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Abstract

We examine the two-photon exchange corrections to elastic electron–proton scattering within a

dispersive approach, including contributions from both nucleon and ∆ intermediate states. The

dispersive analysis avoids off-shell uncertainties inherent in traditional approaches based on direct

evaluation of loop diagrams, and guarantees the correct unitary behavior in the high energy limit.

Using empirical information on the electromagnetic nucleon elastic and N∆ transition form factors,

we compute the two-photon exchange corrections both algebraically and numerically. Results are

compared with recent measurements of e+p to e−p cross section ratios from the CLAS, VEPP-3

and OLYMPUS experiments, as well as with polarization transfer observables.
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I. INTRODUCTION

The nucleon’s electroweak form factors are some of the cornerstone observables that char-

acterize its extended spatial structure. Since the original observation [1] some 60 years ago

that elastic scattering from the proton deviates from point-like behavior at large scatter-

ing angles, considerable information has been accumulated on the detailed structure of the

proton’s and neutron’s electric and magnetic responses. Almost universally the underlying

scattering reaction has been assumed to proceed through the exchange of a single photon

between the lepton (typically electron) beam and nucleon target.

A major paradigm shift occurred around the turn of the last century with the observa-

tion of a significant discrepancy between the ratio of electric to magnetic form factors of the

proton measured using the relatively new polarization transfer technique [2, 3] and previous

extractions of the same quantity from cross section measurements via Rosenbluth separa-

tion. It was soon realized [4, 5] that a large part of the discrepancy could be understood

in terms of additional, hadron structure-dependent two-photon exchange (TPE) contribu-

tions, which had not been included in the standard treatments of electromagnetic radiative

corrections [6, 7].

A number of approaches have been adopted to computing the TPE corrections to elas-

tic scattering, including direct calculation of the loop contributions in terms of hadronic

degrees of freedom [4, 8–15], modeling the high energy behavior of box diagrams at the

quark level through generalized parton distributions [16, 17], or more recently dispersion

relations [18–21]. Each of these methods has its own advantages as well as limitations (for

reviews, see Refs. [22–24]), and to date no single approach has been able to provide a uni-

versal description valid at all kinematics.

Most of the attention on the TPE corrections in recent experiments has been focussed

on the region of small and intermediate values of the four-momentum transfer squared,

Q2 . few GeV2, where the expectation is that hadrons retain their identity sufficiently well

that calculations in terms of physical degrees of freedom give reliable estimates. Tradition-

ally, this approach has required direct evaluation of the real parts of the two-photon box

and crossed-box diagrams, with nucleons or other excited state hadrons in the intermediate

state parametrized through half off-shell form factors (with one nucleon on-shell and one

off-shell). Because the off-shell dependence of these form factors is not known, usually one
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approximates the half off-shell form factors by their on-shell limits.

For nucleon intermediate states, the off-shell uncertainties are not expected to be severe.

On the other hand, for transitions to excited state baryons described by effective interac-

tions involving derivative couplings, such as for the ∆ resonance, the off-shell dependence

leads to divergences in the forward angle (or high energy) limit, and signals a violation of

unitarity. Furthermore, from a more technical perspective, in order to evaluate the TPE cor-

rections analytically in terms of Passarino-Veltman functions, the loop integration method

requires the transition form factors to be parametrized as sums or products of monopole

functions. This can prove cumbersome in some applications, since such parametrizations

are usually only valid in a limited region of spacelike Q2, and may be prone to roundoff

errors in numerical evaluation. It would naturally be highly desirable to be able to compute

the loop integrations with a more robust numerical method that is valid for form factor

parametrizations based on more general classes of functional forms.

The limitations of the previous loop calculations are especially problematic in view of

new measurements of ratios of e+p to e−p elastic scattering cross sections [25–28], which

have provided high precision data that are directly sensitive to TPE effects. Some of these

data are in the small-angle region, where the off-shell ambiguities in the loop calculations

make the calculations unreliable. To enable meaningful comparison between the data and

TPE calculations over the full range of kinematics currently accessible, clearly a different

approach to the problem is needed.

In this paper, we revisit the calculation of TPE corrections within the hadronic approach,

but using dispersion relations to construct the real part of the TPE amplitude from its

imaginary part. The dispersive method involves the exclusive use of on-shell transition form

factors, thereby avoiding the problem of unphysical violation of unitarity in the high energy

limit. The dispersive approach to TPE was developed at forward angles by Gorchtein [18],

and at non-forward angles by Borisyuk and Kobushkin [19, 20, 29, 30], and more recently

by Tomalak and Vanderhaeghen [21]. A feature of the latter two analyses has been the use

of monopole form factor parametrizations, which allowed the computations to be performed

semi-analytically. In this work we extend the dispersion relation approach to allow for more

general classes of transition form factors.

In Sec. II of this paper we review the formalism for elastic electron–nucleon scattering

for both one-photon and two-photon exchange processes, and introduce the main elements
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of the dispersive approach. We describe analytical calculations of the imaginary part of the

TPE corrections using the more restrictive monopole form factors, for which one can obtain

analytic expressions in terms of elementary logarithms. We also describe the more general

numerical method that allows standalone calculation of the imaginary part using a general

class of transition form factors.

The results of the calculations are presented in Sec. III, where we critically examine the

differences between the new dispersive method and the previous loop calculations with off-

shell intermediate states. While the differences are relatively small for the nucleon elastic

contributions, the effects for ∆ intermediate states are dramatic at high energies and forward

scattering angles. We also compare in Sec. III the new results with the recent data on

e+p to e−p cross section ratios from the CLAS [25], VEPP-3 [26, 27] and OLYMPUS [28]

experiments, as well as with polarization data sensitive to TPE contributions [31]. Finally,

in Sec. IV we summarize our results, and discuss possible future developments in theory

and experiment. For completeness, in the appendices we give the full expressions for the

generalized form factors in Appendix A, and analytic expressions for the imaginary parts of

Passarino-Veltman functions in Appendix B. We also provide convenient reparametrizations

of the nucleon and ∆ vertex form factors in Appendix C that can be used in the analytic

calculations.

II. FORMALISM

In this section we present the formalism on which the electron–nucleon scattering analysis

in this paper will be based. After summarizing the kinematics and main formulas for the

elastic scattering amplitudes and cross sections at the Born and TPE level, we proceed to

describe the new elements of the analysis that make use of dispersive methods, including

both analytic and numerical evaluation of integrals.

A. Elastic ep scattering

For the elastic scattering process ep → ep the four-momenta of the initial and final

electrons (taken to be massless) are labeled by k and k′, and of the initial and final protons

(mass M) by p and p′, respectively, as depicted in Fig. 1. The four-momentum transfer from
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FIG. 1. Contributions to elastic electron–nucleon scattering from (a) one-photon exchange, and

(b) two-photon exchange amplitudes, with particle momenta as indicated. For TPE we have

q1 + q2 = q. Only the s-channel “box” diagram is drawn. The “crossed-box” contribution, which

can be obtained by applying crossing symmetry s→ u, is implied.

the electron to the proton is given by q = p′ − p = k − k′, with Q2 ≡ −q2 > 0. One can

express the elastic cross section in terms of any two of the Mandelstam variables s (total

electron–proton invariant mass squared), t, and u, where

s = (k + p)2 = (k′ + p′)2 ,

t = (k − k′)2 = q2 ,

u = (p− k′)2 = (p′ − k)2 ,

(1)

with the constraint s+ t+ u = 2M2.

The elastic scattering cross section can be defined in terms of any two of the dimensionless

quantities

ε =
ν2 − τ(1 + τ)

ν2 + τ(1 + τ)
=

2 (M4 − su)

s2 + u2 − 2M4
,

τ =
Q2

4M2
, ν =

k · p
M2
− τ .

(2)

The inverse relationships are also useful,

ν =
s− u
4M2

=

√
τ(1 + τ)(1 + ε)

1− ε ,

s = M2(1 + 2τ + 2ν) .

(3)

In the target rest frame the variables are given by

ε =

(
1 + 2(1 + τ) tan2 θe

2

)−1

,

τ =
E − E ′

2M
, ν =

E + E ′

2M
, E = M(τ + ν) ,

(4)
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where E (E ′) is the energy of the incident (scattered) electron, θe is the electron scattering

angle, and ε (0 < ε < 1) is identified with the relative flux of longitudinal virtual photons.

1. One-photon exchange

In the Born (OPE) approximation the electron–nucleon scattering invariant amplitude

can be written as

Mγ = −e
2

q2
jγµ J

µ
γ , (5)

where e is the electric charge, and the matrix elements of the electromagnetic leptonic and

hadronic currents are given in terms of the lepton (ue) and nucleon (uN) spinors by

jγµ = ūe(k
′) γµ ue(k) ,

Jµγ = ūN(p′) Γµ(q)uN(p) .
(6)

The electromagnetic hadron current operator Γµ is parametrized by the Dirac (F1) and Pauli

(F2) form factors as

Γµ(q) = F1(Q2) γµ + F2(Q2)
iσµνqν

2M
, (7)

where the Born form factors are functions of a single variable, Q2. In our convention, the

reduced Born cross section σBorn
R is given by

σBorn
R = εG2

E(Q2) + τ G2
M(Q2) , (8)

where the Sachs electric and magnetic form factors GE,M(Q2) are defined in terms of the

Dirac and Pauli form factors as

GE(Q2) = F1(Q2)− τF2(Q2) ,

GM(Q2) = F1(Q2) + F2(Q2) .
(9)

2. Two-photon exchange

Using the kinematics illustrated in the box diagram in Fig. 1(b), the contribution to the

TPE box amplitude from an intermediate hadronic state R of invariant mass MR can be

written in the general form [4, 8]

Mbox
γγ = −ie4

∫
d4q1

(2π)4

LµνH
µν
R

(q2
1 − λ2)(q2

2 − λ2)
, (10)
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with q2 = q − q1, and an infinitesimal photon mass λ is introduced to regulate any infrared

divergences. (In general the mass MR can have a distribution W which can be integrated

over, but here we specialize to the case of a narrow state R.) The leptonic and hadronic

tensors here are given by

Lµν = ūe(k
′) γµ SF (k1,me) γν ue(k) , (11)

Hµν
R = ūN(p′) ΓµαR→γN(pR,−q2)Sαβ(pR,MR) ΓβνγN→R(pR, q1)uN(p) , (12)

with k1 = k − q1, pR = p+ q1, and the electron propagator is

SF (k1,me) =
(/k1 +me)

(k2
1 −m2

e + i0+)
. (13)

The hadronic transition current operator γN → R is written in a general form ΓαµγN→R(pR, q)

that allows for a possible dependence on the incoming momentum q of the photon and the

outgoing momentum pR of the hadron, while µ and α are Lorentz indices.

