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Background: Binding energies and charge radii are fundamental properties of atomic nuclei. When inspecting
their particle-number dependence, both quantities exhibit pronounced odd-even staggering. While the odd-even
effect in binding energy can be attributed to nucleonic pairing, the origin of staggering in charge radii is less
straightforward to ascertain.

Purpose: In this work, we study the odd-even effect in binding energies and charge radii, and systematic behavior
of differential radii, to identify the underlying components of the effective nuclear interaction.

Method: We apply nuclear density functional theory using a family of Fayans and Skyrme energy density func-
tionals fitted to similar datasets but using different optimization protocols. We inspect various correlations
between differential charge radii, odd-even staggering in energies and radii, and nuclear matter properties. The
Fayans functional is assumed to be in the local FaNDF0 form. Detailed analysis is carried out for medium-mass
and heavy semi-magic nuclei with a particular focus on the Ca chain.

Results: By making the surface and pairing terms dependent on density gradients, the Fayans functional offers
the superb simultaneous description of odd-even staggering effects in energies and charge radii. Conversely, when
the data on differential radii are added to the pool of fit-observables, the coupling constants determining the
strengths of the gradient terms of Fayans functional are increased by orders of magnitude. The Skyrme functional
optimized in this work with the generalized Fayans pairing term offers results of similar quality. We quantify
these findings by performing correlation analysis based on the statistical linear regression technique. The nuclear
matter parameters characterizing Fayans and Skyrme functionals optimized to similar datasets are fairly close.

Conclusion: Fayans paring functional, with its generalized density dependence, significantly improves description
of charge radii in odd and even nuclei. Adding differential charge radii to the set of fit-observables in the
optimization protocol is helpful for both description of radii and for improving pairing functional. In particular,
Fayans functional FaNDF0 constrained in this way is capable of explaining charge radii in the even-even Ca
isotopes. However, in order to obtain good description of differential radii data in both medium-mass and heavy
nuclei, an A-dependent scaling of Fayans pairing functional is still needed. Various extensions of the current
model are envisioned that carry out a promise for the global description.

I. INTRODUCTION

Charge radii of atomic nuclei are key observables that
can probe properties of of nuclear force and nuclear
many-body dynamics [1]. They also carry fundamen-
tal information about the saturation density of symmet-
ric nuclear matter [2]. The local fluctuations (i.e., rapid
changes as a function of particle number) in measured
charge radii signal structural evolution effects, such as
shell and subshell closures [3], shape deformations [4],
and configuration mixing [5]. Another key structural in-
dicator is the odd-even staggering of charge radii along
isotopic chains. In particular, the intricate behavior of
charge radii along the Ca chain – the almost equal values
of charge radii in 40Ca and 48Ca, an appreciable odd-
even staggering, and unexpectedly large charge radius in
52Ca [6] – constitute a long-standing challenge for nuclear
theory [6–8].

The goal of this study is to understand differential
charge radii within nuclear density functional theory
(DFT) [9], which is a tool of choice for global micro-
scopic studies of nuclei throughout the chart of nuclides.
In nuclear DFT, effective inter-nucleon interaction is rep-

resented by the energy density functional (EDF) adjusted
to experimental data and often also to selected nuclear
matter parameters. While the commonly used energy
density functionals offer a very reasonable description of
charge radii [10–13] they often miss local fluctuations and
dramatically underestimate odd-even effect in radii. In
this context, the EDF developed by S.A. Fayans and col-
laborators [14–18] stands out as it has demonstrated a
rare ability to describe charge radii in isotopic chains of
semi-magic spherical nuclei, including the challenging Ca
chain. A notable achievement of the Fayans model has
been to explain the odd-even staggering effect in charge
radii in terms of the density-dependent nucleonic pairing
[18–21]. In fact, there exist two variants of the Fayans
functional, the DF3 functional with finite range couplings
[15] and the functional FaNDF0 involving gradient terms
in local couplings [17].

In this work, we carry out detailed analysis of the
Fayans energy density functional in FaNDF0 form, pay-
ing attention to its unique features, in particular its den-
sity dependence and the role played by surface and pair-
ing gradient terms. We vary the optimization strategies
to achieve unbiased comparison of odd-even staggering of
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binding energies and charge radii. By means of the sta-
tistical covariance technique, we quantify the intricate
relation between the pairing functional and charge radii.

This article is organized as follows: Section II con-
tains the description of the models and methods used.
In particular, it defines the Fayans functional, datasets
employed in various optimization variants, and fitting
methodologies employed in this work. The results are
contained in Sec. III. Finally, the summary and outlook
are given in Sec. IV.

II. THEORETICAL FRAMEWORK

In nuclear DFT, the total binding energy of the nucleus
is given by

E = ∫ E(r)d
3r (1)

where E is the local EDF that is supposed to be a real,
scalar, time-even, and isoscalar function of local densities
and currents.

A. Local densities

Canonical Hartree-Fock-Bogoliubov (HFB) wave func-
tions and occupation amplitudes uniquely define the one-
body density matrix. In this work, we only consider
time-reversal-invariant states and thus need only time-
even densities. These are [9, 22, 23]: particle density
ρt, kinetic density τt, and spin-orbit current J t, where
the isospin index t labels isoscalar (t = 0) and isovector
(t = 1) densities. For instance, the isoscalar and isovector
particle densities are:

ρ0 = ρn + ρp, ρ1 = ρn − ρp. (2)

If pairing correlations are present, local pairing densities
ρ̆p and ρ̆n appear as well. In this study, for the purpose
of the optimization and statistical analysis, we replace
the full HFB problem with the Hartree-Fock (HF)+BCS
problem.

