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Abstract

Background: The distribution of protons and neutrons in the matter created in heavy-ion

collisions is one of the main points of interest for the collision physics, especially at supranormal

densities. These distributions are the basis for predictions of the density dependence of the sym-

metry energy and the density range that can be achieved in a given colliding system. We report

results of the first systematic simulation of proton and neutron density distributions in central

heavy-ion collisions within the beam energy range of Ebeam ≤ 800MeV/nucl. The symmetric

40Ca +40Ca, 48Ca +48Ca, 100Sn +100Sn and 120Sn + 120Sn and asymmetric 40Ca +48Ca and 100Sn

+120Sn systems were chosen for the simulations.

Purpose: We simulate development of proton and neutron densities and asymmetries as a

function of initial state, beam energy and system size system size in the selected collisions in order

to guide further experiments pursuing the density dependence of the symmetry energy.

Methods: The Boltzmann-Uhlenbeck-Uehling (pBUU) transport model with four empirical

models for the density dependence of the symmetry energy was employed. Results of simulations

using pure Vlasov dynamics were added for completeness. In addition, the Time Dependent Hartree

Fock (TDHF) model, with the SV-bas Skyrme interaction, was used to model the heavy-ion colli-

sions at Ebeam ≤ 40MeV/nucl. Maximum proton and neutron densities ρmax
p and ρmax

n , reached in

the course of a collision, were determined from the time evolution of ρp and ρn.

Results: The highest total densities predicted at Ebeam = 800MeV/nucl were of the order

of ∼ 2.5 ρ0 (ρ0 = 0.16 fm−3) for both Sn and Ca systems. They were found to be only weakly

dependent on the initial conditions, beam energy, system size and a model of the symmetry energy.

The proton-neutron asymmetry δ = (ρmax
n −ρmax

p )/(ρmax
n +ρmax

p ) at maximum density does depend,

though, on these parameters. The highest value of δ found in all systems and at all investigated

beam energies was ∼ 0.17.

Conclusions: We find that the initial state, beam energy, system size and a symmetry energy

model affect very little the maximum proton and neutron densities, but have a subtle impact on

the proton-neutron asymmetry. Most importantly, the variations in the proton-neutron asymmetry

at maximum densities are related at most at 50% level to the details in the symmetry energy at

supranormal density. The reminder is due to the details in the symmetry energy at subnormal

densities and proton and neutron distributions in the initial state. This result puts to forefront

the need of a proper initialization of the nuclei in the simulation, but also brings up the question
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of microscopy, such as shell effects, that affect initial proton and neutron densities, but cannot be

consistently incorporated into semiclassical transport models.

PACS numbers: 25.70.-z; 24.10.-i;21.65.Ef;21.60.Jz;21.65.-f;21.65.Cd
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I. INTRODUCTION

The proton and neutron density distributions generated in the course of a heavy-ion

collision, especially at a total density exceeding its normal value (ρ0 = 0.16 fm−3), are

among the main points of interest of theorists, experimentalists and observers, within the

communities of low and medium-energy nuclear physics and of astrophysics of compact

objects. The relative asymmetry of these distributions pertains to the determination of the

Equation of State (EOS) of dense matter. The EOS is usually defined by the dependence

of energy of per nucleon upon density and temperature. In the limit of zero temperature,

following the semi-empirical mass formula [1–3], the energy per particle can be expanded in

terms of the proton-neutron asymmetry δ = (ρn−ρp)/ρ, the local relative difference between

neutron and proton densities:

E(ρ, δ) = E(ρ, δ = 0) + S(ρ) δ2 . (1)

Here, E(ρ, δ = 0) is the energy per particle of symmetric nuclear matter, S(ρ) is the sym-

metry energy. It can be approximated as the difference between the energy per particle for

symmetric and pure neutron matter at the same total density:

S(ρ) ≡
1

2

∂2E(ρ, δ)

∂δ2

∣

∣

∣

∣

δ=0

≈ E(ρ, δ = 1)− E(ρ, δ = 0) . (2)

As the Pauli principle influences the symmetry energy, it is common to subdivide S(ρ) into

a kinetic (no interacting) Fermi-gas contribution Skin and an interaction contribution Sint,

shifting the focus to Sint:

S(ρ) = Skin(ρ) + Sint(ρ) = 12.3MeV
( ρ

ρ0

)2/3

+ Sint(ρ) . (3)

In describing a heavy-ion collision, the main uncertainties are changes in the total density ρ

= ρn+ρp, asymmetry δ and the magnitude and density dependence of the symmetry energy

S(ρ).

The properties of the symmetry energy provides an important clue as to why we have

comparable numbers of protons and neutrons in nuclei and how the competition between

the pp, pn and nn nucleon-nucleon interactions in nuclear environment leads to stability

of nuclear systems observed in nature. No theory exists at present that would offer a

fundamental understanding of the symmetry energy and its properties. For nuclei, the value
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of the symmetry energy at average nuclear density is reasonably well constrained by masses of

heavy nuclei and other data, such as the emission of light clusters in heavy-ion collisions [4].

However, the value and the slope of the symmetry energy, L = 3ρ0 ∂S(ρ)/∂(ρ)|ρ0 , and their

correlation even at the normal density in symmetric nuclear matter are not known with

certainty (for recent reviews cf. [5–7]). Efforts to broaden the range of densities for symmetry

energy studies under laboratory conditions include pursuing observables in experiments with

heavy-ion collisions and comparing them to predictions of transport models [8], such as the

observables quantifying fragmentation [9] and isospin diffusion in peripheral asymmetric

systems [10]. Density dependence of the symmetry energy is a necessary input to these

models and is provided in various empirical forms. The validity of the assumptions is judged

indirectly by comparison of the outcome of transport models with experiment.

We explore the maximal densities reached separately for neutrons and protons in simula-

tions of central heavy-ion collisions at non-relativistic and moderately relativistic energies.

