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Abstract
Four light-mass nuclei are considered by an effective two-body clusterisation method; 7Li as 3H+4He,

7Be as 3He+4He, 8Be as 4He+4He, and 6Li as 2H+4He. The low-energy spectra of the former three are deter-

mined from single-channel Lippmann-Schwinger equations. For the latter, two uncoupled sets of equations

are considered; those involving the 3S1 and those of the posited 1S0 states of 2H. Low-energy elastic scat-

tering cross sections are calculated from the same 2H+4He Hamiltonian, for many angles and energies for

which data are available. While some of these systems may be more fully described by many-body theories,

this work establishes that a large amount of data may be explained by these two-body clusterisations.

PACS numbers: 21.60.Gx, 24.30.-v, 25.45.-z, 25.55.-e

I. INTRODUCTION

The scattering and cluster spectra formed by

an α-particle with each of the four light mass

nuclei considered herein constitute basic infor-

mation required for studies of nuclear reactions

responsible for the relative abundances of light

atomic nuclei observed throughout the universe.

These arose from the big bang, and in light stars

(≤ 1.5 M⊙) proton-proton chain reactions lead

to the formation of nuclei up to mass-8. Once

the α particles generated in those reactions are

present in sufficient number, the triple-α process

can produce 12C; the crucial feature being the

energy of the Hoyle state in 12C lying just above

the break-up threshold. In the triple α-process,

the first two α-particles fuse to form 8Be whose

instability to α-decay results in an equilibrium

concentration of 8Be in stellar environments.

As noted by Dubovichenko and Uzikov [1],

experimental studies of astrophysical nuclear

∗Electronic address: paul.fraser@curtin.edu.au

reaction properties are complicated by the fact

that the energies of most relevance are ex-

tremely low, frequently so low that direct mea-

surement is nearly impossible. Thus, astrophys-

ical quantities are often extrapolated from scat-

tering data taken at higher energies, and such

linear extrapolation is not always justified. In

addition, experimental errors in measured cross

sections are often large (for radiative capture

cross sections being as much as 100 percent),

depreciating the results of any extrapolation. In

such cases, theoretical predictions such as those

presented herein can be necessary.

In recent years, the spectra and elastic scat-

tering of these light mass cluster systems has be-

come of interest as test beds for modern theoret-

ical techniques. For example, Refs. [2–4] used

a RGM/NCSM method and Ref. [5] used an

Alt-Grassberger-Sandhas three-body approach

to that end. An interesting method of analytic

continuation of the elastic scattering data at pos-

itive energies to negative energies was investi-

gated in Ref. [6], and applied to extract bound-
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state properties of the 2H+4He system.

Dubovichenko and Uzikov [1] note that

while there are many microscopic models of the

continua of light mass nuclei, they usually en-

tail cumbersome multichannel calculations, the

accuracy of which cannot always be determined

reliably. Consequently with the view to current

or future assessments of astrophysical aspects

of nuclear physics, the application of relatively

simple, but realistic, models is justified. Usu-

ally such model calculations are set by finding

best agreement with available low-energy scat-

tering data. Herein we follow that procedure but

add the requirement that the cluster model re-

produce the low lying spectrum (bound and res-

onant) of the compound nucleus; including the

binding energy relative to the cluster pair thresh-

old.

In this way we consider the light mass clus-

ters leading to the four compound nuclei of in-

terest to be describable with an effective two-

body, single-channel model. None of the four

nuclei forming the clusters have low lying ex-

cited states below nucleon breakup thresholds.

However the compound systems formed, 6Li,
7Li, 7Be, and 8Be, do. We use a Sturmian expan-

sion approach to solve Lippmann-Schwinger

(LS) equations; an approach that provides a low

energy spectrum (bound and continuum states)

of the compound nucleus formed by each clus-

ter considered, as well as giving the relevant

S -matrices with which scattering cross sections

can be evaluated.

In this investigation, we calculate the low-

energy elastic scattering cross section of the
4He+2H system and the low-energy spectrum

of 6Li from the same clusterisation, both us-

ing the same interaction potential. Investiga-

tion of the low-energy scattering of deuterons

from 4He dates back to experimental work

in the 1930s [7]. As noted, Refs. [2–4]

used a RGM/NCSM method and considered
2H-4He scattering, amongst other reactions.

