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We have studied the scaling properties of the electromagnetic response functions of 4He and 12C
nuclei computed by the Green’s Function Monte Carlo approach, retaining only the one-body current
contribution. Longitudinal and transverse scaling functions have been obtained in the relativistic
and non relativistic cases and compared to experiment for various kinematics. The characteristic
asymmetric shape of the scaling function exhibited by data emerges in the calculations in spite of
the non relativistic nature of the model. The results are mostly consistent with scaling of zeroth,
first and second kinds. Our analysis reveals a direct correspondence between the scaling and the
nucleon-density response functions. The scaling function obtained from the proton-density response
displays scaling of the first kind, even more evidently than the longitudinal and transverse scaling
functions.

PACS numbers: 24.10.Cn,25.30.Pt,26.60.-c

I. INTRODUCTION

A realistic description of the electromagnetic response
of atomic nuclei is a challenging many-body problem as it
requires an accurate understanding of both the nuclear
dynamics and the interaction vertex. In this regard, a
valuable strategy consists in analyzing the scaling prop-
erties of nuclear response functions in a variety of kine-
matic setups [1–3]. Scaling of the first kind is said to
occur when the electron-nucleus cross section or longi-
tudinal/transverse response functions, divided by an ap-
propriate function describing the single-nucleon physics,
do no longer depend on two variables (for example en-
ergy transfer ω and absolute value of the 3-momentum
transfer |q| in the Laboratory frame), but only upon a
specific function of them, which defines the scaling vari-
able. Scaling of the second kind takes place when there is
no dependence on the nuclear species. Finally, the simul-
taneous occurrence of both kinds of scaling is denoted as
superscaling [4].

Superscaling is exactly fulfilled by the Global Rela-
tivistic Fermi gas (GRFG) model, for which a simple
and symmetric scaling function can be derived in terms
of the dimensionless scaling variable ψ [5] (explicit ex-
pressions are also provided in Sec. II B below). However,
contrary to the GRFG model predictions, the results ex-
tracted from experimental data display an asymmetric
shape of the scaling function, with a tail that extends to
high values of ψ (and ω) [6]. These results represent a
strong constraint for theoretical models of electron scat-
tering reactions. Extensive studies with a large variety of
models reveal the importance of a proper description of
the interaction of knocked-out nucleons with the residual
nucleus—final state interactions (FSI)—to obtain the tail
of the scaling function [7–11]. The authors of Refs. [7, 8]
argue that, while this asymmetry in the scaling function
is largely absent in non-relativistic mean-field models, it
can be recovered within the relativistic impulse approxi-
mation, given that FSI are described using a strong rela-

tivistic mean field (RMF) potential. Asymmetric scaling
functions also emerge in semi-relativistic models when
FSI are described by local potentials derived from the
RMF one [9]. In the study reported in Ref. [12], FSI
also produce an asymmetry, sizable but insufficient to de-
scribe the one of the empirical scaling function. On the
other hand, the comparison between semi-relativistic and
relativistic results shows a breakdown of the zeroth-kind
scaling, i.e. different scaling functions in the longitudinal
and transverse channel, only when the fully relativistic
mean field approach is employed. According to Ref. [9]
this effect has been ascribed to the dynamical enhance-
ment of the lower component of the Dirac spinors, which
are not present in the semi-relativistic approach.

In this work we analyze the scaling properties exhib-
ited by Green’s Function Monte Carlo (GFMC). GFMC
is an ab initio method allowing for a very accurate de-
scription of the properties of A ≤ 12 nuclei, in which
the dynamics of constituent nucleons are fully consid-
ered [13–15]. The longitudinal and transverse electro-
magnetic response functions of 12C, recently computed
within GFMC turn out to be in very good agreement
with experiment, when two-body currents are accounted
for [16]. Despite this remarkable result, GFMC is cur-
rently limited to 12C because of the exponentially grow-
ing cost of the calculation with the number of nucleons.
In addition to that, the inclusion of relativistic kinematic
and baryon resonance production would involve non triv-
ial difficulties.

The study of the behavior of the scaling functions ob-
tained from the GFMC calculations, while being inter-
esting in its own right, is aimed at elucidating the role
of initial and final state correlations in the asymmetric
shape of the scaling function.

In Section II we review the derivation of the electron-
nucleus cross section, as well as its expression in terms
of longitudinal and transverse response functions, which
are necessary to introduce the concept of scaling. In
Section II A, the main elements of the Green’s Function
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Monte Carlo approach are briefly outlined, while in Sec-
tion II B we explicitly derive the expression of the longi-
tudinal and transverse scaling functions in the context of
the GRFG model, both in the relativistic and non rela-
tivistic cases. In Section III we report the results of our
analysis of the scaling features of the GFMC response
functions for 4He and 12C nuclei and in different kine-
matics. We then discuss a novel interpretation of the
longitudinal and transverse scaling function in terms of
the nucleon-density function. Finally, in Section IV we
summarize our findings and state the conclusions.

