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Prompt fission y-rays are responsible for approximately 5% of the total energy released in fission,
and therefore important to understand when modelling nuclear reactors. In this work we present
prompt ~-ray emission characteristics in fission, for the first time as a function of the nuclear excita-
tion energy of the fissioning system. Emitted «-ray spectra were measured, and -ray multiplicities
and average and total v energies per fission were determined for the 2**U(d,pf) reaction for excita-
tion energies between 4.8 and 10 MeV, and for the **°Pu(d,pf) reaction between 4.5 and 9 MeV.
The spectral characteristics show no significant change as a function of excitation energy above the
fission barrier, despite the fact that an extra ~5 MeV of energy is potentially available in the excited
fragments for «-decay. The measured results are compared to model calculations made for prompt
~-ray emission with the fission model code GEF. Further comparison with previously obtained re-
sults from thermal neutron induced fission is made to characterize possible differences arising from

using the surrogate (d,p) reaction.
PACS numbers: 25.85.Ge 24.75.4i1 07.85.Nc

I. INTRODUCTION

Nuclear fission was discovered some 70 years ago [1-3],
but still there remain some intriguing mysteries about
this complex process. One of the least measured parts of
the energy that is released in fission is the contribution
that is carried away via prompt ~-ray emission. This
accounts for roughly 8 MeV [4, 5], or around 5% [6] of
the total energy released in fission. In addition, prompt
energy is dissipated via the Coulomb repulsion of the
fragments, and the emission of prompt neutrons. Prompt
fission y-rays (PFG) are emitted, typically within a few
nanoseconds of scission of the fragments; about 70% of
the prompt PFGs are emitted within 60 ps, and about
95% within 3 ns [7]. PFGs are one of the least understood
parts of the fission process [8].

The investigation of PFG emission addresses questions
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in nuclear structure and reaction physics. One ques-
tion deals with the de-excitation of nuclei through the
emission of neutrons and v-rays. The theoretical de-
scription of the de-excitation of neutron-rich isotopes, as
being produced in neutron-induced fission, shows signifi-
cant deficits in describing the neutron and v-ray spectral
shape [8]. To some extent this deficiency seems to be re-
lated to a limited understanding of the competing process
of prompt neutron and ~ emission. Prompt fission y-ray
spectral (PFGS) data, measured as a function of excita-
tion energy of the compound nucleus may provide impor-
tant information to benchmark different models, allowing
eventually arrival at a consistent description of prompt
fission neutron and v-ray emission. Furthermore, PFGs
are certainly among the most sensitive observables for
studying angular momentum generation in fission [8, 9].

Understanding the PFG emission is not only useful for
complete modelling of the fission process, but it also has
some important practical applications for nuclear reac-
tors. In recent years, requests for more accurate PFGS
data have motivated a series of measurements to obtain
new precise values of the ~v-ray multiplicities and mean
photon energy release per fission in the thermal-neutron
induced fission of 23°U [10] and #*Pu [11]. With the de-



velopment of advanced Generation-IV nuclear reactors,
the need of new PFGS data becomes important. Since
four out of six contemplated Generation-IV reactors re-
quire a fast-neutron spectrum, a wider range of incident
neutron energies has to be considered [12, 13]. Mod-
elling of the geometrical distribution of v-heating, in and
around the reactor core, shows local deviations up to 30%
as compared to measured heat distributions, whereas
accuracy within 7.5% is mandatory [10]. These devi-
ations remain mainly, despite experiment campaigns in
the 1970s [14-18], due to the uncertainties on the existing
PFGS data. For 24°Pu*, this work also responds to the
high-priority request published through the OECD/NEA
[19].

In this paper we report about the first measurements of
PFG emission from 234U* in the 233U (d,pf) reaction, and
240Pu* in the 29Pu(d,pf) reaction. Both target nuclei
represent the fissile key nuclei for the thorium/uranium
and uranium/plutonium fuel cycles, respectively. The
(d,pf) reaction serves hereby as a surrogate for the neu-
tron induced fission [20]. Charged-particle induced reac-
tions allow measurements of fission observables for iso-
topes not easily accessible to neutron beam experiments,
or for excitation energies below the neutron binding en-
ergy. They also facilitate the study of PFG characteris-
tics as a function of compound nucleus excitation energy.
We study the dependence of PFG characteristics on com-
pound nucleus excitation energy, and possible differences
between surrogate and neutron-induced fission reactions.

