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Using a new approximate analytic parameter-free proxy-SU(3) scheme, we make simple predictions
of shape observables for deformed nuclei, namely γ and β deformation variables, the global feature
of prolate dominance and the locus of the prolate-oblate shape transition. The predictions are
compared with empirical results.

I. INTRODUCTION

The existence of both prolate (cigar shaped) and oblate
(pancake shaped) deformed nuclei, the possible transi-
tions between the two shapes, as well as the experimen-
tally observed dominance of prolate over oblate shapes
in the ground state bands of even nuclei has been a focus
of attention for decades and from many different view-
points.

It is the purpose of this paper to exploit a new approxi-
mate SU(3) symmetry to obtain analytic, parameter-free
predictions, essentially by inspection, of the dominance
of prolate shapes in atomic nuclei and of the locus of the
prolate-oblate transition. The new symmetry scheme,
called a proxy-SU(3), is similar in spirit to pseudo-SU(3)
[1–3] but involves a different ansatz in order to obtain a
valence space symmetry.

The proxy-SU(3) concept has been introduced and vet-
ted in Ref. [4] where it was shown that the Nilsson di-
agrams for well-deformed nuclei obtained with the new
symmetry are very similar to the traditional Nilsson dia-
grams. Briefly, proxy-SU(3) simply replaces all but one of
the intruder unique parity orbitals in medium and heavy
mass nuclei by the highest j-orbit from the next lower
shell that is very similar in spatial overlap and which has
identical angular momentum projection properties. This
produces a new proxy set of orbits, very similar to the
original set, that constitutes a full oscillator shell (all even
or all odd orbital angular momenta up to some maximum
value, such as the s,d, and g orbits, with l = 0, 2, and 4
and with both j = l + 1/2 and j = l − 1/2 total angu-
lar momenta). Such a set of orbits has symmetry U(X)
where X is half the number of nucleons in the proxy shell
(30 nucleons for 50-82 and 42 for 82-126). Bear in mind
that the highest lying unique parity orbital, like 11/2[505]
in the 50-82 shell, which contains two particles, is lost in
the proxy shell approximation.

Having such a symmetry allows a number of simple

predictions resulting solely from the group structure of
the symmetry itself. The motivation for this approx-
imate symmetry and its detailed character are further
described in [4] and summarized at the beginning of Sec-
tion II below. These predictions arise simply from filling
the nucleon orbitals in a deformed quadrupole field, and
the consequent changes in ground state irreducible rep-
resentations (irreps) for the relevant group (see below).

Over the years, there have been many efforts to under-
stand nuclear shapes and the locus of prolate and oblate
shapes in nuclei from many different perspectives. Mi-
croscopic calculations have evolved from early applica-
tions of the pairing plus quadrupole model to the prolate-
oblate difference [5] and the prolate-oblate transition [6]
to recent self-consistent Skyrme Hartree-Fock plus BCS
calculations [7] and Hartree-Fock-Bogoliubov calcula-
tions [8–10] studying the structural evolution in neutron-
rich Yb, Hf, W, Os, and Pt isotopes, reaching the con-
clusion that N ≈ 116 nuclei in this region can be iden-
tified as the transition point between prolate and oblate
shapes. In a related projected shell model study [11], a
rotation-driven prolate-to-oblate shape phase transition
has been found in 190W. The prolate-oblate shape phase
transition has been considered [12–14] within the O(6)
symmetry of the interacting boson model [15]. In par-
ticular, the O(6) symmetry has been considered [16, 17]
as a critical point of the prolate-to-oblate shape phase
transition within the interacting boson model. An an-
alytically solvable prolate-to-oblate shape phase transi-
tion has been found [18] within the SU(3) limit of the
interacting boson model. The collection of data of the
chain of even nuclei (differing by two protons or two neu-
trons) 180Hf, 182−186W, 188,190Os, 192−198Pt, considered
in Ref. [18], suggests that the transition occurs between
190Os and 192Pt, in agreement with their theoretical pre-
dictions. The dominance of prolate over oblate nuclear
shapes in the ground state bands of deformed even-even
nuclei has been considered both in the framework of the
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Nilsson model [19, 20], as well as by studying the ef-
fects of the spin-orbit potential within the framework of
the Nilsson-Strutinsky method [21–23]. Nevertheless, the
almost complete dominance of prolate over oblate defor-
mations in the ground states of even-even nuclei is still
considered as not adequately understood [24].

From the experimental point of view, 192Os [25] and
190W [26] have been suggested as lying at the prolate-
oblate border, with 194Os [27] and 198Os [28] having an
oblate character. Data on nuclei from Hf to Pt, discussed
in Ref. [29], also suggests that the transition occurs be-
tween 192Os and 194Pt.