The asymmetry δ in high density matter and its correlation with total density are not open

to direct measurement and have to remain model dependent quantities. Depending on the

type of collision simulation, either single-particle wavefunctions or phase-space distributions

are dynamic quantities which are followed. Proton and neutron density profiles as a func-

tion of time of duration of an individual collision event can be simulated as a function of

beam energy. The maximum proton and neutron densities provide a practical upper limit

on the high-density value of δ for each case. However, it is important to realize that in a

target-projectile asymmetric collision the maximal densities and maximal asymmetry may

not occur at the same place and time.

In this work we consider central collisions in the systems 40Ca +40Ca, 40Ca +48Ca, 48Ca

+48Ca, 100Sn +100Sn, 100Sn +120Sn and 120Sn +120Sn within the beam energy range of

(0−800)MeV/nucleon. Calcium and tin isotopes are often chosen in experimental studies.

Although the 100Sn +100Sn system is not likely to be investigated experimentally in the near

future, we include that system for completeness, as a reference. Note that the ratio of the

number of neutrons to the total number of nucleons in targets and projectiles involved in

the colliding systems is rather similar, being 0.5 (40Ca and 100Sn) and 0.58 (48Ca and 120Sn).

The paper is organized as follows. The numerical methods and their physical basis are

explained in Sec. II. The results and discussion are presented in Sec. III. Conclusions and

outlook form the content of Sec. IV.
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II. DYNAMIC MODELS

Since we wish the simulation in this paper to provide benchmark values of proton-neutron

asymmetry in heavy-ion collisions at low and medium beam energies, we give in this section,

for benefit of a wider audience, a brief survey of the physics of the collisions and the models

used, together with a summary of the parameters these models depend on. The physical

basis of the models should be kept in mind when judging the results and may be helpful in

finding ways for their future refinement.

Heavy-ion collision dynamics changes with the incident beam energy as different physical

aspects play a dominant role in the energy range of ∼ 40–800MeV/nucleon compared with

the lower beam energies. We discuss the Boltzmann-Uhlenbeck-Uehling (pBUU) approach,

used primarily for medium-to-high beam energies, in Sec. IIA, and the Time-Dependent-

Hartree-Fock (TDHF) method, valid only for lower beam energy collisions, in Sec. II B,

reflecting different physics in the low energy region .

The simulation methods employed in this work are single-particle in nature, potentially

underestimating the role of fluctuations, unlike other approaches to modeling heavy-ion col-

lisions such as Quantum Molecular Dynamics (QMD) [11] and Antisymmetrized Dynamics

(AMD) [9]. These methods use Gaussian-type packets to model the particle motion and

predict observables. The nature of fluctuations at high local excitation energies is becoming

similar to the fluctuations in cascade models [12]. However, at lower energies, the nature

and magnitude of fluctuations is not well established. In the present work we are interested

in the maxima of statistically averaged densities reached during the compression stage of

the collision. At this stage the fluctuations are short-lived and do not significantly affect

the density evolution. Thus single-particle approaches such as pBUU and TDHF are fully

justified.

In the above context we should mention the efforts to bridge between the low-energy

TDHF and high-energy Boltzmann approaches, by either supplementing the TDHF equa-

tions with an equation for orbital occupation containing a collision integral [13, 14] or by

complementing the equation for one-body density matrix, implicit in TDHF approach, with

one for two-body matrix [15]. Realistic calculations for those approaches are limited so far

to light systems and low energies [16–18].
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A. The pBUU transport model

Starting the discussion with the higher energy region, central collisions of heavy ions are

laboratory means of bringing nuclear matter to supranormal densities over spatial regions

that are large as compared to the range of the nuclear force, for times long enough to allow

passage of a signal over the region. In a central collision, moving with the N-N center of mass

(longitudinally), a portion of the initial kinetic energy is converted into nuclear compression

energy. There will also be a lateral motion during the collision. Particle densities higher

than in ordinary nuclei can be reached at beam energies of a few hundred MeV/nucleon.

As the beam energy per nucleon increases and becomes comparable with the Fermi energy,

elastic N-N collisions begin to contribute to the compression within the system. With

a reduced role of the Pauli principle, as the Fermi spheres melt down with the occupations

turning to small fractions, the N-N collisions dissipate the longitudinal motion of nucleons

within the overlap region of the colliding nuclei, slowing down the passage of the nucleons

across that region and causing a density pile-up when additional nucleons flow in. At even

higher energies, the colliding nuclei become Lorentz contracted to some degree, before the

overlap region develops. Simultaneously, the N-N collision cross sections become forward

peaked, allowing the longitudinal motion to persist longer during the reaction. In theory,

the highest compression that could be reached in the N-N collision-dominated regime is

given by a solution of the hydrodynamic Rankine-Hugoniot equation. This equation is

applicable provided the system is large enough to allow the matter in the overlap region to

reach complete equilibrium, erasing any memory of the original motion along the beam axis.

However, according to transport simulations, the Rankine-Hugoniot limit is not reached

even for heaviest nuclei, independent of the beam energy [19].

The present numerical simulations of heavy-ion collisions in the higher-energy regime

are based on solution of the semiclassical Boltzmann-Uhlenbeck-Uehling equations using

the code of Danielewicz et al., termed recently pBUU [20]. The names of Uhlenbeck and

Uehling are often associated with the transport equation set for heavy-ion collisions, as the

two authors were the first to modify the original classical transport Boltzmann equation

to include the final state Pauli suppression and Bose-enhancement factors [21]. The pBUU

model is formulated within relativistic Landau theory [22] in which the state of a system of

particles is completely specified when the phase space (Wigner) distribution functions fX of
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the particles are given. Here, fX(ppp,rrr, t)/(2π)
3 represents the phase-space probability density

for finding a particle of typeX , at time t and position rrr, with momentum ppp and a specific spin

direction. Local density of particles X is determined from ρX(rrr, t) = gX
(2π)3

∫

dppp fX(ppp,rrr, t),

where gX is spin degeneracy.

