triton binding energy and the nd doublet

scattering length also approach experimental values, but remain quite far.

We observe in our results a correlation between the triton binding energy and the nd

doublet scattering length known as the Phillips line [53]. It has been observed that different
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FIG. 17: (Color Online) Cutoff dependence of the deuteron (top left) and triton (top right) energies,

and J = 1/2 (bottom left) and J = 3/2 (bottom right) neutron-deuteron scattering lengths at LO

with the n = 4 regulator, for different fitting procedures for the two-nucleon S-wave counterterms.

Results are shown for strategies (I) (green dashed line), (II) (blue dotted line), (III) (magenta

dot-dashed line), and (IV) (black dots), in comparison with experiment (red solid line).

models tend to align in the plane generated by all values of the triton binding energy and

the nd doublet scattering length. In our case, experimental values for these quantities are

obtained at low cutoff values (less than 1 GeV), but are overshot by converged values. In

contrast, the deuteron energy and the nd quartet scattering length initially approach the

experimental values but never reach them. Our unconverged results can be seen as models

that should produce a “Phillips line” as the cutoff is varied. The left panel of Fig. 18 shows

this correlation at LO, together with model calculations. The arrow in the graph indicates

the direction of increasing cutoff. Note that only the end point of each line is our final result

in the cutoff-independent limit. The spread of lines around these points gives a lower bound

on the expected contribution from the next order. It is understandable that strategy (IV)

is closest to the phenomenological Phillips line, since phenomenological models are usually
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FIG. 18: (Color Online) Correlation between triton binding energy and nd doublet scattering

length. at leading order (left) and next-to-leading order (right). Different lines correspond to

cutoff variation from the various fitting strategies, the arrow indicating the direction of increasing

cutoff. Phenomenological model results (triangles) and the empirical value (circle) are also shown.

made to reproduce the two-nucleon effective-range parameters, which determines the slope

of the line.

The cutoff dependence of three-body observables suggests that, unlike the Pionless EFT

case, there is no need for a three-body force at LO. This is consistent with Weinberg’s power

counting where three-body forces appear at higher order. We attempt to infer the order

of the short-range three-nucleon force from the residual cutoff dependence of three-nucleon

observables most sensitive to this force: those in the doublet channel, where the exclusion

principle does not forbid the three nucleons to be close together. To be definite, we consider

the results for the n = 4 regulator in the range Λ ≥ 1.2 GeV, with counterterms fitted to

the TL = 5 MeV PWA93 data. From RGI, we expect inverse powers of the cutoff at large

cutoff values, so we fit the triton energy with a power series

E
(0)
3H (Λ) = E

(0)
3H (∞)

1 +
p

(0)
t1

Λ
+

(
p

(0)
t2

Λ

)2

+

(
p

(0)
t3

Λ

)3

+ · · ·

 , (20)

with parameters E
(0)
3H (∞) and p

(0)
t1,2,3. Likewise, the doublet scattering length is fitted by

2a
(0)
nd (Λ) = 2a

(0)
nd (∞)

1− p
(0)
d1

Λ
+

(
p

(0)
d2

Λ

)2

+

(
p

(0)
d3

Λ

)3

+ · · ·

 , (21)
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LO NLO

E
(0)
3H

(∞) p
(0)
t1 p

(0)
t2 p

(0)
t3 E

(1)
3H

(∞) p
(1)
t1 p

(1)
t2 p

(1)
t3

−3.82 146(3) - - −4.24 221(2) - -

−3.88 35.8(4.6) 377(75) - −4.27 167(5) 262(80) -

−3.88 29.6(14) 399(194) 243(310) −4.26 171(16) 239(208) 208(325)

TABLE III: Parameters of fits using Eqs. (20) and (23) to the leading-order and next-to-leading-

order results for the triton binding energy from fitting procedure (II) for cutoff values Λ ≥ 1.2 GeV.

The parameters E
(m)
3H

(∞) and p
(m)
t1,2,3 (m = 0, 1) are in MeV. Numbers in parentheses represent

fitting errors.