B. The Skyrme functional

The Skyrme EDF can be decomposed into the kinetic
term, Skyrme interaction term (isoscalar and isovector),
pairing EDF, Coulomb term, and additional corrections,
such as the center-of-mass (c.m.) term [9, 12, 24]. The
Skyrme interaction EDF is ESk = ESk,0 + ESk,1, where

ESk,t = C
ρρ
t (ρ0)ρ

2
t +C

ρτ
t ρtτt +C

ρ∆ρ
t ρt∆ρt

+Cρ∇Jt ρt∇ ⋅ Jt +C
J2

t J2
t , (3)

with the coupling constants Cρρt containing an additional
dependence on the isoscalar density:

Cρρt (ρ0) = C
ρρ
t0 +CρρtDρ

α
0 . (4)

The tensor spin-orbit terms ∝ J2
t are neglected here, i.e.,

we assume CJ
2

t = 0.
In this study, the Coulomb Hartree term is calculated

exactly using the proton density ρp:

EC = e2
∫ d3r d3r′ρp(r)

1

∣r − r′∣
ρp(r

′
). (5)

The exchange term is computed within the standard
Slater approximation:

EC,ex = −
3
4
e2

(
3

π
)

1/3
ρ4/3
p . (6)

The c.m. correction Ecm = −⟨P̂ 2
cm⟩/(2mA) is added to

the total energy after the mean-field equations have been
solved. The pairing EDF is described by the density-
dependent pairing term Epair = Epair,p + Epair,n [25, 26]:

Epair,q =
1

4
Vpair,q (1 −

ρ0

ρpair
) ρ̆2

q (q = p,n). (7)

We note that the pairing EDF in the Skyrme model
has in general different coupling constants for protons
and neutrons, see discussion in Ref. [27]. In the limit
of ρpair → ∞, Eq. (7) represents volume pairing and

ρpair = 0.16 fm−3 corresponds to what is called surface
pairing. The functional SV-min [24] has a mixed pairing
with ρpair = 0.21159 fm−3.

C. The Fayans functional

Compared to the Skyrme functional, Fayans FaNDF0

[17, 28], DF3 [15, 18, 29, 30], and DF3-a [31] EDFs have
a more complex dependence on particle densities that
stems from a fractional form of their density-dependent
couplings, novel folding/density-gradient terms, and
Coulomb-nuclear correlation term. The kinetic energy
and Coulomb Hartree terms of Fayans EDF are exactly
the same as in the Skyrme model. The Fayans interaction
functional is usually written in terms of dimensionless
densities

xt =
ρt
ρsat

, xpair =
ρ0

ρpair
, (8)

where ρsat and ρpair are scaling parameters of Fayans
EDF. In the Fayans model, ρsat is interpreted as the sat-
uration density of symmetric nuclear matter with Fermi
energy εF = (9π/8)2/3h̵2/2mr2

s and the Wigner-Seitz ra-

dius rs = (3/4πρsat)
1/3. Note that we have to distinguish

between the parameter ρsat, which is an input to the
model and the equilibrium density ρeq, which is result of
optimization and characterizes Fayans EDF. While these
two quantities are close, they are not identical.

In this work, we study Fayans functional in the form
of FaNDF0 as its surface energy is directly expressed
through local densities. However, we re-optimize its pa-
rameters under various conditions. Thus we distinguish
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between the “FaNDF0 functional” and the “FaNDF0

parametrization,” where the latter is the FaNDF0 func-
tional with the original model parameters of Ref. [17].
The FaNDF0 EDF can be decomposed into volume, sur-
face, and spin-orbit terms,

EFy = E
v
Fy(ρ) + E

s
Fy(ρ) + E

ls
Fy(ρ,J). (9)

The volume term Ev
Fy is defined as Padé approximant:

E
v
Fy =

1
3
εF ρsat [a

v
+

1−hv
1+x

σ
0

1+hv
2+x

σ
0

x2
0 + a

v
−

1−hv
1−x0

1+hv
2−x0

x2
1.] (10)

Such density dependence in the volume term had also
been studied in the context of Skyrme EDF’s [32] and
found to make not much difference as compared to the
form (4). The important new aspect is that the surface
term Es

Fy has also the form of a Padé approximant in-
volving the gradient of density:

E
s
Fy =

1
3
εF ρsat

as
+r

2
s(∇x0)

2

1 + hs
+x

σ
0 + h

s
∇r

2
s(∇x0)

2
. (11)

Similar as in the Skyrme case [33, 34], the spin-orbit term
E ls

Fy of Fayans functional is derived from zero-range two-

body spin-orbit and tensor interactions [29–31, 35, 36].
For time-even spherical nuclei, it can be written as:

E
ls
Fy =

4εF r
2
s

3ρsat

(κρ0∇ ⋅ J0 + κ
′ρ1∇ ⋅ J1 + gJ

2
0 + g

′J2
1) . (12)

Again, we ignore here the tensor contributions (g = g′ = 0)
as in the original FaNDF0. The remaining term is iden-
tical to that of the Skyrme functional (3) if one identifies

Cρ∇J0 =
4εF r

2
s

3ρsat
κ and Cρ∇J1 =

4εF r
2
s

3ρsat
κ′.

The Coulomb exchange energy of Fayans functional
contains an additional Coulomb-nuclear correlation term:

EC,ex = −
3
4
e2

(
3

π
)

1/3
ρ4/3
p (1 − hCx

σ
0 ). (13)

Finally, the pairing functional of the Fayans model goes
beyond the density-dependent ansatz (7):

E
pair
Fy,q =

2εF
3ρsat

ρ̆2
q [f

ξ
ex + h

ξ
+x

γ
pair + h

ξ
∇r

2
s(∇xpair)

2
] . (14)

This pairing functional is supposed to effectively account
for the coupling to surface vibrations; it has a surface
character and contains the novel density-gradient term,
which is essential for explaining the odd-even staggering
in rch [18, 20].

Following the original FaNDF0 definitions [17],
we use h̵2/2mp = 20.749811 MeV fm2, h̵2/2mn =

20.721249 MeV fm2, e2 = 1.43996448 MeV fm, ρsat =

0.16 fm−3, and σ = 1/3. As in Ref. [17], we also take
ρpair = ρsat. In the FaNDF0 parametrization, the surface-
energy parameter hs

+ was assumed to be equal to hv
2+.