The hadronic state propagator Sαβ(pR,MR) in this work will describe the propagation of

a baryon with either spin-1⁄2 or spin-3⁄2. For spin-1⁄2 intermediate states, such as the nucleon,

this reduces to

Sαβ(pR,MR) = δαβ SF (pR,MR), (14)

and the transition operator ΓγN→R involves one free Lorentz index. For spin-3⁄2 intermediate

states, such as the ∆ baryon, the propagator can be written

Sαβ(pR,MR) = −SF (pR,MR)P3/2
αβ (pR), (15)

where the projection operator

P3/2
αβ (pR) = gαβ −

1

3
γαγβ −

1

3p2
R

(
/pRγα(pR)β + (pR)αγβ/pR

)
, (16)

ensures the presence of only spin-3⁄2 components. Unphysical spin-1⁄2 contributions are sup-

pressed by the condition on the vertex pRαΓαµγN→R(pR, q) = 0.

One can obtain the crossed-box (“xbox”) contribution directly from the box term (10)

by applying crossing symmetry. For example, in the unpolarized case, we have

Mxbox
γγ (u, t) = −Mbox

γγ (s, t)
∣∣∣
s→u

. (17)

In general,Mbox
γγ (s, t) has both real and imaginary parts, whereasMxbox

γγ (u, t) is purely real.

The total squared amplitude for the sum of the one- and two-photon exchange processes
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shown in Fig. 1 is then

|Mγ +Mγγ|2 ≈ |Mγ|2 + 2 Re
(
M†

γMγγ

)
≡ |Mγ|2 (1 + δTPE) ,

(18)

where the relative correction to the cross section due to the interference of the one- and

two-photon exchange amplitudes is defined as

δTPE =
2 Re

(
M†

γMγγ

)
|Mγ|2

. (19)

Within the framework of the simplest hadronic models, analytic evaluation of δTPE is

made possible by writing the transition form factors at the γ-hadron vertices as a sum

and/or product of monopole form factors [4, 9], which are typically fit to empirical transition

form factors over a suitable range in spacelike four-momentum transfer. Four-dimensional

integrals over the momentum in the one-loop box diagram can then be expressed in terms of

the Passarino-Veltman (PV) scalar functions A0, B0, C0 and D0 [32, 33]. This reduction to

scalar integrals is automated by programs such as FeynCalc [34, 35]. The PV functions can

then be evaluated numerically using packages such as LoopTools [36]. In this paper we are

interested only in the imaginary parts of these PV functions, which are considerably simpler

than the full expressions. This will be discussed in detail in the next section.

Note that the expressions (10) and (19) contain infrared (IR) divergences arising from

the elastic intermediate state when the momentum qi (i = 1, 2) of either photon vanishes.

In analyzing the TPE corrections for ep scattering, it is convenient to subtract off these

conventional IR-divergent parts, which are independent of hadronic structure, and which

are usually already included in experimental analyses using a specific prescription (e.g.

Mo & Tsai [7], Grammer & Yennie [37], or Maximon & Tjon [38]).

In general, the TPE amplitude at the IR poles (q1 → 0 or q2 → 0) has the form

Mγγ −→Mγ∆IR , (20)

where ∆IR is a function containing all the IR divergences that is independent of hadronic

structure. Its form depends on the particular IR prescription being used. This is discussed

extensively in the TPE review by Arrington, Blunden, and Melnitchouk [23], and we defer

to that paper for details. The hard-TPE correction of interest is then

δγγ ≡ δTPE − 2 Re ∆IR . (21)
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In this paper we follow the prescription used by Maximon and Tjon [38], which is to

evaluate the contribution to the numerator of Eq. (10) arising from the poles qi → 0, while

keeping the propagators in the denominator intact. In this prescription,

∆IR(MTj) = −α
π

log

(
M2 − s
M2 − u

)
log

(
Q2

λ2

)
. (22)

This expression has both real and imaginary parts. In our convention, log(−x) = log x− iπ
for x > 0, so explicitly the real and imaginary parts are

Re ∆IR(MTj) = −α
π

log

(
s−M2

M2 − u

)
log

(
Q2

λ2

)
, (23a)

Im ∆IR(MTj) = α log

(
Q2

λ2

)
. (23b)

After accounting for conventional radiative corrections, the measured reduced cross sec-

tion σR is related to the Born cross section by

σR = σBorn
R (1 + δγγ) . (24)

In practice, most experimental cross section analyses use the IR-divergent expression of Mo

and Tsai [7], so that if one uses the Maximon and Tjon prescription [38] (as we do in this

paper) then the difference should be accounted for when comparing to experimental data

(see Ref. [23] for further discussion).

The total TPE amplitude Mγγ can be rewritten in terms of “generalized form factors”,

generalizing the expressions of Eqs. (5)–(7), as described by Guichon and Vanderhaeghen [5].

Although the decomposition is not unique, and different generalized form factor conventions

have been used in the literature, in this paper we use the basis of form factors denoted by

F ′1, F ′2 and G′a, defined via

Mγγ = −e
2

q2
ūe(k

′)γµue(k) ūN(p′)

[
F ′1(Q2, ν) γµ + F ′2(Q2, ν)

iσµνqν
2M

]
uN(p)

−e
2

q2
ūe(k

′)γµγ5ue(k) ūN(p′)G′a(Q
2, ν) γµγ5uN(p) , (25)

where the vector F ′1 and F ′2 generalized form factors are the TPE analogs of the Dirac

and Pauli form factors, while the axial vector G′a generalized form factor has no Born level

analog.

Rather than construct δTPE and subtract the IR-divergent terms, as in Eq. (21), it is

convenient to incorporate the IR subtractions directly into the generalized form factors F ′1
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and F ′2 (G′a is not IR-divergent),

F ′1 ≡ F ′1,TPE − F1(Q2) ∆IR , (26a)

F ′2 ≡ F ′2,TPE − F2(Q2) ∆IR , (26b)

where F ′i,TPE refer to the unregulated expressions. In terms of these regulated generalized

form factors, the relative TPE correction is given by

δγγ = 2 Re
εGE(F ′1 − τF ′2) + τGM(F ′1 + F ′2) + ν(1− ε)GMG

′
a

εG2
E + τG2

M

. (27)

B. Dispersive approach

As noted earlier, the TPE amplitude Mγγ has both real and imaginary parts. The real

and imaginary parts can be related through dispersion relations [18, 19], which forms the

basis of the dispersive method discussed in this section. Our discussion in this section

follows the formalism of Tomalak and Vanderhaeghen [21, 39]. An alternative treatment by

Borisyuk and Kobushkin [19] starts from the annihilation channel, e− + e+ → p+ p̄.

Using the parametrization of the TPE amplitude Mγγ in terms of the generalized form

factors F ′1, F ′2 and G′a, we note that these TPE amplitudes have the symmetry properties

[18, 19]

F ′1,2(Q2,−ν) = −F ′1,2(Q2, ν) , (28a)

G′a(Q
2,−ν) = +G′a(Q

2, ν) , (28b)

and satisfy the fixed-t dispersion relations

ReF ′1(Q2, ν) =
2

π
P
∫ ∞
νth

dν ′
ν

ν ′2 − ν2
ImF ′1(Q2, ν ′) , (29a)

ReF ′2(Q2, ν) =
2

π
P
∫ ∞
νth

dν ′
ν

ν ′2 − ν2
ImF ′2(Q2, ν ′) , (29b)

ReG′a(Q
2, ν) =

2

π
P
∫ ∞
νth

dν ′
ν ′

ν ′2 − ν2
ImG′a(Q

2, ν ′) . (29c)

Here P denotes the Cauchy principal value integral, and νth = −τ is the threshold for

the elastic cut, corresponding to an electron of energy E = 0. The physical threshold for

electron scattering is at ε = 0 (or cos θe = −1), which requires E ≥ M(τ + νph), with

νph ≡
√
τ(1 + τ). This integral therefore extends into an unphysical region of parameter

10



space, which requires knowledge of the transition form factors in the timelike region of four-

momentum transfer. The crossed-box terms in the real part of the TPE amplitudes are

generated by incorporating the symmetry properties into the dispersive integrals, which is

equivalent to the use of Eq. (17) in the loop calculation.

For the interaction of point particles, such as in elastic eµ scattering, the real parts gen-

erated in this way agree completely with those obtained directly from the four-dimensional

loop integrals of Eq. (10) [39]. In general, however, there may be momentum dependence

in the γ-hadron interaction, such as for the γN∆ vertex (see Sec. III B below). In fact,

the momentum dependence in a transition vertex function allows one to construct differ-

ent parametrizations of that vertex function, for example, by using the Dirac equation,

that are equivalent on-shell but differ off-shell. The additional momentum-dependence as-

sociated with this freedom will affect one-loop integrals because the intermediate hadronic

states are not on-shell. This ambiguity is not present in the dispersive method, for which

all the intermediate states are on-shell. In the context of TPE, this means that for any

momentum-dependent interactions one should not expect agreement between the real parts

of the generalized form factors calculated from Eqs. (29) and those calculated using the loop

integration method. We will quantify these differences for the cases of the nucleon and ∆

intermediate states in Sec. III.

1. Analytic method

The analytic approach used in previous work [4, 8–14, 40, 41] relies on a parameterization

of the transition form factors as a sum and/or product of monopole form factors. The most

basic relation is
1

q2
i

(
Λ2
i

Λ2
i − q2

i

)
=

1

q2
i

− 1

q2
i − Λ2

i

, (30)

which is to be applied at each photon–hadron vertex (i = 1, 2). More complicated construc-

tions are straightforward to generate by repeatedly applying the feature that the product of

any two monopoles is proportional to their difference. The general expression for an ampli-

tude with form factors will thus involve a sum of “primitive” integrals with different photon

mass parameters Λ1 and Λ2 for each of the two photon propagators, modified according to

Eq. (30). The primitive integrals may yield spurious ultraviolet or infrared divergences, but

these divergences will cancel when taking the sum. We give details on these constructions
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FIG. 2. Visualization of the Passarino-Veltman functions from the TPE amplitudes that have an

imaginary part, for (a) b0(s); (b) c0(s; Λ); (c) d0(s; Λ1,Λ2), where s is the total invariant mass

of the system. Here external legs have been amputated. The double line indicates a hadronic

state of invariant mass W , and the dotted line indicates that the electron and hadronic states are

on-shell. For elastic scattering, c0(s; Λ) is the same whichever photon propagator is pinched, and

d0(s; Λ2,Λ1) = d0(s; Λ1,Λ2).

in Appendix B.

