
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Particle-number projection in the finite-temperature mean-
field approximation

P. Fanto, Y. Alhassid, and G. F. Bertsch
Phys. Rev. C 96, 014305 — Published  7 July 2017

DOI: 10.1103/PhysRevC.96.014305

http://dx.doi.org/10.1103/PhysRevC.96.014305


Particle-number projection in the finite-temperature mean-field approximation

P. Fanto1, Y. Alhassid1, and G.F. Bertsch2
1Center for Theoretical Physics, Sloane Physics Laboratory,

Yale University, New Haven, CT 06520
2Department of Physics and Institute for Nuclear Theory, Box 351560

University of Washington, Seattle, WA 98915

(Dated: April 3, 2017)

Finite-temperature mean-field theories, such as the Hartree-Fock (HF) and Hartree-Fock-
Bogoliubov (HFB) theories, are formulated in the grand canonical ensemble, and their applications
to the calculation of statistical properties of nuclei such as level densities require a reduction to the
canonical ensemble. In a previous publication [1], it was found that ensemble reduction methods
based on the saddle-point approximation are not reliable in cases in which rotational symmetry or
particle-number conservation is broken. In particular, the calculated HFB canonical entropy can be
unphysical as a result of the inherent violation of particle-number conservation. In this work, we
derive a general formula for exact particle-number projection after variation in the HFB approxima-
tion, assuming that the HFB Hamiltonian preserves time-reversal symmetry. This formula reduces
to simpler known expressions in the HF and Bardeen-Cooper-Schrieffer (BCS) limits of the HFB.
We apply this formula to calculate the thermodynamic quantities needed for level densities in the
heavy nuclei 162Dy, 148Sm, and 150Sm. We find that the exact particle-number projection gives
better physical results and is much more computationally efficient than the saddle-point methods.
However, the fundamental limitations caused by broken symmetries in the mean-field approximation
are still present.

I. INTRODUCTION

Finite-temperature mean-field approximations, in par-
ticular the finite-temperature Hartree-Fock (HF) and
Hartree-Fock-Bogoliubov (HFB) approximations [2, 3],
are commonly used in the calculation of statistical prop-
erties of nuclei such as level densities [4]. These approxi-
mations are computationally efficient and therefore suit-
able for global studies of nuclear properties.

The appropriate ensemble to describe the nucleus is the
canonical ensemble with fixed numbers of protons and
neutrons. However, the finite-temperature HF and HFB
approximations are formulated in the grand canonical en-
semble. It is therefore necessary to carry out a reduction
to the canonical ensemble to restore the correct proton
and neutron numbers. This reduction is usually carried
out in the continuous saddle-point approximation, which
treats the particle number as a continuous variable [5–
7]. The accuracy of finite-temperature mean-field ap-
proximations was recently benchmarked [1] against shell
model Monte Carlo (SMMC) [8–10] results, which are
accurate up to statistical errors, and significant prob-
lems were identified with this continuous saddle-point
approach. In particular, the continuous saddle-point ap-
proximation breaks down when the particle-number fluc-
tuations are small. These problems were addressed in
Ref. [1] by the introduction of the discrete Gaussian (DG)
approximations. Specifically, in Ref. [1] two DG approx-
imations were introduced, which we label DG1 and DG2
and discuss in detail in Sec. III. In these approximations,
the saddle-point correction to the grand-canonical parti-
tion function is given by a sum over discrete Gaussians
(in particle number). This overcomes a divergence in
the continuous saddle-point approximation at low tem-

peratures in the HF approximation, but still gives an
unphysical negative value of the canonical entropy in the
low-temperature limit of the HFB.
Here, we study the restoration of particle-number con-

servation in the HFB by means of an exact particle-
number projection [11, 12]. In particular, we use a
projection after variation (PAV) method, in which the
projection operator is applied to the grand canonical
mean-field solution. We will refer to this particle-number
PAV method as the particle-number projection (PNP).
In this procedure, we determine the approximate canon-
ical partition function by taking a trace of the grand-
canonical mean-field density operator over a complete
basis of states with the correct particle number. In con-
trast, in the DG approximations, the grand-canonical
partition function is multiplied by an approximate correc-
tion factor. A general formalism for PNP was presented
in Ref. [12], and an alternate but equivalent formalism
was derived in Ref. [13]. However, in the HFB case the
application of the general formula is limited by a sign
ambiguity. Moreover, there has been no systematic as-
sessment of the accuracy of PNP in finite-temperature
mean-field theories.
In this article, we derive a general expression for PNP

in the HFB approximation, assuming only that the HFB
Hamiltonian is invariant under time reversal. We then
show how this expression reduces to known formulas for
the special cases of the HF and the Bardeen-Cooper-
Schrieffer (BCS) approximations. We apply this method
to three even-even nuclei in the rare-earth region: (i)
a strongly deformed nucleus with weak pairing (162Dy),
(ii) a spherical nucleus with strong pairing (148Sm), and
(iii) a transitional deformed nucleus with non-negligible
pairing (150Sm). The results from the PNP are compared
with results from the DG approximations and the SMMC
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method.
The outline of this article is as follows. In Sec. II,

we derive a general expression for the particle-number
projected HFB partition function in the case where the
HFB Hamiltonian is time-reversal invariant and show
how this expression simplifies in the HF and BCS limits.
In Sec. III, we discuss the DG approximations and de-
scribe how we calculate the approximate canonical ther-
mal energy, entropy and state density from the particle-
number projected partition function. In Sec. IV, we ap-
ply the PNP formula to three heavy nuclei and compare
the results with those from the DG approximations and
with SMMC results. Finally, in Sec. V, we summarize
our findings and provide an outlook for future work. The
computer codes for the canonical reductions and the data
files to generate the results described here are provided in
the Supplementary Material depository for this article.