II. EXPERIMENTAL DETAILS

Two experiments, denoted by (A) and (B), were car-
ried out at the Oslo Cyclotron Laboratory (OCL) of the
University of Oslo, using deuteron beams, delivered by
a MC-35 Scanditronix cyclotron. The 7-detector array
CACTUS [21] together with the SiRi charged particle
detectors [22] and the NIFF detector [23] were used to
detect triple coincident events of a proton, one of the two
fission fragments (FF) and ~-rays.

Experiment (A) utilized a 12.5 MeV beam incident on
a 233U target, and experiment (B) had a 12 MeV beam on
a 239Pu target (detailed target specifications are listed in
Table I). The targets were cleaned from decay products
and other chemical impurities with an anion-exchange
resin column procedure [24], and then electroplated on a
backing made of ?Be.

For these particular experiments, the SiRi detectors
were mounted in backward direction, and the NIFF de-
tectors in forward direction, relative to the beam direc-
tion (see Fig. 1). This setup was chosen for several
reasons: Due to the thick beryllium backing, the tar-
gets had to face NIFF, to enable detection of any fission
events, thereby also avoiding FF in the SiRi detector.
However, the light, outgoing particles could easily pene-
trate the beryllium, and be detected in SiRi. Backward
direction of SiRi also reduces the intensity of the elas-

TABLE I. Target and beam characteristics as used in this
work. Fission barrier heights are taken from Ref. [25]

Target 33U (A)  *%Pu (B)
Chemical composition metallic metallic
Active diameter 1cm 1cm
“Be backing (mg/cm?) 2.3 1.8
Total area density (mg/cm?) 0.2 0.4
Reaction (d,pf) (d,pf)
Beam energy (MeV) 12.5 12
Inner fission barrier, By, (MeV) 4.80 6.05
Outer fission barrier, Br 1, (MeV) 5.50 5.15

tic peak, and minimizes the exposure to protons from
deuteron breakup in the target. SiRi was covered by a
21 pm thick aluminum foil, to attenuate d-electrons in
the telescopes.

SiRi consists of 64 AE (front) and 8 E (back) silicon
detectors with thicknesses of 130 pm and 1550 pm, re-
spectively. The detectors cover eight angles from 6 ~
126° to 140° relative to the beam axis, in a lampshade
geometry facing the target at a distance of 5 cm at an an-
gle of 133°. The total solid angle coverage is about 9% of
47. In experiment (A) twenty-five, and in experiment (B)
twenty-six, 12.7 cm x 12.7 cm (5" x 5”) Nal(T1) crystals
were mounted on the spherical CACTUS frame, 22 cm
away from the target. At a y-ray energy of 1.33 MeV, the
crystals detect y-rays with a total efficiency of 13.6(1)%
(A), and 14.2(1)% (B), respectively. In order to reduce
the amount of Compton scattering, the detectors were
collimated with lead cones. NIFF, consisting of four Par-
allel Plate Avalanche Counters (PPAC), covering 41% of
2m, were used for tagging of fission events. For this, it
is sufficient to detect one of the two fission fragments,
which are emitted back-to-back. The PPACs are placed
at an angle of 45° with respect to the beam axis, at a dis-
tance of about 5 cm from the centre of the target. Taking
into account angular anisotropy effects in the center-of-
mass system, Ref. [26] found a total efficiency of about
48%. The particle and fission detectors were mounted in
the reaction chamber, surrounded by the CACTUS ar-
ray (Fig. 1). The experiments were running for one week
each, with a typical beam current of 1 nA.

The experimental setup enables particle-FF-v coinci-
dences that, together with energy and time information,
are sorted event-by-event. In the present work, we fo-
cused on the 233U(d,pf) and the #9Pu(d,pf) reactions.
The detection of a charged particle in SiRi was the event
trigger. In a timing interval of ~20 ns we require a -
signal in CACTUS and a FF in NIFF.