The distributions fX(ppp,rrr, t) satisfy a set of the Boltzmann equations [20] (we omit here

the UU for simplicity)
∂fX
∂t

+
∂ǫX
∂ppp

∂fX
∂rrr

−
∂ǫX
∂rrr

∂fX
∂ppp

= IX (4)

where the single-particle energies ǫX are derivatives of the total energy E of the system

ǫX(ppp,rrr, t) =
(2π)3

gX

∂E

∂fX(ppp,rrr, t)
. (5)

In Eq. (4) vvvX = ∂ǫX/∂ppp is the velocity of a particle X and FFFX = −∂ǫX/∂rrr is the force

acting on the particle. The terms on the l.h.s. of Eq. (4) account for the changes in fX due

to the motion of particles in the average mean field produced by other particles. On the

r.h.s., the collision integral IX that incorporates cross-sections and N-N collision rates [20]

governs the modifications of the distributions fX(ppp,rrr, t) due to elastic and inelastic N-N

collisions and decays caused by short-range residual interactions beyond the mean-field.

The inelastic processes, giving rise to resonances and pion production, play a significant

role only at beam energies close to 800 MeV/nucleon and their effect is marginal below

400 MeV/nucleon. We employ in-medium cross sections adjusted so that the collision radius

does not exceed the typical distance between nucleons in the medium [25]. These cross

sections adequately describe stopping observables from heavy-ion collisions, such as linear

momentum transfer [24], unlike the free cross sections [19, 26]. Details on the collision

integrals can be found in [20] and [24] and in references therein. At low excitation energies,

the N-N collisions are suppressed and the Boltzmann equations reduces to their Vlasov

form [20]. Comparison of the pure Vlasov dynamics to that in TDHF were carried out in

the past by Tang et al. [27] in one dimension and by Wong [28] in three dimensions.

Within the pBUU framework the collision dynamics in a mean-field approximation is

determined by the dependence of the total energy E on the phase-space distributions fX [20].

The energy E consists of the covariant volume term and non-covariant gradient correction E1,

and isospin ET and Coulomb ECoul terms, all defined in the local rest frame where the nucleon

flux vanishes:

E =

∫

drrr ẽ+ E1 + ET + ECoul (6)
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where ẽ is the volume energy density,

E1 =
a1
2ρ0

∫

drrr
(

∇ρ
)2

, (7)

ET = 4

∫

drrr
Sint(ρ)

ρ
ρ2T , (8)

ECoul =
1

4πǫ0

∫

drrr drrr′
ρch(rrr) ρch(rrr

′)

|rrr − rrr′|
. (9)

The expression for the energy density functional ẽ in (6) combines computational ease

with a relative flexibility in predicting density dependence of the energy per particle at zero

temperature and the momentum dependence of the nucleonic mean fields. It reads

ẽ =
∑

X

gX

∫

dppp

(2π)3
fX(ppp)

(

mX +

∫ p

0

dp′ v∗X(p
′, ρ)

)

+

∫ ρ

0

dρ′ Uρ(ρ
′) , (10)

where the summation is over particle species X. The in-medium particle velocity in the

local frame (denoted by the star superscript) depends on the local density and kinematic

momentum as

v∗X =
p

√

p2 +m2
X

/(

1 + c mN

mX

ρ
ρ0

1
(

1+λp2/m2

X

)2

)2
. (11)

where mX is free mass of particleX , and c and λ, representing the strength and characteristic

scale of the momentum dependence, are adjustable parameters. In (10), Uρ is a density-

dependent contribution to the mean-field taken in an empirical form. The full potential

U(ρ,ppp) consists of Uρ and a δUp which describes the momentum dependence of the mean

field [23]:

U = Uρ + δUp = (a ρ+ b ρν)/[1 + (0.4 ρ/ρ0)
ν−1] + δUp . (12)

The constants a, b, c and λ are adjusted to empirical properties of symmetric nuclear matter

and characteristics of the momentum dependent mean-field potential (cf. Table I). The

functional (10) parallels the Skyrme density functional (13), but contains more elaborate

momentum averages than the kinetic energy density used in the Skyrme models. A simple

effective mass substitution in the equations of motion, following from the Skyrme functional,

would be inadequate in the equations over the range of beam energies explored in heavy-ion

collision measurements.

The gradient term E1 allows for the finite range of nuclear forces and its impact, to the

lowest order, on the energy and consequently on nuclear densities in the initial state of the
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reactions. The coefficient a1 in the gradient term is adjusted to yield realistic diffusivity

in the nuclear ground states. The isospin term ET, dependent on the isospin density ρT,

affects both the relative proton and neutron densities in the initial state and the densities

reached in the compression stage of a heavy-ion reaction [29]. High value of the symmetry

energy at supranormal densities may act to reduce the proton-neutron asymmetry at the

high densities and, thus, influence the dynamics [29].

As mentioned in Sec. I, the density dependence of the Sint (cf. Eq. 3) is an input to the

simulation. We employ four different forms of this density dependence. The first model is

the conservative choice of a linear density dependence (labeled S): Sint(ρ) = s0 ρ/ρ0. The sec-

ond model (labeled SM) mimics the density dependence predicted by the SV-bas Skyrme

interaction [30], used in the TDHF calculation (cf. Sec. II B): Sint(ρ) = s1 ρ/ρ0 − s2 (ρ/ρ0)
s3

(cf. Table I). Although these models produce fairly similar values of the symmetry energy

at normal density ∼31MeV, the slope parameters, L = 3ρ0 (∂S/∂ρ)|ρ0 , are significantly

different: L = 85MeV for S and L = 31MeV for the SM model. The hybrid third (SMS)

and fourth (SSM) models are constructed using S and SM parameterizations, in order to

test competing impacts of the low-density and high-density behavior of Sint(ρ). The third

SMS parametrization behaves like SM at low densities and like S at high. In the SSM

parametrization, the order is reversed, i.e. S is followed at low and SSM at high densities.