Ref. [5] used a Alt-Grassberger-Sandhas three-

body method in momentum space at deuteron

energies of 4.81 and 17.0 MeV also for the 2H-
4He system. While details of this scattering may

be investigated in a more fundamental way, e.g.

by using three- or six-body approaches, it re-

mains useful to investigate how much of the

spectrum and cross section may be explained

by a simpler two-body clusterization. A simi-

lar model phenomenological semi-microscopic

model has been used recently to calculate phase

shifts, for which a good match to data was ob-

tained [1] as was the calculated S -factor for cap-

ture.

We have also used the same method to spec-

ify the spectra of 7Li and 7,8Be from the clus-

ters of 3H, 3He, and 4He with 4He respectively.

Spectra of 7Li and 7Be have been found previ-

ously [8] by solving the coupled-channel prob-

lems of nucleons coupling to 6He and 7Be nu-

clei allowing for the nucleons to interact with

low excitation states of the nuclei. The results

agreed well with known states in the spectra.

Here we do not have a coupled-channel prob-

lem since, for the range of energies we consider,

all nuclei involved can be taken to be in their

ground states. The spectra of the two mass-7

nuclei have two bound states and two resonance

states below ∼7 MeV excitation.

The last system we consider, 8Be, has only

two resonance states in its low excitation spec-

trum, the ground and first excited state at

3.03 MeV. The next resonance state has a cen-

troid of 11.35 MeV. The ground state resonance

lies just 0.0918 MeV above the two α break-

up threshold and is very narrow (5.57 eV); both

features crucially important in the three-α stel-

lar process. The 4He-4He cluster calculation is

of the simplest form in the effective two-body

approach and the two resonance states can be

found with appropriate energy values.

In the next section we give a précis of the

method used and follow that with a short state-

ment on the forms of charge distributions used

to ascertain the Coulomb interactions of the

clusters. Then in Sec. IV we report on the spec-

tra of the clusters 7Li and 7,8Be found with the

method we have used. The spectra and scatter-

ing cross sections for the 2H-4He cluster are then

given and discussed in Sec. V. Conclusions are

drawn in Sec.VI.
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II. STURMIAN EXPANSION SOLUTIONS

OF LIPPMANN-SCHWINGER EQUATIONS

The method uses separable expansions of the

assumed interaction potentials between two nu-

clei. The form factors in that expansion are de-

rived from Sturmian functions defined from the

chosen two-cluster interaction potentials. In the

cases of 4He coupled with 3H, 3He, and another

4He cluster, the two nuclei have no excited states

of low excitation. For example 4He has reso-

nance states, but they lie above 20 MeV excita-

tion. Thus, we deal with single channel interac-

tions of a spin-1
2

or spin-0 particle with a spin-0
4He. With the 2H-4He clusterisation, we con-

sider that there are two uncoupled sets of equa-

tions to solve; those formed by the 3S1 and, sep-

arately, the 1S0 states of the 2H.

Then with channels c = (l, I); Jπ, (l the orbital quantum number of relative motion, I the spin

0, 1
2

or 1 as appropriate for the nucleus chosen to cluster with an 4He nucleus, the LS equations for

the single channel T -matrices have the form,

T Jπ

cc′(p, q; E) = V Jπ

cc′(p, q) + µ
∑

c′′

∫ ∞

0

V Jπ

cc′′(p, x)
x2

k2 − x2 + iǫ
T Jπ

c′′c′(x, q; E) dx, (1)

where the momentum k =
√
µE, with µ designating 2mred/~

2; mred being the reduced mass. Solu-

tions of Eq. (1) are sought using the (finite sum) expansion

Vcc′(p, q) ∼
N

∑

n=1

χ̂cn(p) η−1
n χ̂c′n(q) . (2)

To evaluate scattering cross sections, one needs the S -matrices which are linked to the T -matrices

as [9, 10]

S cc′ = δcc′ − iπµ kc′ Tcc′ = δcc′ − i(lc′−lc+1)πµ

N
∑

n,n′=1

√

kc χ̂cn(kc)
(

[η −G0]−1
)

nn′
χ̂c′n′(kc′)

√

kc′ , (3)

In this representation, G0 and η have matrix elements

[G0]nn′ = µ
∑

c

∫ ∞

0

χ̂cn(x)
x2

k2 − x2 + iǫ
χ̂cn′(x) dx ;

[

η
]

nn′ = ηn δnn′ . (4)

Bound states of the compound system, if they exist, are defined by the zeros of the matrix deter-

minant in Eq. (3) when the energy, E, is less than zero.