Initially, we released this condition and kept it as a free
parameter. It turned out, however, that the hs

+ is poorly

constrained by our datasets, i.e., the associated uncer-
tainties are large. We found that the value hs

+ = 0 yields
more robust fits than the standard FaNDF0 value, and
we adopted it in our work. For the same reason, since
the Coulomb-nuclear correlation term hardly impacts the
optimization results, we put hC = 0. Finally, we took the
exponent γ = 2/3 in (14) as in DF3-a as it has been shown
advantageous for reproducing differential radii [8, 18, 37].
The c.m. correction has been ignored in the original
Fayans model. We include it in this work for the sake
of comparison with Skyrme results (except for the origi-
nal FaNDF0 parametrization); this correction is of minor
importance for the quantities discussed here.

D. Mixed Skyrme/Fayans functional

Skyrme EDF and FaNDF0 EDF differ in two respects.
First, the mean-field part has a different density depen-
dence, particularly in the surface term (11), and sec-
ond, the FaNDF0 pairing functional has a gradient term,
which is absent in the Skyrme model. Changing two
features at once can blur comparisons. Thus we also
consider as intermediate step a mixed functional, which
takes the mean field part from Skyrme EDF and pairing
part from FaNDF0 EDF. We refer to such a mixed func-
tional as “Sk+PFy”. The mixed functional helps in two
ways. Comparing Skyrme EDF with Sk+PFy explores
the Fayans pairing functional, while comparing Sk+PFy
with full FaNDF0 EDF highlights the role of the gradient
term in Fayans surface functional.

E. Observables studied

The basic observables calculated in DFT are binding
energy EB and local particle densities ρt. The charge
density ρch can be directly obtained from ρp and ρn
by correcting for proton and neutron form factors, and
the spin-orbit contribution. The key parameters of the
charge density are r.m.s. charge radius rch, diffraction
(or box-equivalent) radius Rdiff , and surface thickness
σch [38]. In the following, we shall study isotopic trends
of binding energy and charge radii. In particular, we are
going to investigate differential mean-square (ms) charge
radii, which, for a given isotope, are defined as:

δ⟨r2
⟩
A,A′

= ⟨r2
ch⟩

A′
− ⟨r2

ch⟩
A. (15)

To assess odd-even staggering of charge radii and binding
energies, we study three-point differences (either isotopic
or isotonic):

∆(3)r (A) = 1
2
(rch,A+1 − 2rch,A + rch,A−1) , (16)

∆
(3)
E (A) = 1

2
(EB,A+1 − 2EB,A +EB,A−1) . (17)

We shall also consider three-point binding energy differ-
ences involving ground states of even-even nuclei with
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the same Z or N :

∆ee
E (A) = 1

2
(EB,A+2 − 2EB,A +EB,A−2) . (18)

For open-shell systems, ∆ee
E is proportional to the in-

verse of the pairing rotational moment of inertia, i.e., it
is an excellent indicator of nucleonic pairing [39]. For the
calibration of the spin-orbit functional, we also look at
differences of single-particle energies, εls.

Nuclear matter properties (NMP) in symmetric homo-
geneous matter characterize the properties of a given
functional. Here, in addition to the equilibrium den-
sity, ρeq, and energy-per-nucleon of symmetric nuclear
matter at the equilibrium, E/A, we will investigate the
following NMP: incompressibility K and effective mass
m∗/m characterizing the isoscalar response; and symme-
try energy J , slope of symmetry energy L, and Thomas-
Reiche-Kuhn sum-rule enhancement κTRK characterizing
the isovector response, see Refs. [12, 24, 40] for defini-
tions. The sum-rule enhancement κTRK is an alternative
way to parametrize the isovector effective mass. Those
NMP can be conveniently used to characterize results
obtained under different optimization strategies.

F. Optimization strategies and variants

The free parameters of Fayans EDF need to be con-
strained by experiment. These parameters should be
global in the sense that they should provide a reasonable
description of finite nuclei and extended nucleonic matter
[17]. The situation resembles the Skyrme EDF optimiza-
tion strategy [9], where the least-squares method [41, 42]
has become the most widely used approach, see, e.g.,
[12, 43–45]. Here, we are going to adopt this strategy
for tuning Fayans EDF to the global set of data and to
compare it with a Skyrme functional tuned in the same
way. To that end, we define a global quality measure

χ2
(p) = ∑

n∈Obs.

(Oth
n (p) −Oexp

n )2

∆2On
, (19)

where the sum runs over all fit-observables On, Oth
n are

predicted values, Oexp
n are experimental values, and ∆On

are adopted errors chosen to regulate the relative weights
of the different observables. The χ2 is a function of the
model parameters p through the parameter dependence
ofOth

n (p). The optimal parameter set p0 is the one which
minimizes χ2, i.e. Oth

n (p0) ≤ O
th
n (p) for all p.

To optimize Skyrme and Fayans functionals, we em-
ployed several datasets containing various combinations
of fit-observables. They are listed in Table I, and the
parametrizations resulting from different combinations of
datasets are defined in Table II.

Having optimized the functionals, we use the resulting
covariance matrices to carry out the correlation analysis
as explained, e.g., in Refs. [45, 48, 49]. In particular,
we employ a dimensionless product-moment correlation

TABLE I. The datasets used to constrain Skyrme and Fayans
EDFs optimized in this work. The basic dataset of [24] in-
cluding 224 experimental data points in total is considered in
all cases; hence, it is not mentioned explicitly. For instance,
the dataset ∆Eee includes the basic dataset in addition to the
specific data listed below. The numbers in brackets (energies
in MeV and radii in fm) indicate the adopted errors in χ2

(19). The adopted errors for ∆Eoe were chosen in accordance
with the same choice for the spectral gaps in Ref. [24]. The
adopted errors for ∆Eee were derived by estimating the effect
of ground state correlations as in [46]. Experimental nuclear
masses and charge radii were taken from Refs. [47] and [3],
respectively.