In each case, the a smooth transition between the S and SM behaviors takes place at a

mildly subnormal density ρ . ρ0, where the S and SM parametrizations cross, cf. Fig. 1

where we illustrate the density dependence of the total symmetry energy as predicted by

the four models.

The initial state of nuclei entering a reaction is determined by solving the Thomas-

Fermi (TF) equations [20] yielded by the requirement that the total energy (6) is minimal

in the ground state . The set of Boltzmann equations (4) for nucleons, baryon resonances

and pions is solved using the test-particle Monte-Carlo method [31]. Given that this work

focuses on finding maximum particle densities over position and time, any statistical fluctu-

ations in the Monte-Carlo calculations outside of the model framework may be of concern.

To minimize possible effects of these fluctuations on deduced maxima, we use a rather large

number of test-particles per physical particle [20], NQ = 3000.

The pBUU model depends on a number of adjustable parameters as introduced above

and summarized in Table I. The particular combination of parameter values yields fairly
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conservative properties of nuclear matter, but that parameter set can be varied to explore

sensitivity of the progress of a reaction and of reaction observables to the characteristics of

the matter.

B. The TDHF model

The method for treatment of low-energy heavy-ion collisions that currently best combines

realism with flexibility and convenience is the Time-Dependent-Hartree-Fock (TDHF) the-

ory, a nonperturbative approach that allows description of multi-nucleon transfer. At low

beam energies, the reaction mechanism of heavy-ion collisions is rather different from that

discussed in Sec. IIA. At energy sufficient to overcome the Coulomb barrier, the colliding

system goes through two main phases, fusion and full overlap of the target and projectile,

followed by disintegration into two or more fragments. The typical nucleon mean-free-path

at low energies exceeds the size of the composite system. This is in contrast with strongly

excited systems produced at higher beam energies, where nucleon mean-free-path shrinks

below the system size and continues to decrease as the beam energy increases.

Unlike in high energy collisions when any equilibration has a hard time completing before

the reaction ends, in low energy collisions several types of equilibrations may occur, each

on a different time scale. At early stages, a fast charge (chemical) equilibration takes place,

which arises from a motion of nucleons near the Fermi surface. The basic mechanism of

this equilibration is understood in terms of extension of the single particle motion from

one nucleus to another, following the lowering of the potential barrier between the two

colliding nuclei after contact. This process can be very fast, having a typical time scale

of ∼10−22 s ≡ 30 fm/c [32]. The charge equilibrium is quite important because it prevents

production of exotic fragments with extreme proton-neutron asymmetry. Relatively longer

time .10−21 s ≡ 300 fm/c is needed for formation of a composite system in which the

single-particle motion becomes synchronized under the influence of the nuclear force to

yield collective oscillations. Density equilibration, in which the matter forms a bound state

with interior density around the normal value ρ0, may also occur, but is not well established

and its time scale is difficult to estimate. It is usually studied together with charge and

momentum equilibration. Momentum equilibrium that represents a balance between nuclear

and Coulomb forces, is expected to take about 10−20 s. Slower equilibration processes, such
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as thermal equilibration, and some specific fission and/or decay processes of the composite

system, can also take place over times of the order of 10−15 s in low-energy collisions, but

these processes are beyond the scope of this work.

The TDHF dynamics presented in this work has been obtained from Sky3D code designed

to solve both static and time-dependent Hartree-Fock equations within a general three-

dimensional geometry. Detailed description of the physics and handling of the code can be

found in Ref. [33].

The model is based on a Skyrme energy functional of the general form [33]

Etot = Ekin + ESkyrme + ECoul + Epair + Ecorr , (13)

where Ekin is the total kinetic energy and ESkyrme stands for terms related to the Skyrme

force. The other terms are additions, not treated self-consistently. They represent the

Coulomb and pairing forces and effects of correlations in the mean-field, such as a correction

for center of mass motion, a rotational correction for deformed nuclei and a correction for

correlations arising from all low-energy quadrupole degrees of freedom in soft nuclei. In the

present work we employ the SV-bas interaction [30] and neglect the pairing and correlation

terms in (13). SV-bas is a set of 15 parameters, fitted to 70 independent pieces of data

on ground-state binding energies of magic and semi-magic even-even nuclei and to over 75

pieces of experimental data on rms charge and diffraction radii, a neutron skin value and

single-particle energies. In addition, constraints on properties of nuclear matter, namely the

value of incompressibility set at K = 234MeV, effective mass m∗/m = 0.9, the symmetry

energy coefficient asym = 30MeV, and the enhancement factor in the Thomas-Reiche-Kuhn

sum rule at κ = 0.4 were imposed in the fit. For some specific examples of physics application

for the SV-bas interaction cf. Ref. [34].

Both TDHF and pBUU models are mean-field approaches to particle dynamics in nuclear

collisions. They differ in that TDHF is a quantum-mechanical framework utilizing single-

particle wavefunctions rather than phase-space probability densities in the semi-classical

pBUU. In TDHF, the initial state of a collision is obtained from static Hartree-Fock (HF)

equations as compared to the TF approach in pBUU. A set of time-dependent Schrödinger

equations is solved self-consistently to obtain wavefunctions describing the time evolution

of a colliding system, and yielding spatial proton and neutron densities at any time and

location.
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The TDHF method is appropriate for simulating low-energy heavy-ion reactions at inci-

dent energy up to about 40MeV/nucleon. The main reasons for such a limitation is that

TDHF does not include any correlations beyond the mean field or N-N collisions which

would affect the dynamics. The advantage of the microscopic TDHF approach is that it

includes shell effects, most important in low energy reactions, which are not included in the

semiclassical pBUU and typically in the molecular dynamics models where, however, N-N

collisions are easily incorporated.

III. RESULTS AND DISCUSSION

In this section we illustrate the main results of the calculations in the whole beam energy

range. We point out similarities and differences in the pBUU and TDHF dynamics across the

energy region where both approaches are expected to work. The proton-neutron asymmetries

reached at high densities are examined in order to distinguish contributions of asymmetries

inherited from the initial state and coming from high-density behavior of the symmetry

energy.