LO NLO

2a
(0)
nd (∞) p

(0)
d1 p

(0)
d2 p

(0)
d3

2a
(1)
nd (∞) p

(1)
d1 p

(1)
d2 p

(1)
d3

5.06 193(4) - - 4.21 341(2) - -

4.96 53.0(6.6) 433(92) - 4.21 343(6) 52(93) -

4.92 47.0(16.6) 693(216) 615(332) 4.18 280(19) 430(232) 531(349)

TABLE IV: Parameters of fits using Eqs. (21) and (24) to the leading-order and next-to-leading-

order results for the nd doublet scattering length from fitting procedure (II) for cutoff values Λ ≥ 1.2

GeV. The parameters 2a
(m)
nd and p

(m)
d1,2,3 (m = 0, 1) are in fm and MeV, respectively. Numbers in

parentheses represent fitting errors.

with parameters 2a
(0)
nd (∞) and p

(0)
d1,2,3. The fitting parameters are summarized in Tables

III and IV, and the corresponding fits are shown in the left panels of Figs. 19 and 20.

Numbers, particularly at the highest power of a truncation and in the four-parameter fit,

depend somewhat on the cutoff range, regulator function, and fitting procedure. However,

qualitative conclusions do not change. After they stabilize, the momenta p
(0)
t1 ∼ p

(0)
d1 ∼ p

(0)
s1 ,

which is consistent with the existence of NLO corrections in the 1S0 channel. The four-

parameter fits are afflicted by large errors in the higher parameters p
(0)
t2,3 and p

(0)
d2,3, probably

due to the oscillations — a consequence is the weird low-cutoff behavior of the four-parameter

fit of the doublet scattering length. The large errors of this fit suggest that, again, higher-

power fits would be unreliable. For the three-parameter fit, the momenta p
(0)
t2 ∼ p

(0)
d2 are

somewhat large, possibly indicating larger N2LO corrections.
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FIG. 19: (Color Online) Cutoff dependence of the triton binding energy at LO (left) and NLO

(right) with the n = 4 regulator and fitting procedure (II). The blue, magenta, and black solid

lines are, respectively, two-, three-, and four-parameter fits with Eqs. (20) and (23) to results for

Λ ≥ 1.2 GeV.
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FIG. 20: (Color Online) Cutoff dependence of the nd doublet scattering length at LO (left) and

NLO (right) with the n = 4 regulator and fitting procedure (II). The blue, magenta, and black

solid lines are, respectively, two-, three-, and four-parameter fits with Eqs. (21) and (24) to results

for Λ ≥ 1.2 GeV.

In summary, the weak cutoff dependence of three-body observables suggests that there

is no need for a three-body counterterm at LO in the RGI scheme of Nogga et al. [15].

This result is consistent with Weinberg’s original power counting. However, considering

the importance of NLO in the 1S0 two-nucleon partial wave, we are led to consider the

corresponding effects in the three-nucleon system. We first return to the two-nucleon system
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FIG. 21: (Color Online) Cutoff dependence of the NLO counterterms C̃
(1)
1S0

(left) and D̃
(1)
1S0

(right),

with the n = 4 regulator. Counterterms are fitted to the PWA93 phase shifts at 5 and 10 MeV.

to quantify the NLO improvements there.

C. Two-nucleon system at NLO

As discussed earlier, an NLO correction in the 1S0 channel is included to comply with

RGI. Also, as seen in LO results, the deviation of the 1S0 phase shift from PWA93 data

appears already at low energies and cannot be cured without the NLO correction.

For the determination of NLO counterterms, we compute the NLO phase shift from a

DWBA calculation with the NLO potential. We fit the counterterms to reproduce phase

shifts or effective-range parameters, according to the three cases (I), (II) and (III) listed in

Table I. As an example, Fig. 21 shows the cutoff dependence of the counterterms C̃
(1)
1S0

and

D̃
(1)
1S0

for fitting strategy (II). Similar dependence is found for other strategies.

In Fig. 22 we display both cutoff and energy dependence of the NLO 1S0 phase shifts

for fitting procedure (II). We have also obtained similar curves for fitting procedures (I)

and (III). In comparison with Fig. 12, NLO results show decreased sensitivity to the fitting

method, as desired in an EFT. The low-energy phase shifts are now found to be in good

agreement with each other, and they show much improved agreement with PWA93 data,

although there still remain deviations at larger energies. Our result is similar to that of Long

and Yang [30] which used TL = 5 MeV and 25 MeV for fitting the counterterms. According
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FIG. 22: (Color Online) NLO 1S0 phase shift with the n = 4 regulator, for fitting method (II).