In the present work, we consider nuclear shapes in
terms of the standard variables γ and β, as well as the
prolate-oblate competition within the framework of the
recently proposed [4] parameter-free proxy-SU(3) sym-
metry in nuclei. Our main results are:

1) predictions of nuclear quadrupole deformations and
axial asymmetry for deformed nuclei and a comparison
with empirical results,

2) the dominance of prolate-over-oblate deformation,
3) the occurrence of the prolate-oblate transition at

N ≈ 116 in agreement with the data in the W and Os
chains of isotopes, while predictions are made for Z < 74
(i.e., below W),

4) predictions are made concerning the prolate-oblate
transition in the region of the (yet unknown) neutron-
deficient rare earths around N ≈ 72.

II. THE PROXY-SU(3) SCHEME

A proxy-SU(3) symmetry scheme, applicable in heavy
deformed nuclei, has been recently introduced [4], based
on the asymptotic Nilsson wave functions |NqnzΛΣ〉 [30,
31], whereNq is the total number of oscillator quanta (the
subscript q is added in order to distinguish this number
from the neutron number N), nz is the number of the
oscillator quanta along the z-axis, Λ is the z-projection of
the orbital angular momentum, and Σ is the z-projection
of the spin. Nilsson orbitals in even-even nuclei are then
denoted by K[NqnzΛ], where K is the projection of the
total angular momentum on the z-axis, given by K =
Λ + Σ.

The key to the new scheme is the great similarity be-
tween Nilsson orbitals differing by ∆K[∆Nq∆nz∆Λ] =
0[110]. Proton-neutron 0[110] pairs were found to play a
key role in the deformation of heavy nuclei, especially in
those with equal numbers of valence protons and valence
neutrons [32, 33]. It was subsequently realized that 0[110]
orbitals can be used for the construction of a proxy-SU(3)
scheme for heavy deformed nuclei, similar to the Elliott
SU(3) symmetry [34–36] appearing in light nuclei. In
both cases, the standard Elliott notation (λ, µ) is used
for the irreducible representations (irreps) of SU(3).

The proxy-SU(3) scheme results in a description of
nuclei in terms of SU(3) representations from a direct
product of the proton and neutron spaces. For a given

nucleus (λ, µ) values are directly related to the number
of valence nucleons and, for the highest weight state (the
ground state), tend to grow with those numbers up to
the middle of the shell. The Elliott labels λ and µ are
known [37–39] to be connected to the shape variables of
the collective model [40]. This connection is achieved by
employing a linear mapping between the eigenvalues of
invariant operators of the two theories, namely between
the invariants β2 and β3 cos 3γ of the collective model
(where β and γ stand for the usual collective variables)
and the invariants of SU(3), which are the second and
third order Casimir operators of SU(3), respectively [15]
(see Appendix A for further discussion). The mapping
results in the angle collective variable γ given by [38, 39]

γ = arctan

(√
3(µ+ 1)

2λ+ µ+ 3

)
, (1)

and in the square of the deformation parameter β be-
ing proportional to the second order Casimir operator of
SU(3) [15],

C2(λ, µ) =
2

3
(λ2 + λµ+ µ2 + 3λ+ 3µ), (2)

and given by [38, 39]

β2 =
4π

5

1

(Ar̄2)2
(λ2 + λµ+ µ2 + 3λ+ 3µ+ 3), (3)

where A is the mass number of the nucleus and r̄2 is
related to the dimensionless mean square radius [41],√
r̄2 = r0A

1/6. The dimensionless mean square radius
is obtained by dividing the mean square radius, which
is proportional to A1/3, by the oscillator length, which
grows as A1/6 [41]. The constant r0 is determined from a
fit over a wide range of nuclei [42, 43]. We use the value
in Ref. [38], r0 = 0.87, in agreement to Ref. [43].

Alternatively, one can use the invariants as formulated
in Ref. [37]. In that case, the expression resulting for β2

is identical to Eq. (3) (the only difference being that the
last term in the paranthesis, +3, is missing), while for γ
the result reads

cos 3γ =
(λ− µ)(λ+ 2µ+ 3)(2λ+ µ+ 3)

2(λ2 + µ2 + λµ+ 3λ+ 3µ)3/2
, (4)

in agreement to the result obtained in Ref. [44]. It can
be seen that Eqs. (1) and (4) yield almost identical re-
sults, except for values very close (less than one degree
away) to 0 or to π/3, where Eq. (1) still works without
any problem, while Eq. (4) fails, the reason being that
the approximations involved in both cases induce small
errors, which are insignificant if the tangent is used, but
lead to violation of the condition | cos 3γ| ≤ 1 if the cosine
is used.