Dataset Fit-observables

basic: dataset of SV-min [24]: EB, Rdiff rch, σch, εls

∆Eoe
∶ neutron ∆

(3)
E (17) in: 44Ca (0.24), 44Ca (0.36),

122Sn (0.36), 124Sn (0.36), 126Sn (0.24), 128Sn (0.24),
204Pb (0.24), 206Pb (0.36), 210Pb (0.36);

proton ∆
(3)
E (17) in: 86Er (0.36), 88Sr (0.24),

90Zr (0.12), 92Mo (0.24), 94Ru (0.24), 136 Xe(0.24),
138Ba (0.24), 140Ce (0.24), 142Nd (0.24),
144Sm (0.24), 146Gd (0.24), 148Dy (0.24);

∆Eee
∶ neutron ∆ee

E (18) in: 44Ca (0.12), 118Sn (0.36),
120Sn (0.36), 122 Sn(0.13), 124Sn(0.24);
proton ∆ee

E (18) in: 36Kr (0.36), 88Sr (0.36),
90Zr (0.24), 92Mo (0.12), 94 Ru(0.24), 136Xe (0.24),
138Ba (0.24), 140Ce (0.24), 142Nd (0.24),
214Ra (0.24), 216Hg (0.24)

∆r ∶ δ⟨r2
⟩ (15) for Ca isotopes: δ⟨r2

⟩
48,40 (0.008),

δ⟨r2
⟩
48,44 (0.008), δ⟨r2

⟩
52,48 (0.02);

∆roe
∶ odd-even staggering: δ⟨r2

⟩
43,44(Ca) (0.002),

δ⟨r2
⟩
119,120(Sn) (0.002).

TABLE II. Energy density functionals optimized in this work
and the associated fit-observables as defined in Table I. The
basic SV-min dataset of [24] is considered in all cases. All Fy
functionals employ the Fayans functional of Sec. II C except
for Fy(hs∇=0) and Fy(hξ

∇
=0), in which the surface and pairing

gradient terms are put to zero, respectively. Sk+PFy mixes
the Skyrme functional in the particle-hole channel with the
Fayans pairing functional (14) with γ = 1. In all cases, the
c.m. correction is added.

EDF ∆Eoe ∆r ∆roe

Fy(std) + − −

Fy(nogap) − − −

Fy(∆r) + + −

Fy(∆r,∆roe) + + +

Fy(hξ
∇
=0) + + −

Fy(hs∇=0) + + −

Sk+PFy + + −

Sk+PFy(std) + − −
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coefficient [42]:

rAB =
∣∆A∆B∣

√

∆A2 ∆B2
, (20)

which measures the covariance between two observables
A and B. A value rAB = 1 means fully correlated,
rAB = −1 fully anti-correlated, and rAB = 0 uncorre-
lated. In linear least squares regression, the square of
the correlation coefficient r2

AB is denoted the coefficient
of determination. In our correlation analysis of functional
parameters, we shall be inspecting matrices of r2

AB .

G. Numerical considerations

In this work, pertaining to well-bound systems, we ap-
ply the HF+BCS approach rather than the full HFB;
hence, the canonical wave functions are approximated
by the HF orbitals and the related occupations are given
by the standard BCS amplitudes. Spherical Hartree-Fock
wave functions, densities, and mean-fields are represented
on a 1D grid in spherical coordinates [50]. We use a grid
spacing of 0.3 fm and 32–48 grid points depending on
system size. The HF+BCS equations are solved with an
accelerated gradient iteration technique [51].

We use the soft pairing cutoff [52] in BCS defined by
the cutoff energy εcut = 15 MeV with respect to the Fermi
energy and the width ∆ε = εcut/10. Although seemingly
straightforward, pairing raises a subtle problem around a
phase transition between paired and normal state around
closed shells, which may result in numerical instabilities.
We avoid such unphysical behavior by using the stabi-
lized pairing of [53] arranged to guarantee in smooth
manner a minimal gap of ∆ = 0.3 MeV, which is well
below the typical pairing gap of 1–2 MeV; hence, it has
negligible influence on nuclear bulk properties as binding
energy and radii.

Odd-A nuclei are treated in the standard uniform fill-
ing approximation to blocking, in which a blocked nu-
cleon is put with equal probability in each of the degen-
erate magnetic sub-states [18, 54]; hence, time-reversal
symmetry is conserved. To find the ground state, we
carry out blocked calculations for all shells near the
Fermi energy and select the blocked state with low-
est energy. It is to be noted that our spherical block-
ing calculations cannot account for multipole- and spin-
polarization effects. Thus the experimental data in Ta-

ble I on 3-point gaps ∆
(3)
E and ∆

(3)
r were selected in such

a way that the impact of deformation-polarization, spin-
polarization, and correlation effects is minimal. While
these quantities can be affected by time-odd polariza-
tions, the corresponding corrections are expected to be
small [55, 56].

To find the optimal parameter set of parameters p0 we
carry out multidimensional minimization of χ2. Here we
use two iterative strategies: a multi-dimensional method
of determinants as outlined in Ref. [41], and succession

of one-dimensional minimizations according to Powells
method [57]. The first method is much faster and it has
the great advantage to provide the full covariance ma-
trix, which is needed for covariance analysis and error
estimates [45, 49, 58, 59]. However, it easily gets stuck
in conflicting situations where one or a few data points
constitute a large faction of χ2, as this often happens
when trying to accommodate isotopic shifts. Here we
switch to the Powell method which is comparably slow
but unerringly drives χ2 to a minimum. To acquire more
confidence that the minimum found is global, we restart
iterations several times by stochastically stirring up the
model parameters p.