II. PARTICLE-NUMBER PROJECTION IN THE

HFB APPROXIMATION

We assume a nuclear Hamiltonian in Fock space
spanned by a set of Ns single-particle orbitals k (k =
1, . . . , Ns) with a one-body part described by the matrix
t and an anti-symmetrized two-body interaction v̄

Ĥ =
∑

ij

tija
†
iaj +

1

4

∑

ijkl

v̄ijkla
†
ia

†
jalak , (1)

where a†k and ak are, respectively, creation and annihila-
tion operators of the single-particle states k. For nuclei
with strong pairing condensates, the appropriate mean-
field theory is the HFB approximation. The HFB Hamil-
tonian can be written in matrix notation as [11]

ĤHFB − µN̂ =
1

2
(a† a)

(

h− µ ∆
−∆∗ −(h∗ − µ)

)

( a

a†

)

+
1

2
tr (h− µ) ,

(2)

where µ is the chemical potential, h = t + v̺̄ is
the density-dependent single-particle Hamiltonian, and
∆ij =

∑

ijkl v̄ijklκkl/2 is the pairing field, with ρ be-
ing the one-body density and κ the pairing tensor. The
2Ns×2Ns matrix in (2) can be diagonalized by a unitary

transformation to the quasiparticle basis αk, α
†
k [see Eq.

(4) below].
We assume that the HFB Hamiltonian in Eq. (2) is

invariant under time reversal, and thus its quasiparti-
cle states come in time-reversed pairs |k〉 and

∣

∣k̄
〉

with

degenerate energies Ek = Ek̄.
1 The Bogoliubov transfor-

1 If the condensate is also axially symmetric, the angular mo-

mentum m about the symmetry axis is conserved. If this is

the case, we choose the k states to have positive signature,

i.e. m = 1/2,−3/2, 5/2,−7/2, . . ., and k̄ states have negative

signature m = −1/2, 3/2,−5/2, 7/2, . . ..

mation that defines the quasiparticle basis can then be
fully expressed by

(

αk
α†
k̄

)

= W†

(

ak
a†
k̄

)

; W =

(

U −V
V U

)

(3)

where k runs over half the number of single-particle states
from 1 to Ns/2. In the following, we denote these states
by k > 0. W is an Ns × Ns unitary matrix, in con-
trast with the general Bogoliubov transformation matrix
which is 2Ns × 2Ns-dimensional [11].
Using Ek = Ek̄, the HFB Hamiltonian in (2) can be

rewritten as

ĤHFB −µN̂ =
∑

k>0

Ek(α
†
kαk−αk̄α

†
k̄
)+

1

2
tr (h−µ) . (4)

In a more compact notation

ĤHFB − µN̂ = ξ†Eξ +
1

2
tr (h− µ) , (5)

where ξ† =
(

α†
k1
, . . . , α†

kNs/2
, αk̄1 , . . . , αk̄Ns/2

)

and

E =

(

E 0
0 −E

)

. (6)

The matrix E is the diagonal matrix of the HFB quasi-
particle energies Ek (k = 1, . . . , Ns/2). Similarly, the

number operator N̂ can be written as

N̂ =
∑

k>0

(

a†kak + a†
k̄
ak̄

)

=
∑

k>0

(

a†kak − ak̄a
†
k̄

)

+
Ns
2

= ξ†
(

W†NW
)

ξ +
Ns
2
,

(7)

where

N =

(

1 0
0 −1

)

(8)

and where we have used the transformation in (3).
The particle-number projected HFB partition function

is defined by ZHFBN = Tr
[

P̂Ne
−β(ĤHFB−〈V̂ 〉)

]

, where P̂N

is the operator that projects any many-particle state in
Fock space onto the Hilbert space of N -particle states.
For a finite single-particle model space of dimension Ns,
this operator can be expressed as a discrete Fourier sum
over Ns quadrature angles ϕn = 2πn/Ns

ZHFBN =
e−βµN

Ns

Ns
∑

n=1

e−iϕnNζHFBn (9)

where

ζHFBn = eβ〈V̂ 〉Tr
[

eiϕnN̂e−β(ĤHFB−µN̂)
]

, (10)
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and µ is the chemical potential determined in the
grand-canonical ensemble. The subtraction of 〈V̂ 〉 =
tr (̺v̺̄) /2+tr

(

κ†v̄κ
)

/4 accounts for the double counting
of the interaction terms and ensures the thermodynamic
consistency of the HFB in the grand canonical ensemble.
Because of the nonzero pairing gap ∆ in Eq. (2), ĤHFB

and N̂ do not commute.
Using Eqs. (5) and (7), we can rewrite (10) as

ζHFBn = e−βU0eiϕnNs/2Tr
[

eiϕnξ
†(W†NW)ξe−βξ

†Eξ
]

,

(11)

where U0 = tr (h − µ)/2 − 〈V̂ 〉. To evaluate the trace
in (11), we use the group property of the exponentials of
one-body fermion operators written in quadratic form.
This property states that the product of two such group
elements is another group element

eξ
†Aξeξ

†Bξ = eξ
†Cξ , (12)

where the matrix C is determined from the single-particle
representation of the group

eAeB = eC . (13)