From kinematics the measured energy of the outgo-
ing, charged particle is converted into initial excitation
energy, E,, of the fissioning system. In our cases, we
measure the deposited energy of the proton in the parti-
cle telescope, thereby selecting 234U* and 24°Pu* as the
fissioning system, for experiments (A) and (B), respec-
tively. The excitation energy was reconstructed event-
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FIG. 1. (Color online) Schematic view of the experimental
set-up for experiment (A), showing the SiRi (AE+E) tele-
scope, and the NIFF (PPAC) detectors, inside the reaction
chamber, surrounded by the CACTUS Nal array. SiRi mea-
sures the energy of the outgoing charged-particles; NIFF de-
tects fission fragments (FF), and CACTUS detects y-rays all
in coincidence, within a time interval of 20 ns. The 233U tar-
get (0.2 mg/cm?, green), on the Be backing (2.3 mg/cm?,
orange) was facing NIFF, and SiRi was in the backward di-
rection relative to the beam direction (dotted, purple arrow).
The setup for the 2*°Pu experiment was identical, except for
CACTUS having 26 crystals instead of 25.

by-event from the detected proton energy and emission
angle, and accounting for energy losses in the target and
backing. For each energy bin in FEy, a correction for
the neutron contribution to the ~-ray spectrum is per-
formed, which is detailed in the next section. Finally,
the raw ~-spectra are corrected for the detector response
to produce a set of unfolded PFGS. The applied unfold-
ing process, which has the advantage that the original,
statistical fluctuations are preserved, is fully described in
[27]. Nal response functions are based on in-beam ~-lines
from excited states in °6:°7Fe, 28Si, 170, and '3C, which
were re-measured in 2012 [28].

A. Correction for neutron contribution

In the fission process, both neutrons and ~-rays are
emitted. Neutrons can interact with the Nal crystals of
CACTUS, depositing energy mostly in the form of ~-
rays from (n,n’y) reactions. Unfortunately, the timing
gate (20 ns) of the current set-up (Fig. 1) only allows for
discrimination between ~-rays and neutrons via time-of-
flight (TOF) for the slowest neutrons, i.e. with energies
lower than 600 keV. However, the majority of prompt
neutrons emitted in fission have higher energy than this.
To obtain PFGS, a correction for the neutron component
needs to be made, with subtraction of counts arising from
energy deposition by neutrons.

TABLE II. Parameters to scale the excitation energy depen-
dence of the average total neutron multiplicity relative to the
neutron separation energy, S, taken from Ref. [32] (**3U)
and Ref. [33] (**Pu) .

2347 7% 240p ¥
a (n/MeV) 0.1 0.14
b (7 @ thermal fission) 2.5 2.9
Sn (MeV) 6.85 6.53

Our neutron correction method relies on using a neu-
tron response spectrum of a Nal detector, which is most
representative of that for fission neutrons. Normalizing
this to the known average neutron multiplicity emitted in
fission for a particular compound nucleus excitation en-
ergy allows estimation of the neutron component in the
total measured PFGS at this energy. This component is
then subtracted. In this work we used a spectrum [29] for
2.3 MeV neutrons, which is close to the average fission
neutron energy.

The response of 7.6 cmx7.6 cm (3”7 x 3”) Nal detec-
tors to incident neutrons at energies between 0.4 and 10
MeV has been measured by Hausser et al. [29], using a
TOF discrimination with quasi-monoenergetic neutrons
produced in the "Li(p,n) and *7Au(p,n) reactions. They
find that the neutron response is dominated by (n,n’y)
reactions. For the energies most prominent from fission
neutrons, 1-2.5 MeV, most counts in the Nal detectors
are observed between 0.4 and 1 MeV. For 2.3 MeV neu-
trons, they report 0.13(5) triggers per incident neutron.
Since the CACTUS detectors are longer (12.5 cm), we
scale the number of triggers to 0.21(8) triggers per in-
cident neutron. We assume that the intrinsic detection
efficiency, €;,¢, for y-rays from fission is the same as those
created in the detector by (n,n’y) reactions. The ~-ray
multiplicity, M, for neutron contribution correction pur-
poses is taken as 6.31 for 224U* [30] and 7.15 for 240Pu*
[31].