A. Static Densities

Figure 2 shows the density distributions of protons and neutrons, as a function of distance

from the center of a nucleus, obtained by solving static TF (in pBUU) and HF (in TDHF)

equations. In the absence of shell effects within the TF theory, the resulting densities have

a smoother dependence on distance and charge and mass number as compared to the HF

theory. Since tunneling effects are not incorporated to the TF theory, the TF densities lack

the tails falling off exponentially with distance that are evident in the HF densities.

Following general expectations, the central neutron densities are similar to proton densi-

ties in case of the N = Z nuclei, differing by less than 10% for both 40Ca and 100Sn in the HF

and TF models, cf. Fig. 2. The HF model predicts the magnitude of both densities being

somewhat higher as compared with the TF model in 40Ca.

In the N 6= Z systems, the HF predictions of magnitude of the central densities are

also higher than in the TF model. The central proton-neutron asymmetry is also model

dependent. It is about a factor of two bigger for 120Sn and somewhat smaller for 48Ca in HF
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as compared to the TF calculation,

These results can be related to differences in physics included in the HF and TF models.

The presence of shell effects in the HF model and its microscopic nature are expected to

make the approach more suitable for calculation of static nuclei. Thus, for example, the

lack of shell effects and generally the approximate treatment of densities in the TF model

can be the reason that, while in 120Sn the difference between the central proton and neutron

densities is higher in HF than TF, in 48Ca the differences are reversed, see Fig. 2. The shell

effects influence also another significant factor that plays a role, the density distributions at

the surface as compared to the center of a nucleus. In the lighter Ca systems the ratio of

surface to volume is larger that in the Sn systems. As the symmetry energy is lower at lower

densities, the surface areas are energetically favorable for development of relative asymmetry

as compared to the center where the density is higher. Thus the proton-neutron imbalance

at the center is expected to be lower in Ca than in Sn nuclei. As discussed more in detail in

Sec. IIIC, the static proton-neutron asymmetry and its development at subnormal densities

affect significantly the asymmetry at supranormal densities and, thus, has to be determined

as well as possible in order to make trustworthy reaction predictions.

The choice of a symmetry energy model from our pool affects very little the central proton

and neutron densities in the TF calculations. We illustrate this effect showing results for S

and SM in Fig. 2. The results for SSM and SMS models are not included as they are

practically identical to those obtained with S and SM models, respectively. This is to be

expected as there is very little difference within the pairs of the models at sub-saturation

densities (cf. Fig. 1)

B. Time evolution of a collision: contrasting approaches, system sizes and energies

Detailed study of time evolution of proton and neutron densities as a function of beam

energy is essential to our particular goal of extracting maximal values of the densities during

a central collision. Two representative cases of time evolution are illustrated in Fig. 3 for

asymmetric 40Ca + 48Ca and 100Sn + 120Sn projectile+target systems. Results yielded

by the pBUU dynamics with the S model for the symmetry energy, for beam energy 16 ≤

Ebeam ≤ 400MeV/nucl are complemented by the outcome of the TDHF calculation for

16 ≤ Ebeam ≤ 40MeV/nucl, the beam energy region where the TDHF model is applicable.
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The time-dependence of maximal densities in Fig. 3 exhibits some common features char-

acteristic for all the systems we investigate, irrespectively of the approach. First, the neutron

and proton density tends to maximize at about the same time, i.e. the maximum compres-

sion of neutrons and proton matter is synchronized. Second, the time elapsed since early

contact between the colliding nuclei till the absolute maximum is reached is beam energy

dependent, dropping as the energy is increased.

In more energetic collisions, modeled only in pBUU, the maximal density drops in a rather

dramatic fashion after the maximum compression has been reached. This drop corresponds

to a system vaporization. The times for maximal compression and vaporization change

little for the Ca systems between Ebeam = 200 and 400MeV/nucl. In the Sn systems more

noticeable delays develop with energy.

Results at Ebeam ≤ 40MeV/nucl offer not only exploration of the lower beam energy

region but also a comparison of the pBUU and TDHF model predictions. As illustrated in

Fig. 3, in both the Ca and Sn systems the first maximum, typically absolute, is followed by

a series of oscillations with amplitudes decreasing faster with time in pBUU than in TDHF.

The nature of these oscillations in TDHF is illustrated in Fig. 4, which displays contour

plots of proton and neutron densities at sample times in the 100Sn+120Sn collisions at the

energies of 16 and 40MeV/nucl. At lowest energies, the oscillations represent motion of a

fused system. At somewhat higher energies, the systems tend to fission after reaching the

maximum compression and the oscillations represent motion of separated fission fragments.

The out-of-phase oscillations in neutron and proton densities, particularly visible in

TDHF, are related to waves propagating across the colliding system that are fast compared

to the overall system evolution. In a projectile-target asymmetric system, the oscillation

starts with a charge equilibrating wave propagating across the fusing nuclei. This wave is

combined with a spontaneous dipole oscillation along the direction of the reaction that adds,

with an ad hoc phase, to the existing proton and neutron density differences.

The shape relaxation, combined with Coulomb repulsion, enhances multipolarity of the

isovector waves, as demonstrated in Fig. 4. Here we see fission, following the early fusion,

traps instantaneous asymmetries at both ends of the system within the separating fragments

which subsequently re-contract. This relatively complicated and weakly damped isovector

dynamics in TDHF leads to effects such as prediction of a stronger compression of protons

than neutrons in the second peak of the oscillation (cf. Fig. 3).
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Comparing further the Ca and Sn systems in the pBUU and TDHF models, relaxation

after the first compression takes longer in pBUU than in TDHF. These times are almost

the same for Ca and Sn systems in TDHF, but in pBUU the Ca system relaxes faster than

the Sn system. Although the overall pattern of the density evolution is not very different

between the approaches at Ebeam = 16MeV/nucl, for both Ca and Sn, there is a markable

difference in predictions of the TDHF and pBUU models for Ebeam = 40MeV/nucl, both in

amplitudes of the first compression and the onset of oscillations. This effect may be related

to the collisional equilibration taking place in pBUU but not TDHF and to overall stronger

damping of collective waves in pBUU than TDHF.