Left panel: Cutoff dependence for various energies, as in Fig. 12 for LO. Right panel: Lab energy

dependence for various cutoffs, as in Fig. 7 for LO.

to Ref. [30], a good reproduction of PWA93 is achieved up to TL ' 100 MeV, once N2LO

(O(Q2/M2
hi)) corrections are included.

As for LO, we fit the NLO 1S0 scattering length results from the data fitting procedure

(II) at Λ ≥ 1.2 GeV with a power series

a(1)
s (Λ) = a(1)

s (∞)

1 +
p

(1)
s1

Λ
+

(
p

(1)
s2

Λ

)2

+

(
p

(1)
s3

Λ

)3

+ · · ·

 . (22)

The fitting parameters a
(1)
s (∞) and p

(1)
s1,2,3 are also summarized in Table II and the cor-

responding fits are shown in the right panel of Fig. 13. The parameters are comparable

to those at LO, and the asymptotic value, a
(1)
s (∞), is now closer to the empirical value.

A better description of the low-energy data at this order can only be achieved with fitting

strategy (IV). The continuing existence of Λ−1 dependence indicates that the next correction

in this channel appears at N2LO, consistent with the expectation that two-pion exchange

contributes at this order [4, 6, 8].

In summary, NLO corrections significantly improve the description of the two-nucleon

1S0 phase shift, and further improvement is expected one order higher. We now turn to the

effects of the NLO potential in three-nucleon observables.
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FIG. 23: (Color Online) Cutoff dependence of the triton energy (left) and the J = 1/2 neutron-

deuteron scattering length (right) at NLO with the n = 4 regulator, for different fitting procedures

for the two-nucleon S-wave counterterms. Curves as in Fig. 17.

D. Three-nucleon system at NLO

With the NLO interaction so determined, we compute the NLO corrections to three-

nucleon observables. Because the NLO two-nucleon interaction acts only in the 1S0 channel,

it does not affect the deuteron binding energy and has little effect on the nd quartet scattering

length, but it is significant for the triton binding energy and the nd doublet scattering length.

Figure 23 shows the cutoff dependence of these observables at NLO. The graphs include

results with the different fitting procedures listed in Table I. In all cases, cutoff independence

is achieved at NLO, and the residual cutoff dependence at low cutoff values is reduced slightly.

The right panel of Fig. 18 shows the correlation between triton binding energy and doublet

scattering length at NLO, again together with model calculations. The error estimated from

the cutoff dependence reduces slightly from LO to NLO. Also, the NLO result moves a bit

towards the phenomenological Phillips line.

To quantify the NLO residual cutoff dependence we perform fits analogous to Eqs. (20)

and (21):

E
(1)
3H (Λ) = E

(1)
3H (∞)

1 +
p

(1)
t1

Λ
+

(
p

(1)
t2

Λ

)2

+

(
p

(1)
t3

Λ

)3

+ · · ·

 (23)
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and

2a
(1)
nd (Λ) = 2a

(1)
nd (∞)

1− p
(1)
d1

Λ
+

(
p

(1)
d2

Λ

)2

+

(
p

(1)
d3

Λ

)3

+ · · ·

 , (24)

with asymptotic values E
(1)
3H (∞) and 2a

(1)
nd (∞), and parameters p

(1)
t1,2,3 and p

(1)
d1,2,3. We consider

results for the n = 4 regulator in the range Λ ≥ 1.2 GeV, with counterterms fitted to the

PWA93 data at TL = 5 MeV for LO and TL = 10 MeV for NLO. The fitting parameters are

again summarized in Tables III and IV, and the corresponding fits are shown in the right

panels of Figs. 19 and 20.

Convergence with the cutoff implies that RGI is achieved up to NLO (O(Q/Mhi)) with-

out the need of a short-range three-body force. This is consistent with Weinberg’s power

counting. The NLO asymptotic values E
(1)
3H (∞) and 2a

(1)
nd (∞) are closer to experiment than

the LO asymptotic values E
(0)
3H (∞) and 2a

(0)
nd (∞). Thus, NLO corrections reduce the differ-

ence between theoretical and empirical values, but they are only ∼ 1 MeV for the triton

binding energy and ∼ 1 fm for the nd doublet scattering length. The remaining discrepancy

to experiment indicates the presence of important corrections that we have not accounted

for, such as N2LO (O(Q2/M2
hi)) corrections or perhaps lower-order interactions not needed

for RGI. This is consistent with the increase in the momenta p
(1)
t,d1 from the LO parameters

p
(0)
t,d1. As for LO, the four-parameter fits are plagued by large errors and probably not much

can be learned from them.