The relative contribution, f, of neutrons to the mea-
sured data Nyot(Ex, E,) for each excitation energy FEx
and y-ray energy bin E, can be estimated by the detec-
tion efficiencies. Taking into account the ratio of neutron
and ~y-ray multiplicities we find

€int,n X v

fo etV (1)

€int,n X v+M

The neutron multiplicity 7 is known to vary linearly as a
function of the incident neutron energy F,, [34, 35]. Tak-
ing into account the neutron separation energy S, the
same dependence is assumed for the compound nucleus
excitation energy Ey with the parameters given in Table
I1, such that 7(Ey) = a(Ex — Sy) + b. The total contri-
bution to the data caused by neutrons is estimated as a
fraction of counts, f(FEy), that is weighted as a function
of E, by Haussers neutron spectrum H(E,), i.e.

Nn(EXa E’Y) = Ntot(EX)f(Ex)H(E’Y)v (2)



TABLE III. Values used for calculating the neutrons in the
CACTUS detectors. The average neutron energies were cal-
culated from ENDF/B VII.1 [36]. Neutron multiplicities &
are taken from Ref. [37] and 7-ray multiplicities M, from
Ref. [30] (**¥U*) and Ref. [31] (**°Pu*).

A (234U*) B (240Pu>|<)
Average neutron energy (MeV) 2.0 2.1
Intrinsic neutron efficiency
(triggers/neutron) 0.21(8) 0.21(8)
Neutron multiplicities
(@ thermal fission) 2.5 2.9
~-ray multiplicities 6.31(30) 7.15(9)
Relative contribution
(@ thermal fission) 0.0768 0.078

where Niot(EYx) is the projection of the y-matrix onto Ey

Niot(Ey) = > Niot (Ex, Ey). (3)
E’Y

Niot(Ex, E) is the matrix element in the ~-matrix.
H(E,) is normalized so that ZE7 H(E,) = 1. The ~-
ray spectrum N (Ey, E.) is obtained by subtracting the

neutron contribution N, (Ex, E,) from the measured data
Ntot (Ex, E’y)

Ny (Ex, By) = Niot(Ex, By) = Nu(Ex, By). (4)

The results of the subtraction procedure can be seen
graphically in Fig. 2, where the raw spectrum, neutron
contribution and corrected spectrum are shown. Since
inelastic scattering is the main energy deposition mech-
anism for neutrons, which occurs mostly on low-lying
states in sodium and iodine nuclei, the neutron contri-
bution is largest in the low energy part of the spectrum.
However, overall, the correction for neutron contribution
in our experiments remains small (see Table IIT).

B. Extrapolation of spectra towards zero energy

Detectors used in experiments that attempt to mea-
sure PFGS will always have an energy threshold to pre-
vent rapid triggering on noise. Below this threshold ~-ray
detection is impossible, so the lowest energy y-rays emit-
ted in fission will not be detected. As a consequence,
this will introduce a systematic uncertainty in the de-
duction of average spectral quantities: Measured multi-
plicities M and total v-energy Fio; will thus be lower,
and measured average y-ray energy F,, released per fis-
sion will be higher, than their actual values. In fact, such
systematic uncertainties from threshold effects may ex-
plain discrepancies between previous PFG experimental
results, [17, 18]. To account for the undetected ~-rays
below threshold, it is necessary to make an extrapola-
tion towards zero energy, such as e.g. that performed in
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FIG. 2. (Color online) The total (summed over all Ey) raw
PFGS detected in the ?*3U(d,pf) reaction (black) and the
calculated spectral contribution due to interactions of prompt
fission neutrons in the Nal detector (green). The corrected ~-
spectrum is also shown (pink).

Ref. [38]. In our case the detection threshold was rather
high, at 450 keV. As the shape of the v ray spectrum
is not known for the low ~-ray energies, we chose a con-
stant value for the bins below threshold. A reasonable
extrapolation of each spectrum was made by averaging
over the first three y-ray bins above the threshold. The
uncertainty was estimated by the minimum and maxi-
mum values in these bins, including their uncertainties.
This results in an average value of about 5.5 4+ 2 pho-
tons per fission per MeV (?34U*), below threshold. By
assuming a non-zero value for this energy bin, the extrap-
olation reduces the uncertainty, but it does not eliminate
it entirely. In our case it is still the dominant source of
uncertainty on the absolute values of the average spec-
tral quantities deduced. Since we compare our data with
thermal neutron induced fission experiments, we chose
the same cutoff of the PFGS as Ref. [11], of E, =140
keV.