Applying this property to Eq. (11), we can rewrite it in
the form

ζHFBn = (−)ne−βU0Tr
[

eξ
†Cn(β)ξ

]

, (14)

where the matrix Cn(β) is determined from

eCn(β) = eiϕnW
†NWe−βE = W†eiϕnNWe−βE . (15)

Using the formula for the trace of the exponential of a
one-body fermionic operator (see Appendix I), we find

ζHFBn = (−)ne−βU0 det
(

1 + eCn(β)
)

. (16)

Using (15), we obtain the final expression

ζHFBn = (−)ne−βU0 det
(

1 +W†eiϕnNWe−βE
)

(17)

where the matrices W , E and N are given, respectively,
by Eqs. (3), (6), and (8).
Eq. (17) is a general formula that applies when the

HFB Hamiltonian is time-reversal invariant and thus the
quasi-particle energies come in degenerate time-reversed
pairs Ek = Ek̄. A formula valid for the most gen-
eral case can be derived in a similar fashion by using

ξ′† =
(

α†
k αk α†

k̄
αk̄

)

(where k = 1, . . . , Ns/2) and

making the dimension of the relevant matrices 2Ns ×
2Ns [12]. However, the final expression for ζHFBn , given
in Eq. (3.46) of Ref. [12], involves a square root of a de-
terminant. This square root leads to a sign ambiguity
that is difficult to resolve. The method discussed here
eliminates this sign ambiguity completely for the case in
which the HFB Hamiltonian is time-reversal invariant by
working with matrices of reduced dimension Ns ×Ns.

Eq. (17) becomes numerically unstable at large β. The
reason for this instability can be seen in Eq. (15). At
large β, the diverging scales in the diagonal matrix e−βE

will dominate the smaller scales in the matrix product
W†eiϕnNW . We stabilize the calculation by the method
discussed in Appendix II.

A. The HF limit

In the limit in which the pairing condensate vanishes,
i.e., ∆ → 0, the HFB approximation reduces to the HF
approximation. The matrix in Eq. (2) becomes diagonal,
and the mean-field Hamiltonian can be rewritten as

ĤHF =
∑

ij

hija
†
iaj . (18)

In this limit, the Bogoliubov transformation reduces to
a unitary transformation among the particle basis opera-
tors, and V vanishes. Because the particle-number oper-
ator is diagonal in a particle basis, W†eiϕnNW = eiϕnN .
Eq. (17) can then be written as

ζHFn = eβ〈V̂ 〉 det
[

1 + e−βh+(βµ+iϕn)
]

= eβ〈V̂ 〉
Ns
∏

k=1

[

1 + e−β(ǫk−µ)+iϕn

]

,
(19)

where ǫk are the HF single-particle energies.

Eq. (19) can be derived directly using [ĤHF , N̂ ] = 0
even when time-reversal symmetry is broken. A general
derivation is given in Ref. [12].

B. The BCS Limit

Eq. (17) also simplifies in the BCS limit, in which the
quasiparticle representation mixes particle state k with
only its time-reversed counterpart k̄. In this case, in the
Bogoliubov transformation matrix given in (3), U is di-
agonal and V antidiagonal. Consequently, the transfor-
mation can be decomposed into a set of Ns/2 transfor-
mations

(

αk
α†
k̄

)

=

(

uk −vk
vk uk

)(

ak
a†
k̄

)

(20)

for each pair {k, k̄} of time-reversed states. Here uk and
vk are real numbers satisfying u2k + v2k = 1. Eq. (17) can
then be rewritten as a product of 2 × 2 block determi-
nants. Using

eiϕnW
†NW |k =

(

u2ke
iϕn + v2ke

−iϕn ukvk(e
iϕn − e−iϕn)

ukvk(e
iϕn − e−iϕn) v2ke

iϕn + u2ke
−iϕn

)

(21)
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for each block and
∏

k>0 e
−iϕn = eiϕnNs/2 = (−)n, we

find the final expression

ζBCSn = e−βU0

∏

k>0

eβEk [u2k + e2iφnv2k + 2e−βEk+iφn

+ e−2βEk(v2k + e2iφnu2k)] .

(22)

The result in (22) can also be derived by writing explic-

itly the matrix elements of eiϕN̂ in the subspace spanned

by the four many-body states |〉k = (uk + vka
†
ka

†
k̄
) |〉,

α†
k |〉k, α

†
k̄
|〉k, and α

†
kα

†
k̄
|〉k, and evaluating the traces of

eiϕnN̂e−β(ĤHFB−µN̂−〈V̂ 〉) in each of these subspaces.
The result in Eq. (22) is given by Eqs. (24) and (25)

of Ref. [14] but is obtained here as the special limit of a
more general formula. A formula for the BCS limit as a
product of the corresponding 2 × 2 determinants is also
presented in Ref. [15].
An important case of the BCS limit is that of a spher-

ical condensate, in which the angular momentum quan-
tum number j and the magnetic quantum number m are
preserved by the Bogoliubov transformation. In this case,
the quasiparticle energies for a given j are independent
of m. If the single-particle model space does not include
more than one shell with the same j, the Bogoliubov
transformation is then of the form (20), where |k〉 = |jm〉
and

∣

∣k̄
〉

= ± |j −m〉, with m = 1/2,−3/2, 5/2,−7/2, . . .
being the positive-signature states. The parameters uk =
uj , vk = vj are independent of m, and Eq. (22) simplifies
to

ζHFBn = e−βU0

∏

j

eβ(j+
1
2 )Ej [u2j + e2iφnv2j + 2e−βEj+iφn

+ e−2βEj (v2j + e2iφnu2j)]
j+ 1

2 .