For a given nucleus, (λ, µ) for the ground state are
given through the outer product of the relevant proton
and neutron SU(3) irreps [that is, by the sum of the pro-
ton and neutron (λ, µ)s, see below] and thus can be used
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TABLE I: Highest weight SU(3) irreps (which are always unique) for U(n), n=6, 10, 15, 21 given in the columns labelled by hw,
contained in the relevant U(n) irrep for M valence protons or M valence neutrons, compared to SU(3) irreps with the highest
eigenvalue of the second order Casimir operator of SU(3), given in the columns labelled by C. Above the U(n) algebra, the
relevant shell of the shell model and the corresponding proxy-SU(3) shell are given. The upper half of C columns is identical
to that of the corresponding hw column. The lower half of the C columns is a mirror image of their upper half, while in the
lower half of hw columns violations of the mirror symmetry appear, indicated by boldface characters. The code UNTOU3 [45]
has been used for producing these results. Note that the proxy-SU(3) scheme omits the highest K Nilsson orbital from the
unique parity orbit (e.g., 13/2[606] for the 82-126 shell) and therefore the sizes of the proxy sdg and proxy pfh shells are 30
and 42 nucleons instead of the normal 32 and 44 nucleons for the 50-82 and 82-126 shells, respectively. Exactly at mid-shell
(n particles in the case of U(n)), there exist two irreps possessing the same maximum eigenvalue of the Casimir operator, the
highest weight irrep and its mirror image. For exampe, in U(15) for n=15 the highest weight leads to the (19,7) irrep, while
the highest eigenvalue of the Casimir operator is possessed by the (19,7) and (7,19) irreps. See Section IV and Appendix B for
further discussion.

8-20 8-20 28-50 28-50 50-82 50-82 82-126 82-126
sd sd pf pf sdg sdg pfh pfh

M irrep U(6) U(6) U(10) U(10) U(15) U(15) U(21) U(21)
hw C hw C hw C hw C

0 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
1 [1] (2,0) (2,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0)
2 [2] (4,0) (4,0) (6,0) (6,0) (8,0) (8,0) (10,0) (10,0)
3 [21] (4,1) (4,1) (7,1) (7,1) (10,1) (10,1) (13,1) (13,1)
4 [22] (4,2) (4,2) (8,2) (8,2) (12,2) (12,2) (16,2) (16,2)
5 [221] (5,1) (5,1) (10,1) (10,1) (15,1) (15,1) (20,1) (20,1)
6 [23] (6,0) (0,6) (12,0) (12,0) (18,0) (18,0) (24,0) (24,0)
7 [231] (4,2) (1,5) (11,2) (11,2) (18,2) (18,2) (25,2) (25,2)
8 [24] (2,4) (2,4) (10,4) (10,4) (18,4) (18,4) (26,4) (26,4)
9 [241] (1,4) (1,4) (10,4) (10,4) (19,4) (19,4) (28,4) (28,4)

10 [25] (0,4) (0,4) (10,4) (4,10) (20,4) (20,4) (30,4) (30,4)
11 [251] (0,2) (0,2) (11,2) (4,10) (22,2) (22,2) (33,2) (33,2)
12 [26] (0,0) (0,0) (12,0) (4,10) (24,0) (24,0) (36,0) (36,0)
13 [261] (9,3) (2,11) (22,3) (22,3) (35,3) (35,3)
14 [27] (6,6) (0,12) (20,6) (20,6) (34,6) (34,6)
15 [271] (4,7) (1,10) (19,7) (7,19) (34,7) (34,7)
16 [28] (2,8) (2,8) (18,8) (6,20) (34,8) (34,8)
17 [281] (1,7) (1,7) (18,7) (3,22) (35,7) (35,7)
18 [29] (0,6) (0,6) (18,6) (0,24) (36,6) (36,6)
19 [291] (0,3) (0,3) (19,3) (2,22) (38,3) (38,3)
20 [210] (0,0) (0,0) (20,0) (4,20) (40,0) (40,0)
21 [2101] (16,4) (4,19) (37,4) (4,37)
22 [211] (12,8) (4,18) (34,8) (0,40)
23 [2111] (9,10) (2,18) (32,10) (3,38)
24 [212] (6,12) (0,18) (30,12) (6,36)
25 [2121] (4,12) (1,15) (29,12) (7,35)
26 [213] (2,12) (2,12) (28,12) (8,34)
27 [2131] (1,10) (1,10) (28,10) (7,34)
28 [214] (0,8) (0,8) (28,8) (6,34)
29 [2141] (0,4) (0,4) (29,4) (3,35)
30 [215] (0,0) (0,0) (30,0) (0,36)
31 [2151] (25,5) (2,33)
32 [216] (20,10) (4,30)
33 [2161] (16,13) (4,28)
34 [217] (12,16) (4,26)
35 [2171] (9,17) (2,25)
36 [218] (6,18) (0,24)
37 [2181] (4,17) (1,20)
38 [219] (2,16) (2,16)
39 [2191] (1,13) (1,13)
40 [220] (0,10) (0,10)
41 [2201] (0,5) (0,5)
42 [221] (0,0) (0,0)
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to determine predicted values of both β and γ. One sees
from these equations that:

1) within a given mass region (roughly constant A
value), β increases with λ and µ and therefore tends to
maximize near mid-shell in agreement with the data;

2) for λ � µ one has γ ≈ 0, while for λ > µ one has
30o > γ > 0, corresponding to prolate shapes;

3) for λ � µ one has γ ≈ arctan
√

3 = 60o, while for
λ < µ one has 60o > γ > 30o, corresponding to oblate
shapes;

4) in the special case of λ = µ one has γ =

arctan(1/
√

3) = 30o, corresponding to maximal triaxi-
ality.