III. PREDICTIONS WITH THE GEF CODE

We compare our data to predictions from the semi-
empirical GEneral Fission model (GEF) [39]. GEF is
based on the observation of a number of regularities in fis-
sion observables, revealed by experimental studies, com-
bined with general laws of statistical and quantum me-
chanics. It provides a general description of essentially
all fission observables (fission-fragment yields and kinetic
energies, prompt and delayed neutrons and v-rays, and
isomeric ratios) in a consistent way while preserving the
correlations between all of them. GEF has shown to be
able to explain in an unprecendented good manner fis-



sion fragment and neutron properties over a wide range,
running from spontaneous fission to induced fission up
to an excitation energy of about 100 MeV for Z = 80
to Z = 112 [39]. Modelling of ~-rays in fission has been
implemented most recently. In contrast to other existing
codes in the field, GEF provides also reliable predictions
for nuclei for which no experimental data exist. This is
particularly important in our case, since no experimental
data on the fragment properties exist for the majority of
the excitation energies we are investigating.

Calculations were performed for fission of both 234U*
and 24°Pu*, applying the same cutoff of the PFGS as for
the experimental data, of 140 keV, as described in sec-
tion IIB. The total angular momentum J = Iy + Liyans
is the sum of the target nucleus ground state spin Iy and
the angular momentum Ly.ns transferred in the (d,p)
reaction. The distribution in the GEF v.2016/1.1 calcu-
lations is given by

p(J) o (2 + 1) exp(—=J (J +1)/I3,0), (5)

where we used the root mean square (rms) of the to-
tal angular momentum' .J,,s and the excitation energy
to describe the fissioning system as input. The max-
imum value for J,s of 12 was obtained from J,,s =
V2T .7 /h, where the nuclear temperature was chosen
to be T ~ 0.45 MeV in line with other actinide nuclei
[40, 41]. The rigid body of moment of inertia .# is given
by 2ma(roAY?)?(1 + 0.3152) ~ 160(hc)?/MeV, where
we used the isotope mass mya, the mass number A, the
quadrupole deformation By from Ref. [25], and radius
parameter ro < 1.3. The results are compared to an
intermediate value of J.,s = 8, and to the lower limit,
Jrms = 0, where the latter facilitates the comparison to
neutron induced reactions, which transfer little angular
momentum. Additionally we performed calculations for
a energy dependent Jyns, which was adopted from the
systematics of Ref. [42]

1++/1+4a(Ex — E
J2 (Ee) =2 x 0.0146 A%/3 - +2Z( 1), (6)

rms

where the level density parameter a and the energy back-
shift F are obtained from a fit to experimental data [42].

IV. EXPERIMENTAL RESULTS

A. The **U* case

Fig. 3 shows a three-dimensional overview of the data
set where, for a given compound nucleus excitation en-
ergy, the corresponding raw detected PFGS (prior to
unfolding the response function) is displayed with the

1 Jems can be expressed in terms of the spin cut-off parameter o
by Jrms = \/50'

T 4000 0%
2000 E(Na“ \ke\l\

FIG. 3. (Color online) Matrix of the fission and proton gated
raw vy-data from the 2*3U(d,pf) reaction (after subtraction
of the contribution from neutrons). The x-axis gives the de-
duced compound nucleus excitation energy E,. The y-axis
gives the detected ~-ray energy, and the z-axis gives the num-
ber of counts recorded during the experiment (not efficiency
corrected). The bin width is 64 keV for Fx and E,.

neutron contribution subtracted. The excitation energy
range, over which the data are collected, can be seen
more closely in Fig. 4., which histograms the double co-
incidences of protons and fission fragments (d,pf) and
triple coincidences of protons, fission fragments and -
rays (d,pfy) as a function of E,. In the case of 234U*,
only a very few sub-threshold fission events occur below
the inner fission barrier [25] at Ey = 4.8 MeV, which is 2
MeV below the neutron separation energy at 6.85 MeV
[32]. The 233U(d,pf) reaction at 12.5 MeV incident en-
ergy populates compound nuclear excitation energies up
to a maximum of 10 MeV in this case.