The input matrices of potentials are taken to have the form

Vcc′(r) = Vcoul
cc′ (r) +

[

V0 δc′c f (r) + Vℓℓ f (r) [ℓ · ℓ] + VII f (r) [I · I] + VℓI g(r) [ℓ · I]

]

cc′
(5)

wherein local form factors (Woods-Saxon functions),

f (r) =
[

1 + e( r−R
a )

]−1
; g(r) =

1

r

d f (r)

dr
, (6)

are used. If needed, the surface can be deformed (R = R(θφ) = R0 [1 + ǫ]). Details of this and of

the relevant matrix elements are given in Ref. [11]. Vcoul
cc′ (r) are elements of the Coulomb potential

matrix. The forms we use are given in the next section.

III. CHARGE DISTRIBUTIONS FOR THE

NUCLEI AND THE COULOMB INTERAC-

TION BETWEEN THEM.

We assume both nuclei in the cluster have

Fermi (3pF) form, viz

ρch(r) = ρ0













1 + wc

(

r

Rc

)2










1

1 + exp
(

r−Rc

ac

) , (7)3



where Rc and ac are the radius and diffuseness

parameters for a Woods-Saxon distribution, and

wc is a scaling parameter. The central charge

density is that with which the volume integral

of the distribution equates to the charge of the

nucleus represented.

To define the Coulomb interaction between

such charge distributions, first consider that felt

by a positively-charged point test particle with

charge δe and a general spherical charge distri-

bution, ρ0 f (r), i.e.

V
(pt)

coul
(r) = δe

∫

ρ0 f (r′)
1

|r′ − r|
dr′ . (8)

After expanding in multipoles and performing

angular integration, the only non-zero compo-

nent comes from the s-wave (ℓ = 0), whence

V
(pt)

coul
(r) = 4π(δe)ρ0

∫ ∞

0

f (r′)vℓ=0(r′, r)r′
2
dr′.

(9)

where vℓ=0(r′, r) = 1
r>

with r> and r< being the

greater and lesser of r′ and r, respectively. The

radial integration splits into two terms, giving

V
(pt)

coul
(r) = 4π(δe)ρ0

[

1

r

∫ r

0

f (s) s2 ds

+

∫ ∞

r

1

s
f (s) s2 ds

]

.

(10)

With both nuclei in the clusterisation having

3pF charge distributions, the field given in

Eq.(10) is folded with the 3pF charge distribu-

tion for the second body. The geometry is as

shown in Fig. 1.

With s =
√

r2 + r′2 − 2rr′ cos(θ), the

Coulomb potential is

Vcoul(r) = 2π

∫ ∞

0

r′
2

f (r′)dr′
∫ π

0

V
(pt)

coul
(s) sin(θ) dθ.

(11)

For 4He, the parameter values of the 3pF

charge distribution are as given in Ref. [12, 13].

They are Rc = 1.008 fm, ac = 0.327 fm,

and w = 0.445. As 3H is listed [12, 13] as

also having a root-mean-square (rms) charge ra-

dius of 1.7 fm, the 4He parameter set has been

r

s
θ

δe

δe = ρ
0
 f(r’) r’

2
 sin(θ) dr’ dφ dθ

r’

FIG. 1: The geometry for two interacting nuclei,

both having a 3pF charge distribution.

used for its charge distribution as well. 3He is

listed [12, 13] as having a slightly larger rms

charge radius, 1.88 fm. As there is no speci-

fied set of 3pF parameters given, we considered

a range of values for them, since, as shown in

Ref. [14], variation in the three parameters leads

to minimal difference in results provided the rms

charge radius is kept constant. The set used are

listed in Table I.

For 2H, the rms charge radius has been de-

termined [15] to be 2.13 fm. To have that value

with the average distribution of the single pro-

ton smeared out over an appreciable distance,

that rms radius is met using the set of 3pF pa-

rameters, R = 0.012 fm, ac = 0.592 fm, and

wc = 0.