By means of the PV reduction scheme, a one-loop integral for the box-diagram amplitude

can be written in terms of a set of scalar PV functions A0, B0, C0 and D0, corresponding

to one-, two-, three-, and four-point functions. This can be visualized as a “pinching”

of the four various propagators in the box diagram due to cancellations of the terms in

the numerator with the propagator terms in the denominator. The PV functions can be

evaluated numerically, and there are various computer programs to do this [36, 42–44].

In general the scalar PV functions are complex-valued. The imaginary parts of the TPE

amplitudes are contained entirely in these functions. For the box (and crossed-box) diagrams

in elastic ep scattering there are only four of the PV functions that have imaginary parts.

These four functions are the ones that arise in the s-channel box diagram with the electron

and intermediate hadronic states on-shell. This is illustrated in Fig. 2.

Recall that an amplitude becomes imaginary when the intermediate state particles be-

come real, or on their mass shells. This is formalized by the well-known Cutkosky cutting

rules [45]. Namely, as a consequence of unitarity, the imaginary part of a scattering am-

plitude can be obtained by summing all possible cuttings of the corresponding Feynman

diagram, where a cut is across any two internal propagators separating the external states

from the rest of the diagram. Cut propagators are then put on-shell according to the rule

1/(p2 −m2 + i0+) → −2πi θ(p0) δ(p2 −m2).

For elastic scattering, the two functions C0(s) arising when either photon propagator is
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pinched are identical, so there are only three distinct PV functions. Other PV functions

where the electron or hadronic intermediate state (or both) are pinched have no imaginary

parts for ep scattering, and the u-channel crossed-box diagram also has no imaginary part.

(Recall that the crossed-box amplitude can be obtained by replacing s→ u, with an appro-

priate overall changed in sign given in Eq. (28).) We will denote these three functions as

B0(s), C0(s; Λ1), and D0(s; Λ1,Λ2). The full expression for these functions is

{B0(s), C0(s; Λ1), D0(s; Λ1,Λ2)} ≡ 1

iπ2

∫
d4q1

×
{

1,
1

(q2
1 − Λ2

1)
,

1

(q2
1 − Λ2

1) (q2
2 − Λ2

2)

}
(31)

× 1

[(k − q1)2 −m2
e + i0+] [(p+ q1)2 −W 2 + i0+]

.

In addition to the explicit dependence on s and Λ2
i , there is also an implied dependence on

M , W , and Q2 that is suppressed for clarity of notation (see Appendix B for details).

We define the imaginary parts of the PV functions by {b0(s), c0(s), d0(s)} ≡ {ImB0(s),

ImC0(s), ImD0(s)}. According to the Cutkosky rules, the imaginary parts correspond to

putting the electron and intermediate hadronic states on-shell, k2
1 ≡ (k − q1)2 = m2

e and

(p+ q1)2 = W 2. Working in the center-of-mass (CM) frame, we define the electron variables

k = Ek(1; 0, 0, 1),

k′ = Ek(1; sin θ, 0, cos θ), (32)

k1 = Ek1(1; sin θk1 cosφk1 , sin θk1 sinφk1 , cos θk1).

In this frame we have

Ek =
sM
2
√
s
, Ek1 =

sW
2
√
s
, cos θ = 1− Q2

2E2
k

, (33)

with the shorthand notation

sM ≡ (s−M2) , sW ≡ (s−W 2) . (34)

In the physical region, the CM scattering angle θ satisfies the constraint −1 ≤ cos θ ≤ 1,

requiring s2
M ≥ sQ2. However, the dispersive integral of Eq. (29) only requires sM > 0,

meaning there is an unphysical region of parameter space where cos θ < −1, and sin θ is

purely imaginary. Therefore, in the dispersive approach expressions for the imaginary parts

of the TPE amplitudes need to be analytically continued into this unphysical region.
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Recall that in terms of the electron energy in the laboratory frame, E, the ep-invariant

mass squared is s = M2 + 2ME. After changing the integration variable from q1 to k1, and

using the on-shell conditions, we find after some algebra the expressions{
b0(s), c0(s; Λ2

1), d0(s; Λ2
1,Λ

2
2)
}
≡ sW

4s
θ(sW )

×
∫
dΩk1

{
1,

−1

(Q2
1 + Λ2

1)
,

1

(Q2
1 + Λ2

1) (Q2
2 + Λ2

2)

}
, (35)

where Q2
i = −q2

i are the squared four-momenta of the virtual photons (i = 1, 2), with

Q2
1 = Q2

0 (1− cos θk1) ,

Q2
2 = Q2

0 (1− cos θ cos θk1 − sin θ sin θk1 cosφk1) ,
(36)

and Q2
0 = 2EkEk1 = sMsW/(2s).

The b0 integral in Eq. (35) is trivial. Through the use of Eq. (36), the other integrals can

be brought into the form

J =

∫
dΩk1

1

(a1 − b1 cos θk1)(a2 − b2 cos θk1 − c2 sin θk1 cosφk1)
. (37)

The integrand here has poles when |b2| > |a2|, which can arise in the unphysical region

when Q2
2 becomes timelike. A simpler version of this integral was considered by Mandel-

stam [46] for the case where the target and scattering particles have equal masses. The

general expression has been given by Beenakker and Denner [47],

J =
2π

X
log

(
a1a2 − b1b2 +X

a1a2 − b1b2 −X

)
, (38)

with X2 = (a1a2 − b1b2)2 − (a2
1 − b2

1)(a2
2 − b2

2 − c2
2) .

For the c0(s) function, we set a1 = 1 + Λ2
1/Q

2
0, b1 = 1, a2 = 1, b2 = 0, and c2 = 0.

For d0(s), we set ai = 1 + Λ2
i /Q

2
0, b1 = 1, b2 = cos θ, and c2 = sin θ =

√
1− b2

2. In the

unphysical region, cos θ < −1, so that sin θ is purely imaginary. However, we note that the

combination b2
2 + c2

2 = 1, and therefore 0 ≤ X ≤ (a1a2 − b1b2), independent of the value of

cos θ. Thus Eq. (38) for J is the proper analytic continuation of the integral for d0(s) into

the unphysical region. Explicit expressions for b0(s), c0(s; Λ) and d0(s; Λ1,Λ2), including the

IR limits Λ→ λ, are given in Appendix B.

In previous work [4, 9] the TPE amplitudes were obtained by numerical evaluation of the

PV functions using the program LoopTools [36]. The real parts were used directly, and the

imaginary parts were not needed. Here, we have constructed analytic expressions for the

14



imaginary parts in terms of elementary logarithms, thus allowing a completely analytic eval-

uation of the imaginary parts of the TPE amplitudes. The real parts are then constructed

from a numerical evaluation of the dispersion integrals of Eq. (29). The imaginary parts ob-

tained here are, of course, identical with those obtained numerically in the earlier work [4, 9].

The real parts are numerically identical for the elastic F ′1 and F ′2 TPE amplitudes, while the

G′a amplitude differs, but in a numerically insignificant way. For the inelastic ∆ states there

are significant differences, especially as ε→ 1. These differences will be discussed further in

Secs. III A and III B.

As an alternative to using the PV reduction method implemented in FeynCalc [34, 35],

one can work entirely with on-shell quantities. Using the on-shell conditions, we find that

the TPE amplitudes are sums of integrals of the general form

I =
sW
4s

∫
dΩk1

f (Q2
1, Q

2
2)

(Q2
1 + λ2) (Q2

2 + λ2)

Λ2
1

Q2
1 + Λ2

1

Λ2
2

Q2
2 + Λ2

2

, (39)

where f(Q2
1, Q

2
2) is a polynomial function of combined degree N in Q2

1 and Q2
2,

f(Q2
1, Q

2
2) =

N∑
i=0

N−i∑
j=0

fij Q
2i
1 Q

2j
2 . (40)

The coefficients fij are functions of s, W , and Q2, and satisfy fij = fji for elastic scattering

due to the symmetry under Q2
1 ↔ Q2

2. Thus we can write

I =
N∑
i=0

N−i∑
j=0

fijIij , (41)

with the “primitive” integrals Iij defined as

Iij =
sW
4s

∫
dΩk1

Q2i
1 Q

2j
2

(Q2
1 + λ2) (Q2

2 + λ2)

Λ2
1

Q2
1 + Λ2

1

Λ2
2

Q2
2 + Λ2

2

. (42)

For nucleon intermediate states we find N = 2, indicating that monopole form factors are

sufficient to eliminate the UV divergences (there is one power of qi at each photon–nucleon

vertex in the F2 term of Γµ(qi)). For ∆ intermediate states, however, we find N = 3, which

implies that dipole form factors (or a product of monopoles) are needed to eliminate the

UV divergences, as there are up to two powers of qi at each vertex in ΓαµγN→∆ (see Secs. III A

and III B below). The integrals of Eq. (42) up to N = 2 are given in Table I of Appendix B,

and can easily be extended to more complicated form factor constructions.
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2. Numerical method

In analogy with Eq. (39), the TPE amplitudes of interest have the general form

sW
4s

∫
dΩk1

f (Q2
1, Q

2
2)G1(Q2

1)G2(Q2
2)

(Q2
1 + λ2) (Q2

2 + λ2)
, (43)

where f(Q2
1, Q

2
2) is a polynomial function of combined degree 2 (3) in Q2

1,2 for N (∆) inter-

mediate states, and Gi(Q
2
i ) are form factors that are real-valued and finite for all spacelike

values of Q2
i . For elastic scattering, the total integral is symmetric under the interchange

Q2
1 ↔ Q2

2. For the nucleon intermediate state, it is convenient to bring the IR subtractions

of Eq. (26) into this integral. This is consistent with the Maximon and Tjon IR regulariza-

tion scheme whereby the numerator of Eq. (43) vanishes whenever Q2
i → 0. It also vanishes

for excited states under these conditions. Therefore we could actually set λ → 0 without

encountering any singularities in the integrals. This is unlike the analytic expressions of the

previous section, where only the sum of individual IR-divergent expressions is independent

of λ.

In the physical region there are no singularities in the integrand of Eq. (43), so evaluation

of the integral is a straightforward 2-dimensional numerical quadrature over the domain

−1 ≤ cos θk1 ≤ 1 and 0 ≤ φk1 ≤ 2π, following Eq. (36). However, this approach fails in

the unphysical region. To get around this, Tomalak and Vanderhaeghen used a contour

integration method [21], and applied it to the calculation of TPE amplitudes with monopole

form factors. By summing the residue at the poles enclosed by the contour they were able

to obtain algebraic expressions for the TPE amplitudes. These expressions are equivalent

to the ones we obtained in the previous section using algebraic expressions for the PV

functions. In this section we will follow this method, with modifications, to implement a

numerical contour integration of Eq. (43) that allows for a more general parametrization of

the transition form factors than a sum and/or product of monopoles.