(23)

III. DISCRETE GAUSSIAN APPROXIMATIONS

AND STATISTICAL QUANTITIES

A. Saddle-point and discrete Gaussian

approximations

In this section, we describe briefly the discrete Gaus-
sian (DG) approximations introduced in Ref. [1]. For
more details, we refer the reader to Sec. II of Ref. [1]. The
traditional method for calculating level densities from a
grand-canonical finite-temperature mean-field theory is
by a 3D saddle-point approximation. Specifically, the
state density is given by

ρ(E,Np, Nn) ≈
1

(2π)
3/2

∣

∣

∣

∣

∂(E,Np, Nn)

∂(β, αp, αn)

∣

∣

∣

∣

−1/2

eSgc , (24)

where Sgc is the grand-canonical entropy calculated in
the mean-field approximation and the energy and parti-
cle numbers are set equal to the derivatives of lnZgc with

respect to −β and αp,n, respectively. Here αp,n = βµp,n,
where µp,n are the proton and neutron chemical poten-
tials.
Two refinements to this standard procedure were in-

troduced in Ref. [1]. The first refinement is to separate
the αp,n and β integrations in the 3D saddle-point ap-
proximation. The αp,n integrations are carried out first,
giving the approximate canonical partition function

lnZc ≈ lnZgc −
∑

i=p,n

αiNi − ln ζ , (25)

where the correction factor ζ (obtained in the 2D saddle-
point approximation) is given by

ζ = 2π

∣

∣

∣

∣

∂(Np, Nn)

∂(αp, αn)

∣

∣

∣

∣

1/2

. (26)

In a second step, the state density is obtained from the
approximate canonical partition function in Eq. (25) by
carrying out the β integration in the saddle-point approx-
imation. The canonical entropy obtained in this proce-
dure differs from Sgc not only through the inclusion of ζ
but also through the dependence of ζ on β. It is given
by

Sc ≈ Sgc − ln ζ − βδE , (27)

where δE = −d ln ζ/dE. The approximate state density
is given by an expression similar to the one given in the
next section. Eq. (26) is derived by treating the particle
numbers as continuous variables, and we therefore refer
to this method as the continuous saddle-point approxi-
mation.
The next refinement to the standard 3D saddle-point

approximation originates from the observation that Np
and Nn are discrete integers and should not be treated
as continuous variables when the particle number fluctu-
ation is small. Specifically, the continuous saddle-point
approximation breaks down when 2π〈(∆Ni)

2〉 ≤ 1 for
i = p, n. This problem is dealt with in Ref. [1] by the in-
troduction of the discrete Gaussian (DG) approximation,
in which the correction factor ζ is not given by Eq. (26)
but instead by

ζ =
∑

N ′
i, N

′
j

exp



−
1

2

∑

i,j

∂N

∂α

∣

∣

∣

∣

−1

ij

(N ′
i −Ni)(N

′
j −Nj)





(28)
where i, j = p, n. In the DG approximation, ζ is guar-
anteed to be at least unity, so this approximation will
not break down when the particle-number fluctuation is
small. When the particle-number fluctuation is large, the
DG correction factor in Eq. (28) agrees with the contin-
uous saddle-point correction factor in Eq. (26).
In Ref. [1], two versions of the DG approximation were

introduced. In the first, which we call DG1, the ma-
trix ∂N/∂α is determined numerically. In the second,
which we call DG2, the matrix ∂N/∂α is replaced by a
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diagonal matrix whose diagonal elements are given by
the particle-number variances 〈(∆Ni)

2〉 calculated in the
grand-canonical mean-field theory. Because it neglects
the potentially non-zero off-diagonal terms, DG2 is ex-
pected to be less accurate than DG1 at low temperatures.

B. Canonical energy, entropy, and state density

We summarize here the formulas used to find the statis-
tical quantities calculated in the next section. Given the
canonical partition function Zc, the average state den-
sity ρ(E) at energy E is evaluated by a 1D saddle-point
approximation as

ρ(E) ≈

(

2π

∣

∣

∣

∣

∂E

∂β

∣

∣

∣

∣

)−1/2

eSc(β) , (29)

where β is determined as a function of the energy E by
the saddle-point condition E = −∂ lnZc/∂β = Ec and
Sc is the canonical entropy Sc = lnZc + βEc. When
Zc(β) is the exact canonical partition function Zc(β) =

Tr(P̂Ne
−βĤ) (here P̂N = P̂Np P̂Nn , with Np and Nn be-

ing the numbers of protons and neutrons, respectively),

Ec = Tr(P̂Ne
−βĤĤ)/Zc(β) and Sc = −Tr(D̂N ln D̂N )

are, respectively, the exact canonical energy and entropy

of the correlated density matrix D̂N = P̂Ne
−βĤ/Zc(β).

In the particle-number projected HFB approximation,
ZHFBc = ZHFBNp

ZHFBNn
, where ZHFBNp(n)

is given by Eqs. (9)

and (17). The approximate canonical HFB energy EHFBc

is determined by the saddle-point condition

E = −
∂ lnZHFBc

∂β
= EHFBc , (30)

and the approximate canonical HFB entropy is

SHFBc = lnZHFBc + βEHFBc . (31)

The average state density in the HFB approximation is
then given by Eq. (29) with the canonical energy and
entropy replaced by the their HFB expressions (30) and
(31).