IV. CONCLUSION

We have analyzed the cutoff dependence of two- and three-nucleon observables at leading

and next-to-leading orders in the manifestly renormalization-group-invariant version of Chi-

ral EFT proposed in Ref. [15] and developed in Refs. [26–30]. We have explored different

regulator functions and cutoff values up to 10 GeV, as well as different fitting procedures.

At the two-nucleon level, our results agree with those in Refs. [15] and [30]. The two-

nucleon interaction at LO produces results that converge as the cutoff increases, and are

relatively insensitive to the regulator function and fitting procedure. The residual cutoff

dependence at LO indicates the need for an NLO (O(Q/Mhi)) correction in the spin-singlet

S wave. Addition of such an interaction in perturbation theory improves the description

of phase shifts in this wave. We thus constructed a Chiral EFT potential up to NLO that
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produces a two-nucleon amplitude consistent with renormalization-group invariance.

With this potential, we have solved the Faddeev equation to calculate the triton binding

energy and the two neutron-deuteron scattering lengths. At LO, the Faddeev equation is

solved exactly (within numerical precision), while at NLO first-order perturbation theory

is employed, as required by power counting. Our LO result for the triton binding energy

again agrees with that of Ref. [15] for the same regulator function and cutoff range. In

addition, we significantly expanded the cutoff range and studied the (in)sensitivity to the

form of the regulator function and choice of fitting input. We also calculated the neutron-

deuteron scattering lengths for the first time. We strengthen the conclusion of Ref. [15] that

there is no renormalization need for a three-nucleon force at LO. We observe, again for the

first time, that three-nucleon observables display similar renormalization behavior at NLO.

Convergence with cutoff is achieved for different regulator functions and fitting procedures.

Results in two- and three-nucleon systems show that the modified power counting scheme

of Nogga et al. works well with respect to renormalization, at least up to NLO. The residual

cutoff dependence at NLO suggests that N2LO corrections (O(Q2/M2
hi)) are expected at

both two- or three-nucleon levels. No conflict has been seen with the higher order of three-

body forces expected on the basis of naive dimensional analysis, as prescribed in Weinberg’s

original power counting.

We find that the three-nucleon observables we have calculated are insensitive to two-

nucleon waves with angular momentum l ≥ 3. This is in agreement with numerical [15] and

semi-analytical [25] estimates of the importance of one-pion exchange in the two-nucleon

system. Thus, our calculations are consistent with the naive expectation that the two-

nucleon waves with largest phase shifts at low energies give the bulk of the contribution

to few-body observables. This expectation is captured in the power counting of Nogga et

al., where only l ≤ 2 waves are treated non-perturbatively. However, the transition in l

to subleading orders is not sharp, and there is room for improvement in the treatment of

various two-nucleon waves [37].

Despite the apparent self-consistency of our calculation, the triton is still considerably

underbound at NLO, and the correlated doublet nd scattering length is much larger than

experiment. It should be remembered that Friar pointed out [54] that the proper counting of

factors of 4π implies that the dominant three-nucleon force in Chiral EFT with explicit Delta

isobars [7] is also an NLO effect. We plan to return to this possibility in a future publication.
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Alternatively, the discrepancy seen here might have an origin in the relatively large distances

that affect these quantities. In fact, they are very well described in Pionless EFT already

at LO [35], indicating that cancelations must be present in the higher-energy Chiral EFT.

Observables where cancelations occur are of course not ideal to test the convergence of a

theory: small corrections at higher orders can generate relatively large changes in observables

from the increased imbalance between partially canceling contributions. This argument

could be used as a rationale for the promotion of a higher-order three-nucleon force, as done

very recently [36]. However, it is qualitatively different than the need — excluded here

— for promotion mandated by renormalization, when the very model independence of a

calculation is at stake. These issues show that much of the optimal organization of Chiral

EFT interactions remains to be determined, a task that requires the calculation of a larger

class of observables and the inclusion of higher orders.
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