Below we will see how these ideas are borne out in
practice and compare the predictions made with eqs. (1)
and (3) with empirical results

The asymmetry of the dependence on λ, µ in Eq. (1),
the asymmetry in the (λ, µ) values themselves about mid-
shell (see below) and the A dependence in Eq. (3), have
an important consequence: the proxy-SU(3) predictions
for β and γ and for prolate and oblate character are not
symmetric about mid-shell, in contrast to some other
models, leading to predictions that are in fact reflected
in the data.

In the proxy-SU(3) scheme [4], the protons of the 50-
82 shell live in a proxy sdg shell, having an approxi-
mate U(15) symmetry, which is obtained by leaving out
the (very high-lying) 11/2[505] orbital and replacing the
rest of the 1h11/2 subshell orbitals (1/2[550], 3/2[541],
5/2[532], 7/2[523], 9/2[514]) by their 0[110] counterparts
[32, 33] (1/2[440], 3/2[431], 5/2[422],7/2[413], 9/2[404]),
which form a 1g9/2 subshell.

Similarly, in the same scheme [4], the neutrons of the
82-126 shell live in a proxy pfh shell, having an ap-
proximate U(21) symmetry, which is obtained by leav-
ing out the (very high-lying) 13/2[606] orbital and re-
placing the rest of the 1i13/2 subshell orbitals (1/2[660],
3/2[651], 5/2[642], 7/2[633], 9/2[624],11/2[615]) by
their 0[110] counterparts [32, 33] (1/2[550], 3/2[541],
5/2[532],7/2[523], 9/2[514], 11/2[505]), which form a
1h11/2 subshell.

For the valence protons of each nucleus, the rele-
vant SU(3) irreducible representations (irreps) of the
U(15)⊃SU(3) decomposition, obtained by use of the code
UNTOU3 [45], can be seen in Table I (in the hw column).
For example, for 146Ba and 168Er, which have 6 and 18 va-
lence protons, respectively, the relevant irreps are (18,0)
and (18,6), respectively.

In the same table, the relevant SU(3) irreps of the
U(21)⊃SU(3) decomposition, corresponding to the va-
lence neutrons of each nucleus, can be seen. For exam-
ple, for 146Ba and 168Er which have 8 and 18 valence
neutrons, respectively, the relevant irreps are (26,4) and
(36,6), respectively.

By taking the sum of these two irreps for each nu-
cleus, one can obtain the SU(3) irrep in which the
ground state band (and possibly additional bands, ac-
cording to the value of µ) is located. For example,

for 146Ba and 168Er one has (18,0)+(26,4)=(44,4) and
(18,6)+(36,6)=(54,12), respectively.

III. PROLATE DOMINANCE AND THE
PROLATE-TO-OBLATE TRANSITION

The results for the rare earths within the 50-82 proton
shell and the 82-126 neutron shell are summarized in Ta-
ble II. We first note that prolate nuclei are predicted to
dominate this region by far, and oblate nuclei only ap-
pear at its end in Hf-Pt with large neutron numbers of
N ≥ 116 (N ≥ 118 for Hf). This prediction is parameter-
free in the proxy-SU(3) symmetry and hence constitutes
a specific prediction.

These results are consistent with the experimental
data. First, the overall prolate dominance has been well
known for decades, for example, through measurements
of quadrupole moments and the success of the Nilsson
model on the prolate side. Secondly, while it is more dif-
ficult to obtain direct evidence for oblate shapes, quite a
number of quadrupole moments are known [29] in Os-
Hg and suggest a shape change at 192Os116-194Os118.
In gamma-soft nuclei, as these are, oblate shapes de-
velop through a prolate-oblate shape transition passing
through a gamma unstable phase, as, for example, in
196Pt118. Therefore, strong, but indirect, evidence also
comes from the systematic behavior of signature observ-
ables with neutron number. These are the energy ra-
tio R4/2 = E(4+1 )/E(2+1 ) (formation of bubble-like pat-
terns at specific (N ,Z) values), the energy difference
E(2+2 )− E(4+1 ), which crosses zero at the prolate-oblate
phase transition, the ratio E(2+2 )/E(2+1 ), which mini-
mizes for large gamma values, and the B(E2 : 2+2 → 2+1 )
value which increases at the shape transition (it is allowed
and stronger in gamma-soft nuclei than in well-deformed
prolate or oblate nuclei). This shape transition has been
studied in refs. [16, 17, 25–29] with strong suggestions
that the first oblate nucleus in W is indeed at 190W
(N = 116) and in the 192−194Os isotopes (N = 116−118).
The requisite data are not yet known for Hf.