C. Maximum densities and the proton-neutron asymmetry

Using the maximal densities ρmax
p and ρmax

n , extracted from data on time evolution of a

collision as detailed in Sec. III B, we construct the asymmetry δ = (ρmax
n −ρmax

p )/(ρmax
n +ρmax

p )

as a function of system and beam energy. Although, strictly speaking, the maximal densities

may not be reached at exactly the same time, or at the same location, we find that δ gives

a good overall representation of the asymmetry in the densest matter in a collision, even in

systems with different projectile and target initial asymmetries.

The proton and neutron densities fluctuate as a function of beam energy in pBUU as

a consequence of the Monte-Carlo nature of the calculations and due to the propagating

waves with a strong isovector component in TDHF. The fluctuations can obscure gradual

changes, particularly in a differential quantity such as the asymmetry δ. To circumvent the

issue of fluctuations, in addition to extracting individual values of the maximum densities, we

approximate them at each beam energy x using a smoothing function y = a0+a
1
log(1+a2x).

These interpolated densities, shown in Figs. 5–7 for pBUU and in Fig. 8 for TDHF, are then

used to calculate δ. The parameters a0, a1
and a2, summarized in the Supplemental Material,

show reasonable consistency in all related cases. It follows that the interpolation function is

an adequate representation of the raw data. We note that the error in the fitting is within

a few percent in all cases and does not affect conclusions of the analysis.

Figures 5–7 illustrate the evolution of the interpolated maximum proton and neutron

densities with increasing beam energy for the Ca and Sn systems, respectively, as simulated

in pBUU, using four models of the density dependence of the symmetry energy S, SM, SMS
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and SSM. The results indicate that ρmax
n does not exceed ∼1.3×ρ0 for Sn systems, with the

ρmax
p being below ∼1.1×ρ0. The results for the lighter Ca systems are marginally lower.

In the Vlasov approximation (cf. Fig. 7), in which the N-N collisions are eliminated, the

maximum densities are lower. The highest maximum particle number density, as resulting

from all models used in this work for Ca and Sn systems and beam energies, is ∼2.5×ρ0 at

800 MeV/nucl.

The total nucleon densities normalized to the initial static values (compression ratios)

are given in Tables II and III for pBUU and TDHF, respectively. The ratios generally rise

with increasing beam energy. Interestingly, the compression ratios depend on the size of

a system. Within the elements, the pBUU model predicts the highest compression ratios for

the heaviest (symmetric) Ca and Sn systems, respectively, cf. Table II. The TDHF model

yields the same result for Ca, but in the Sn systems the situation is reversed and 100Sn +

100Sn combination yields the highest compression. This is likely related to a strong shell

effect, enhancing initial density in 120Sn, that apparently dissolves during the collision, but

is used in the normalization. In the region of overlap of the applicability of pBUU and

TDHF, we consistently find higher compression ratios in the pBUU model. The difference

is even more obvious from comparison of TDHF to pBUU in the Vlasov mode, conceptually

closer to TDHF, as neither of these models includes elementary N-N collisions. It seems

that the N-N collisions are detrimental to compression at lower energies, but they enhance

it at higher energies, cf. Table II. The TDHF model yields systematically lower compression

in the beam energy region below 40MeV/nucl, than the pBUU model in the same region,

reaching maximum compression ratio ∼1.4 at 40 MeV/nucl for Sn and ∼1.3 for the Ca

systems (cf. Table III and Fig 8). Higher compression ratios are predicted above the beam

energy 50MeV/nucl, reaching ∼ 2.5 at 800MeV/nucl in the pBUU model with N-N collisions

included.

A remarkable feature of the asymmetries δ, shown in the bottom panels of Figs. 5–7,

is that they evolve with the beam energy more rapidly at low energies than at high ener-

gies. This effect may be understood in terms of the pace of the dynamics. At lower beam

energies, the dynamics is more adiabatic, with density profiles and asymmetry values un-

dergoing broader adjustments before maximal densities being reached. At high energies, the

central region of the system becomes compressed in a shock manner and the asymmetry

represents closer the matter that suddenly has fallen into that region. In the Ca systems,
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a significant portion of proton-neutron imbalance is pushed out to the surface, so asymme-

tries at maximum compression are much reduced, almost by a factor of two, compared to

the total asymmetry expected from the total number of protons and neutron in the sys-

tem. The asymmetries at maximum densities in the Sn systems are higher, both because

of the lower surface area to volume ratio and as a consequence of stronger Coulomb repul-

sion, disfavoring protons in the central region of the system. Comparing results with and

without N-N collisions (in the Vlasov dynamics), in Figs. 5–7, we see that when the N-N

collisions are active, they help to trap the asymmetry in the high-density regions. The N-N

collisions have also a different impact on asymmetry in dependence on the size of a system.

The mean-free-path between N-N collisions is shorter, relative to system size, for Sn than

for Ca, making the collision more effective in trapping the isospin excess in high density

regions, thus increasing the asymmetry coming from the initial proton-neutron distribution

and Coulomb repulsion.

In comparing asymmetries δ reached in TDHF and pBUU, in the overlap region for the

approaches, Fig. 8 and Figs. 5–7, it is observed that the asymmetry for maximal densities is

generally higher in TDHF than in pBUU, particularly at low energy. This effect seems to be

related to the undamped waves in TDHF that, combined with fission, increase asymmetry

in one fragment at the cost of the other. The fragment separation enhances the maximal

neutron density less than the maximal proton density, due to the increased Coulomb re-

pulsion in the fragment with reduced asymmetry, i.e. extra charge number per neutron.

With increasing incident energy the predictions of TDHF and of pBUU for the SM energy

parametrization get closer to each other.