II. SCALING OF THE NUCLEAR
ELECTROMAGNETIC RESPONSE WITHIN THE

GREEN’S FUNCTION MONTE CARLO
APPROACH

In the one-photon-exchange approximation, the double
differential electron-nucleus cross section can be written
in the form

d2σ

dEe′dΩe′
=
α2

q4
Ee′

Ee
LµνW

µν , (1)

where ke = (Ee,ke) and ke′ = (Ee′ ,ke′) are the labo-
ratory four-momenta of the incoming and outgoing elec-
trons, respectively; α ' 1/137 is the fine structure con-
stant, dΩe′ , the differential solid angle in the direction
of ke′ , and q = ke − ke′ = (ω,q) the four momentum
transfer. The leptonic tensor is given by

Lµν = 2 (kµe′k
ν
e + kµe k

ν
e′ − gµνke′ · ke) . (2)

The hadronic tensor encompasses the electromagnetic
transitions from the target nucleus to all possible final
states. It is thus given by

Wµν =
∑
f

〈0|Jµ†(q)|f〉〈f |Jν(q)|0〉 δ(4)(P0 + q − Pf ) ,

(3)

where |0〉 and |f〉 denote the initial and final hadronic
states with four-momenta P0 = (E0,p0) and Pf =
(Ef ,pf ), while J(q) is the electromagnetic nuclear cur-
rent operator.

Equation (1) can be rewritten in terms of two response
functions, denoted by RL(q, ω) and RT (q, ω), describing
interactions with longitudinally (L) and transversely (T)
polarized photons, respectively. The resulting expression
reads

d2σ

dEe′dΩe′
=

(
dσ

dΩe′

)
M

[
AL(|q|, ω, θe′)RL(|q|, ω)

+AT (|q|, ω, θe′)RT (|q|, ω)
]
, (4)

where

AL =
( q2
q2

)2
, AT = −1

2

q2

q2
+ tan2 θe

2
, (5)

and (
dσ

dΩe′

)
M

=

[
α cos(θe′/2)

2Ee′ sin2(θe′/2)

]2
(6)

is the Mott cross section. The L and T response functions
can be readily expressed in terms of specific components
of the hadronic tensor. Choosing the z-axis along the
direction of the momentum transfer one finds

RL = W 00 , (7)

RT =

3∑
ij=1

(
δij −

qiqj
q2

)
W ij . (8)

A. The Green’s function Monte Carlo approach

GFMC provides a suitable framework to carry out ac-
curate calculations of a variety of nuclear properties in
the non relativistic regime, typically corresponding to
|q| <∼ 500 MeV (for a recent review of Quantum Monte
Carlo methods for nuclear physics see, e.g., Ref. [17]).

The longitudinal and transverse response function are
given by

RL(q, ω) =
∑
f

〈0|ρ†(q)|f〉〈f |ρ(q)|0〉δ(ω + E0 − Ef ) ,

RT (q, ω) =
∑
f

〈0|j†T (q)|f〉〈f |jT (q)|0〉δ(ω + E0 − Ef ) ,

(9)

where ρ(q) and jT (q) denote non-relativistic reductions
of the nuclear-charge and transverse-current operators,
respectively [18]. Valuable information on the L and T
responses can be obtained from their Laplace transforms,
also referred to as Euclidean responses

ẼT,L(q, τ) =

∫ ∞
ωel

dωe−ωτRT,L(q, ω) . (10)

The lower integration limit ωel = q2/2MA, MA being
the mass of the target nucleus, is the elastic scattering
threshold—corresponding to the |f〉 = |0〉 term in the
sum of Eq. (3)—whose contribution is excluded.

Within GFMC, the Euclidean responses are evaluated
from

ẼL(q, τ) = 〈0|ρ†(q)e−(H−E0)τρ(q)|0〉
− |〈0|ρ(q)|0〉|2e−ωelτ , (11)

and

ẼT (q, τ) = 〈0|j†T (q)e−(H−E0)τ jT (q)|0〉
− |〈0|jT (q)|0〉|2e−ωelτ . (12)

Note that, although the states |f〉 6= |0〉 do not appear
explicitly in Eqs. (11) and (12), the Euclidean responses
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include the FSI effects of the particles involved in the
electromagnetic interaction, both among themselves and
with the spectator nucleons.

The inversion of the Laplace transform, needed to re-
trieve the energy dependence of the responses, is long
known to involve severe difficulties. However, maximum-
entropy techniques, based on Bayesian inference argu-
ments, have been successfully exploited to perform ac-
curate inversions, supplemented by reliable estimates of
the theoretical uncertainty. In the case of 12C, particular
care has to be devoted to the subtraction of contributions
arising from elastic scattering and the transitions to the
low-lying 2+, 0+2 , and 4+ states [15].

B. Scaling within the relativistic Fermi gas model

The easiest, albeit quite crude approximation, to de-
scribe the hadron tensor consists on using the GRFG
model. Within this approach the scattering process is
assumed to take place on a single nucleon with four-
momentum p = (E(p),p), where E(p) =

√
|p|2 +m2,

m being the nucleon mass. The requirement that the
struck nucleon is in the target nucleus implies that |p|
is smaller than the Fermi momentum pF . Furthermore,
the outgoing nucleon with four-momentum p′

µ
= (p+q)µ

should lay above the Fermi surface. The expression of
the hadron tensor describing the response of the target
nucleus then reads [4]

Wµν =
3N

4πp3F

∫
d3p

m2

E(p)E(p + q)
wµν(p+ q, p)

× θ(pF − |p|)θ(|p + q| − pF )

× δ(ω + E(p)− E(p + q)) . (13)

Once we only discuss symmetric nuclei, N denotes both
the number of protons and neutrons in the nucleus.
The single-nucleon response tensor wµν(p+ q, p) encodes
the response of a system in which a nucleon with 4-
momentum p in the initial state is scattered by a (virtual)
photon, leading to a final state with a nucleon carrying
a 4-momentum (p+ q). The following general expression

wµν(p+ q, p) =−W1(τ)
(
gµν − qµqν

q2

)
+W2(τ)