III. RESULTS

A. Nuclear Matter Parameters

The volume term Ev
Fy of Fayans EDF determines its

nuclear matter parameters. As a matter of fact, the
volume term coupling constants of the original FaNDF0

parametrization [17] were fixed by fitting them to the
equation of state of symmetric infinite nuclear mat-
ter. Table III displays NMP of selected Fayans and
Skyrme functionals used and optimized in this work.
It is satisfying to see that the values of NMP in Ta-
ble III are consistent (within error bars) with each other
and with the range allowed by theory [40] and exper-
iment/observations [60, 61]. The only notable excep-
tion is a relatively low mean value of L obtained in
Sk+PFy. Considering that Sk+PFy and SV-min are
based on the same particle-hole interaction parametrized
to a very similar dataset, it is surprising to see an un-
expectedly large impact of the additional data on differ-
ential charge radii on the symmetry energy slope. We
checked that the Sk+PFy fit without a constrain on iso-
topic shift yields L = 41 MeV, which is a typical value
as in other parametrizations. We also remark that L
is also sensitive to the density dependence of the pair-
ing channel. By re-optimizing Sk+PFy with the pairing
functional having different density dependence, γ = 2/3,
we obtain L = −3 ± 17 MeV, which is unreasonably low.
As seen in Fig. 1 below, such a low value of γ is disfavored
by our optimization protocol.

B. Optimized Functionals

The parameters of EDFs used and optimized in this
work are displayed in Tables IV (Fayans functionals) and
V (Skyrme). The coupling constants characterizing the
isoscalar part of the volume term (10) are similar be-
tween different Fayans functionals. This is not surpris-
ing in light of similarity of NMP in Table III. The pa-
rameters of the particle-hole interaction of Fy(∆r) and
Fy(∆r,∆roe) are not far from the original FaNDF0. This
is not the case for the isovector-volume and surface terms
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TABLE III. NMP of Fayans and Skyrme functionals used in this work.

NMP FaNDF0 Fy(std) Fy(∆r) Fy(∆r,∆roe) SV-min Sk+PFy

ρeq (fm−3) 0.160 0.163±0.002 0.160±0.002 0.161±0.001 0.162±0.001 0.163±0.001
E/A (MeV) −16.00 −16.10±0.05 −16.11±0.04 −16.12±0.03 −15.91±0.04 −15.94±0.03
K (MeV) 219 219±15 219±12 220±18 222±7 229±5
J (MeV) 30 31±2 29±2 30±1 31±2 30±1
L (MeV) 30 59±22 30±24 35±21 45±26 18±18

TABLE IV. Parameters of the various Fayans functionals
optimized in this work compared to the original FaNDF0

parametrization. The parameters fitted in Fy(std), Fy(∆r),
and Fy(∆r,∆roe) are displayed in the upper panel while the
lower panel lists those that are fixed. The parameters are
given with the number of digits as required for sufficient pre-
cision of the calculations. ρsat is in fm−3; other parameters
are dimensionless.

FaNDF0 Fy(std) Fy(∆r) Fy(∆r,∆roe)

av
+ −9.559 −9.495922 −9.542989 −9.534242
hv

1+ 0.633 0.6271056 0.6323225 0.6317662
hv

2+ 0.131 0.1452334 0.1343786 0.1348917
av
− 4.428 12.4741 4.18236 3.96619
hv

1− 0.250 −1.38754 0.253776 0.206941
hv

2− 1.300 19.3795 1.21502 1.16421
as
+ 0.600 0.5241615 0.6047266 0.5917059
hs
∇ 0.440 0.0992 0.6656 0.4861
κ 0.19 0.189640 0.187922 0.197785
κ′ 0.0 0.0250 −0.0237 −0.0052

fξex −2.8 −1.636 −4.472 −4.265

hξ+ 2.8 1.130 4.229 3.9618

hξ
∇

2.2 0.013 3.227 3.8732

σ 1/3 1/3 1/3 1/3
hs
+ hv

2+ 0 0 0
hCoul 0.941 0 0 0
ρsat 0.160 0.160 0.160 0.160
ρpair ρsat ρsat ρsat ρsat

γ 1 2/3 2/3 2/3

of Fy(std). This suggests that constraining δ⟨r2⟩ plays
a key role for determining the spectroscopic quality of
the Fayans model. Indeed, Table IV shows that the cou-

pling constants hs
∇ and hξ∇ determining the strengths of

the gradient terms ∝ (∇ρ0)
2 in the Fayans surface and

pairing functional, respectively, are increased by orders of
magnitude when the data on differential radii are added
to the dataset. Another interesting outcome is the signif-
icant difference between the parameters of SV-min and
Sk+PFy shown in Table V, again primarily attributed
to the additional data on differential radii used to con-
strain Sk+PFy. It is worth noting that the value of hξ∇
of Sk+PFy is in the same range that that of Fy(∆r).

The parameter γ entering the density dependence of
the Fayans pairing functional is of particular interest as
it changes the character of pairing potential from surface-
type (γ < 1, ρpair ≤ ρsat) to mixed-type (γ ≥ 1, ρpair >

TABLE V. Parameters of the Skyrme functionals SV-min and
Sky+PFy other than NMP shown in Table III: m∗

/m and

κTRK are dimensionless; Cρ∆ρt and Cρ∇Jt are in MeV fm5;
and ρpair is in fm−3. The remaining pairing parameters of
Sky+PFy are: ρsat=0.16 fm−3, γ = 1, fξex = −3.3247 ± 0.31,
hξ+ = 2.7952 ± 0.35, and hξ

∇
= 4.8432 ± 0.70.