IV. STUDIES OF THE 3H+4He, 3He+4He AND
4He + 4He SYSTEMS

These cases are taken to be single channel

problems given that the components are quite

strongly bound and have no excited states be-

low nucleon emission thresholds. However,

the compound systems do have well established

spectra and, for the 3H+4He and 3He+4He sys-

tems, the states that we might expect to obtain

with a potential model are those indicated in Ta-

ble II. The reactions involving 4He that lead to

them, or have the mass-7 states as a compound

system, are indicated by the check marks.

No orthogonalizing pseudo-potential

(OPP) [17] to effect inclusion of the Pauli prin-

ciple has been used in treating these clusters as

single-channel problems since all states found
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TABLE I: Diverse 3pF parameter values giving a root-mean-square charge radius of 1.88 fm.

Rc 1.02 1.02 1.04 1.04 1.06 1.06 1.08 1.08 1.1

ac 0.358 0.362 0.358 0.362 0.356 0.36 0.356 0.36 0.356

w 0.49 0.43 0.48 0.42 0.5 0.44 0.49 0.46 0.48

TABLE II: States in 7Li and of 7Be relevant to this investigation and known reactions [16] involving 4He

that populate them.

Jπ 7Li 7Be

Jπ 3H(4He,n) 4He(3He, π+) 4He(4He,p) 4He(3He, γ) 4He(3He,3He), (3He,p) 4He(4He,n)
3
2

− √ √ √ √ √
1
2

− √ √ √ √
7
2

− √ √

5
2

− √ √

thereby are orthogonal. Thus any state that

should be blocked because it requires the 7 or

8 nucleons to lie in the 0s-shell simply can

be ignored. Only if there is channel coupling

does a problem arise in ensuring that the

Pauli principle is satisfied [11]. With channel

coupling, all resultant states of the cluster are

linear combinations of all states of the same

spin-parity defined in the potentials for each of

the target states considered.

A. The 3H + 4He and 3He + 4He systems

Spectra of 7Li and 7Be have been found pre-

viously [8] using the multi-channel algebraic

scattering (MCAS) program written for spin-
1
2

particles coupling to a nucleus. The results

agreed well with known states in the spectra. A

program has now been written for 4He (spin-0)

particles coupling to a nucleus. This has been

used to again calculate the spectra for the com-

pound nuclei, 7Li and 7Be, as a check against

the results found earlier [8].

For the check run, the interaction with

strength parameter values (in MeV), V0 = -76.8,

Vll = 1.15, and VlI = 2.34 was used. The ge-

ometry of the Woods-Saxon form was set with

R0 = 2.39 and a = 0.68 fm. The Coulomb po-

tential was set, as in Ref. [8], to be that from

a uniformly charged sphere. The charge ra-

dius for the 4He+3H calculation was taken as

Rc = 2.34 fm, while a slightly larger charge ra-

dius (2.39) was used for the 3He+4He calcula-

tion. These values differ (slightly) from those

used previously [8] in a study of the same com-

pound systems but taken as 3H and 3He projec-

tiles coupled to an 4He target. The differences

are due primarily to our current use of the nu-

clear masses listed in Ref. [19] rather than the

nucleon mass numbers. Using this interaction,

we obtained the results listed in Table III and in

the columns with the heading ‘check’. The com-

parison between the results given in Ref. [8] and

by these check runs is sufficiently good that the

two codes used we deem to give equivalent re-

sults.

Using 3pF distributions for both nuclei in the

clusters instead of the uniform sphere approach

above, and with adjusted nuclear potential pa-

rameter values, the results listed in Table III

in the columns specified as ’present’ were ob-

tained. For these results, the nuclear interac-

tion parameter values were V0 = −80.15 MeV,

Vℓℓ = 1.1 MeV, and VℓI = 3.0 MeV with a

Woods-Saxon geometry, R0 = 2.35 fm and

a0 = 0.64 fm. The 3pF parameter set defined

above to give an rms charge radius of 1.7 fm

was used for both 3H and 4He, while that used
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TABLE III: Spectra of 7Li and 7Be from a 4He coupled to 3H and 3He respectively. The energies are in

MeV while the widths are in keV. The experimental values are those listed in Ref. [18].