1

m2

(
pµ − p · q

q2
qµ
)

×
(
pν − p · q

q2
qν
)
, (14)

where τ = −q2/4m2 = Q2/4m2 ≥ 0, holds. It is well
known that the nucleon structure functions W1,2 can be
written in terms of the proton and neutron electric and
magnetic form factors as [4]

W1(τ) =τG2
M (τ) ,

W2(τ) =
G2
E(τ) + τG2

M (τ)

(1 + τ)
, (15)

and

GE(τ) = GpE(τ)
1

2
(1 + τz,i) +GnE(τ)

1

2
(1− τz,i) ,

GM (τ) = GpM (τ)
1

2
(1 + τz,i) +GnM (τ)

1

2
(1− τz,i) , (16)

where τz,p/n = ±1.
Using the GRFG model to parametrize the nuclear

amplitudes, the integral entering Eq. (13) can be ana-
lytically solved. We start by evaluating the function

F (pF , q) =
3N

4πp3F

∫
d3p F(pF , q,p) , (17)

with

F(pF , q,p) =
m2

E(p)E(p + q)

× θ(pF − |p|)θ(|p + q| − pF )

× δ(ω + E(p)− E(p + q)) (18)

resulting in [4, 19]

F(pF , q,p) =
3Nm2

2p3F |q|
θ(EF − Γ)(EF − Γ) , (19)

where EF =
√
p2F +m2 and

Γ = Max{Γ1,Γ2}

= Max
{

EF − ω,
−ω + |q|

√
1 + 1/τ

2

}
. (20)

It is convenient to introduce the widespread set of dimen-
sionless variables [4]

λ = ω/2m ,

κ = |q|/2m ,

ηF = pF /m . (21)

The minimum Γ2/m = 1 at

λ = λ0 =
1

2

[√
(1 + 4κ2)− 1

]
, (22)

corresponds to the quasi elastic peak τ = λ [4]. In the
limit of large |q|, the relation Γ = Γ2 is satisfied for each
value of ω. Hence, a dimensionless scaling variable can
be defined in terms of this quantity as [4]

ψ = sign(λ− λ0)
[ 1

ξF

(Γ2

m
− 1
)]1/2

, (23)

with ξF = EF /m − 1, and such that ψ = 0 at the quasi
elastic peak. Note that this definition of the scaling vari-
able is equivalent to the more common expression [5]

ψ =
1√
ξF

λ− τ√
(1 + λ)τ + κ

√
τ(1 + τ)

. (24)
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Collecting previous results one obtains

F (pF , q) =
3N ξF
4η3Fmκ

(
1− ψ2)θ(1− ψ2) . (25)

Substituting Eq. (13) and (14) into Eqs. (7), (8) leads
to the following expressions for the L and T response
functions

RL =
3N

4πp3F

∫
d3p F(pF , q,p)

{
−W1(τ)

(
1− ω2

q2

)
+
W2

m2

[
Ep −

p · q
q2

ω
]2}

,

RT =
3N

4πp3F

∫
d3p F(pF , q,p)

{
2W1(τ) +

W2(τ)

m2
p2
T

}
.

(26)

After performing the integrations, the responses can be
cast in the form [4, 19]

RL =
3N ξF
4η3Fmκ

(
1− ψ2)θ(1− ψ2)

×
{κ2
τ

[G2
E(τ) +W2(τ)∆]

}
,

RT =
3N ξF
4η3Fmκ

(
1− ψ2)θ(1− ψ2)

×
{

2τG2
M (τ) +W2(τ)∆

}
, (27)

where

∆ = ξF (1− ψ2)
[√τ(1 + τ)

κ
+ ξF (1− ψ2)

τ

3κ2

]
. (28)

The next step consists in the definition of the longitu-
dinal and transverse scaling functions [20]

fL(ψ) = pF ×
RL
GL

,

fT (ψ) = pF ×
RT
GT

, (29)

where

GL =
N
2κ

{κ2
τ

[G2
E(τ) +W2(τ)∆]

}
,

GT =
N
2κ

{
2τG2

M (τ) +W2(τ)∆
}
. (30)

Within the GRFG the same scaling function for the the
longitudinal and transverse channel arises. This is a sym-
metric function centered in ψ = 0 [4]

f(ψ) = fL(ψ) = fT (ψ) =
3ξF
2η2F

(
1− ψ2)θ(1− ψ2) . (31)

In the non relativistic limit the L and T responses can

be expressed as

RL =
3N

4πp3F

∫
d3p

1

2

∑
s,s′

{
χ†sρ
†(q)χs′χ

†
s′ρ(q)χs

}
× θ(pF − |p|)θ(|p + q| − pF )

× δ
(
ω +

p2

2m
− |p + q|2

2m

)
,

RT =
3N

4πp3F

∫
d3p

1

2

∑
s,s′

{
χ†sj
†
T (q)χs′χ

†
s′jT (q)χs

}
× θ(pF − |p|)θ(|p + q| − pF )

× δ
(
ω +

p2

2m
− |p + q|2

2m

)
, (32)

where s and s′ are the spin quantum numbers of the
nucleon in the initial and final state, respectively.