The Pt series of isotopes is not expected to exhibit
the SU(3) symmetry, 196Pt being the textbook example
of the O(6) symmetry [15, 47]. However, if one blindly
ascribes SU(3) irreps to the series of Pt isotopes, the
first oblate one appears to be 194Pt116, approximately
in agreement with empirical observations [16, 17, 29]
and theoretical predictions [7–10]. This is also in rough
agreement with the empirical observations and theoret-
ical findings of Ref. [18], carried out within the SU(3)
limit of the interacting boson model, locating 192Pt114
near the prolate-oblate transition point. It is also consis-
tent with the expectation that the O(6) symmetry repre-
sents the critical point of a prolate-to-oblate shape phase
transition [16, 17].

Using the same method one can also consider the rare
earths with protons in the 50-82 shell and neutrons also
in the 50-82 shell, the results being summarized in Table
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TABLE II: Most leading SU(3) irreps [34, 35] for nuclei with protons in the 50-82 shell and neutrons in the 82-126 shell.
Boldface numbers indicate nuclei with R4/2 = E(4+

1 )/E(2+
1 ) ≥ 2.8, while * denotes nuclei with 2.8 > R4/2 ≥ 2.5, and ** labels

a few nuclei with R4/2 ratios slightly below 2.5, shown for comparison, while no irreps are shown for any other nuclei with
R4/2 < 2.5. For the rest of the nuclei shown (using normal fonts and without any special signs attached) the R4/2 ratios are
still unknown [46]. Irreps corresponding to oblate shapes are underlined.

Ba Ce Nd Sm Gd Dy Er Yb Hf W Os Pt
Z 56 58 60 62 64 66 68 70 72 74 76 78

Zval 6 8 10 12 14 16 18 20 22 24 26 28
N Nval irrep (18,0) (18,4) (20,4) (24,0) (20,6) (18,8) (18,6) (20,0) (12,8) (6,12) (2,12) (0,8)
88 6 (24,0) (42,0)* (42,4)* (44,4)*
90 8 (26,4) (44,4) (44,8) (46,8) (50,4) (46,10) (44,12) (44,10)* (46,4)* (38,12)*
92 10 (30,4) (48,4) (48,8) (50,8) (54,4) (50,10) (48,12) (48,10) (50,4) (42,12)*
94 12 (36,0) (54,0) (54,4) (56,4) (60,0) (56,6) (54,8) (54,6) (56,0) (48,8) (42,12) (38,12)*
96 14 (34,6) (52,6) (52,10) (54,10) (58,6) (54,12) (52,14) (52,12) (54,6) (46,14) (40,18) (36,18)*
98 16 (34,8) (52,8) (52,12) (54,12) (58,8) (54,14) (52,16) (52,14) (54,8) (46,16) (40,20) (36,20)*

100 18 (36,6) (54,6) (54,10) (56,10) (60,6) (56,12) (54,14) (54,12) (56,6) (48,14) (42,18) (38,18) (36,14)*
102 20 (40,0) (58,0) (58,4) (60,4) (64,0) (60,6) (58,8) (58,6) (60,0) (52,8) (46,12) (42,12) (40,8)*
104 22 (34,8) (52,8) (52,12) (54,12) (58,8) (54,14) (52,16) (52,14) (54,8) (46,16) (40,20) (36,20) (34,16)*
106 24 (30,12) (48,12) (48,16) (50,16) (54,12) (50,18) (48,20) (48,18) (50,12) (42,20) (36,24) (32,24) (30,20)*
108 26 (28,12) (46,12) (46,16) (48,16) (52,12) (48,18) (46,20) (46,18) (48,12) (40,20) (34,24) (30,24) (28,20)*
110 28 (28,8) (46,8) (46,12) (48,12) (52,8) (48,14) (46,16) (46,14) (48,8) (40,16) (34,20) (30,20) (28,16)*
112 30 (30,0) (48,0) (48,4) (50,4) (54,0) (50,6) (48,8) (48,6) (50,0) (42,8) (36,12) (32,12) (30,8)**
114 32 (20,10) (38,10) (38,14) (40,14) (44,10) (40,16) (38,18) (38,16) (40,10) (32,18) (26,22) (22,22) (20,18)**
116 34 (12,16) (30,6) (30,10) (32,10) (36,6) (32,12) (30,14) (30,12) (32,6) (24,14) (18, 28)∗ (14,28) (12, 24) ∗ ∗
118 36 (6,18) (24,18) (24,22) (26,22) (30,18) (26,24) (24,16) (24,24) (26,18) (18, 26) (12, 30) (8, 30)∗ (6, 26) ∗ ∗
120 38 (2,16) (20,16) (20,20) (22,20) (26,16) (22,22) (20, 24) (20, 22) (22,16) (14, 24) (8, 28) (4, 28)∗ (2, 24) ∗ ∗

TABLE III: Same as Table II, but for the most leading SU(3) irreps [34, 35] for nuclei with protons in the 50-82 shell and
neutrons in the 50-82 shell.