In the complex Q2
i plane, we define a timelike half with ReQ2

i < 0, and spacelike half

with ReQ2
i > 0. In general, the allowed form factors can have poles in Q2

i anywhere in the

timelike half of the complex plane. With certain restrictions, which we will state explicitly,

the form factors can have poles in the spacelike half as well.

Without providing a rigorous mathematical proof, we can nonetheless specify certain re-

strictions on the type of allowed form factors. Namely, they should have a simple functional
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form in Q2
i , such as exponentials, polynomials, or inverse polynomials, that can be analyti-

cally continued to the complex plane. There should be no branch cuts, and any poles should

either lie along the negative, real axis (at timelike Q2
i ), or occur in complex conjugate pairs.

This is the case for a commonly used form factor parametrization [see Eq. (51)] in terms of

a ratio of polynomials [48–50].

The area of integration in Eq. (43) can be visualized as an integral over the photon virtual

momenta Q2
1 and Q2

2 of Eq. (36), which form a symmetric ellipse in Q2
1 vs. Q2

2, centered at

{Q2
0, Q

2
0} [21, 51]. The boundary of the ellipse is defined by cosφk1 = 1. Following Ref. [21],

we make a change of variables to elliptic coordinates,∫
dΩk1 → 2

∫ 1

0

dα

∫ 2π

0

dθk1 . (44)

The contours of constant α represent concentric ellipses with radial parameter r =
√

1− α2.

From Eq. (36), in elliptic coordinates we have

Q2
1 = Q2

0 (1− r cos θk1) ,

Q2
2 = Q2

0 (1− r cos θ cos θk1 − r sin θ sin θk1) .
(45)

In the physical region the integral over θk1 can be rewritten as a contour integral on the unit

circle z = exp(iθk1), with Q2
i (z) regarded as functions of z (and r) using

cos θk1 =
1

2

(
z +

1

z

)
, sin θk1 =

1

2i

(
z − 1

z

)
, (46)

and ∫ 2π

0

dθk1 →
∮
dz

iz
. (47)

In anticipation of extending this formalism to the unphysical region, Eq. (45) can be sim-

plified into the form

Q2
1(z) = Q2

0

[
1− r

2

(
z +

1

z

)]
,

Q2
2(z) = Q2

0

[
1− r

2

(
z

β
+
β

z

)]
,

(48)

with

β ≡

 eiθ for −1 ≤ cos θ ≤ 1 ,

cos θ −
√

cos2 θ − 1 for cos θ < −1 .
(49)

Recall that cos θ is given in Eq. (33) in terms of s and Q2. Expressed in this way, it is clear

that Q2
1(z) = Q2

2(βz). Because the integrands of the full TPE amplitudes are symmetric
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under the interchange Q2
1 ↔ Q2

2, this means that for every value z1 associated with the poles

in Q2
1 in the complex z plane, there is a corresponding pole at z2 = βz1. In addition, for

every pole in Q2
1, both z1i and z1o = 1/z1i are poles in the complex z plane, where |z1i| ≤ 1

lies inside the unit circle, and |z1o| ≥ 1 lies outside the unit circle. The values z1i = z1o = 1

are the IR-divergent poles, where Q2
1 = 0 for r = 1. These could be regulated by introducing

the λ photon mass parameter, but as the integrand vanishes in our regularization scheme

when Q2
1 = 0, there is no IR divergence, and one can set λ = 0. Analogously, for Q2

2, both z2i

and z2o = β2/z2i are poles inside and outside a circle of radius |β|, respectively. The values

z2i = z2o = β are the IR-divergent poles, where Q2
2 = 0 for r = 1. These results are valid in

either the physical region, where β = exp(iθ), or the unphysical region, where β < −1.

As an illustration of these points, consider the monopole form factors as given in Eq. (39),

for which there is a pole in Q2
1 along the negative real axis at −Λ2

1. This yields poles z1i

and z1o along the positive real axis in the complex z plane, with the interior pole z1i lying

between 0 and 1. For the corresponding poles associated with Q2
2, in the physical region, with

β = exp(iθ), these lie along a line at angle θ. In the unphysical region, with β < −1, they

lie along the negative real axis, with z2i lying between β and 0. A graphical representation

of these results in the complex z plane is shown in Fig. 3, with the dots representing the

“inside” points z1i and z2i, and the crosses representing the “outside” points z1o and z2o.

For more general form factors, we restrict ourselves in the first instance to those functions

with poles in the timelike half of the complex Q2
i plane. In this case it can be shown that

all poles in z1i will be clustered around the positive real axis, with |z1i| ≤ 1 and Re z1i > 0.

Recall that for every pole z1 there is a corresponding pole z2 = βz1. In the physical region,

all poles in z2i will therefore be clustered around the line at angle θ, with |z2i| ≤ 1. In the

unphysical region, the z2i poles must therefore satisfy |z2i| < |β| and Re z2i < 0.

By Cauchy’s theorem, a closed contour integral is equivalent to summing the residue at

the poles of the integrand enclosed by the contour. In continuing the integral from the

physical to the unphysical region, the contour Γ must be deformed in such a way that

no poles cross the boundary defined by the contour. There are many possible choices of

an appropriate contour in the unphysical region. However, based on the symmetry of the

poles in z1 and z2, as discussed above, the closed contour shown in Fig. 3(b) merits special

consideration. It consists of two semicircles connected by two straight line segments, which

we denote as ΓCD. It clearly satisfies the criterion that no poles z2i or z2o cross the boundary
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×
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Γ

θ
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β < −1

Γ1

Γ2

Γ3 Γ4

1β
||

(b)

FIG. 3. (a): The contour around the unit circle in the physical region, −1 ≤ cos θ ≤ 1. For every

pole zi inside the contour (denoted by a dot), there is a corresponding pole at zo = 1/zi lying

outside the contour (denoted by a cross). For monopole form factors, interior poles in Q2
1 appear

along the real z-axis between 0 and 1, and corresponding poles in Q2
2 along the line at angle θ.

(b): One possible choice of contour in the unphysical region, cos θ < 1, which we denote as ΓCD.

For monopole form factors, interior poles in Q2
1 lie along the real z-axis between 0 and 1, and

corresponding poles in Q2
2 lie between β and 0.

of the contour, provided that the form factors only have poles in the timelike region of the Q2
i

plane. Moreover, because of the symmetry of the TPE amplitudes under the interchange of

Q2
1 and Q2

2, the line integrals along the contours Γ1 and Γ3 are equal, as are the line integrals

along the contours Γ2 and Γ4. Furthermore, the real part of the integrand is symmetric

between the upper and lower half planes, while the imaginary part is antisymmetric (hence

the imaginary part integrates to 0 in any closed contour). Thus one only needs to compute

the real part of the line integral along the contour Γ1 in the upper half plane, plus the

contribution from Γ2,∮
Γ

dz

iz
f(z) 7−→ 4

∫ π/2

0

dt Re
{
f(z)

∣∣
z=eit

}
+ 2

∫ −β
1

dt Re

{
f(z)

z

∣∣∣∣
z=it

}
. (50)

Form factor parametrizations G(Q2
i ) are driven almost exclusively by fits to data at

spacelike values of Q2
i . Aside from requiring no poles along the positive real axis, typically

there is little or no consideration given to the location of poles in the complex Q2
i plane.

Therefore, the appearance of poles in the spacelike half of Q2
i should be regarded as a

nuisance rather than a reflection of any underlying physics. Nevertheless, there are form
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Re z
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β < −1 zc = 1

2(1 + β)

Γ

1zcβ
| ||

(a)

1

2

−1

−2

−3

1 2 3 4 5−1−2 ReQ2
i

ImQ2
i

Q2 = 4 GeV2

(b)

FIG. 4. (a): The circular contour Γ (shown in red) in the unphysical region is valid for form factors

having poles Q2
p satisfying the condition R > cos η, where Q2

p/Q
2 = Reiη. For comparison, the

light gray line is the contour ΓCD of Fig. 3(b). (b): Visualization of the condition on the poles of

the form factors in the complex Q2
i plane, using Q2 = 4 GeV2 as an example. Any form factors

with poles in the shaded region of a circle centered at {1
2Q

2, 0} of radius 1
2Q

2 are not allowed. This

will always occur for a large enough value of Q2, since the limit Q2 → ∞ is the whole spacelike

region.

factor parametrizations in the literature that do have such poles. For example, the ratio of

polynomials,

G(Q2
i ) =

∑N
j=0 ajQ

2j
i∑N+2

k=0 bkQ
2k
i

, (51)

is commonly used [48–50]. Requiring all bk ≥ 0 is sufficient to eliminate zeros in the de-

nominator for positive real Q2
i , but zeros can still occur in complex conjugate pairs with

ReQ2
i > 0.

To handle such cases we modify the contour of integration in the unphysical region, ΓCD.

We choose instead a circular contour centered at zc = 1
2
(1 + β) of radius 1

2
(1 − β), as

illustrated in Fig. 4(a). The new contour is shown in red, while the ΓCD contour is in light

gray. As we require no poles to cross the boundary defined by the new contour, there are

two possible failures. Firstly, the poles z1i are no longer restricted to the positive half plane,

and can lie anywhere inside a circle of unit radius. This gives the possibility of a pole z1o

crossing into the interior of the new contour, since the only restriction is |z1o| > 1. Secondly,

the corresponding poles z2i are no longer restricted to the negative half plane, and can lie
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outside the new contour, since the only restriction here is |z2i| < |β|. By careful analysis

of the location of the poles for arbitrary values of β and Q2, we have derived the following

condition:

The validity of the contour defined by a circle of radius 1
2
(1 − β), centered at

zc = 1
2
(1 + β), is that the poles Q2

p in the form factor G(Q2
i ) must satisfy the

condition ∣∣∣∣2Q2
p

Q2
− 1

∣∣∣∣ > 1 . (52)

The condition (52) is equivalent to

R > cos η, with
Q2
p

Q2
= Reiη . (53)

This condition is satisfied for all cos η < 0 (poles in the timelike half of Q2
i ), and for all

R > 1. We can visualize the condition using a circle of radius 1
2
Q2, centered at {1

2
Q2, 0}, in

the complex Q2
i plane, where the poles Q2

p in the form factors must lie outside this circle.

An example using Q2 = 4 GeV2 is shown in Fig. 4(b). If a form factor has poles in the

spacelike half (cos η > 0), then the maximum Q2 for which we can use the new contour is

given by Q2
max = |Qp|2/ cos η.