In the following, non relativistic scaling variable and
functions are introduced with the same non relativistic
reduction of the current operator and relativistic correc-
tions as in the GFMC calculations [18]. Neglecting the
small spin-orbit relativistic correction in the definition of
charge operator, the charge and current operators read

ρ(q) =
GE(τ)√

1 + τ
,

jT (q) =
[GE(τ)

m
pT − i

GM (τ)

2m
q× σ

]
. (33)

A comprehensive study of relativistic corrections in Fermi
gas response functions and scaling properties can be
found in Refs. [21, 22]. As opposed to the semi rela-
tivistic model of Refs. [21, 22], in the GFMC relativistic
corrections enter only in the current definition, while the
kinematics is fully non relativistic.
In the non relativistic limit, Eq. (17) reduces to

Fnr(pF , q) =
3N

4πp3F

∫
d3p Fnr(pF , q,p)

=
3Nm2

2p3F |q|
θ(EnrF − Γ)(EnrF − Γnr) , (34)

with

Fnr(pF , q,p) = θ(pF − |p|)θ(|p + q| − pF )

× δ
(
ω +

p2

2m
− |p + q|2

2m

)
, (35)

and

Γnr = Max{Γnr1 ,Γnr2 }

= Max
{
EnrF − ω,m+

1

2m

(ωm
|q|
− |q|

2

)2}
. (36)

The non relativistic Fermi energy reads EnrF = m +
p2F /2m. Following Ref. [4], we introduce a non relativistic
scaling variable given by

ψnr =
[ 1

ξnrF

(Γnr

m
− 1
)]1/2

=
1√
2ξnrF

(λ
κ
− κ
)
. (37)
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In the limit of large |q|, Eq. (34) can be written in terms
of ψnr as

Fnr(pF , q) =
3N ξnrF
4η3Fmκ

(
1− ψnr2)θ(1− ψnr2) . (38)

In analogy with the relativistic case, the longitudinal
and transverse responses are expressed as

RnrL =
3N

4πp3F

∫
d3p Fnr(pF , q,p)

{G2
E(τ)

1 + τ

}
=

3N ξF
4η3Fmκ

(
1− ψnr2)θ(1− ψnr2)

{G2
E(τ)

1 + τ

}
, (39)

RnrT =
3N

4πp3F

∫
d3p Fnr(pF , q,p)

{G2
E(τ)

m2
p2T

+
G2
M (τ)

2m2
|q|2

}
=

3N ξF
4η3Fmκ

(
1− ψnr2)θ(1− ψnr2)

×
{
G2
E(τ)∆nr + 2G2

M (τ)κ2
}
, (40)

where

∆nr = ξnrF (1− ψnr2) . (41)

We then define the non relativistic longitudinal and
transverse scaling functions as

fnrL (ψnr) = pF ×
RnrL
GnrL

,

fnrT (ψnr) = pF ×
RnrT
GnrT

, (42)

where

GnrL =
N
2κ

{G2
E(τ)

1 + τ

}
,

GnrT =
N
2κ

{
G2
E(τ)∆nr + 2G2

M (τ)κ2
}
. (43)

In order to compare our results with the data, we in-
troduce the experimental scaling functions obtained from
the extracted longitudinal and transverse responses for
4He and 12C

fexpL = pF ×
RexpL

GL
,

fexpT = pF ×
RexpT

GT
. (44)

It is long known that fexpL clearly shows a scaling be-
havior in the limit of large momentum transfer. On the
other hand, sizable scaling violations occur in the trans-
verse channel, due to significant contributions given by
two-body currents, resonance excitations and inelastic
scattering. Hence, the comparison with the experimental
data will be performed considering only the longitudinal
contribution, fexpL .
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FIG. 1. (color online) Ratio of the non relativistic and rela-
tivistic expressions of the prefactors entering the definition of
the scaling function, plotted as a function of ψ for |q|= 300,
380, 570 MeV. The blue solid and red dashed lines correspond
to the longitudinal and transverse channels, respectively.

III. RESULTS

Here we analyze the scaling features of the GFMC re-
sponses. In order to highlight the underlying nuclear dy-
namics we first divide them by the non relativistic pref-
actors GnrL,T . These have been obtained expanding the

relativistic-current matrix elements in powers of 1/m re-
taining terms up to O[1/m2] [16]. Relativistic corrections
appear as terms of O[1/m2] in the longitudinal channel
while they are O[1/m3] in the transverse one, and are
therefore neglected in this case. This difference plays
a relevant role in the interpretation of the results pre-
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sented below. For a meaningful comparison with the scal-
ing functions extracted from experimental data, we also
present the results obtained using the relativistic prefac-
tors GL,T . Figure 1 clearly shows the different behav-
ior of GnrL,T and GL,T for three values of the momentum
transfer. Relativistic effects are particularly relevant in
the transverse case; at |q|= 570 MeV the ratio GnrT /GT
significantly differs from 1 for ψ ≥ 0.
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FIG. 2. (color online) Longitudinal (solid blue) and transverse
(dashed red) scaling functions obtained from the GFMC cal-
culation of the longitudinal and transverse responses of 12C
at |q| = 300 MeV. Upper panel: the responses have been
divided by the non relativistic prefactors and the resulting
curves are plotted as a function of ψnr. Lower panel: the
standard definition of the prefactors given in Eq. (30) has been
used to get both the theoretical curves and the experimental
points obtained from the data of Ref. [23] .

In Figs. 2, 3 and 4 we show the longitudinal (blue solid
lines) and transverse (red dashed lines) scaling functions
extracted from the GFMC calculations of the 12C re-
sponse functions, choosing pF= 228 MeV according to
Ref. [24]. The results in the upper panels, obtained di-
viding the GFMC calculations by GnrL(T ), are plotted as

a function of the non relativistic scaling variable ψnr.
In the lower panels a comparison between the theoret-
ical curves and the experimental points, in which the
relativistic form of the prefactors has been adopted, is
presented.