The Ey range is divided into 8 bins, each with a width
of 650 keV to obtain a sufficient statistics PFGS for each
bin. Each spectrum is unfolded for the CACTUS re-
sponse, and normalized to the number of fission events
detected in that excitation energy bin. The set of eight
normalized spectra is overlaid in Fig. 5, and they exhibit
similar spectral shapes.

The average spectral quantities after extrapolation to
zero energy are then deduced and plotted as a function
of the excitation energy. These results are plotted in
Fig. 6 with their corresponding statistical error bars and
compared with calculations from the GEF code. The
wider band denoted by the dash-dotted lines indicates
the sum of the statistical uncertainties on each data point
plus the systematic uncertainty on the absolute values
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FIG. 4. (Color online) The total number of 233*U(d,pf)
and #*3U(d,pfy) events recorded during the experiment his-
togrammed as a function of the deduced compound nuclear
excitation energy of 23*U* for each event. The inner and outer
fission barrier, Br . at 4.80 MeV and By, at 5.50 MeV, and
the neutron separation energy, S,, at 6.85 MeV are shown.
The dotted lines indicates the minimum and maximum FEy of
the analysed area. The lower limit on Ey is the inner fission
barrier.
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FIG. 5. (Color online) Overlay of the eight ***U(d,pf) PFGS
for different excitation energy bins in compound nucleus exci-
tation energy Fx. The spectra are normalized to the number
of photons per fission and per MeV to provide a comparison
of the spectral shapes. The extrapolation from the detector
threshold at 450 keV towards zero energy is explained in the
text.

due to the presence of the detection threshold.

B. The *°Pu* case

The same analysis was performed for the 23°Pu(d,pf)
reaction. The (d,pf) and the (d,pfy) reactions are his-
togrammed as functions excitation energy (Fig. 7). In
the 249Pu* case, there appears to be a significant amount
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FIG. 6. (Color online) Energy dependence of the 2**U(d,pf)
average PFG spectral quantities compared with calculations
from the GEF code for different Jyms of the 234U* nucleus. In
adittion results from Pleasonton [12] are shown. Multiplicity,
average -ray energy, and total y-ray energy, as function of ex-
citation energy of 2**U* are shown. The error bars represent
the statistical uncertainty of the measurement. The dash-
dotted lines represent the total uncertainty, which is the sum
of the systematic uncertainty on the absolute values due to the
detector threshold, and the extrapolation towards zero energy
plus the statistical uncertainty. Vertical lines mark the inner
and outer fission barriers (Ex = 4.8 MeV and Fx = 5.40 MeV)
and the neutron separation energy (Ex = 6.85 MeV), respec-
tively.

of sub-barrier fission, which is in accordance with obser-
vations in Refs. [43, 44]. This can be explained in the
double-humped fission barrier picture; by the resonant
population of states in the second potential minimum of
the 24°Pu* nucleus and a tunnelling through the outer
fission barrier.

The overlay of the unfolded PFGS for the 23°Pu(d,pf)
reaction is shown in Fig. 8. The spectral shapes are all
observed to be similar. However, the PFGS for the two
lowest compound nucleus excitation energy bins starting
at 4.65 MeV and 5.45 MeV appear to be significantly
lower than the others. This effect also manifests itself in
the average photon multiplicity M and total energy Fiot
release at this energy (see Fig. 9). We note that this is
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FIG. 7. (Color online) The total number of 2**Pu(d,pf)
and 239Pu(d,pf’y) events recorded during the experiment his-
togrammed as a function of the 2*°Pu* deduced excitation
energy event-by-event. The inner and outer fission barrier,
Br,, at 6.05 MeV and Br at 5.15 MeV, and the neutron
separation energy, Sn, at 6.53 MeV are shown. The dotted
lines indicates the minimum and maximum F\ of the analysed
area. The lower limit of F\ is at 4.8 MeV, which is more than
1 MeV below the fission barrier due to sub barrier fission.
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FIG. 8. (Color online) Overlay of the six 2**Pu(d,pf) unfolded
PFG gamma spectra for different excitation energy bins in
compound nucleus excitation energy E,. The spectra are nor-
malized to the number of photons per fission and per MeV to
provide a comparison of the spectral shapes. The extrapola-
tion between 140 keV energy and the detector threshold at
450 keV is explained in the text.

the region below the fission barrier and, hence, originates
from sub-barrier fission. Otherwise, the trends for the
spectral characteristics seem to have no significant trend
and are fairly constant, i.e. independent of excitation
energy and thus consistent with the predictions of the
GEF code.