7Li 7Be

Jπ Exp. present check Ref. [8] Exp. present check Ref. [8]
3
2

−
spurious −31.1 −29.6 −29.4 spurious −29.7 −27.8 −28.0

1
2

−
spurious −29.6 −28.0 −27.8 spurious −28.3 −26.3 −26.4

3
2

− −2.47 −2.49 −2.59 −2.47 −1.59 −1.55 −1.53 −1.53
1
2

− −1.99 −1.81 −1.87 −1.75 −1.16 −0.90 −0.85 −0.84
7
2

−
2.18 (69) 2.23 (83) 2.09 (80) 2.12 (83) 2.98 (175) 3.19 (180) 3.14 (204) 3.07 (180)

5
2

−
4.13 (918) 4.16 (717) 4.05 (800) 4.12 (834) 5.14 (1200) 5.15 (1040) 5.13 (1250) 5.09 (1194)

for 3He we choose to be the first set in Ta-

ble I, namely Rc = 1.02 fm, ac = 0.358 fm, and

wc = 0.49. Using the other sets of parameter val-

ues listed in Table I (all of which gave an rms

charge radius of 1.88 fm) varied the spectral en-

ergies from those listed by no more 25 keV (cen-

troids and widths).

The ‘present’ results agree to within 200 keV

(energies and widths). This is encouraging

since only the 4He break-up thresholds (2.47

and 1.59 MeV for 7Li and 7Be) lie in the range

shown.

B. The 4He + 4He system

We have evaluated the spectrum resulting for

the clusters 4He+4He as another single-channel

problem, since the 4He nucleus is strongly

bound and has no other bound state in the (low-

energy) spectrum. From Ref. [16], we note

that the 0+
1

and 2+
1

states of 8Be have been

found with the 4He(4He, γ) and 4He(4He,4He)

reactions. With a (positive-parity) interaction

[V0 = −47.1 MeV, Vll = 0.4 MeV, R0 = 2.1 fm,

and a0 = 0.6 fm] and the Coulomb potential

from folding two 3pF distributions, two low-

excitation resonance states for 8Be, relative to

the cluster threshold, are found. They are the

ground state (0+) resonance having centroid and

width energies of 0.092 MeV and 5 eV [c/f ex-

perimental values[18] 0.092 MeV and 5.96 eV]

and a first excited (2+) resonance state with

centroid and width energies of 3.16 MeV and

1.11 MeV compared with experimental values

of 3.03 MeV and 1.51 MeV respectively. With

this simple (local Woods-Saxon) single-channel

interaction, no 4+ resonance state is found; at

least below 20 MeV excitation.

In this case, the interaction allows a 0s-state

bound by 20 MeV, which, due to Pauli block-

ing, is deemed to be spurious and so has been

ignored since all resultant states from the single

channel problem are orthonormal.

V. RESULTS FOR THE 2H + 4He SYSTEM;

CROSS SECTION AND SPECTRUM OF 6Li.

We consider the 2H-4He system as two

single-channel problems; one for the 3S1

(ground) state and the other for the posited 1S0

state of the deuteron. We do not consider the

states to be coupled by a spin-isospin changing

interaction. The deuteron states are both of pos-

itive parity and the low excitation spectrum of
6Li only has positive parity states so the domi-

nant character of the interaction potentials is of

positive parity. The results were obtained using

V0 = -64.775, Vll = 0.93, VlI = 1.97, and V+II =

-2.0 (all in MeV) with a geometry of R0 = 2.3

and a0 = 0.43 fm. We also allowed the potential

to have second order deformation contribution

with β2 = 0.22. No negative parity interaction

has been used, as no such states are known.
6Li has a known low-energy spectrum con-

taining six states: a 1+; 0 ground state, fol-

lowed by 3+; 0, 0+; 1, 2+; 0, 2+; 1 states, and
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finally a second 1+; 0 at 5.65 MeV. The next

state is 17.98 MeV above the ground state. The

3+ state appears as a clear resonance in the
2H+4He cross section, 2.186 MeV above the

ground state (or 0.7117 MeV above the scatter-

ing threshold, at Ed = 1.067 MeV or Eα = 2.135

MeV) [20–26]. Also evident is the 2+
1

reso-

nance 4.31 MeV above the 6Li ground state (or

2.8375 MeV above the scattering threshold, at

Ed = 4.253 MeV or Eα = 8.507 MeV) [21, 27–

29]. Present but less pronounced is the 1+ reso-

nance 5.65 MeV above the 6Li ground state (or

4.1757 MeV above the scattering threshold at

Ed = 6.264 MeV or Eα = 12.527) [30, 31].