The apparent impact of the sudden dive of matter into a high density region, on the high-

density proton-neutron asymmetry in collisions at high energy, raises questions regarding

the feasibility of probing the high-density symmetry energy in the laboratory. Comparing

the high-energy asymmetries in the panels labeled S and SM in Figs. 5 and 6, it could

be argued that the simulation with higher symmetry energy at high density, i.e. S model

cf. Fig. 1, yields lower asymmetries as the excess neutrons are expelled from the high-

density region [29]. However, it could also be argued that the difference in the high-density

asymmetries observed at high beam energies, resulting from S and SM calculations, stems

exclusively from the difference in interior asymmetries within the nuclei at the start of

a collision, dooming the possibility of testing the high-density symmetry energy in heavy-
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ion collisions.

In order to examine a possible impact the high-density symmetry energy may have,

we constructed the hybrid symmetry-energy models, SSM and SMS, for which the initial

states are practically identical with the S and SM models, respectively, but the high-density

behavior of the symmetry energy is swapped in-between the models. Comparing S with SSM

and SM with SMS for Ca and, even more importantly, for Sn, we see that the high-density

behavior of the symmetry energy does make a difference. If the symmetry energy is switched

at high density from stiff (raising fast with increasing density) to soft raising slowly with

increasing density), i.e. S to SSM, the high-energy asymmetry increases. On the other hand,

if the models are reversed, i.e. SM to SMS, the high-energy asymmetry decreases.

It seems that the SMS model is more effective in loosing asymmetry than SSM model,

particularly in the lighter Ca systems where the reaction lasts for a shorter time. In other

words, it is easier to lose asymmetry than to reconstitute it after it has been depleted in

the dynamics when the high-density symmetry energy is stiff and vice versa. Overall, the

experimentation with the symmetry energy models shows that both, the initial distribution

of asymmetry in the nuclei and the high-density behavior of the symmetry energy impact

the high-density asymmetry. To reveal the effect of the initial distribution of asymmetry on

the high-density behavior of symmetry energy, the static nucleon distributions in the target

and projectile nuclei must be modeled consistently in the simulations.

For the most proton-neutron asymmetric systems, 48Ca + 48Ca and 120Sn + 120Sn, we

find changes in the high-density asymmetry of up to ∼ 20% in the lighter system and up to

∼ 15% in the heavier when the symmetry energy is varied, cf. Figs. 5 and 6. Paradoxically,

the higher sensitivity to symmetry energy in the lighter system seems to be related to the

combined ratios of surface thickness in the initial state and the mean-free-path to system

size in the dynamics. Importantly if the nuclear systems were very large, the asymmetry at

high density would neither change due to low- nor high-density behavior of the symmetry

energy. This is because the neutron-proton imbalance would have practically nowhere to

move from the interior of matter neither in the initial nor in the compressed state. With this,

while the general expectation is that heavier systems are better suited for testing EOS, in

the particular case of supranormal symmetry energy, lighter systems may be more suitable,

when the dedicated observables are tied to the value of asymmetry reached at high densities.
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IV. CONCLUSIONS AND OUTLOOK

We presented results of the first systematic examination of maximal values and other

details in neutron and proton distributions, within the initial state and throughout the

course of head-on heavy-ion collisions across the beam energy range of up to 800MeV/nucl,

in two common simulation approaches, TDHF and pBUU. The projectile-target symmetric

systems 40Ca +40Ca, 48Ca +48Ca, 100Sn +100Sn and 120Sn + 120Sn were selected for this

study, as well as the projectile-target asymmetric systems 40Ca +48Ca and 100Sn +120Sn.

Within the pBUU simulations, two empirical forms of symmetry energy, characterized by

L = 85MeV, termed S, and L = 31MeV, termed SM, and two hybrid forms, termed SSM

and SMS were employed. Simulations with suppressed collisions, i.e. in the Vlasov mode

were also performed for completeness. TDHF calculations were carried out in the beam

energy range of up to 40MeV/nucl, with the SV-bas Skyrme parametrization that yields the

symmetry energy close to that in the SM parametrization within pBUU. Maximum proton

and neutron densities ρmax
p and ρmax

n , reached in the course of the collisions, were identified

from analysis of the time evolution of ρp and ρn during the course of the collision and used

to yield the proton-neutron asymmetry δ = (ρmax
n − ρmax

p )/(ρmax
n + ρmax

p ) as a function of

beam energy and all target/projectile combinations considered in this work.

In TDHF, the initial densities, as calculated the HF model, are characterized by significant

shell oscillations unlike the TF starting densities for pBUU. The oscillations, combined at

low energies with weakly damped collective waves with significant isovector components,

enhance density variations across the system and time. When a colliding system fissions,

the variations may become trapped in opposite fragments, leading to a larger proton-neutron

imbalance than in the system before fission. In combination with Coulomb effects, this effect

enhances the proton-neutron asymmetry at the maximal recorded densities. As the beam

energy increases, the impact of the initial-state shell effects decreases and the TDHF results

become similar to pBUU.

The pBUU simulations indicate that the maximum total densities reached in reactions

studied in this work are ∼ 2.5 ρ0 (0.4 fm
-3) are not significantly dependent on the initial state,

beam energy, system size and a model of the symmetry energy. However, the proton-neutron

asymmetry at maximum densities does depend on these parameters. The simulation in this

work indicates without any doubt that the initial asymmetry of all systems studied plays an
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important role in a reaction. The asymmetry decreases after the impact, changes slowly in

the course of a collision as a function of beam energy, but never exceeds the original value.

For example, for the most neutron-proton asymmetric systems, i.e. 48Ca + 48Ca and 120Sn

+ 120Sn, both with the overall initial asymmetry of 0.17, we find high-density asymmetries

at high beam energies in the range of (0.09–0.12) for the lighter system and (0.12–0.15)

for the heavier, depending on the symmetry energy model employed. It has become clear

that in predicting the impact of the density dependence of symmetry energy on high-density

asymmetry, the initial state must be modeled consistently with the dynamics that leads to

development of the compressed matter. If the rate of change of the initial asymmetry could

be measured as a function of the beam energy, it would give information of the high-density

behavior of the symmetry energy. When changing the symmetry energy, we find somewhat

more impact on the high density asymmetry in the lighter asymmetric systems than heavier.