III. IMPACT OF TWO-PHOTON EXCHANGE

In this section we present the results of the numerical calculations of the TPE contribu-

tions to elastic ep scattering within the dispersive approach, and discuss the differences with

the traditional loop calculations with off-shell intermediate states. Including the nucleon

and ∆ intermediate state contributions, we compare the results with measurements of e+p

to e−p cross section ratios from the recent CLAS [25], VEPP-3 [26, 27] and OLYMPUS [28]

experiments, as well as with polarization observables sensitive to effects beyond the Born

approximation [31].

A. Nucleon intermediate state

For the contributions to the box diagram from nucleon intermediate states, the inputs

into the calculation are the proton elastic electric and magnetic form factors, Gp
E and Gp

M .
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FIG. 5. Q2 dependence of the proton (a) electric and (b) magnetic form factors, scaled by the

dipole form factor, GD(Q2) [see Eq. (59)], for the Kelly [53] (dashed blue curves), Venkat et al. [50]

(solid red curves), AMT [49] (dot-dashed green curves), and Bernauer et al. [52] (dotted black

curves) parametrizations.

In the numerical calculations in this analysis we use the recent fit by Venkat et al. [50], which

has the form of Eq. (51) with N = 3 for both Gp
E and Gp

M . As Fig. 5 illustrates, this fit

gives similar results to other parametrizations, such as the ones by Kelly [48] and Arrington

et al. (AMT) [49]. In contrast, the recent parametrization by Bernauer et al. [52], which is

based on a spline with 8 knots, displays distinctive wiggles at low Q2 for both the electric

and magnetic form factors. In Ref. [52] a number of other functional forms were considered

in fits to the world’s elastic electron–proton scattering data.

In the application of the numerical contour integration method to the calculation of the

box diagram, care must be taken to ensure that all relevant poles are included inside the

contour, following the condition given in Eq. (53). For some commonly used fits in the

literature, such as those by Bosted [54] or Brash [55] (in which the denominators of Gp
E

and Gp
M are fifth-order polynomials in

√
Q2), or the Kelly parametrization [53] (third-order

polynomials in Q2), there are no upper limits on Q2, since all poles occur in the timelike

region. On the other hand, for the AMT [49] and Venkat et al. [50] parametrizations, which

involve denominators with 5th-order polynomials in Q2, poles in the spacelike region limit

the range of applicability to Q2 < 4.5 GeV2. For the purposes of the data analysis in this

paper, all the above parametrizations are valid; however, for future applications at higher Q2

values care must be taken to ensure the chosen parametrization has a suitable pole structure.

The TPE contributions from nucleon intermediate states to the imaginary parts of the

22



(�)

�� ��
′

�� ��
′

�� ��
′

10-3 10-2 0.1 1 10

-0.02

0.00

0.02

0.04

� (���)

��
(�
�
�
)
�

�� = � ����

(�)

0 2 4 6 8 10

-8

-6

-4

-2

0

� (���)

�
��
��

(�
�
�
)
�

FIG. 6. Imaginary parts of the TPE contributions from nucleon intermediate states to the gener-

alized F ′1 (solid red curves), F ′2 (dashed blue curves) and G′a (dotted green curves) form factors as

a function of energy E, for fixed Q2 = 3 GeV2: (a) illustrating the low energy behavior, E → 0,

and (b) showing the asymptotic behavior as large E.

generalized F ′1, F ′2 and G′a form factors are illustrated in Fig. 6 as a function of energy E

(in the lab frame), at a representative Q2 value of 3 GeV2. (The results at other Q2 values

are qualitatively similar.) In the low energy region, E . 0.1 GeV, in Fig. 6(a) the TPE

amplitudes display a logarithmic divergence in E. Although the imaginary parts diverge,

the dispersive integrals (29) for the real parts remain finite. To accommodate this in our

numerical analysis, we fit the low-E expressions for ImF ′1, ImF ′2 and ImG′a to functions of

the form

a+ b logE , (54)

with the parameters a and b determined by a least-squares fit for E between 0.001 and

0.01 GeV. At high energies, the imaginary parts of the F ′1 and F ′2 form factors become

constant, as is apparent for E & 6 GeV from Fig. 6(b), where the magnified scale more

clearly illustrates the asymptotic behavior. The imaginary part of the axial G′a form factor

falls off as 1/E for E →∞. This high energy behavior is sufficient to ensure the convergence

of the dispersive integrals of Eq. (29). Note that the corrections to the form factors are

relative to the Maximon-Tjon result for the infrared part of the TPE [38].

For our numerical calculation, we compute the imaginary part of the TPE amplitudes on a

logarithmic grid of 51 points in E, ranging up to 100 GeV. In the unphysical region, the two-

dimensional numerical contour integral is computed using either of the contours discussed

in the previous section, as appropriate to the poles of the form factors. In the physical
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FIG. 7. Dispersive results for the real parts of the TPE contributions from nucleon intermediate

states to the generalized F ′1 (solid red curve), F ′2 (dashed blue curve) and G′a (dotted green

curve) form factors as a function of energy E, for fixed Q2 = 3 GeV2. The scattering threshold

is at E = 1.97 GeV. For G′a the dispersive results are compared with the direct (off-shell) loop

calculation (dot-dashed green curve).

region, the numerical contour integral is on the unit circle (although a direct numerical

integration of (43) using Eq. (36) can also be used). We then interpolate between the grid

points with a spline fit to obtain a continuous function of E. To obtain the real part on

a grid of 20 equally spaced points in ε, the dispersion integral is evaluated using the logE

fit for E < 0.01 GeV, the spline fit for 0.01 < E < 100 GeV, and an extrapolation beyond

100 GeV using the known asymptotic behavior. This approach can be tested against the

analytic results obtained in the previous section, as well as the known analytic results for

eµ scattering.

Interestingly, for the real part of the TPE amplitudes the dispersive integral is dominated

by contributions from the unphysical region, E < M(τ+
√
τ(1 + τ)), which for Q2 = 3 GeV2

is E = 1.97 GeV. This results in the generally smoothly decaying functions for E & 2 GeV

observed in Fig. 7. The real parts of each of the form factors are negative in the region

illustrated, with the F ′1 form factor having the largest magnitude, and the G′a form factor

the smallest magnitude. Compared with the direct loop calculation in terms of the off-

shell nucleon intermediate states, differences arise for the Pauli F2 form factor vertex, which

translates to a difference for the G′a generalized form factor. The results for the F ′1 and F ′2

generalized form factors are the same for both calculations, as was observed previously in
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FIG. 8. Dispersive TPE correction to the cross section, δN , from nucleon intermediate states as a

function of ε for fixed values of Q2 (= 0.5, 1, 2 and 3 GeV2). The corrections are relative to the

Mo-Tsai infrared result [7].

Refs. [19, 21]. Numerically, the differences are relatively small, however, as Fig. 7 indicates,

becoming notable only for E & 3–4 GeV.

The total TPE correction (27) to the elastic cross section from nucleon intermediate states

relative to the Mo-Tsai infrared prescription [7], denoted δN , is shown in Fig. 8 as a function

of ε for Q2 between 0.5 GeV2 and 3 GeV2. As found in previous loop calculations [4, 9], the

corrections at these kinematics are negative, and increase in magnitude with increasing Q2.

For large Q2 values we expect the reliability of the hadronic calculation to deteriorate, but

indications from earlier work [4, 9] suggest that it remains sizeable. In practice, since only

the G′a form factor is affected, and its magnitude is considerably smaller than that of F ′1 and

F ′2, as illustrated in Fig. 7, the off-shell effects play a relatively minor role in δN , with the

dispersive and loop results almost indistinguishable.

B. ∆ intermediate state

The contribution to the TPE amplitude from intermediate states involving the spin-3⁄2,

isospin-3⁄2 ∆ baryons is computed from the γ∗N → ∆ electromagnetic transition operator,

ΓαµγN→∆. Usually this is expressed in terms of three Jones-Scadron transition form factors,

G∗M(Q2), G∗E(Q2) and G∗C(Q2), corresponding to magnetic, electric, and Coulomb multipole

excitations, respectively [56]. Although the γ∗N → ∆ cross section is diagonal in these
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functions, they are cumbersome to work with in the transition vertex function, and other

parametrizations have also been suggested in the literature [8, 11, 57–59]. In this work we

follow Ref. [8] and use the on-shell equivalent parametrization of the γ∗N → ∆ vertex

ΓαµγN→∆(p∆, q) =
1

2M2
∆

√
2

3

{
g1(Q2)

[
gαµ/q/p∆

− /qγαpµ∆ − γαγµq · p∆ + /p∆
γµqα

]
+ g2(Q2) [qαpµ∆ − gαµq · p∆]

+
g3(Q2)

M∆

[
q2
(
γαpµ∆ − gαµ/p∆

)
+ qµ

(
qα/p∆

− γαq · p∆

)]}
γ5 , (55)

where p∆ and q are the momenta of the outgoing ∆ and incoming photon, respectively. The

gi (i = 1, 2, 3) transition functions are related to the Jones-Scadron form factors by

g1(Q2) = C̃
[
G∗M(Q2)−G∗E(Q2)

]
, (56a)

g2(Q2) = g1(Q2) + C̃
2

Q2
−

[
PG∗E(Q2) +Q2G∗C(Q2)

]
, (56b)

g3(Q2) = C̃
1

Q2
−

[
PG∗C(Q2)− 4M2

∆G
∗
E(Q2)

]
, (56c)

where

Q± =
√

(M∆ ±M)2 +Q2 , P = M2
∆ −M2 −Q2 , C̃ =

3M2
∆(M∆ +M)

MQ2
+

. (57)

Since in practice the magnetic multipole dominates the γ∗N → ∆ transition, the g1 function

is determined mostly by G∗M . The electric form factor G∗E determines the difference g2− g1,

while g3 is sensitive to G∗E and the Coulomb form factor G∗C .