Ba Ce Nd Sm Gd Dy Er Yb Hf W Os Pt
Z 56 58 60 62 64 66 68 70 72 74 76 78

Zval 6 8 10 12 14 16 18 20 22 24 26 28
N Nval irrep (18,0) (18,4) (20,4) (24,0) (20,6) (18,8) (18,6) (20,0) (12,8) (6,12) (2,12) (0,8)
56 6 (18,0) (36,0) (36,4) (38,4) (42,0) (38,6) (36,8) (36,6) (38,0) (30,8) (24,12) (20,12) (18,8)
58 8 (18,4) (36,4) (36,8) (38,8) (42,4) (38,10) (36,12) (36,10) (38,4) (30,12) (24,16) (20,16) (18,12)
60 10 (20,4) (28,4) (38,8) (40,8) (44,4) (40,10) (38,12) (38,10) (40,4) (32,12) (26,16) (22,16) (20,12)
62 12 (24,0) (42,0) (42,4) (44,4) (48,0) (44,6) (42,8) (42,6) (44,0) (36,8) (30,12) (26,12) (24,8)
64 14 (20,6) (38,6) (38,10) (40,10) (44,6) (40,12) (38,14) (38,12) (40,6) (32,14) (26,18) (22,18) (20,14)
66 16 (18,8) (36,8) (36,12) (38,12) (32,8) (38,14) (36,16) (36,14) (38,8) (30,16) (24,20) (20,20) (18,16)
68 18 (18,6) (36,6) (36,10) (38,10) (42,6) (38,12) (36,14) (36,12) (38,6) (30,14) (24,18) (20,18) (18,14)
70 20 (20,0) (38,0)* (38,4) (40,4) (44,0) (40,6) (38,8) (38,6) (40,0) (32,8) (26,12) (22,12) (20,8)
72 22 (12,8) (30,8)* (30,12)* (32,12) (36,8) (32,14) (30,16) (30,14) (32,8) (24,16) (18, 20) (14, 20) (12, 16)

74 24 (6,12) (24,12)* (24,16)* (26,16)* (30,12)* (26,18)* (24,20) (24,18) (26,12) (18, 20) (12, 24) (8, 24) (6, 20)

76 26 (2,12) (20,16)* (22,16)* (26,12)* (22,18)* (20,20)* (20,18) (22,12) (14, 20) (8, 24) (4, 24) (2, 20)

78 28 (0,8) (18,14) (20,8) (12, 16) (6, 20) (2, 20) (0, 16)

III. We see that once again the quadrupole deformation
maximizes near mid-shell, while a prolate-to-oblate tran-
sition also appears at the lower right part of the table. In
the W, Os, and Pt series of isotopes, the first oblate nu-
clei appear at N = 72, i.e. they are 146W, 148Os, 150Pt,
all of them lying far away from the region experimen-
tally accessible at present [46], while in the Hf series of
isotopes, the first oblate nucleus is 146Hf, having N = 74.

These predictions should be considered with extreme
care, since in this shell protons and neutrons occupy the
same major shell, thus the role of formation of proton-

neutron pairs by protons and neutrons occupying iden-
tical or very similar orbitals should be examined before
any conclusions could be drawn.

It should be noticed that the prolate over oblate domi-
nance in heavy N = Z nuclei has been recently obtained
in the framework of the quasi-SU(3) symmetry [48, 49],
focused in the region from 56

28Ni28 to 96
48Cd48 [49].

In any case, the generic behavior of the deformation
variables is robust and the prolate over oblate dominance
is clear in both tables, since in both cases the oblate
nuclei are limited to the lower right part of the tables,
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FIG. 1: Values of the square root of the second order Casimir
operator of SU(3), obtained from Eq. (2), vs. particle num-
ber M, for different shells, obtained through proxy-SU(3) or
through the particle-hole symmetry assumption. See Section
IV for further discussion.

TABLE IV: Below each shell of the shell model, its proxy-
SU(3) content is shown, followed by the relevant unitary al-
gebra and the size S of the shell. Further down the highest
weight SU(3) irreps are given for nucleon number M. The code
UNTOU3 [45] has been used for producing these results. The
sd shell is also shown, up to mid-shell, for comparison. See
Section V for further discussion.