We note that the above EHFBc differs from the expec-

tation value of Ĥ in the particle-number projected HFB

density operator D̂HFB
N = P̂Ne

−β(ĤHFB−〈V̂ 〉)/ZHFBN ,

and similarly SHFBc 6= −Tr(D̂HFB
N ln D̂HFB

N ). The rea-
son for these differences is the explicit dependence of
ĤHFB on the grand canonical one-body density and pair-
ing tensor.

In the DG approximations, lnZc is given by Eq. (25),
where ζ is given by Eq. (28). The energy is given by
the saddle-point condition (30), and the entropy by (31),
where ZHFBc is replaced by the DG1 or DG2 partition
function.

IV. RESULTS

Here we present results for the particle-number-
projected finite-temperature mean-field theories in three
heavy nuclei. In this section, we refer to the particle-
number projection as the PNP method. First, we discuss
162Dy, a typical strongly deformed nucleus for which the
appropriate mean-field theory is the HF approximation.
Next, we present results for 148Sm, a typical spherical
nucleus with a strong pairing condensate for which the
BCS limit of the HFB is appropriate. Finally, we discuss
a transitional nucleus 150Sm, in which the pairing con-
densate is deformed and the general projection formula
(17) is required. The results from the PNP are compared
with the discrete Gaussian approximations of Ref. [1] and
with the SMMC results [16, 17].
The Hamiltonian for these calculations is taken from

Refs. [16, 17], where the original calculations of the
SMMC level density were carried out. It is given in a
shell-model basis having Ns = 40 proton orbitals and
Ns = 66 neutron orbitals.

A. Particle-number projected HF for a strongly

deformed nucleus: 162Dy

We applied the particle-number projected HF approxi-
mation to the strongly deformed nucleus 162Dy, in which
the pairing is weak, using Eqs. (9) and (19) to calcu-
late the particle-number projected partition function. In
Fig. 1, we compare the approximate canonical entropy
(31) from the PNP with those from the DG approxima-
tions and with the SMMC entropy. The kink at β ≈ 0.83
MeV−1 in the HF results is due to the sharp shape tran-
sition that occurs in the grand canonical HF approxima-
tion. At β values below the shape transition (i.e., in the
spherical phase), the HF results are in good agreement
with those from the SMMC. However, at β values above
the shape transition, the entropies from the PNP and the
DG approximations are noticeably lower than the SMMC
entropy. The reason for this discrepancy is that the HF
approximation accounts only for the intrinsic K states
and not for the rotational bands that are built on top of
these intrinsic states.
The PNP, DG1, and DG2 give nearly identical re-

sults for β < 4 MeV−1. In DG1 and DG2, however,
the entropy exhibits unphysical oscillatory behavior for
4 ≤ β ≤ 10 MeV−1. In contrast, the entropy asymptotes
monotonically to zero at large β in the PNP, as would be
physically expected.
The PNP canonical excitation energy and state den-

sity closely resemble the corresponding results for the
DG approximations, which are shown in Figs. 6 and 10
of Ref. [1]. The deviation between the PNP entropy and
the DG entropy observed at low temperatures does not
lead to any significant difference in the state densities.
Figures showing these observables are included in the
Supplementary Material.
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FIG. 1: Canonical entropy of 162Dy vs. β in the HF approxi-
mation. The approximate PNP canonical entropy (31) (solid
black line) is compared with the approximate canonical en-
tropy from DG1 (dashed red line) and from DG2 (dashed-
dotted blue line). The open circles represent the SMMC en-
tropy. The inset shows the various entropies at higher β val-
ues.

B. Particle-number projected HFB for a spherical

condensate: 148Sm

To test our formulas for the particle-number pro-
jected HFB partition function in the BCS limit, given
by Eqs. (9) and (23), we apply the particle-number pro-
jected HFB approximation to 148Sm, for which the pair-
ing condensate is spherical. The canonical entropies for
the PNP, the DG approximations, and the SMMC are
shown in Fig. 2. The kinks in the HFB results in the re-
gion 2 ≤ β ≤ 3 MeV−1 are due to the proton and neutron
pairing transitions. For β values below the first pairing
transition, there is good agreement between the HFB re-
sults and the SMMC results. The kinks that indicate the
pairing transitions are more pronounced in the PNP and
DG2 than in DG1.

In the paired phase, the approximate canonical en-
tropies for the PNP and the DG approximations decrease
rapidly, dropping below zero around β ≈ 4 MeV−1. A
negative entropy is unphysical because the entropy of
a non-degenerate ground state is zero. This negative
entropy originates in the intrinsic violation of particle-
number conservation in the grand canonical HFB approx-
imation and will be explained for the PNP in Sec. IVD.
An explanation for the DG approximations was given in
Ref. [1].

However, for large β values, the PNP exhibits quali-
tative and quantitative improvements over the DG ap-
proximations. The entropy from the PNP asymptotes
smoothly to a value of Sc ≈ −2.30. The entropy from
DG1 reaches a minimum around β ≈ 8 MeV−1 and sub-
sequently increases with increasing β. Such an increase
is unphysical because, for these values of β, the system
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FIG. 2: Canonical entropies of 148Sm vs. β in the BCS limit of
the HFB approximation. Lines and symbols are as in Fig. 1.
The inset shows the entropies for higher β values.

is already in its ground state. The entropy from DG2
asymptotes smoothly to a negative value of Sc ≈ −3.68.
The absolute error in the estimate for the ground-state
entropy is thus larger in DG2 than in the PNP by more
than a unit.
At large values of β, the PNP excitation energy for

148Sm closely resembles the DG1 excitation energy shown
in Fig. 13 of Ref. [1]. The PNP state density is similar to
the DG2 state density shown by the dotted line in Fig. 16
of Ref. [1] while the DG1 state density is somewhat en-
hanced at low excitation energies. Figures showing these
observables are included in the Supplementary Material.