Finally, we compare the measured PFGS at excitation
energy of 6.5 MeV, which corresponds to the thermal
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FIG. 9. (Color online) Energy dependence of the 2*°Pu(d,pf)
PFG average spectral quantities from the GEF code for dif-
ferent Joms of the 2*°Pu* nucleus. The thermal neutron data
of Pleasonton (1973) [30] and Verbinski et al. (1973) [11] are
shift slightly around Sy, for better visibility. Multiplicity, aver-
age ~-ray energy, and total y-ray energy, as function of excita-
tion energy of 2*°Pu* are shown. The error bars represent the
statistical uncertainty of the measurement. The dash-dotted
lines represent the systematic uncertainty on the absolute val-
ues due to the detector threshold and the necessary extrapo-
lation to zero energy. Vertical lines mark the inner and outer
fission barriers (Ex = 6.05 MeV and Ex = 5.15 MeV) and the
neutron separation energy (Ex = 6.5 MeV), respectively.

neutron induced fission reaction for 23°Pu, with the mea-
sured PFGS of Verbinski et al. [11] for thermal neutron
induced fission. Fig. 10 shows this comparison along with
a spectrum from the GEF code. An excess of counts is
observed between 2 and 4 MeV for our surrogate PFGS
measured in the 229Pu(d,pf) reaction as compared to the
neutron induced reaction.

V. DISCUSSION

In this study, both experiments reveal an approxi-
mately constant behaviour of average v-ray energy F,y,
M, and Fiot, as a function of Ey of the fissioning system;



[y
o
TR
%.
i

(Fission MeV)
=
TT HWW
[
e
4
——

—EE

==
=
[Cale

—— E(=6.34-6.96 MeV
{  Verbinski
i, I GEFatE,=6.53 MeV

TT

=
o
[N

TT HWW

ElO‘Z 2 4, WMWW WW f

g kN i

S T U
° : ) EVG[MeV] i B N

FIG. 10. (Color online) A comparison of the **°Pu(d,pf)

PFGS measured at Ex ~ S, (red), the PFGS for thermal
neutron induced fission 2**Pu(n¢y,f) from Verbinski et al.[11]
(black points), and the calculations by GEF for Jims = 8 and
Ey = 6.35(blue).

shown in Fig. 6 for uranium and Fig. 9 for plutonium.
The constant trend (though not the absolute value) in
spectral characteristics that we observe is broadly in line
with the predictions with GEF.

There seems to be a slight decrease in the M below
Syu for both nuclei, but more clearly seen in the pluto-
nium data. Although up to 5 MeV of extra excitation
energy for the hot fission fragments is available, this en-
ergy is clearly more efficiently dissipated by the evapora-
tion of prompt fission neutrons. The prompt fission neu-
tron multiplicity is well known to increase linearly with
excitation energy. One could expect that the total angu-
lar momentum J of the fissioning nucleus should increase
with increasing Fy. Our experimental data exhibit a flat
trend, which is compatible to GEF calculations for a con-
stant or energy dependent J,s in the studied excitation
energy range.

An excess of counts is observed when comparing the
surrogate (d,p) PFG and thermal neutron induced PFGS.
Such a discrepancy might arise from differences in the
surrogate and neutron induced reactions. The spectrum
(Fig. 10) predicted with the GEF code lies in between
the two experimental cases in the region in which the
deviation is observed. For 7-rays above 8 MeV, signifi-
cantly less photons are predicted in comparison with our
data. The spectrum by Verbinski et al. [11] is reported
only up to E,=7.5 MeV.