SV-min Sky+PFy

m∗
/m 0.9518±0.07 1.0117±0.08

κTRK 0.0765±0.28 0.1167±0.13

Cρ∆ρ0 −89.205±5.2 −23.499±6.5

Cρ∆ρ1 −35.377±39 25.734±17

Cρ∇J0 −101.581±4.9 −72.390±3.9

Cρ∇J1 −22.968±19 8.773±40
ρpair 0.211591±0.05 0.16

ρsat). Figure 1(a) shows the dependence of the qual-
ity measure (19) on γ. The parametrization Fy(std) is

fairly insensitive to γ as the value of hξ+ is significantly re-
duced for this parametrization as compared to the other
ones in Fig. 1. The constraint on differential radii in
Fy(∆r) clearly favors γ = 2/3. This is due to the in-
terplay between the surface-gradient effect and pairing
term of the Fayans functional. Indeed, eliminating the
surface-gradient correction in Fy(hs∇=0) tends to favor
larger values of γ, and this is in line with the Sk+PFy
result. To illustrate the impact of γ and the data on
differential radii on odd-even binding energy staggering,

Fig. 1(b) shows ∆
(3)
E in 204Pb. The prediction of Fy(std)

is close to experiment and hardly varies with γ. It is seen
that the additional dataset ∆r does impact pairing cor-

relations significantly, and – by increasing hξ+ – it gives

rise to large variations of ∆
(3)
E with γ.

C. Global performance

Figure 2 illustrates the performance of Fayans and
Skyrme parametrizations used/optimized in this work.
The optimization quality is measured in terms of average
and r.m.s. deviations of fit observables from experiment:
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FIG. 1. Quality measure χ2 (top) and odd-even binding-

energy staggering ∆
(3)
E for 204Pb (bottom) and as functions of

the γ parameter of the Fayans pairing functional for Fy(std),
Fy(∆r), Fy(hs∇), and Sk+PFy.

DO =
∑n (Oth

n −Oexp
n )

Ndata
, (21a)

∆DO =

¿
Á
ÁÀ∑n (Oth

n −O
exp

)
2

Ndata
−D

2

O, (21b)

where O stands for one of the observables: EB,∆
(3)
E , and

charge form factor characteristics: Rdiff , σch, and rch.
The parametrizations Fy(std), Fy(nogap), and SV-min,
optimized to similar datasets yield results of comparable
quality for bulk observables (energies and charge form
factor characteristics). This performance deteriorates as
the data on ∆r and ∆roe are added to the dataset. This
is seen in large error bars on the values of EB, ∆

(3)
E , Rdiff ,

σch, and rch predicted by Fy(∆r) and Fy(∆r,∆roe).
Differential radii for the Ca isotopes are are shown in

Fig. 2(d). One can see that by constraining the functional
by additional ∆r data, as done for Fy(∆r), Fy(∆r,∆roe),
and Sk+PFy, one is able to reproduce experiment for
A = 40 and 44. The unexpectedly large charge radius
in 52Ca [6] is reproduced by the ∆r-constrained Fayans
functionals but it is underestimated in Sk+PFy and also
in Fy(std), Fy(nogap), and SV-min.

Interestingly, the odd-even energy staggering ∆
(3)
E in

Ca is reproduced reasonably well by all models, see
Figs. 2(b) and (f). When looking into details, however,

one can see that by adding data on ∆
(3)
E to the basic

dataset, helps reducing theoretical error when going from

Fy(nogap) to Fy(std).
As pointed out in Ref. [18, 20], the odd-even staggering

of charge radii can be attributed to the contribution to
the mean-field potential arising from the pairing interac-
tion (14):

hpair =
2εF
3ρsat

{hξ+γx
γ−1
0 (ρ̆2

n + ρ̆
2
p) (22a)

−2hξ∇r
2
s∇ [(ρ̆2

n + ρ̆
2
p)∇x0]} , (22b)

where we explicitly put xpair = x0 (as ρpair = ρsat). The
field (22) produces a direct coupling between the isoscalar
particle density ρ0 and pairing densities ρ̆n and ρ̆p, which
results in the odd-even staggering in charge radii. Indeed,
the blocking effect in an odd-A nucleus yields a reduced
pairing density ρ̆n, which in turn impacts the proton (or
charge) density, hence rch. Figure 2(e) illustrates the im-
portance of the couplings (22) for the Ca chain. The
parametrizations Fy(std), Fy(nogap), and SV-min dra-

matically underestimate the magnitude of ∆
(3)
r . Indeed,

in these models the coupling constant hξ∇ is either zero
(SV-min) or very small (Fy(std) and Fy(nogap)), and

∆
(3)
r is driven by the first term (22a). In other models,

having large values of hξ∇, the staggering primarily results
from the second term (22b). Here we see that the addi-
tional information contained in datasets ∆r and ∆roe is
absolutely crucial for boosting hξ∇.

To check the importance of c.m. correction, we carried
out two sets of calculations for the observables shown in
Fig. 2: with and without c.m. correction. We conclude
that the impact of the c.m. term is negligible for radial
properties, and plays fairly minor role for energies. In
the following, we stick to calculations with the c.m. term
added, but its effect is should be viewed as secondary.

The performance of optimized functionals with respect
to ∆ee

E in 44Ca, 124Sn, 204Pb, and 212Pb is illustrated in
Fig. 3. Since the Fayans pairing functional exhibits an
A-dependent scaling, in order to include FaNDF0 results
in the mix, we scaled the parameters of FaNDF0 pair-
ing functional given in Table IV by an overall factor 1.2,
which yields reasonable results for all nuclei in the sam-
ple considered. It is seen that for 44Ca, 124Sn, and 204Pb,
there is a great consistency between different functionals
employed. Indeed, most information on pairing correla-
tions is contained in the mass surface of even-even nuclei
[39], and all our functionals shown in Fig. 3 utilize masses
from the basic dataset of SV-min. The discrepancy be-
tween calculated and experimental values of ∆ee

E was dis-
cussed in Ref. [39]: the static pairing in 42,46Ca is close
to the unphysical pairing phase transition. For 212Pb,
the spread of predicted values of ∆ee

E is significant, with
Fy(std) and Sk+PFy functionals overestimating pairing
correlations significantly.