To summarize, the main outcome of our work is the identification of importance of the

sub-normal density dependence of the symmetry energy in determination of its form in

supra-normal density. There is an effort in the community to learn about the supra-normal

symmetry energy, with different variants explored in theoretical simulations. One practical

issue is that changes in the symmetry energy model in the supra-normal region, smoothly

matched to a model in the sub-normal region, inevitably affects the initial state of the col-

lision. Our simulation reveals that only about half of the proton-neutron asymmetry at

super-normal densities comes directly from behavior of the supra-normal symmetry energy

and the remaining half has its origin in changes in the initial state. This result puts to

forefront the need of a proper initialization of the nuclei, but also brings up the question

of the shell effects that impact initial proton and neutron densities, but cannot be consis-

tently incorporated into semiclassical transport. In exploring the density dependence of the

symmetry energy in central reactions, lighter systems may be as useful as heavier.
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FIG. 1: (Color on-line) Density dependence of the symmetry energy in the models employed in

this work. The values of the symmetry energy S and of its slope L, at ρ0, are S(L) = 31.8(82.8),

30.0(32.4) and 30.2(32.3)MeV, for S and SM in pBUU, and for SV-bas, respectively. Models SMS

and SSM are added for completeness.
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TABLE I: Adjustable parameters in the pBUU and TDHF models.

Model Parameter Group Parameter Value

pBUU Gradient Term in Energy E1 a1 21.4MeV fm2

Density-Dependent a 209.791MeV

contribution to Mean-Field Uρ b 69.7571MeV

ν 1.46226

ρ0 0.160 fm−3

K 210MeV

Momentum-Dependent c 0.645700

contribution to Mean Field δUp λ 0.954605

m∗/m 0.70

Interaction Contribution s0 20.0MeV

to Symmetry Energy Sint s1 50.1MeV

s2 31.9MeV

s3 1.47

In-Medium Cross Section νcs 0.667

Eqs. (11)-(12) of Ref. [25]

Monte-Carlo Integration NQ 3000

TDHF Model SV-bas 11 parameters in Ref. [30]
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TABLE II: Ratio of maximal nucleon density reached at different beam energies Ebeam, to

maximal density in the initial state, for the Sn and Ca systems, as predicted in the pBUU,

with the symmetry energy models S, SM, SMS and SSM and in the Vlasov mode (V) with

the symmetry energy model S. The columns are labeled with letters representing the version

of the model, followed by mass numbers of the target and projectile combinations.

Ebeam S SM SMS SSM V

MeV/nucl 120120 100120 100100 120120 100120 100100 120120 100120 100100 120120 100120 100100 120120 100120 100100

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

16 1.37 1.30 1.38 1.36 1.29 1.34 1.34 1.32 1.36 1.35 1.29 1.36 1.47 1.48 1.44

25 1.47 1.39 1.48 1.46 1.38 1.44 1.45 1.42 1.47 1.45 1.39 1.46 1.54 1.56 1.51

50 1.64 1.55 1.65 1.64 1.55 1.63 1.64 1.60 1.65 1.64 1.56 1.64 1.67 1.68 1.64

100 1.84 1.72 1.83 1.84 1.74 1.84 1.85 1.79 1.85 1.85 1.75 1.85 1.79 1.81 1.77

200 2.04 1.91 2.01 2.05 1.95 2.06 2.08 1.99 2.06 2.07 1.96 2.06 1.92 1.93 1.90

400 2.25 2.10 2.21 2.27 2.16 2.29 2.31 2.20 2.28 2.30 2.18 2.28 2.05 2.06 2.03

800 2.46 2.30 2.40 2.49 2.38 2.52 2.55 2.42 2.50 2.53 2.40 2.50 2.18 2.19 2.16

4848 4048 4040 4848 4048 4040 4848 4048 4040 4848 4048 4040 4848 4048 4040

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

16 1.39 1.35 1.35 1.37 1.34 1.37 1.37 1.34 1.38 1.37 1.36 1.39 1.44 1.41 1.43

25 1.48 1.43 1.44 1.47 1.43 1.46 1.46 1.43 1.47 1.47 1.45 1.49 1.52 1.48 1.51

50 1.63 1.56 1.59 1.65 1.58 1.63 1.64 1.58 1.63 1.64 1.60 1.65 1.64 1.59 1.63

100 1.79 1.70 1.75 1.85 1.75 1.81 1.83 1.74 1.81 1.81 1.76 1.83 1.76 1.70 1.76

200 1.95 1.85 1.92 2.05 1.92 1.99 2.02 1.90 1.98 2.00 1.93 2.01 1.89 1.82 1.89

400 2.12 2.00 2.09 2.26 2.10 2.19 2.23 2.07 2.17 2.19 2.10 2.19 2.02 1.94 2.03

800 2.28 2.14 2.26 2.47 2.28 2.38 2.43 2.24 2.35 2.37 2.27 2.38 2.15 2.05 2.16
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TABLE III: Ratio of maximal nucleon density reached at different beam energies Ebeam, to max-

imal density in the initial state, for the Sn and Ca systems, as predicted by the TDHF model.

The columns are labeled with mass numbers of the target and projectile combinations.

Ebeam 4848 4048 4040 120120 100120 100100

MeV/nucl

0 1.00 1.00 1.00 1.00 1.00 1.00

4 1.07 1.05 1.03 1.06 1.11 1.11

8 1.11 1.09 1.07 1.11 1.16 1.18

16 1.18 1.15 1.12 1.18 1.24 1.28

24 1.23 1.20 1.18 1.24 1.29 1.35

32 1.27 1.25 1.22 1.29 1.33 1.40

40 1.31 1.29 1.27 1.34 1.36 1.44
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