In the present analysis, we take the Jones-Scadron form factors from the phenomenological

parametrization by Aznauryan [60, 61],

G∗M(Q2) = 3.0 GD(Q2) exp (−0.21Q2)
Q+

M∆ +M
, (58a)

G∗E(Q2) = −REM G∗M(Q2) , (58b)

G∗C(Q2) = −RSMG∗M(Q2)
4M2

∆

Q+Q−
, (58c)

where

GD(Q2) =

(
1

1 +Q2/0.71

)2

, (59)

with Q2 in units of GeV2. Empirical fits to data suggest that the E1/M1 multipole ratio

REM and the S1/M1 multipole ratio RSM can be well approximated by

REM = −0.02 , (60a)

RSM = 0.01 (1 + 0.0065Q4)

×(−6.066 + 5.807Q− 8.5639Q2 + 2.37058Q4 − 0.75445Q5) . (60b)
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FIG. 9. (a) γ∗N∆ transition form factors g1, g2 and g3 versus Q2, as used in this analysis [60, 61];

(b) magnetic G∗M form factor, scaled by the dipole form factor, 3 × GD; (c) electric to magnetic

dipole ratio REM (in percent); and (d) Coulomb to magnetic dipole ratio RSM (in percent). In

(b), (c) and (d) the transition form factors from Aznauryan [60, 61] (solid red curves) used in this

analysis are compared with data from Ungaro et al. [62] (circles), Frolov et al. [63] (diamonds),

and Joo et al. [64] (triangles), and with the recent parametrization by Zhou and Yang [14].

As this parametrization only has poles for timelike Q2, we can use the contour ΓCD of

Eq. (50) in the unphysical region.

The γ∗N∆ transition form factors g1, g2 and g3 from the Eqs. (58)–(60) are illustrated

in Fig. 9(a) as a function of Q2. At moderate and large Q2 values, Q2 & 0.1 GeV2, the

g1 and g2 form factors dominate, with the g3 form factor essentially zero. At very low

Q2 . 0.02 GeV2, the g3 form factor rises rapidly and becomes larger than the largest

contribution; for the phenomenological applications relevant to this paper, however, its role

is essentially negligible.

The quality of the fit to the magnetic transition form factorG∗M is shown in Fig. 9(b), com-

pared with data from several experiments [62–64] for Q2 up to ≈ 6 GeV2. The parametriza-
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FIG. 10. TPE contributions from ∆ intermediate states to the (a) imaginary part and (b) real

part of the generalized F ′1 (solid red curves), F ′2 (dashed blue curves) and G′a (dotted black curves)

form factors as a function of energy E, for fixed Q2 = 3 GeV2.

tion in Eq. (58a) is compared with an alternative parametrization from the recent analysis

by Zhou and Yang [14], which agrees with the data in the intermediate Q2 region, Q2 ∼ 3–

4 GeV2, but underestimates (overestimates) the data at lower (higher) Q2 values. Similarly,

good agreement is obtained for the REM and RSM ratios in Figs. 9(c) and 9(d), respectively,

for the parametrizations in Eqs. (60) over the full range of Q2 (. 6 GeV2) where data are

available. The parametrization [14] also agrees with the data at low Q2 values, Q2 . 1 GeV2,

but discrepancies appear for larger Q2.

Using the Aznauryan parametrization [60, 61] of the γ∗N∆ form factors, the TPE con-

tributions from ∆ intermediate states to the generalized form factors F ′1, F ′2 and G′a are

illustrated in Fig. 10 for both the imaginary and real parts. For the imaginary parts of the

amplitudes, Fig. 10(a) shows resonance-like structure appearing in the unphysical region,

0.34 < E < 2 GeV. As for the nucleon case, the unphysical region accounts for most of

the dispersive integral, giving rise to smoothly decaying real parts of the amplitudes for

E & 3 GeV, as Fig. 10(b) illustrates.

As was observed in previous calculations of loop corrections [8, 65–67], the contribution

from ∆ intermediate states, δ∆, is generally of opposite sign to the nucleon contribution δN

for Q2 & 1 GeV2, and increases in magnitude with increasing Q2, as Fig. 11 illustrates. Un-

like previous loop calculations [8, 14], however, the correction δ∆ in the dispersive approach

is well-behaved for all ε, vanishing in the ε → 1 limit. In contrast, the correction δ∆ from
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FIG. 11. Dispersive TPE correction to the cross section, δ∆, from ∆ intermediate states as a

function of ε for fixed values of Q2 (= 0.5, 1, 2 and 3 GeV2).

the loop calculation with off-shell ∆ states diverges as ε → 1, as illustrated in Fig. 12(a).

Note that the imaginary parts of the TPE amplitudes are identical for both calculations —

only the real parts differ.

The nature of this divergence can be seen by plotting δ∆ versus electron energy E in-

stead of ε, as in Fig. 12(b). The linear divergence in E indicates a violation of the Froissart

bound [68], and the breakdown of unitarity. This “pathological” behavior is not due to

the inapplicability of hadronic models when E → ∞ and ε → 1, as suggested in Ref. [14].

Rather, it arises from an unphysical behavior of the off-shell contributions at high energies

for interactions with derivative couplings. In principle it may be possible to eliminate this

unphysical behavior from the loop diagram approach through the introduction of counter-

terms, such as γγNN contact terms, which have no imaginary parts in the s-channel. How-

ever, such a prescription is difficult to generalize for all possible off-shell dependencies of the

transition vertices.

As Fig. 12 illustrates, the loop calculations at large ε are actually very sensitive to the

shape of the γ∗N∆ form factors employed. Whether one use a dipole approximation or a

more realistic parametrization, leads to significant differences with the dispersive approach

already for E & 3–4 GeV. (Here, for simplicity only the magnetic contribution to δ∆ is shown,

but the effects are similar for the other γ∗N∆ form factors also.) In fact, the differences

between the dispersive and loop calculations are significant not just near ε ≈ 1, but also at
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FIG. 12. Comparison of the ∆ intermediate state contribution to the TPE cross section, δ∆, for

the dispersive (solid red curves) and loop (dashed blue curves) calculations at fixed Q2 = 3 GeV2:

(a) versus ε, and (b) versus electron energy E. Note that ε = 0.9 corresponds to E = 5.9 GeV for

this Q2. In (b) the loop corrections using a dipole approximation to the γ∗N∆ form factor with

mass 0.75 GeV is also shown (dotted green curve). For simplicity only the dominant magnetic

contribution has been considered.

lower ε values. Generally, the magnitude of the dispersive ∆ corrections is smaller than the

loop results, resulting in less cancellation with the intermediate state nucleon contribution.

C. Verification of TPE effects

Having detailed the calculation of the TPE corrections from the nucleon and ∆ intermedi-

ate states, we next compare the role of these corrections in observables that are particularly

sensitive to effects beyond the Born approximation. These include the ratio of unpolar-

ized e+p to e−p elastic scattering cross sections, and polarization transfer cross sections for

longitudinally and transversely polarized electrons and protons.

1. e+p to e−p ratio

One of the observables that is most sensitive to the effects of TPE is the ratio of e+p to

e−p elastic cross sections, which in the one-photon exchange approximation is unity. Since

the TPE terms enter the e+p cross section with opposite sign to that in the e−p reaction,
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FIG. 13. Ratio R2γ of e+p to e−p cross sections as a function of ε for (a) fixed 〈Q2〉 = 0.85 GeV2

and (b) fixed 〈Q2〉 = 1.45 GeV2, and as a function of Q2 for (c) fixed 〈ε〉 = 0.45 and (d) fixed

〈ε〉 = 0.88. The contributions with nucleon only (dashed blue curves) and the sum of nucleon

and ∆ (solid red curves) intermediate states are compared with data from CLAS at Jefferson Lab

(circles) [25], with the statistical and systematic uncertainties indicated by the (black) inner and

(gray) outer error bars, respectively.

the ratio

R2γ =
σe

+

σe−
≈ 1− 2 δγγ, (61)

where σe
± ≡ dσ(e±p→ e±p)/dΩ, provides a direct measure of effects beyond the Born

approximation. Earlier data from elastic e+p and e−p experiments in the 1960s from

SLAC [69, 70], Cornell [71], DESY [72] and Orsay [73] gave some hints of a small en-

hancement of R2γ at forward angles and low Q2, but were in the region (at large ε) where

TPE is relatively small and were consistent within errors with R2γ = 1.

More recently, several dedicated e+p to e−p ratio experiments have been performed in

CLAS at Jefferson Lab [25], VEPP-3 in Novosibirsk [26, 27] and OLYMPUS at DESY [28]
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FIG. 14. Ratio R2γ of e+p to e−p cross sections as a function of ε for fixed energy (a) E =

1.594 GeV and (b) E = 0.998 GeV. The contributions with nucleon only (dashed blue curves) and

the sum of nucleon and ∆ (solid red curves) intermediate states are compared with data from the

VEPP-3 experiment (triangles) [26], with the statistical and systematic uncertainties indicated by

the (black) inner and (gray) outer error bars, respectively.

aimed at providing measurements of R2γ over a larger range of ε and Q2 with significantly

reduced uncertainties. In Fig. 13 the R2γ ratio from the CLAS experiment is shown as a

function of ε at averaged Q2 values of 〈Q2〉 = 0.85 GeV2 and 〈Q2〉 = 1.45 GeV2 [Figs. 13(a)

and (b), respectively], and as a function of Q2 at averaged ε values of 〈ε〉 = 0.45 and

〈ε〉 = 0.88 GeV2 [Figs. 13(c) and (d), respectively]. Most of the data at the larger ε values

are consistent with unity within the errors, but suggest a nonzero ratio, ≈ 2% – 4% greater

than unity, at the lowest ε value for the higher-Q2 set. The trend is consistent with the

ratio calculated here, which shows a rising R2γ with decreasing ε. At these kinematics the

calculated TPE correction is dominated by the nucleon elastic intermediate state, with the

∆ contribution reducing the ratio slightly. Note that both the data and the calculated TPE

corrections here (and elsewhere, unless otherwise stated) are shown relative to the Mo-Tsai

infrared result.

The same trend is seen when the R2γ data are viewed as a function of Q2 for fixed ε. At

the larger average ε value, 〈ε〉 = 0.88, the effects are consistent with zero as well as with

the small predicted TPE correction. At the smaller value 〈ε〉 = 0.45, on the other hand, the

larger predicted effect is consistent with the larger R2γ values with increasing Q2. Again the

effects of the ∆ intermediate state are small at low Q2 values, but become visible at larger

Q2, where they improve the agreement between the theory and experiment.
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FIG. 15. Ratio R2γ of e+p to e−p cross sections as a function of ε for fixed energy E = 2.01 GeV.

The contributions with nucleon only (dashed blue curves) and the sum of nucleon and ∆ (solid

red curves) intermediate states are compared with data from the OLYMPUS experiment [28]

(squares). The statistical and systematic uncertainties (correlated and uncorrelated) are indicated

by the (black) inner and (gray) outer error bars, respectively.

Data from the VEPP-3 experiment at Novosibirsk [26, 27], taken at energies E ≈ 1 GeV

and 1.6 GeV, are shown in Fig. 14 as a function of ε. The data correspond to a Q2 range

between ≈ 0.3 GeV2 and ≈ 1.5 GeV2, with ε down to ≈ 0.3. The ratio at the low ε values

shows an effect of magnitude 1% – 2%, slightly below but still consistent with the calculated

TPE result at the ≈ 1σ level.