Figure 4 shows predicted differential radii δ⟨r2⟩48,A

for the Ca chain. The functionals optimized to the ba-
sic dataset, Fy(std) and SV-min, exhibit characteristic
monotonic dependence on A [8], and the odd-even affect
is almost nonexistent. As discussed earlier, the latter ef-
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FIG. 3. Three-point binding energy difference ∆ee
E (multiplied

by the mass number to easily compare different systems) for
the spherical open-shell nuclei 44Ca, 124Sn, 204Pb, and 212Pb
computed with selected Fayans and Skyrme functionals and
compared to experiment.

fect can be attributed to hξ∇. The Fayans parametrization

without the pairing gradient term Fy(hξ∇=0) does not
perform well either; while the magnitude of the odd-even
staggering is slightly increased, the overall trend between
40Ca and 48Ca is incorrect. It is only in the functionals
with the full Fayans pairing and constraints on differen-

tial radii that large ∆
(3)
r values can be obtained.

Another set of radius differences, which had raised
much attention in the past is that along the Pb chain.
It has been argued in [18, 31] that the Fayans pairing
functional allows to reproduce the kink in δ⟨r2⟩ at 208Pb.
In this case, however, pairing seems not to be the only
influential agent. For instance, relativistic and Skyrme
mean-field models can associate the kink with spin-orbit
coupling [62, 63]. As it is a task of its own to disentan-
gle various influences on the kink in 208Pb, we are not
addressing this observable here.

The functionals with the full Fayans pairing, namely
Fy(∆r), Fy(∆r,∆roe), and Sk+PFy, perform well up to
48Ca. However, the δ⟨r2⟩ values in 49−52Ca are under-
estimated in all models except for Fy(∆r). This seems
to suggest that correlations beyond mean field [6, 8, 37]
can play a role there. It is also interesting to note that

the attempt to tune ∆
(3)
r in Fy(∆r,∆roe) results in a

deterioration of the reproduction of differential radii ∆r.

To illustrate the performance of our optimized func-
tionals for odd-even staggering in medium-mass and
heavy nuclei, shown in Fig. 5 are their predictions for

neutron values of ∆
(3)
r and ∆

(3)
E in 44Ca, 64Ni, 124Sn,

and 204Pb. In accordance with the discussion around
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64Ni, 124Sn, and 204Pb, predicted by selected Fayans and
Skyrme functionals, and compared to experiment.

Fig. 4, Fy(std) and SV-min fail in reproducing ∆
(3)
r , and

Fy(∆r,∆roe) and Sk+PFy have a comparable perfor-

mance. The results for ∆
(3)
E in 44Ca, 64Ni, and 124Sn are

consistent across different functionals. A large difference
between experiment and Fy(∆r) and Sk+PFy results for

204Pb has been puzzling. To explain this dramatic en-
hancement of pairing predicted by these models, in Fig. 6
we show the neutron pairing density ρ̆n in 44Ca, 124Sn,
204Pb, and 214U obtained in different parametrizations.
(214U is slightly deformed in its ground state. However,
for the purpose of this discussion, we considered it spheri-
cal.) In general, the shape of ρ̆n is predicted consistently
by all functionals considered. What is different is the
overall magnitude of pairing density. In particular, in
heavy nuclei such as 204Pb and 214U, ρ̆n predicted by
Sk+PFy and Fy(∆r) becomes very large, and this results
in unreasonably large pairing fields. This is indicative
of somehow uncontrolled A-dependence of Fayans pair-
ing functional and explains previous results of Ref. [18],
where it was necessary to increase the strength of pairing
functional by as much as 35% when going from Pb to Ca.
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FIG. 6. Neutron pairing densities ρ̆n in spherical configura-
tions of 44Ca, 124Sn, 204Pb, and 214U, predicted by selected
Fayans and Skyrme functionals.

Figure 7 compares proton HF potentials of Fy(std) and
Fy(∆r) for 44Ca and 48Ca. Both FaNDF0 and Fy(∆r)
produce proton potentials with pronounced flattening, or
even small pockets, in the surface region. Compared to
Fy(std), this feature can be attributed to the large pa-

rameters hs
∇ and hξ∇, which define the strength of gra-

dient terms. It is instructive to see how these terms in-
fluence surface properties of the charge form factor. To
this end, in Fig. 8 we show the isotopic trends of charge
radii, diffraction radii, and surface thickness predicted
with Fy(std), Fy(∆r), and FaNDF0 along the Ca chain.
These three quantities are related via [38, 64, 65]

rch ≈

√
3

5

√

R2
diff + 5σ2

ch. (23)

The impact of the additional data on differential radii
in Fy(∆r) is significant; the presence of this additional
constraint results in a considerable reduction of σch and
a simultaneous increase of Rdiff . As a consequence, the
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charge radius of 44Ca is increased, and that of 48Ca is
reduced, with respect to the Fy(std) prediction. While
the properties of the charge form factor of 48Ca are well
reproduced by Fy(∆r), this is not the case for of 44Ca,
where a good agreement for rch is obtained at the cost
of underestimating σch and overestimating of Rdiff . An-
other interesting lesson offered by Fig. 8 is that the odd-
even staggering of charge radii in Fy(∆r) and FaNDF0

comes from an appreciable odd-even effect in σch and
Rdiff : both quantities are reduced in odd-A isotopes as
compared to their even-even neighbors. This effect is vir-
tually nonexistent in Fy(std), which again highlights the
impact of large density gradient terms in Fy(∆r).

D. Correlations

To understand better the impact of individual parame-
ters of the Fayans functional on calculated observables, in
Fig. 9 we show the coefficients of determination r2

AB for
Fy(nogap) and Fy(∆r). Since Fy(nogap) has not been
constrained to differential radii, it is particularly suitable

for the analysis of correlations related to ∆
(3)
r and δ⟨r2⟩.

That the odd-even staggering in charge radii is primar-
ily driven by the pairing functional (14) is shown by the

large values of r2
AB between ∆

(3)
r and fξex, h

ξ
+, and hξ∇.