C. Particle-number projected HFB for a deformed

condensate: 150Sm

To calculate the particle-number projected HFB par-
tition function for 150Sm, which has a deformed pairing
condensate, we must use the general PNP HFB formal-
ism of Sec. II, i.e., Eqs. (9) and (17). In this case, the
advantages of the PNP over the DG approximations are
significant for the excitation energy, canonical entropy,
and state density. In particular, DG1, the more accu-
rate of the two DG methods used in Ref. [1], becomes
numerically unstable for temperatures below the shape
transition. Because of this instability, we omit DG1 from
the figures in this section. In contrast, the PNP remains
stable for all temperatures.

1. Excitation energy

In Fig. 3, we show the excitation energy as a function
of β for the PNP and the DG2 in comparison with the
SMMC energy. The kink in the HFB results β ≈ 1.5
MeV−1 is the shape transition, and the kinks at β ≈ 3
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MeV−1 and β ≈ 6 MeV−1 are the proton and neutron
pairing transitions. Except around the phase transitions,
there is good agreement between the PNP and DG2 re-
sults and the SMMC results. The DG2 approximation
shows a larger discrepancy from the SMMC around the
pairing transitions than the PNP does.
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FIG. 3: Excitation energy of 150Sm vs. β in the HFB approx-
imation. The approximate canonical energy calculated from
the PNP (solid black line) is compared with the approximate
canonical energy from DG2 (dashed-dotted blue line). DG1
becomes unstable for this nucleus and is not shown. The open
circles are the SMMC excitation energies. The inset shows
higher β values.

2. Canonical entropy

The canonical entropy from the PNP, the DG2, and
the SMMC are shown in Fig. 4. At β values below the
shape transition, there is close agreement between the
SMMC and the HFB results. Between the shape transi-
tion at β ≈ 1.5 MeV−1 and the proton pairing transition
at β ≈ 3 MeV−1, the PNP and DG2 entropies are lower
than the SMMC entropy because of the contributions of
rotational bands to the SMMC. For β values above the
proton pairing transition, the HFB entropies are reduced
even further, falling below zero at β ≈ 4 MeV−1. As
in the case of 148Sm, this negative entropy originates in
the violation of particle-number conservation in the HFB
approximation.
The entropy from the PNP is very close to that from

DG2 in the unpaired phase but shows a quantitative im-
provement over DG2 in the paired phase. The entropy
from the PNP asymptotes to Sc ≈ −1.20, while the en-
tropy from DG2 asymptotes to Sc ≈ −2.52. As with
148Sm, the absolute error of the ground-state entropy in
the PNP is lower by more than a unit of entropy than
the error in DG2. Furthermore, DG2 shows a large spike
near the neutron pairing transition, which is not present
in the PNP.
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FIG. 4: Canonical entropy of 150Sm vs. β in the HFB approx-
imation. Lines and symbols for the PNP, discrete Gaussian
approximation DG2, and SMMC are as in Fig. 3. The inset
shows an expanded scale at large values of β.

3. State density
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FIG. 5: State density of 150Sm vs. excitation energy Ex in
the HFB approximation. Lines and symbols are as in Fig. 3.
The inset shows the low excitation energy results.

The behavior of the state density, which is shown for
the PNP, the discrete Gaussian approximation DG2, and
the SMMC in Fig. 5, closely resembles that of the canon-
ical entropy. At energies above the shape transition, the
PNP and DG2 results agree well with the SMMC re-
sults. The HFB results are reduced at energies below the
shape transition and reduced further at energies below
the pairing transitions. The discontinuities in both the
PNP and in DG2 around Ex ≈ 10 MeV and Ex ≈ 3 MeV
are due to the sharp kinks at the shape transition and
proton pairing transition, respectively. The discrepancy
between the PNP and DG2 entropies in the high-β limit
is not noticeable in the state density because this dis-
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crepancy becomes significant only for very low excitation
energies.

D. Approximate canonical HFB entropy in the

limit T → 0

We found in Secs. IVB and IVC that the approximate
canonical entropy of 148Sm and 150Sm asymptotes at low
temperatures to a negative number. Here, we show how
this unphysical result arises from the inherent violation of
particle-number conservation in the grand canonical HFB
approximation. We consider the limit of sufficiently large
β, in which we can neglect the contribution of excited
states to the partition function. Assuming for simplicity
one type of particles, we have in this limit

ZHFBN → e−βE0 〈Φ| P̂N |Φ〉 , (32)

where E0 is the ground-state energy and |Φ〉 is the
HFB ground state. This state can be written as a lin-
ear superposition of states with even particle numbers,
|Φ〉 =

∑

N=0,2,4,... αN |ψ〉N , where |ψ〉N is an N -particle

state. Eq. (32) can then be expressed as

ZHFBN → e−βE0 |αN |2 . (33)

where |αN |2 is the probability that the HFB ground-state
condensate contains N particles. Using Eq. (31) and gen-
eralizing to the case of both protons and neutrons, we find
in the limit of zero temperature

SHFBc → ln
∣

∣αNp

∣

∣

2
+ ln |αNn |

2 , (34)

where Np and Nn are the numbers of protons and neu-
trons, respectively. Because particle-number is not con-

served,
∣

∣αNp

∣

∣

2
, |αNn |

2
< 1, and the entropy (34) is neg-

ative. A closely related explanation for the DG approxi-
mations is given in Ref. [1]. This negative entropy is an
inherent limitation of the particle-number projection af-
ter variation method in the grand canonical HFB theory.