It is important to point out that the longitudinal
response of 12C is known to be affected by the elas-
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FIG. 3. Same as in Fig. 2 but for |q| = 380 MeV.
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FIG. 4. Same as in Fig. 2 but for |q| = 570 MeV.
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tic and the low lying excited states—Jπ = 2+, 0+2 ,
and 4+—contributions. In order to compare experi-
ments —which refer only to the inclusive quasi-elastic
response—with GFMC calculations, these contributions
have been explicitly subtracted from the Euclidean re-
sponse functions, before performing the inversion. In
principle, GFMC calculations of the excitation energies
and of the transition form factors of these states should
be performed. This would require the explicit construc-
tion of the wave functions associated to these states and
the calculation of the corresponding form factors, which
involves nontrivial difficulties. For this reason, the ex-
perimental energies and form factors have been used in
Ref. [16]. However, this approximate procedure brings
about residual effects in the response functions. Because
of the fast drop of the form factors with increasing mo-
mentum transfer, in Ref. [16] it is argued that these cor-
rections are expected to be significant in the longitudinal
channel at |q| = 300 MeV, and |q| = 380 MeV, but
much smaller at |q| = 570 MeV. On the other hand, in
the transverse channel such contributions are expected
to be always negligible [25, 26].

The scaling functions displayed in the upper panels ex-
hibit a clearly asymmetric shape, with a tail extending in
the region ψnr > 0, as opposed to the GRFG model pre-
dictions. The difference in magnitude between the lon-
gitudinal and transverse GFMC scaling functions, which
becomes less evident for larger values of |q|, is likely to
be ascribed to the residual effects of the low lying excited
state contributions discussed above. For the aforemen-
tioned reason, in the lower panels, the agreement be-
tween the longitudinal GFMC scaling function and the
experimental data improves with increasing momentum
transfer.

The different behavior of the transverse scaling func-
tions displayed in the upper and lower panels deserves
some comments. In the lower panels, the red curves
present a large non vanishing tail for ψ > 1, although
those are expected to approach zero, as shown in the
upper panels. This discrepancy can be best understood
considering the results of Fig. 1. The relativistic and non
relativistic expressions of the transverse prefactors used
to extract the scaling functions are sizably different in the
kinematic setups considered. In particular, for |q| = 570
MeV, these are very similar for −1.5 ≤ ψ ≤ 0 where their
ratio is almost 1, while in the region ψ ≥ 0 their trend
is significantly different and GnrT /GT increases for larger
values of ψ. Relativistic corrections have opposite effects
in GL and GT . This further contributes to the break-
ing of zeroth kind scaling shown in the lower panels of
Figs. 2, 3 and 4.

Figure 5 shows the experimental scaling functions of
12C extracted from the experimental data of Ref. [23]
for |q| = 300, 380, and 570 MeV. Although scaling is
expected to occur in the limit of large momentum trans-
fer, within the error bars of the different data points, the
longitudinal response functions scale to a universal curve
over the entire quasi-elastic peak, even in the region of
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FIG. 5. (color online) Experimental scaling functions of
12C obtained from the longitudinal responses for |q| =
300, 380, 570 MeV [23].
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FIG. 6. (color online) Longitudinal scaling functions of 12C
obtained from GFMC calculations for |q| = 300, 380, 570
MeV as a function of ψnr.

moderate |q|.
In Figs. 6 and 7 the longitudinal and transverse GFMC

scaling functions are shown as a function of ψnr for
|q| = 300, 380, and 570 MeV. In the transverse channel,
the difference between the three curves in the ψnr < 0
region suggests that, for |q| = 300, 380 MeV, the require-
ment Γ = Γnr2 [see Eq. (36)]—which is necessary to intro-
duce the scaling variable—is not satisfied for all the val-
ues of ω. Indeed, the scaling violation in the low-energy
transfer region is clearly visible. In the longitudinal case,
although theoretical results seem to indicate that first-
kind scaling occurs, the interpretation of the differences
between the three curves is obscured by the residual ef-
fect of the low-lying transitions discussed above.

To better elucidate the scaling properties of the GFMC
calculations, it is worth to analyze the 4He nucleus, whose
longitudinal response functions are not affected by low-
lying transitions. In Fig. 8, the scaling functions obtained
from the experimental data of the longitudinal responses
of 4He at |q| = 300, 400, 500 , 600, and 700 MeV are
shown. Choosing the Fermi momentum equal to 180
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FIG. 7. (color online) Transverse scaling functions of 12C
obtained from GFMC calculations for |q| = 300, 380, 570
MeV as a function of ψnr.
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FIG. 8. (color online) Experimental scaling functions ob-
tained from the longitudinal responses of 4He for |q| =300,
400, 500, 600 and 700 MeV [18]. The value of the Fermi
momentum of 4He has been set to 180 MeV. The black dots
correspond to the scaling function obtained from the experi-
mental longitudinal response of 12C at |q| = 570 MeV [23].

MeV, we observe that the points corresponding to dif-
ferent values of the momentum transfer tend to lay on
top of each other, and the agreement with the 12C data
at |q| = 570 MeV is also remarkable.