It is possible that Ref. [32] shows data for

the 0+ resonance of 6Li 3.563 MeV above the

ground state (or 2.0887 MeV above the scat-

tering threshold at Ed = 3.133 MeV or Eα =

6.266 MeV), but the data points are sparse. The

2+
2

state of 6Li 4.31 MeV above the ground state

(or 2.8357 MeV above the scattering threshold)

does not appear in data. Data also exists for

higher energies [33–38].

Cross sections calculated at fixed scatter-

ing angles using the associated S -matrices of

Eq. (3) angles, are compared to measured data

in Figs. 2 and 3. The angles at which calcula-

tions have been made are shown in each seg-

ment of these figures. The data shown in these

figures are taken from Ref. [32] (filled circles)

at 37.2, 50.0, 51.67, 90.0, and 120.0◦, from

Ref. [22] (open circles) at 38.75, 48.9, 90.0, and

125.0◦, from Ref. [27] (filled squares) at 51.9,

90.0, 125.3, and 139.1◦, from Ref. [30] (open

squares) at 50.36, 87.23, 120.1, 137.5, 163.0,

and 164.5◦, from Ref. [22] (upside down tri-

angles) at 38.75, 48.9, 90.0, and 125.0◦, from

Ref. [20] filled triangles) at 90.0 and 120.0◦, and

from Ref. [21] (open triangles) at 90.1, 125.2,

140.7, and 167.7◦. They are given in the seg-

ments in which they are closest to the calcu-

lation angle. All cross sections are in centre-

of-mass frame, and projectile energies are all

in laboratory frame with an α-particle target.

While the calculation is defined with a deu-

terium target, the appropriate change of frames

has been performed.

In both Fig. 2 and 3, two calculated reso-

nance features are evident. They coincide with

the first excited, isoscalar, 3+, and the isoscalar

2+ states of 10Be. In the middle panel of Fig. 2,

the locations of the experimentally known and

calculated states of 10Be are shown. In Fig. 3,

wherein our results are compared with data

taken at backward scattering angles, to more

clearly see the structures, the plots are fully log-

arithmic. Again the 3+ and 2+ resonances are

most evident and the calculated results for en-

ergies above ∼5 MeV are too small, not reveal-

ing any resonance effect due to formation of the

isoscalar 1+ and of the isovector 2+ states. Also

shown in the bottom panel is a second calcu-

lated result taken from Ref. [4]. Their model

gives a better description of the data in the 4 to

8 MeV region. More specifically, the shape of

the 3+ resonance is recreated well at most scat-

tering angles; centroids, widths and with rea-

sonable strengths. The exception is the result

for θcm = 125◦ where, while the resonance ef-

fect is noted at the correct centroid energy, the

magnitude is too low. Off resonance, our calcu-

lated results agree by and large with the avail-

able low energy data. For the higher energy re-

gion, the resonance feature due to formation of

the 2+ state is well recreated at 50◦ and 164◦,

and reasonably well at some of the other angles.

The non-resonant background calculated at en-

ergies above this resonance usually is underesti-

mated and the 1+ resonance present in the data is

not reflected in our calculated results. This reso-

nance was found by the six-body calculation of
2H-2He scattering by Ref. [4], however, and so

is a distinctive difference in the results of a more

sophisticated calculation than ours.

Cross sections calculated at fixed energies

are compared to experiment in Figs. 4 and

5. The former shows differential cross sec-

tions for eight deuteron energies, ranging from

0.88 to 6.3 MeV. For clarity, the results and

data in the left hand panel are depicted semi-

logarithmically, those in the right hand panel are

shown on linear scales. In Fig. 5 we examine

five data sets, four of which were also studied

in Ref. [4], at 2.935, 6.695, 8.971 and 12 MeV,
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and the fifth that was studied in Ref. [5]. The

notation is as given for Figs. 2 and 3 with addi-

tional data depicted as follows; Ref. [39] (filled

inverted triangles), Ref. [31] (open inverted tri-

angles), Ref. [40] (left filled triangles), Ref. [41]

(open left triangles), and Ref. [42] (filled dia-

monds).