E. Computational Efficiency

An important advantage of the PNP over all saddle-
point methods in which the partial derivatives are cal-
culated explicitly is computational efficiency. Both the
PNP and these saddle-point methods require finding the
self-consistent mean-field solutions for a set of β values.
The additional cost of the PNP HF approximation scales
as N2

s , since calculating ζHFn in Eq. (19) takes Ns oper-
ations and must be done for each of the Ns quadrature
points in the Fourier sum. The PNP HFB approximation
scales asN4

s because the matrix decomposition in the sta-
bilization method (discussed in Appendix II) requires N3

s

operations for each of the Ns quadrature points.

In DG1 it is necessary to calculate numerically the
derivatives of the proton and neutron numbers with re-
spect to the chemical potentials, which requires finding
additional mean-field solutions. The cost of calculating
these derivatives accurately can be very large, especially
in the vicinity of the phase transitions where the mean-
field solution can take many iterations to converge. These
timing considerations do not apply to DG2, since in that
approximation the relevant derivatives are replaced by
the particle-number variances calculated as mean-field
observables. However, as discussed in Ref. [1], DG2 is
significantly less accurate than DG1 in the paired phase.
In contrast, the PNP is as or more accurate than DG1 in
each of the nuclei considered here.
In the Supplementary Material, we include timing data

comparing the efficiency of the PNP to that of the DG1
approximation for the transitional nucleus 150Sm.

V. CONCLUSION AND OUTLOOK

We have derived a general formula for exact
particle-number projection after variation in the finite-
temperature HFB approximation, assuming only that the
HFB Hamiltonian is invariant under time reversal. This
general formula reduces to simpler known expressions in
the HF and BCS limits.
We have assessed the accuracy of the PNP, using the

SMMC as a benchmark. In addition, we have compared
the performance of this method to the DG approxima-
tions formulated in Ref. [1], which were introduced to
improve on the saddle-point approximation. Our results
show that, like the DG approximations, the PNP is in
agreement with the SMMC for temperatures above the
shape or pairing phase transitions. In general, we find
that the PNP provides both quantitative and qualitative
improvements over the DG and saddle-point approxima-
tions at low temperatures. In the HF case, the PNP
suppresses an instability that develops in the canonical
entropy calculated by the DG approximations at large β.
In the paired phase of the HFB, the PNP entropy shows
the correct qualitative behavior, i.e., it is monotonically
decreasing with increasing β, unlike the DG1 approxima-
tion. Furthermore, in the paired phase, the PNP reduces
the error in the DG2 approximation by more than a unit
of entropy. This reduction is significant, since the errors
in both cases are of order unity. Finally, the PNP is
significantly more computationally efficient than saddle-
point methods in which derivates have to be calculated
explicitly, such as the DG1 approximation.
However, the PAV method is inherently limited by the

broken symmetries in the grand canonical mean-field the-
ory to which it is applied. In a deformed nucleus, the
projected mean-field theory cannot describe the rota-
tional enhancement that is observed in the SMMC be-
low the shape transition temperature. In a nucleus with
a strong pairing condensate, the intrinsic violation of
particle-number conservation below the pairing transi-
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tion temperature leads to negative values of the PNP
canonical entropy. It is therefore desirable to explore
improvements to finite-temperature mean-field theories
that can address these issues.

One avenue for improvement is the variation after pro-
jection (VAP) method. VAP conserves particle-number
during the variation to determine the mean-field solu-
tion and is therefore expected to smooth the sharp phase
transitions of the grand-canonical mean-field approxima-
tions and correct the unphysical negative entropy in the
paired phase. This method has been formulated for the
zero-temperature HFB approximation [18] and applied
to even-even nuclei [19, 20]. VAP has also been formu-
lated at finite temperature in the BCS approximation to
calculate the pairing gaps in small model spaces [21, 22].
However, a general VAP method for finite-temperature
calculations in large model spaces would involve a consid-
erable computational cost. In particular, the entropy of
the projected HFB density SN = −Tr(D̂N ln D̂N), which
is required for the calculation of the free energy at finite
temperature, is difficult to calculate in the paired phase
because the HFB Hamiltonian does not commute with
the particle-number operator. Nevertheless, given the
potential advantages of this method, it would be worth
investigating the possibility of developing a general VAP
method for the finite-temperature HF and HFB approx-
imations in large model spaces.

Another direction, perhaps more tractable, would be to
use the PNP in the static-path approximation (SPA) [23–
26]. The SPA takes into account the static fluctuations
of the mean field beyond its self-consistent solution. As
with the mean-field approximation, the particle-number
projection can be carried out either before or after the
SPA integration. It would be useful to conduct a system-
atic assessment of the particle-number projected SPA.