In Figs. 9-13 we show the longitudinal (solid
blue) and transverse (dashed red) scaling functions ex-
tracted from the GFMC calculations of 4He at |q| =
300, 400 , 500 , 600, and 700 MeV. In the upper and
lower panels the same scheme followed to present the
12C scaling functions has been adopted. In the longi-
tudinal channel, theoretical calculations and experimen-
tal data reported in the lower panels present are in very
nice agreement in all the kinematic setups. Finding this
agreement up to |q| = 700 MeV may appear surpris-
ing since the GFMC is a non relativistic approach. This
can be understood because all the relativistic corrections
coming from both the Dirac-spinors and the currents are
kept up to O[1/m2]. However, this is not the case in
the transverse channel where relativistic corrections are
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FIG. 9. (color online) Longitudinal (solid blue) and transverse
(dashed red) scaling functions obtained from the GFMC cal-
culation of the longitudinal and transverse responses of 4He
at |q| = 300 MeV. Upper panel: the responses have been
divided by the non relativistic prefactors and the resulting
curves are plotted as a function of ψnr. Lower panel: the
standard definition of the prefactors given in Eq.(30) has been
used to get both the theoretical curves and the experimental
points obtained from the data of Ref. [18] .

subleading and have been neglected. Moreover, the dif-
ferences in magnitude of the transverse scaling functions,
following the discussion carried out for 12C, are mainly
related to the relativistic effects in the prefactors.

The upper panels of Figs. 9-13 clearly show that in the
4He case the scaling of the zeroth-kind is manifest when
the effects of nuclear dynamics are singled out by using
the non relativistic expressions for the prefactors. The
absence of low-lying transition contributions makes the
scaling of the first kind apparent.

Whilst in the 12C case the different quasielastic peak
positions in the longitudinal and transverse responses are
mostly due to the residual effect of the low-lying tran-
sitions, 4He enables us to further elucidate the role of
nuclear dynamics. Although the peak positions coincide
in the impulse approximation, this is not necessary true
when nuclear dynamics is fully taken into account. This
is most likely due to the charge exchange and tensor com-
ponents of the nuclear interaction. They are accounted
for in the GFMC calculations, both in the initial and in
the final states. As shown in Ref. [27], these features of



9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

𝑓𝑛
𝑟 (

𝜓𝑛
𝑟 )

𝜓𝑛𝑟

𝑞 = 400 MeV

𝑓𝐺𝐹𝑀𝐶
𝐿 (𝜓𝑛𝑟)

𝑓𝐺𝐹𝑀𝐶
𝑇 (𝜓𝑛𝑟)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

𝑓(
𝜓)

𝜓

𝑓𝑒𝑥𝑝(𝜓)
𝑓𝐺𝐹𝑀𝐶

𝐿 (𝜓)
𝑓𝐺𝐹𝑀𝐶

𝑇 (𝜓)

FIG. 10. Same as in Fig. 9 but for |q| = 400 MeV.
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FIG. 11. Same as in Fig. 9 but for |q| = 500 MeV.
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FIG. 12. Same as in Fig. 9 but for |q| = 600 MeV.
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FIG. 13. Same as in Fig. 9 but for |q| = 700 MeV.
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FIG. 14. (color online) Longitudinal scaling functions ob-
tained from GFMC calculations of the longitudinal response
of 4He for |q| = 400, 500, 600, 700 MeV and of 12C at
|q| = 570 MeV.
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FIG. 15. (color online) Transverse scaling functions obtained
from GFMC calculations of the transverse response of 4He for
|q| = 400, 500, 600, 700 MeV and of 12C at |q| = 570 MeV.

the nuclear interactions bring about differences between
the nucleon and the proton Euclidean responses as well
as the spin-longitudinal and transverse ones.

The curves of Figs 14 and 15, where we compare
the longitudinal and transverse scaling functions of 4He
for different values of the momentum transfer, exhibit
a satisfactory scaling behavior. The 4He results for
|q| = 600 , 700 MeV are almost coincident and in good
agreement with the longitudinal scaling function of 12C
computed at |q| = 570 MeV.

Figures 14 and 15 prove that the asymmetric shape of
the scaling function does not depend upon the momen-
tum transfer. Consequently, it is not likely to be ascribed
to collective excitation modes, that can be accounted for
within the random phase approximation.

This analysis, carried out for a variety of kinematics
suggests that scaling occurs in the GFMC calculations
of the longitudinal and transverse response functions of
both 4He and 12C nuclei. Comparing the definition of the
longitudinal response function and the one of the corre-
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FIG. 16. (color online) The longitudinal (solid blue) and
transverse (dashed red) scaling functions obtained within the
GFMC approach compared with the scaling function obtain
from the proton response function (dot dashed black). Up-
per panel: 4He at |q| = 500 MeV. Lower panel: 12C at
|q| = 570 MeV.
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FIG. 17. (color online) Scaling function obtained from GFMC
calculations of the proton response function of 4He for |q| =
400, 500, 600, 700 MeV .

sponding prefactor, see Eq. (9) and (43), while neglecting
the spin-orbit contribution, one is lead to conclude that
the scaling function corresponds to

fp(n) = pF ×
2κ Rp(n)

N
(45)

where Rp(n) is the proton (neutron)-response function,
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defined as

Rp(n) ≡
∑
f

〈0|%†p(n)(q)|f〉〈f |%p(n)(q)|0〉 δ(E0 + ω − Ef ) ,

(46)

in terms of the proton (neutron)-density operator

%p(n) ≡
∑
i

eiq·ri
(1± τi,z)

2
, (47)

where the ± applies to protons and neutrons, respec-
tively. It has to be pointed out that in isoscalar nuclei
like 4He and 12C, the proton and neutron responses and
nearly coincident except for small electromagnetic cor-
rections. Note that Eq. (45) holds also in the relativistic
case, provided that relativistic expressions for the ener-
gies are used and spinors are normalized as ūu =