Most recently, the OLYMPUS experiment at DESY [28] measured the ratio R2γ at an

energy E = 2.01 GeV over a large range of ε ∼ 0.45− 1, corresponding to a Q2 range from

≈ 0.2 GeV2 to 2 GeV2. The results for the ratio R2γ are shown in Fig. 15. Interestingly, in

contrast to the results from the CLAS and VEPP-3 experiments in Figs. 13 and 14, at large

ε values the trend in the data is towards values of the ratio slightly below unity, whereas

the calculated dispersive TPE corrections give a ratio that has a small, . 1% enhancement

above unity. At the lower ε values, the trend is toward increasing values of R2γ, consistent

with the TPE calculation. Within the statistical and systematic uncertainties, including the

overall normalization uncertainty of the OLYMPUS data, the theoretical result is consistent

with the data over the entire ε range. Note also that the . 0.5% correlated systematic

(normalization) uncertainty quoted for the OLYMPUS data [28] is somewhat smaller than

in the other e+p/e−p experiments [26, 27].

While the possibility of unexpected effects in the high-ε region is intriguing, we should
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note that the ratio R2γ defined in Ref. [28] is normalized by a ratio of e+ to e− events

obtained from a Monte Carlo (MC) simulation of the experiment designed to account for

differences between electrons and positrons, R2γ → (N e+

exp/N
e−
exp)/(N e+

MC/N
e−
MC). Here N e±

exp is

the number of observed e± events, and N e±
MC is the number of simulated e± counts, taking

into account radiative effects and various experimental settings. Of course, in order to

simulate the elastic scattering cross sections, some input about the e±p interaction is needed

for the MC, and it is possible that this may introduce additional model dependence into

the procedure. Indeed, simulations using radiative corrections computed to order α3 versus

those computed to all orders through exponentiation show that the latter can give R2γ values

as much as 1% higher at the lowest ε points [28]. In Fig. 15 the results shown correspond

to the ratio R2γ extracted with radiative corrections computed to all orders in α.

The relatively large overall uncertainties on all of the currently available R2γ data unfor-

tunately precludes any definitive conclusions about TPE effects that can be reached, other

than that the effects are generally consistent with zero, as well as with the signs and magni-

tudes expected from the dispersive TPE calculations. This scenario calls for an urgent need

for new measurements of e+p to e−p ratios at large Q2, Q2 & 2 GeV2, and over a range of ε

values below ε ∼ 0.5, where the TPE effects are predicted to be large enough (∼ 2%) to be

more clearly identified experimentally. On the other hand, the negative values of the slope

in ε predicted by the TPE calculations are generally consistent with the data from each of

the CLAS [25], VEPP-3 [26, 27] and OLYMPUS [28] e+p/e−p experiments.

2. Polarization observables

A complementary set of observables that can provide information on TPE effects involves

polarization transfer in the elastic scattering of longitudinally polarized electrons from (un-

polarized) protons, with measurement of the polarization of the final state proton, ~ep→ e~p.

Defining PT and PL to be the polarizations of recoil protons in the transverse and lon-

gitudinal directions relative to the proton momentum in the scattering plane, one has [5]

PT = −
√

2τε(1− ε)
σR

[
GEGM +GM Re

(
F ′1 − τF ′2

)
+GE Re

(
F ′1 + F ′2 +

ν

τ
G′a
)]
, (62a)

PL =
τ
√

1− ε2

σR

[
G2
M + 2GM Re

(
F ′1 + F ′2 +

ν

τ(1 + ε)
G′a
)]
, (62b)
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where σR = σBorn
R (1 + δγγ), with the reduced Born cross section σBorn

R given in Eq. (8),

and δγγ in Eq. (27). Note that the IR subtractions we have made in F ′1 and F ′2 are such

that terms in the numerator and denominator of PL and PT cancel exactly, independent of

regularization scheme. Taking the ratio of the transverse to longitudinal polarizations, we

define

RTL = −µp
√
τ(1 + ε)

2ε

PT
PL

, (63)

where µp is the proton’s magnetic moment. In the Born approximation, this reduces to a

simple ratio of the electric to magnetic form factors, RTL → µpGE/GM , which is a function

only of Q2 and is independent of ε.

The GEp2γ experiment at Jefferson Lab [31] measured the ratios RTL and PL/P
(0)
L ,

where P
(0)
L is the Born level longitudinal polarization, at several values of ε for fixed Q2 =

2.49 GeV2. These are shown in Fig. 16 as a function of ε, compared with the dispersive

TPE calculations including nucleon and ∆ intermediate states. The TPE effect on the

longitudinal polarization ratio is very small, with the PL/P
(0)
L ratio only marginally below

unity for all ε values. Although the trend of the data suggests an increasing effect at high ε,

the data are consistent with the TPE calculation if (correlated and uncorrelated) systematic

uncertainties are taken into account.

The ε dependence of the RTL ratio in Fig. 16 is also very weak, and in good agreement

with the dispersive TPE calculation, especially once the ∆ intermediate states are included.

As for the R2γ ratio, higher-precision measurements of the polarization observables at larger

Q2 and lower ε values would be valuable in more definitively identifying effects beyond the

Born approximation.

IV. OUTLOOK

In this paper we have presented a new approach to evaluating two-photon exchange

effects in elastic electron–proton scattering, based on a dispersion relation analysis of the

scattering amplitudes. We considered two methods for evaluating the imaginary parts of

the loop diagrams, using analytic and numerical methods, and including the contributions

from nucleon and ∆ resonance intermediate states.

In contrast to previous calculations based on the direct evaluation of loop integrals,

the dispersive analysis avoids uncertainties associated with off-shell intermediate states,
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FIG. 16. (a) Ratio of the total longitudinal recoil proton polarization PL to the Born contribu-

tion P
(0)
L , and (b) ratio RTL of the transverse to longitudinal polarizations relative to the Born

contribution, as a function of ε for fixed Q2 = 2.49 GeV2. The dispersive calculation including

nucleon only (dashed blue curves) and the sum of nucleon and ∆ (solid red curves) intermediate

states is compared with the data (circles) from the GEp2γ experiment at Jefferson Lab [31], with

the statistical and systematic (correlated and uncorrelated) uncertainties indicated by the (black)

inner and (gray) outer error bars, respectively.

and guarantees the correct behavior in the high energy limit. This problem is particularly

egregious for the case of derivative interactions, such as for the ∆ baryon, where the TPE

amplitude in the off-shell calculation diverges linearly with energy in the forward limit. The

dispersive approach, on the other hand, respects unitarity and is well-behaved at all energies.

The analytic dispersive method, which has been used recently in the literature [19–21, 29,

30], has the advantage of allowing closed analytic expressions for the amplitudes in terms of

simple logarithms, provided the vertex form factors can be parametrized in terms of sums

or products of monopole functions. This has the virtue of increased speed of computation,

but is limited by the accuracy of the monopole parametrization of the proton’s electric and

magnetic form factors, which typically deteriorates markedly for Q2 & 5–6 GeV2.

The numerical contour method, in contrast, allows for a wide range of form factor

parametrizations, and is relatively straightforward to implement. We find that in prac-

tice a simple contour is valid for any parametrization which has poles in the timelike region

of Q2. For more elaborate parametrizations that have with poles in the spacelike region, a

special choice of contour can be used up to some maximum Q2 that depends on the exact

location of the poles.
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To verify the utility of the dispersive approach, we have compared the results of the

numerical TPE calculations with the most recent data on the ratio of e+p to e−p elastic

scattering cross sections, which is directly sensitive to electromagnetic effects beyond the

Born approximation. We find good agreement with the data from the CLAS [25] and

VEPP-3 [26, 27] experiments. The results are also consistent, within the experimental

uncertainties, with the more recent OLYMPUS experiment [28], which suggests a trend in

the opposite direction at near-forward angles compared with the TPE calculations and the

other data sets [25–27].

For the future, it will be important to extend the present framework to inelastic non-

resonant intermediate states, including the πN continuum, and allowing for widths of res-

onances. Efforts in this direction have been made recently in the literature [20, 74], and

will be aided by better knowledge of the empirical virtual Compton scattering amplitudes

at non-forward angles. Beyond this, a longer term challenge is to further generalize the

dispersive approach to higher Q2 and intermediate state masses, merging the phenomeno-

logical hadronic description with one that expresses the TPE amplitudes explicitly in terms

of partonic degrees of freedom.

On the experimental front, new, higher precision data on e+p and e−p cross sections at

larger Q2 values, Q2 & 3 GeV2, and lower ε values, ε � 1, are needed to unambiguously

identify TPE effects directly. The possibility of achieving this with a dedicated positron

source at the 12 GeV Jefferson Lab facility remains an exciting prospect [75]. The technology

described here for the TPE calculations can also be readily applied to the evaluation of γZ

interference contributions in parity-violating electron–proton scattering, in the extraction of

the strange electroweak form factors and the weak charge of the proton [23, 41, 76–83].

Appendix A: Generalized form factors

Beyond the Born approximation, the total amplitude for the elastic ep → ep scattering

process can, for a massless electron, be decomposed into three independent amplitudes, or

generalized form factors [5]. In this appendix we describe a practical method for extracting

these generalized form factors from the total amplitude.

The objective is to mapMγγ of Eq. (10) onto the generalized matrix element M̂gen(F ′1, F
′
2, G

′
a)
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given by Eq. (25),

M̂gen(F ′1, F
′
2, G

′
a) = −e

2

q2
ūe(k

′)γµue(k) ūN(p′) Γ̂µ(F ′1, F
′
2, 0; q)uN(p)

− e2

q2
ūe(k

′)γµγ5ue(k) ūN(p′) Γ̂µ(0, 0, G′a; q)uN(p) , (A1)

where the generalized current operator Γ̂µ is defined as

Γ̂µ(F ′1, F
′
2, G

′
a; q) = F ′1(Q2, ν) γµ + F ′2(Q2, ν)

iσµνqν
2M

+G′a(Q
2, ν)γµγ5 , (A2)

and the generalized form factors are functions of two variables, taken to be Q2 and ν.

The basic idea behind this method is to project M̂gen onto three linearly independent

quantities (pseudo-observables) using Dirac trace techniques. The pseudo-observable pro-

jections are linear combinations of the amplitudes F ′1, F ′2, and G′a. The same projections are

also made for Mγγ. One can then invert the transformation matrix to obtain F ′1, F ′2, and

G′a in terms of the pseudo-observable projections of Mγγ.