It is expected that reactions involving charged particles
will on average introduce more angular momentum Ly ans
into the reaction, than thermal neutron induced reac-
tions. The distribution of the angular momentum J will
have a tail, which extends higher, the greater the mass
difference is between the ingoing and outgoing charged
particles in the reaction. It may, therefore, be possible
that the excess counts observed in the PFGS of the surro-
gate reaction is an angular momentum effect introduced

by using the (d,p) reaction to induce fission, instead of
neutrons.

It is comsistent that for M and Ei our (d,p) PFG
data are in better agreement with larger J,,s, whereas
the thermal neutron induced data are in all cases in good
agreement with low J.,s. For E,, the results of the GEF
calculation are in both reactions less sensitive to Jims,
and there discrepancy between our experimental results
and the calculations increases.

The absolute values of the Eio; and the M are higher
for the 234U* than the 2*°Pu*. Comparison with the
results from GEF, and a slightly higher deuteron beam
energy, indicates a higher angular momentum in the ura-
nium case. Average higher angular momentum of the
fission fragments might result in neutron emission be-
ing partially hindered from odd fission fragments up to
1 MeV above their S,,. In such a case 7-ray emission
will compete with neutron emission, also above S;,. This
would result in an increased total v energy and higher
M.

Recently, surrogate measurements have demonstrated
that radiative capture and fission cross sections [45] can
be used to get quantitative insight into the angular mo-
mentum Li,ans imparted to the compound nucleus follow-
ing a specific transfer reaction. A detailed review of both
theory, experimental results and challenges can be found
in Ref. [46]. The connection between these cross sec-
tions and Lyyans involves sophisticated Hauser-Feshbach
calculations [47]. On the other hand, it is established
that prompt fission v multiplicity M is the most direct
probe of the angular momentum of the fission fragments.
The latter is influenced by the angular momentum of the
fissioning system, i.e. Lpans in the presented GEF cal-
culations. The present work shows for the first time that
the measured M is indeed sensitive to Lians. Hence, it
can be used as an alternative observable, complementary
to cross sections [45], to quantify Lirans.

Above the neutron binding energy S, there is no sig-
nificant increase in average PFG energy and total PFG
energy released per fission with increasing excitation FE.
This observation is important for applications, since -
rays from fission are responsible for a large part of the
heating that occurs in reactor cores. The observed result
implies that passing from current Generation-III ther-
mal reactors to fast Generation-IV reactor concepts will
not require significant changes in the modelling of v heat
transport from the fast neutron induced fission process.
Since 233U is the main fissile isotope in the thorium cy-
cle, and 239Pu is the main fissile isotope in the pluto-
nium/uranium cycle, and the flat trend is observed in
both these nuclei, effects of v heating from fission in both
cycles are expected to be similar.

VI. CONCLUSION

Emission of prompt v-rays from nuclear fission induced
via the #33U(d,pf) and 23°Pu(d,pf) reactions have been



studied. PFGS have been extracted as functions of the
compound nucleus excitation energy for both nuclei. The
average spectral characteristics have been deduced and
trends as a function of excitation energy have been stud-
ied and compared with calculations by the GEF code.

We observe an approximately constant behaviour of
the spectral properties as a function of energy for both
nuclei. However, a much lower multiplicity is seen in the
sub-barrier fission of 24°Pu*. More detailed studies are
needed to understand why sub-barrier fission results in
emission of low multiplicities of prompt -rays from the
excited fission fragments. Furthermore, we observe an
excess of y-rays above 2 MeV emitted in the surrogate
239Pu(d,pf) reaction when comparing to the neutron in-
duced PFGS measured by Verbinski et al. This effect is
not yet understood, but may be as due to higher angu-
lar momenta involved in the transfer-induced reactions
as compared to the neutron-induced one, over the energy
range of our study. This conjecture is supported by GEF
calculations.

Our measured 7 ray multiplicities and total v energies
are higher than those observed for the neutron induced
reactions from Verbinski et al. and Pleasonton. This
difference may be explained as due to higher J by com-
paring to the GEF calculations.

In the future we hope to revisit these types of measure-
ments with the OSCAR array of 26 large volume LaBrj
detectors currently being constructed at the Oslo Cy-
clotron Laboratory. These will not only provide a much

better vy-ray energy resolution and lower energy thresh-
olds, but an excellent timing resolution which will allow
for discrimination of neutrons from ~-rays via time of

flight.
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