√
m/E

to absorb the factor m2/(E(p)E(p + q)) of Eq. (18).
On the other hand, the transverse scaling function cor-

responds to the spin-response, which reduces to the pro-
ton (neutron)-response defined above in the limit of high
momentum-transfer, where the impulse approximation is
expected to be accurate and where |q| � |pT |. As shown
in Fig. 16 for |q| >∼ 500 MeV, the one-body longitudi-
nal and transverse response functions scale to the same
universal scaling function: the proton (neutron)-response
function. In fact, the 4He fp(n) displayed in Fig. 17 ex-
hibit a remarkable scaling of the first-kind even more
apparent than the one of fL,T , corroborating our novel
interpretation of the scaling function.

The results presented in Ref. [16] show that two-body
currents lead to a significant enhancement of the trans-
verse response of 12C in the region of the quasi elastic
peak. We expect that the inclusion of this contribution
in the scaling analysis, while leaving the longitudinal scal-
ing function unchanged, would contribute to the observed
scaling violation of the experimental scaling function in
the transverse channel for ψ ≥ 0.

IV. CONCLUSIONS

We have performed a scaling analysis of the GFMC
electromagnetic response functions of 4He and 12C for a
variety of kinematic setups. Despite the non relativistic
nature of the calculation, all the GFMC scaling functions
analyzed are strongly asymmetric, with a tail extending
to the large ψ region. Within the present picture, this is
a consequence of nuclear correlations in both the initial
and final states. This is at variance with the findings
of Ref. [9], where the asymmetric shape was ascribed to
relativistic effects in the treatment of the final state in-
teractions. In this regard, it is interesting to point out
that the symmetry of the scaling function is not recovered
even for momentum transfer as low as |q| = 300 MeV in
both 4He and 12C. Our results, however, do not invali-
date the relativistic mean field picture of scaling as some
of the non relativistic correlations might arise from a non

relativistic reduction performed already at the mean filed
level. A deeper understanding of such interconnections
is worth pursuing.

When the nuclear dynamics is properly singled out, the
12C response function shows a fairly good scaling behav-
ior. However, the presence of the low lying transitions
which is known to affect the longitudinal channel, intro-
duces non trivial difficulties in drawing definitive conclu-
sions. A better understanding is given by the analysis of
4He responses which are free from the uncertainties com-
ing from these contributions. Our results for this nucleus
indicate that both the zeroth- and first-kind of scaling
occur. Moreover, the 4He and 12C scaling functions ful-
fill scaling of the second kind once the Fermi momentum
of 4He is appropriately tuned.

From our analysis, a novel interpretation of the scal-
ing function emerges. If the spin-orbit contribution to
the density-current operator is neglected, it can be easily
noted that the longitudinal scaling function corresponds
to the nucleon-density response. In the transverse chan-
nel, for sufficiently large momentum transfer the term
proportional to the transverse momentum of the incom-
ing nucleon can be safely neglected and the scaling func-
tion is proportional to the spin-response. In nuclei char-
acterized by total spin S = 0, such as 4He, 12C, 16O and
40Ca, in the impulse approximation the spin-response re-
duces to the nucleon-density response. Our findings on
the occurrence of zeroth-kind scaling are consistent with
this interpretation. In fact, within GFMC the scaling
violation of the transverse response in the quasi-elastic
region is likely to come from two-body currents. This
was first noted by the authors of Ref. [18] in which a
better agreement between the experimental data and the
theoretical calculation of the Euclidean responses of 3He
and 4He was found, once that this term was accounted
for.

The analysis of the scaling function presented in this
work has also helped revealing the role of relativistic ef-
fects. The simple prescription developed to account for
relativistic kinematics within the independent-particle
models [28] is not applicable to the GFMC results. In
fact, nuclear correlations tend to reduce relativistic ef-
fects in the responses, as the momentum transfer from
the virtual photon can be immediately shared between
two and more nucleons. A more promising strategy to
be pursued in the future is the one described in Ref. [29],
where a particularly convenient reference frame is chosen
to perform non-relativistic calculations.

The role played by two-body current contributions in
the electromagnetic responses of 12C have been recently
investigated in Ref. [16], where a significant enhance-
ment of the transverse response is observed at all mo-
mentum transfers: not only in the dip region, but in
the whole quasi-elastic peak region, extending below the
pion-production threshold. In the pioneering work of Ref.
[30], it has been shown that such enhancement is mainly
due to the interference between one- and two-body cur-
rents leading to single knock out final state. In this case
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the kinematics would be very similar to the those ana-
lyzed in this paper, where only one-body current con-
tributes. Hence, we expect that it would be possible to
define an appropriate scaling function for these processes.
The consequences of the two-body current contribution
in the GFMC scaling functions as well as the study of the
scaling properties of the total nuclear response —includ-
ing both one- and two-body terms—will be the subject
of a future work.

ACKNOWLEDGEMENTS

Research partially supported by the Spanish Ministe-
rio de Economı́a y Competitividad and the European
Regional Development Fund, under contracts FIS2014-
51948-C2-1-P and SEV-2014-0398, by Generalitat Valen-
ciana under contract PROMETEOII/2014/0068, and by
the U.S. Department of Energy, Office of Science, Office
of Nuclear Physics, under contract DE-AC02-06CH11357
(A.L.). Under an award of computer time provided by
the INCITE program, this research used resources of the
Argonne Leadership Computing Facility at Argonne Na-
tional Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357.