While any three linearly independent projections will suffice, it is convenient to use the

same functional form given by M̂gen. Consider the pseudo-observable

σgen = M̂†
gen(A,B,C)M̂gen(F ′1, F

′
2, G

′
a)

= Ax+By + Cz , (A3)

where x, y, and z are linear combinations of F ′1, F ′2, and G′a, and A, B, and C are placeholder

coefficients representing the three independent projections. The overall factor (−e2/q2)2 is

irrelevant for this derivation, and can be absorbed into the coefficients {A,B,C}. The

expression for σgen can be obtained from

σgen = LαµH
αµ , (A4)

where the leptonic and hadronic tensors are given by

Lαµ =
1

2
Tr
[
γα(1 + γ5)(/k − /q)γµ/k

]
, (A5a)

Hαµ =
1

2
Tr

[
Γ̂α(A,B,C;−q)(/p+ /q +M)Γ̂µ(F ′1, F

′
2, G

′
a; q)(/p+M)

]
, (A5b)

respectively. Note that rather than keeping the vector and axial-vector terms separate,

we have combined them into one compact expression. This is possible because the parity-

violating terms in the combined amplitude vanish after taking the traces. Evaluating the
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traces, one finds

σgen = (A,B,C) ·


x

y

z

 = (A,B,C) ·M ·


F ′1

F ′2

G′a

 , (A6)

where the transformation matrix M is given by

M = 16M4


ν2 + τ 2 − τ 2τ 2 2ντ

2τ 2 τ (ν2 − τ 2 + τ) 2ντ

2ντ 2ντ ν2 + τ 2 + τ

 . (A7)

Inverting the matrix M will obtain the relationships of interest,
F ′1

F ′2

G′a

 =
1

16M4 (ν2 − τ(τ + 1))2

×


ν2 + τ 2 − τ 2τ −2ντ

2τ (ν2 − τ 2 + τ)/τ −2ν

−2ντ −2ν ν2 + τ 2 + τ



x

y

z

 . (A8)

The same projections as in Eq. (A3) can now be made for Mγγ,

σgen = M̂†
gen(A,B,C)Mγγ

= Ax+By + Cz . (A9)

The set of projected functions {x, y, z} are then combined to give the TPE amplitudes using

Eq. (A8). There is an apparent kinematic singularity in Eq. (A8) at ν2 = τ(τ + 1) = ν2
ph,

which is the threshold between the physical and unphysical regions. However, the full

expressions for the imaginary parts of F ′1(Q2, ν), F ′2(Q2, ν), and G′a(Q
2, ν) are continuous,

smooth, and finite across this boundary. Nevertheless, for numerical work we avoid directly

using this kinematic point.

From Eq. (10), the pseudo-observable σgen has the form

σgen =
α

4π
Q2 1

iπ2

∫
d4q1

LαµνH
αµν

(q2
1 − λ2)(q2

2 − λ2)
, (A10)
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where the leptonic and hadronic tensors of Eq. (11)–(12) are

Lαµν =
1

2
Tr
[
γα(1 + γ5)(/k − /q)γµSF (k − q1)γν/k

]
, (A11)

Hαµν =
1

2
Tr

[
Γ̂α(A,B,C;−q)(/p+ /q +M)

× ΓµλR→Nγ(p+ q1,−q2)Sλρ(p+ q1,MR) ΓρνγN→R(p+ q1, q1)(/p+M)

]
. (A12)

The decomposition of the total amplitude into a basis of generalized form factors is not

unique. Another convention in the literature [16, 21] is to use the generalized matrix element

M̃gen(F̃1, F̃2, F̃3) = −e
2

q2
ūe(k

′)γµue(k)

× ūN(p′)

[
F̃1(Q2, ν) γµ + F̃2(Q2, ν)

iσµνqν
2M

+ F̃3(Q2, ν)
/k pµ

M2

]
uN(p) ,

(A13)

The relationship between the set {F ′1, F ′2, G′a} and the set {F̃1, F̃2, F̃3} is F ′1 = F̃1 + νF̃3,

F ′2 = F̃2, and G′a = −τ F̃3 [16]. This relationship can be easily derived by contracting M̃gen

with M̂†
gen, in analogy with Eq. (A3), and comparing the transformation matrices.

Appendix B: Analytic expressions for imaginary parts of Passarino-Veltman functions

In the notation of Package X [84], the full dependence of the s-channel PV functions on

kinematic variables is

B0(s) ≡ B0(s;me,W ) , (B1a)

C0(s; Λ) ≡ C0(M2,m2
e, s;W,Λ,me) , (B1b)

D0(s; Λ1,Λ2) ≡ D0(M2,M2,m2
e,m

2
e, t, s; Λ1,W,Λ2,me) . (B1c)

Following the discussion in Sec. II B 1, the full expressions for the imaginary parts of the

these functions are

b0(s) =
πsW
s

θ(sW ) , (B2a)

c0(s; Λ) = − π

sM
log

(
Λ2s+ sMsW

sΛ2

)
θ(sW ) , (B2b)

d0(s; Λ1,Λ2) =
sW
4s
J θ(sW ) , (B2c)
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where sM and sW are given by Eq. (34), the quantity J is given by

J =
4π

Y
√

1− z2
log

(
1 +
√

1− z2

z

)
, (B3)

and we have introduced the dimensionless variable z = Z/Y , with

Z =
Λ1Λ2

√
(Λ2

1s+ sMsW )(Λ2
2s+ sMsW )

s
, (B4)

Y =
2Λ2

1Λ2
2s+ sMsW (Λ2

1 + Λ2
2) +Q2s2

W

2s
. (B5)

The expression for d0(s; Λ1,Λ2) in Eq. (B2c) has been rewritten in a form that is numerically

stable for very small values of Λi. By comparison, the form given in Eq. (37), with X2 =

Y 2 −Z2, is susceptible to roundoff error in this limit. We also note that while the real part

of D0 has a logarithmic dependence on me, the imaginary part does not, and is therefore

finite in the limit me → 0, which we have used throughout this paper.

The PV functions c0(s; Λ) and d0(s; Λ1,Λ2) are IR-divergent in the limit Λ → 0. Re-

placing Λ → λ, and keeping only logarithmic terms in λ, we have the three IR-divergent

combinations

c0(s;λ) = − π

sM
log
(sMsW
λ2s

)
θ(sW ) , (B6a)

d0(s;λ,Λ) =
π

Λ2sM +Q2sW
log

(
sW (Λ2sM +Q2sW )

2

λ2Λ2sM (Λ2s+ sMsW )

)
θ(sW ) , (B6b)

d0(s;λ, λ) =
2π

Q2sW
log

(
Q2sW
λ2sM

)
θ(sW ) . (B6c)

One can use these expressions to explicitly show that there is no residual dependence on

λ in the total TPE amplitudes, after subtracting the model-independent Maximon and

Tjon IR-divergent terms. For numerical calculations, it is more convenient to use the full

expressions (B2), with a value for λ satisfying the criterion λ� me.

For sums of monopole form factors, the integrals of interest are sums of primitive integrals

Iij given in Eq. (42), with N = i + j. Table I gives the values for Iij up to N = 2, which

suffices for nucleon intermediate states. In general, for other states like the ∆ one needs

up to N = 3, which requires the form factor to behave like 1/Q4
i asymptotically, but the

procedure follows analogously.
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TABLE I. Table of values for Iij in Eq. (42), keeping only logarithmic terms in the infinitesimal

regulator λ. The dependence on s and other kinematic variables is suppressed for clarity.

N i j Iij

0 0 0 d0(λ, λ)− d0(Λ1, λ)− d0(λ,Λ2) + d0(Λ1,Λ2)

1 1 0 Λ2
1 (d0(Λ1, λ)− d0(Λ1,Λ2))

1 0 1 Λ2
2 (d0(λ,Λ2)− d0(Λ1,Λ2))

2 2 0 −Λ2
1

(
c0(λ)− c0(Λ2) + Λ2

1 (d0(Λ1, λ)− d0(Λ1,Λ2))
)

2 0 2 −Λ2
2

(
c0(λ)− c0(Λ1) + Λ2

2 (d0(λ,Λ2)− d0(Λ1,Λ2))
)

2 1 1 Λ2
1Λ2

2d0(Λ1,Λ2)

Appendix C: Form factor reparametrizations

Here we present the reparametrizations of the nucleon and ∆ vertex form factors in

terms of sums and/or products of monopoles, suitable for use in the analytic expressions of

Sec. II B 1. Fits are over the range 0 < Q2 < 8 GeV2, with F1(Q2) being a 5-parameter fit,

while all others are 4-parameter fits.

The nucleon form factors are fit to the parametrization of Ref. [50],

F1(Q2) =
0.334

1 +Q2/0.209
+

1.228

1 +Q2/0.805
− 0.562

1 +Q2/1.898
, (C1)

F2(Q2) =
κ

1 +Q2/3.502

(
1.165

1 +Q2/0.364
− 0.165

1 +Q2/2.675

)
, (C2)

with Q2 in GeV2. Defining

g(Q2) =
(M∆ +M)2

Q2
+

=
1

1 +Q2/(M∆ +M)2
, (C3)

the ∆ transition form factors are fit to the parametrization of Ref. [60, 61],

g(Q2)G∗M,E(Q2) = G∗M,E(0)
1

1 +Q2/3.177

(
2.474

1 +Q2/0.575
− 1.474

1 +Q2/1.000

)
, (C4)

g(Q2)G∗C(Q2) = G∗C(0)
1

(1 +Q2/1.102)2

(
0.813

1 +Q2/0.0684
+

0.187

1 +Q2/0.895

)
. (C5)

The form factors g1(Q2), g2(Q2), and g3(Q2) can be obtained from simple combinations of

these parametrizations, while still allowing for implementation in analytic form.

The use of these reparametrizations in the numerical integration method allows for a

test of our codes against the analytic results. We were routinely able to obtain a rela-

tive agreement at the level of five significant digits. Similarly, the validity of using these

42



reparametrizations in the analytic codes can be tested against the numerical results using

the original functional forms. In general, we found that the relative differences between

the analytic and numerical evaluations of the imaginary parts of the TPE amplitudes were

comparable to the relative differences between the original and reparametrized forms over

the relevant range of Q2. As the original and reparametrized vertex form factors given in

this appendix agree at roughly the 2% level when averaged over the range 0 < Q2 < 8 GeV2,

we find a 2% agreement in F ′1(Q2, ν), F ′2(Q2, ν), and G′a(Q
2, ν) up to Q2 = 4 GeV2. This

suggests that the TPE results are not very sensitive to pole structure of the vertex form

factor parametrizations in the complex plane.
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