With some exceptions, this two-body calcu-

lation tends to reproduce the small-angle scat-

tering better than data at larger angles, matching

small angle data slightly better than the results

given in Ref. [4]. However the results found in

Ref. [4] are superior to ours at the large scatter-

ing angles.

For the lower set of energies, as shown in

Fig. 4, our calculated results agree quite well

with the data, especially at the four lowest en-

ergy values that span the region of the 3+ res-

onance. The 4.6 MeV result, near the 2+ reso-

nance, is quite a good match to data. Above this

energy, where the 1+ resonance is expected to

influence results, our results are poorer, as may

be expected. In general, at deuteron energies

from 4.5 to 6.3 MeV, the calculated cross sec-

tions have shapes more pronounced than in the

data.

In Fig. 5 we compare a select set of data and

our results with the differential cross sections

given in Refs. [4, 5]. The latter results, shown

by the dashed curves, are in excellent agreement

with the data at all of the selected energies. Our

results are not in as good agreement, but the

shapes and magnitudes of them are acceptable

in comparison with those revealed in the data.

The same sturmian approach to solving

the Lippmann-Schwinger equations also yields

bound-state and resonance energies for the com-

pound nucleus. In Fig. 6 the experimentally

known spectrum is compared with that result-

ing from the calculation. The calculation finds

all six known low-energy states of 6Li. Spurious

minimal energy states were eliminated when an

OPP contribution of λ = 106 MeV was used to

block the 1s orbit from having more than the

four allowed nucleons. They can also simply be

discarded, since they are orthogonal to all oth-

ers.

Owing to the absence of coupling between

channel involving the 2H triplet and singlet

states, the 0+
1

and 2+
1

states are purely found

from coupling of the 2H singlet state to the
4He ground state partial waves. All other states

are purely found from coupling of the deuteron

triplet state to the 4He ground state. The first

three excited states are found to within a few

tens of eV of data. The final T = 0 state, the 1+2 ,

is too low in energy by an MeV. The singlet state

was assumed to be at the 2H breakup threshold,

i.e., 2.224 MeV above the ground state. As there

is no mixing between the 6Li T = 0 and T = 1

states in this calculation, the excitation energies

of the two T = 1 states depend linearly on the

energy of the 2H singlet state, though the gap

between them is set by the interaction potential

parameters. This gap is too large by ∼1.1 MeV,

and while the energy of the 2+
2

state is recreated

well, the calculated energy of the 0+ state is too

low. It is possible that the antibound singlet state

would have a different charge distribution and a

different nuclear interaction with the α-particle

than does the triplet state. However, in this work

we opt to use a single interaction as experimen-

tal data are not available to guide selection of

the relevant parameters.

While the above approach successfully cal-

culates spectral energies of 6Li, it has limita-

tions with regard to other state properties. The

ground state quadrupole moment of 6Li cannot

be explained by cluster models such as that used

here [43]. At minimum, consideration of ten-

sor correlation is required, and D-wave mix-

ing must be considered in 2H, in 4He, and be-

tween these two bodies. Identities in Ref. [44]

equate quadrupole deformation with quadrupole

moment for collective models such as that used

here. Using the measured quadrupole moment,

−8.2 × 10−4 [45] yields a deformation β2 =

−0.0313. This is quite different to the value used

herein of +0.22, though the comparison is valid

only to the extent that the quadrupole deforma-

tion of the 2H-4He interaction potential may be

equated with the 6Li ground state quadrupole

deformation.
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VI. CONCLUSION

The methodology we have used enables all

low excitation compound system properties,

spin-parities, energies and widths, extractable

from a specific Hamiltonian to be found. With

it, allowance can be made for the effects of the

Pauli principle in regards to assumed occupan-

cies of nucleon orbits in the target states. For

single channel problems such as those addressed

herein, without such accounting (via orthogo-

nalizing pseudo-potentials), spurious states are

unique and orthogonal to those that are not.