8-20 28-50 50-82 82-126 126-184 184-258
sd pf sdg pfh sdgi pfhj

U(6) U(10) U(15) U(21) U(28) U(36)
S 12 22 32 44 58 74

M
2 (4,0) (6,0) (8,0) (10,0) (12,0) (14,0)
4 (4,2) (8,2) (12,2) (16,2) (20,2) (24,2)
6 (6,0) (12,0) (18,0) (24,0) (30,0) (36,0)
8 (10,4) (18,4) (26,4) (34,4) (42,4)

10 (10,4) (20,4) (30,4) (40,4) (50,4)
12 (12,0) (24,0) (36,0) (48,0) (60,0)

i.e. just below the filling of the proton shell and the
simultaneous filling of the neutron shell.

IV. BREAKING OF PARTICLE-HOLE
SYMMETRY

The results reported in Table II exhibit clearly that
no particle-hole symmetry appears within the framework
of proxy-SU(3) symmetry [24]. From the mathematical
point of view, this fact is already made clear by Table I.
For example, 6 valence protons in U(15) correspond to
the (18,0) irrep, while 6 valence proton holes correspond
to 82 − 6 = 76 protons, i.e., to 26 valence protons and
the (2,12) irrep. Similarly, 10 valence neutrons in U(21)
correspond to the (30,4) irrep, while 10 valence neutron
holes correspond to 126 − 10 = 116 neutrons, i.e., to 34

valence neutron holes and the (12,16) irrep. As a re-
sult, in Table II one can see that 148Ba, possessing 6 va-
lence protons and 10 valence neutrons corresponds to the
(18,0)+(30,4)=(48,4) prolate irrep, while its particle-hole
conjugate, 192Os, possessing 6 valence proton holes and
10 valence neutron holes corresponds to the completely
different oblate irrep (2,12)+(12,16)=(14,28).

We now discuss the particle-hole symmetry breaking
in more detail, since it plays a crucial role in obtaining
the prolate-oblate transition at the right place.

There are two paths for the selection of the irrep which
will be used for the description of the lowest lying band(s)
in a nucleus:

1) In several cases [57, 58], the irreps are ranked ac-
cording to the eigenvalue of the second order Casimir
operator, C2(λ, µ) of SU(3). The irrep possessing the
highest eigenvalue of C2(λ, µ) is supposed to lie lowest in
energy, called the most leading irrep.

2) In proxy-SU(3) [4], the irreps are ranked according
to highest weight, as obtained from [45]. Interestingly,
this is in accordance with the choice made in the original
pseudo-SU(3) work [1].

The outcome of the two paths is shown in Table I for
several shells. Up to the middle of the shell, the two
paths lead to identical results. In the first half of the
shell (upper half of the table), the use of the Casimir
operator leads to results which are a mirror image of
the second half of the shell (the lower half of the table),
i.e., perfect particle-hole, and therefore prolate-oblate,
symmetry about mid-shell appears.

In contrast, the use of the highest weight leads in the
first half of the shell (upper half of the table) to results
different from the mirror image of the second half of the
shell (the lower half of the table), except for the last five
irreps in each shell, for which the particle-hole symmetry
is valid. As a result, the irreps just below the middle of
the table (bold in Table I) are not symmetric [reversed
(λ, µ)] from those just above the middle of the table. Be-
cause of this, the particle-hole symmetry in proxy-SU(3)
is destroyed, except for the last 5 irreps. Therefore, the
larger the shell, the larger the percentage of irreps break-
ing the particle-hole symmetry (i.e., the irreps shown in
boldface in Table I).

In the work of Elliott [34–36] in the sd shell the dif-
ference between the two paths is almost invisible, since
only one irrep is affected, as seen in Table I. The choice
of path also makes no difference up to mid-shell, thus the
results obtained in the pseudo-SU(3) framework [57, 58]
are completely valid.

However, the breaking of the particle-hole symmetry
in the proxy-SU(3) scheme is instrumental in obtaining
the right position in the nuclear chart for the prolate-to-
oblate transition in the rare earths. Without this break-
ing, the prolate-oblate transition would have taken place
in the middle of the shell.

From the physics point of view, looking at the Nilsson
diagrams [30, 31] immediately reveals that particle-hole
symmetry is not present. For example, in the 50-82 pro-
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FIG. 2: (a) Values of the Elliott quantum number λ vs. the size of the shell, for different nucleon numbers M , as shown in
Table IV. (b) Values of the square root of the second order Casimir operator of SU(3), obtained from Eq. (2) and related to β
through Eq. (3), vs. the size of the shell, for different nucleon numbers M . See Section V for further discussion.

ton shell, at ε = 0.3, the first 8 particles will occupy the
1
2 [431], 1

2 [550], 3
2 [422], and 1

2 [420] orbitals, while the last

8 particles will occupy the 1
2 [400], 3

2 [402], 11
2 [505], and

9
2 [514] orbitals. In the last two orbitals of the latter case
high values of K occur, which do not appear in the for-
mer case. But high K values require high µ values in
the (λ, µ) irreps of SU(3), in order to be accommodated,
since K = min{λ, µ}, min{λ, µ} − 2, min{λ, µ} − 4, 1 or
0 [15, 34].