Finally, the formula derived here for the particle-
number projected HFB partition function assumes that
the HFB Hamiltonian is time-reversal invariant and
therefore is not completely general. A general formula
for the projected HFB partition function was derived in
Ref. [12], but its application is limited by a sign ambigu-
ity. For the grand canonical traces of statistical density
operators, a similar sign ambiguity was resolved by relat-
ing the trace over the Fock space to a pfaffian [27]. An ex-
tension of the pfaffian approach to symmetry restoration
projection for a general finite-temperature HFB Hamilto-
nian, and specifically for particle-number projection, will
be presented in Ref. [28].
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Appendix I: Trace of exponential of fermionic

one-body operator

Here, we derive the formula for the grand canonical
trace of the exponential of a quadratic fermionic operator
of the form of Eq. (6). Assuming a diagonalizableNs×Ns
matrix C,

Tr eξ
†Cξ = det

(

1 + eC
)

, (35)

where ξ is defined in Sec. II.
Since C is diagonalizable, there is a similarity transfor-

mation S that brings C to a diagonal form

SCS−1 =





















λk1
. . .

λkNs/2

λk̄1
. . .

λk̄Ns/2





















. (36)

If S is unitary, it can be used to transform αk and α†
k to

new fermionic operators dk and d†k such that

Tr eξ
†Cξ = Tr e

∑
k>0(λkd

†

kdk+λk̄dk̄d
†

k̄
)

= Tr e
∑

k>0(λkd
†

kdk−λk̄d
†

k̄
dk̄+λk̄) .

(37)

Since dk are fermionic operators, the grand canonical
trace in Eq. (37) can be evaluated as usual to give

Tr eξ
†Cξ =

∏

k>0

[

(1 + eλk)(1 + e−λk̄)eλk̄
]

=
∏

k>0

[

(1 + eλk)(1 + eλk̄)
]

= det
(

1 + eC
)

.

(38)

However, in general, S is not unitary. In this case, we
make use of a nonunitary Bogoliubov transformation [29].

We define the operators {d, d̃} by the canonical transfor-
mation

η = Sξ , η̃ = ξ†S−1 , (39)

where η =
(

dk1 , . . . , dkNs/2
, d̃k̄1 , . . . , d̃k̄Ns/2

)T

and η̃ =
(

d̃k1 , . . . , d̃kNs/2
, dk̄1 , . . . , dk̄Ns/2

)

. It can be shown that

{d, d̃} have the same anti-commutation relations as
{α, α†} [29]. However, this transformation does not pre-
serve the hermiticity relation of the operators. Therefore
we must treat the kets and bras related to these operators
differently. Because the anti-commutation relations are
preserved, the usual creation and annihilation formulas
apply to the left and right bases separately. We define
the left and right vacuums by

|0〉d =
∏

k>0

dkdk̄ |0〉 , d 〈0̄| = 〈0|
∏

k>0

d̃kd̃k̄ , (40)
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and left and right states by

|φ〉 =
∏

k>0

(d̃k)
nk(d̃k̄)

nk̄ |0〉d

〈

φ̄
∣

∣ =d 〈0̄|
∏

k>0

(dk)
nk(dk̄)

nk̄ .
(41)

The anti-commutation relations ensure that

〈

φ̄|φ′
〉

= δφ,φ′ ,
〈

φ̄
∣

∣ d̃kdk |φ〉 = nk , (42)

where nk is the occupation number of state k. Further-
more, as discussed in Ref. [29], these left and right states
form a a bi-orthogonal basis for the Fock space and there-
fore satisfy the completeness relation,

∑

φ

|φ〉
〈

φ̄
∣

∣ = 1 . (43)

We can rewrite ξ†Cξ in this bi-orthogonal basis

ξ†Cξ = η̃SCS−1η =
∑

k>0

λkd̃kdk − λk̄d̃k̄dk̄ + λk̄ . (44)

We can now compute the trace as follows (|ψ〉 below is
an arbitrary state in the α, α† basis):

Tr eξ
†Cξ =

∑

ψ

〈ψ| eξ
†Cξ |ψ〉

=
∑

ψ,φ,φ′

〈ψ|φ〉
〈

φ̄
∣

∣ e
∑

k>0(λk d̃kdk−λk̄ d̃k̄dk̄+λk̄) |φ′〉
〈

φ̄′|ψ
〉

=
∑

φ

〈

φ̄
∣

∣

∏

k>0

eλkd̃kdk−λk̄d̃k̄dk̄+λk̄ |φ〉

=
∏

k>0

∑

nk=0,1
nk̄=0,1

eλknk+λk̄(1−nk̄)

=
∏

k>0

(

1 + eλk
) (

1 + eλk̄
)

= det
(

1 + eC
)

.

(45)

This completes the proof of Eq. (35).

Appendix II: Stabilization of the HFB

particle-number projection

Eq. (17) becomes numerically unstable at large values
of β. We rewrite

det
(

1 +W†eiϕnNWe−βE
)

=det
(

W†
)

det
(

eiϕnN
)

det (W)

× det
(

W†e−iϕnNW + e−βE
)

.

(46)

Using det
(

eiϕnN
)

= 1 and detW† = [detW ]−1, we find

det
(

1 +W†eiϕnNWe−βE
)

= det
(

W†e−iϕnNW + e−βE
)

.
(47)

The determinant on the r.h.s. can be computed sta-
bly [30] by decomposing the matrix An ≡ W†e−iϕnNW+
e−βE in the form

An = QnDnRn , (48)

where Qn is an orthogonal matrix, Rn is an upper trian-
gular matrix in which each diagonal entry is 1, and Dn

is a diagonal matrix. Qn and Rn are well-conditioned
matrices, while Dn contains the scales of the problem.
Consequently, the eigenvalues of Qn and Rn can be com-
puted stably. We use these eigenvalues, together with
the diagonal entries of Dn, to find detAn. In practice,
to avoid numerical overflow, we compute the quantity

ln detAn = ln detQn + ln detDn + ln detRn . (49)
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