Thus, they can simply be discarded. With

the cases studied, all spectral properties are

found by solving Lippmann-Schwinger equa-

tions. Resonance properties are defined by the

poles of the T -matrix associated with the cho-

sen Hamiltonian.

The first cases considered were 7Li and 7Be

formed as the clusters of 4He with 3H and 3He

respectively. As the α break-up thresholds are

2.47 and 1.49 MeV respectively, states above

those energies were found that are resonances

in the cluster evaluations with widths that agree

quite well with observation. The widths of res-

onance states are reaction specific but as only

the 4He break-up channels are relevant in the

energy range considered (the next threshold is

7.25 MeV for neutron emission from 7Li and

5.61 MeV for proton emission from 7Be), those

widths then are also the total widths. The good

agreement with experimental values is evidence

of the model’s utility.

The next study made was that of the spec-

trum for 8Be formed as a cluster of two 4He; a

process at the heart of the so-called three α for-

mation of the Hoyle state in 12C in stellar envi-

rons. With our two-body approach, we find two

low-excitation resonance states in 8Be. They are

the ground state (0+) resonance having centroid

and width energies of 0.092 MeV and 5 eV [c/f

experimental values[18] 0.092 MeV and 5.96

eV] and a first excited (2+) resonance state with

centroid and width energies of 3.16 MeV and

1.11 MeV compared with experimental values

of 3.03 MeV and 1.51 MeV respectively. Start-

12



-1.4743

0.7117

2.0887

2.8357

3.8957
4.1757

-1.4743

3.1645
2.8458

0.7111
1.0233

4.0238

-1

0

1

2

3

4

5

E
x
 (

M
eV

)

CalculationExperiment

1
+
; 0

3
+
; 0

0
+
; 1

2
+
; 0

2
+
; 1

1
+
; 0

FIG. 6: (Color online.) Experimental spectrum of 6Li compared with the present calculation. In the calcu-

lation, solid lines are from coupling to the deuteron 3S1 state, and dashed lines are from coupling to the 1S0

state.

ing with this, we plan full coupled-channel cal-

culations of the 4He+8Be cluster leading to the

Hoyle state.

We then considered 6Li as a 2H+4He clus-

ter. We considered the two states of the 2H,

the ground 3S1 and the 1S0, as uncoupled states

and solved two single channel LS equations to

obtain estimates of the isoscalar and isovec-

tor states in the low-excitation spectrum of 6Li.

Four of the possible six states were found in

good agreement with the known values [18],

with only the two highest ones, the 2+
2

and 1+
1

differing by an MeV from the correct energies.

We have also made calculations of 2H+4He

scattering at low energies, treating both as single

bodies. It was found that this approach recre-

ates many of the features observed experimen-

tally, though some require a more sophisticated

approach. The 4He ground state was coupled to

the 2H ground state treated as a pure 3S1 state,

and separately to a 1S0 resonance, to calculate

the spectrum of 6Li. Channels of the 3S1 and
1S0 states were not coupled. All six known low-

energy 6Li states were recreated, with the first

four very close to their known energies and the

two most energetic being found at energies that

deviate from the measured states by ∼1 MeV.

The 2H and 4He ground states were coupled to

calculate elastic scattering cross sections, and

the match to data was overall good. The ob-

served 3+ and 2+ resonances were recreated, and

had the correct shapes and reasonable magni-

tudes at most angles. The non-resonant cross

section was also well reproduced. The observed

1+ resonance, however, was not evident in cal-

culated cross sections, though the state is found

in the calculated spectrum. Cross sections at

fixed angles were good near the two observed

resonance energies, though in general results

at low angles were a better match to data than

13



those at high angles.

A gauge invariant theory to evaluate capture

cross sections using the bound and continuum

wave functions derivable from solutions of the

Lippmann-Schwinger equations has been devel-

oped (and used) for 3H+4He system [46]. Stud-

ies of the other cases discussed herein, being im-

portant astrophysical quantities, are planned for

a future publication.
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[3] P. Navrátil and S. Quaglioni, Phys. Rev. C 83,

044609 (2011).

[4] G. Hupin, S. Quaglioni, and P. Navrátil, Phys.
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