[1] G. B. West, Phys. Rept. 18, 263 (1975).
[2] D. B. Day et al., Phys. Rev. Lett. 59, 427 (1987).
[3] T. W. Donnelly and I. Sick, Phys. Rev. Lett. 82, 3212

(1999), arXiv:nucl-th/9809063 [nucl-th].
[4] W. M. Alberico, A. Molinari, T. W. Donnelly, E. L. Kro-

nenberg, and J. W. Van Orden, Phys. Rev. C38, 1801
(1988).

[5] M. B. Barbaro, R. Cenni, A. De Pace, T. W. Don-
nelly, and A. Molinari, Nucl. Phys. A643, 137 (1998),
arXiv:nucl-th/9804054 [nucl-th].

[6] J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W.
Donnelly, A. Molinari, and I. Sick, Phys. Rev. C71,
015501 (2005), arXiv:nucl-th/0409078 [nucl-th].

[7] J. A. Caballero, J. E. Amaro, M. B. Barbaro, T. W.
Donnelly, C. Maieron, and J. M. Udias, Phys. Rev. Lett.
95, 252502 (2005), arXiv:nucl-th/0504040 [nucl-th].

[8] J. A. Caballero, Phys. Rev. C74, 015502 (2006),
arXiv:nucl-th/0604020 [nucl-th].

[9] J. A. Caballero, J. E. Amaro, M. B. Barbaro, T. W.
Donnelly, and J. M. Udias, Phys. Lett. B653, 366 (2007),
arXiv:0705.1429 [nucl-th].

[10] A. Meucci, J. A. Caballero, C. Giusti, F. D. Pacati,
and J. M. Udias, Phys. Rev. C80, 024605 (2009),
arXiv:0906.2645 [nucl-th].

[11] A. N. Antonov, M. V. Ivanov, J. A. Caballero, M. B. Bar-
baro, J. M. Udias, E. Moya de Guerra, and T. W. Don-
nelly, Phys. Rev. C83, 045504 (2011), arXiv:1104.0125
[nucl-th].

[12] M. Martini, G. Co’, M. Anguiano, and A. M. Lallena,
Phys. Rev. C75, 034604 (2007), arXiv:nucl-th/0701031
[nucl-th].

[13] A. Lovato, S. Gandolfi, R. Butler, J. Carlson, E. Lusk,
S. C. Pieper, and R. Schiavilla, Phys. Rev. Lett. 111,
092501 (2013), arXiv:1305.6959 [nucl-th].

[14] A. Lovato, S. Gandolfi, J. Carlson, S. C. Pieper, and
R. Schiavilla, Phys. Rev. Lett. 112, 182502 (2014),
arXiv:1401.2605 [nucl-th].

[15] A. Lovato, S. Gandolfi, J. Carlson, S. C. Pieper,
and R. Schiavilla, Phys. Rev. C91, 062501 (2015),

arXiv:1501.01981 [nucl-th].
[16] A. Lovato, S. Gandolfi, J. Carlson, S. C. Pieper, and

R. Schiavilla, Phys. Rev. Lett. 117, 082501 (2016),
arXiv:1605.00248 [nucl-th].

[17] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schi-
avilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod.
Phys. 87, 1067 (2015), arXiv:1412.3081 [nucl-th].

[18] J. Carlson, J. Jourdan, R. Schiavilla, and I. Sick, Phys.
Rev. C65, 024002 (2002), arXiv:nucl-th/0106047 [nucl-
th].

[19] T. W. Donnelly, M. J. Musolf, W. M. Alberico, M. B.
Barbaro, A. De Pace, and A. Molinari, Nucl. Phys.
A541, 525 (1992).

[20] T. W. Donnelly and I. Sick, Phys. Rev. C60, 065502
(1999), arXiv:nucl-th/9905060 [nucl-th].

[21] J. E. Amaro, J. A. Caballero, T. W. Donnelly, A. M. Lal-
lena, E. Moya de Guerra, and J. M. Udias, Nucl. Phys.
A602, 263 (1996), arXiv:nucl-th/9510006 [nucl-th].

[22] J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W.
Donnelly, and J. M. Udias, Phys. Rev. C75, 034613
(2007), arXiv:nucl-th/0612056 [nucl-th].

[23] P. Barreau et al., Nucl. Phys. A402, 515 (1983).
[24] C. Maieron, T. W. Donnelly, and I. Sick, Phys. Rev.

C65, 025502 (2002), arXiv:nucl-th/0109032 [nucl-th].
[25] J. B. Flanz, R. S. Hicks, R. A. Lindgren, G. A. Peterson,

A. Hotta, B. Parker, and R. C. York, Phys. Rev. Lett.
41, 1642 (1978).

[26] S. Karataglidis, P. Halse, and K. Amos, Phys. Rev. C
51, 2494 (1995).

[27] J. Carlson and R. Schiavilla, Phys. Rev. C49, R2880
(1994).

[28] J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Don-
nelly, and C. Maieron, Phys. Rev. C71, 065501 (2005),
arXiv:nucl-th/0503062 [nucl-th].

[29] V. D. Efros, W. Leidemann, G. Orlandini, and E. L.
Tomusiak, Phys. Rev. C72, 011002 (2005), arXiv:nucl-
th/0505028 [nucl-th].

[30] A. Fabrocini, Phys. Rev. C55, 338 (1997), arXiv:nucl-
th/9609027 [nucl-th].