The key value of δ⟨r2⟩48,40(Ca) is primarily determined
by the surface-energy coupling constants as

+ and hs
∇. For
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FIG. 8. Charge form factor characteristics, σch, Rdiff , and
rch, along the chain of Ca isotopes for Fy(std), Fy(∆r), and
FaNDF0. Experimental data are taken from Ref. [38].

Fy(∆r), correlations between δ⟨r2⟩ values and surface-
energy parameters are gone, as the differential radii in
Ca we constrained in the fit. Adding the dataset ∆r in-

creases the impact of the pairing gradient term hξ∇ on

charge radii and ∆
(3)
E . For both functionals, spin-orbit

parameters Cρ∇Jt correlate with neither charge radii nor
pairing.

The matrices of r2
AB for the Skyrme functionals SV-

min and Sk-PFy are displayed in Fig. 10. As SV-min
and Fy(nogap), and Sk+PFy and Fy(∆r) have been op-
timized to the same respective datasets, it is instructive
to compare the corresponding coefficients of determina-
tion. In general, there is a good correspondence. In par-
ticular, for both Skyrme functionals, the correlations of

δ⟨r2⟩, ∆
(3)
r , and ∆

(3)
E with pairing parameters are signif-

icant, this even more so as they employ different pairing
models. Interestingly, we find marginal correlations be-

tween differential radii and parameters Cρ∆ρt , Cρ∇Jt , and
Cρτt (not shown). This suggests that the impact of the
surface energy on δ⟨r2⟩ is less pronounced in the Skyrme
case.

IV. CONCLUSIONS

By using the tools of numerical optimization and linear
regression, we studied properties of the Fayans energy
density functional FaNDF0, which is known to provide
superb description of selected nuclear properties, such as
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charge radii and separation energies, and nuclear matter.
By carefully selecting datasets of experimental data used
in optimization, we generated functionals aimed to probe
questions pertaining to different observables. The main
conclusions of our study can be summarized as follows.

The pairing gradient term, controlled by the coupling

constant hξ∇, is arguably the most important ingredient
in the Fayans functional. Without this term, it is im-

possible to reproduce the odd-even staggering ∆
(3)
r of

charge radii and reproduce the intricate pattern of rch in
the Ca chain. We note that by adding the Fayans pair-
ing functional to the standard Skyrme functional, the
resulting parametrization Sk+PFy, provides a compara-
ble reproduction of the data as Fy(∆r). The large value
of δ⟨r2⟩52,48(Ca) [6], while explained by Fy(∆r), still re-
mains a puzzle as other Fayans functionals and Sk+PFy
significantly underestimate experimental value.

The surface gradient term controlled by the coupling
constant hs

∇ is less influential. While it is driving the

near-zero value of δ⟨r2⟩40,48(Ca), it does not seem to be
crucial for other radius differences. Moreover, the gra-
dient terms of the Fayans model significantly change the
surface behavior of the proton potential, as seen in Fig. 7
for FaNDF0 and Fy(∆r).

The data on δ⟨r2⟩ and ∆
(3)
r are important for charac-

terizing the pairing functional. Our study demonstrates

that the coupling constants hs
∇ and hξ∇ determining the

strengths of the gradient terms are increased by orders of
magnitude when the data on differential radii are added
to the pool of fit-observables. In particular, the corre-

lation analysis indicates that the radius staggering ∆
(3)
r

is more sensitive to pairing than the energy staggering

∆
(3)
E . Since the nuclear pairing functional is rather poorly

constrained by experimental binding-energy differences
alone, this has practically eliminated more sophisticated
models of pairing EDF [23, 66]. In this respect, new-
quality data on differential radii can help to calibrate a
properly generalized pairing functional.

By comparing the Fy(std) results with those ob-
tained with with the Fayans functional optimized to the
basic+∆Eee dataset (employing even-even energy differ-
ences instead of odd-even staggering), we find that the
data on even-even binding energy differences ∆ee

E in open-
shell nuclei carry very similar information content with

respect to pairing as ∆
(3)
E , while the interpretation of ∆ee

E
in terms of pairing correlations is more straightforward.

It is thus recommended that selected data on δ⟨r2⟩, ∆
(3)
r ,

and ∆ee
E are used in the future functional optimizations.

The analysis presented in this paper should be viewed
as a useful starting point for future investigations. While
the Fayans pairing functional has several attractive fea-
tures, especially in the context of odd-even effect on
charge radii, it fails short to reach the global descrip-
tion of pairing effects across the nuclear landscape. In

particular, the parameters fξex, h
ξ
+, and hξ∇, which pro-

vide excellent description of charge radii and pairing in
spherical nuclei up to tin, dramatically overestimate pair-
ing correlations around lead and in the actinides. This
is consistent with the findings of Ref. [18], where an ad-
hoc renormalization of pairing functional was imposed to
provide agreement with experiment. Consequently, ex-
tensions of the current Fayans pairing functional should
be investigated. The current Fayans pairing functional is
manifestly isoscalar. However, as the Coulomb term does
affect pairing, many Skyrme parametrizations such as
SV-min employ isovector pairing functionals, see Ref. [27]
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and references quoted therein. The definition (14) can
easily be extended to accommodate the isovector depen-
dence.

Extensions of the FaNDF0 surface term (11) are also
possible. By enlarging the experimental dataset, the
parameter hs

+ could perhaps be pinned down with an
acceptable accuracy. Moreover, the dependence of Es

Fy
on the isovector density x1 should be considered, as the
current parametrization cannot account for the surface-
symmetry effects. Another strategy worth exploring is to
replace the surface term (11) by the folded DF3 expres-
sion [15, 29, 30].

The extension of the functional FaNDF0 to deformed
nuclei [28], augmented by Fayans pairing, will allow the
global optimization of the extended Fayans and Sk+PFy
models to diverse data on spherical and deformed nuclei,

at the full deformed HFB level, using the well-tested UN-
EDF methodology [12, 34, 67]. Work along these lines is
in progress.
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