The effect of the particle-hole symmetry breaking is
visible in Fig. 1, where the square root of the second order
Casimir operator of SU(3), which, according to Eq. (2)
is proportional to β, is plotted as a function of the parti-
cle number M . Proxy-SU(3) and particle-hole symmetry
provide identical results up to midshell and at the end of
the shell, while between midshell and end of the shell the
differences show up.

V. RESULTS FOR THE β VARIABLE

One can go much further in using the proxy-SU(3) than
simply the prolate-oblate systematics. It is also straight-
forward to use Eqs. (1) and (3) to obtain predictions
for the shape variables β and γ themselves for any given
deformed nucleus [any given (λ, µ)]. These predictions

are parameter free (except for the global constant r0 in
Eq. (3), for which the value of 0.87 provided in the lit-
erature [38, 42, 43] will be used for all nuclei through-
out). Of course, since they are based solely on the SU(3)
highest weight irreps, and neglect all interactions except
quadrupole, and utilize only the valence shell, they can-
not be expected to be very precise. Nevertheless, it is
interesting to see what emerges and how well they do
work.

The predictions of the proxy-SU(3) model for the
quadrupole deformation β will be compared to the de-
tailed predictions of the Relativistic Mean Field theory
[50], as well as to experimental values obtained from the
B(E2) transition rates from the ground to the first ex-
cited 2+ state of even-even nuclei [51].

At this point the question of scaling according to the
size of the shell arises. For example, in the case of the ge-
ometrical limit [52] of the interacting boson model [15],
a rescaling factor of 2NB/A is used, where NB is the
number of bosons (half of the number of valence nucle-
ons) present in a nucleus with mass number A. In other
words, the rescaling factor is the number of valence nu-
cleons over the total number of nucleons.

By analogy here one should have a rescaling factor re-
lated to the size of the shells used by the valence protons
and valence neutrons as compared to the size of the whole



8

8 4 9 0 9 6 1 0 2 1 0 8 1 1 4 1 2 0 1 2 60 . 0

0 . 1

0 . 2

0 . 3
P t

N e u t r o n  N u m b e r
8 4 9 0 9 6 1 0 2 1 0 8 1 1 4 1 2 0 1 2 60 . 0

0 . 1

0 . 2

0 . 3
O s

β

N e u t r o n  N u m b e r

8 4 9 0 9 6 1 0 2 1 0 8 1 1 4 1 2 0 1 2 60 . 0

0 . 1

0 . 2

0 . 3
 E X P
 p r o x y - S U ( 3 )
 R M F

Y b

8 4 9 0 9 6 1 0 2 1 0 8 1 1 4 1 2 0 1 2 60 . 0

0 . 1

0 . 2

0 . 3

β

D y

FIG. 3: Proxy-SU(3) predictions for β, obtained from Eq. (3), compared with tabulated β values [51] and also with predictions
from relativistic mean field theory [50]. See Section V for further discussion.

nucleus. From the contents of Table IV and Fig. 2(a) it
is clear that (at least for the low values of M shown) λ
is nearly proportional to the size of the shell, while from
Eq. (3) it is clear that (at least in the case of λ � µ)
β is roughly proportional to λ. As a result, β turns out
to be roughly proportional to the size of the shell. If we
could accommodate all A particles within a large shell
possessing an SU(3) subalgebra, the λ of the irrep rep-
resenting the nucleus would have been proportional to
A. Here we use the valence protons, for which the rele-
vant λp is proportional to the size Sp of the proton shell,
and the valence neutrons, for which the relevant λn is
proportional to the size Sn of the neutron shell. The
total irrep characterizing the nucleus has λ = λp + λn,
therefore λ is proportional to Sp + Sn. This implies that
the β values obtained from Eq. (3) should be multiplied
by A/(Sp + Sn). In the case of the rare earth region,
where the neutrons fill the 82-126 shell and the protons
the 50-82 shell, this gives a re-scaling factor of A/76.

Figure 3 shows typical results for β, for four elements
spanning the region, and compares these with tabulated
β values [51] and also with predictions from relativis-
tic mean field theory [50]. Overall, the agreement, both
qualitatively and even quantitatively, is surprisingly good
given the simplicity of the approach. For each element,
β rises to a maximum near mid-shell and then drops off
sharply, heading, in the case of Os, towards the prolate-

oblate transition discussed above.
In Fig. 4, all the proxy-SU(3) predictions for β for nu-

clei in the rare earth region are collected. Interestingly,
there is a dip in the elements up to Hf at N = 116,
which, for heavier elements, is the locus of the prolate-
oblate transition. Moreover, there even appears to be
support for the particle-hole symmetry breaking inher-
ent in proxy-SU(3) just after mid-shell.

VI. RESULTS FOR THE γ VARIABLE

Figure 5 shows for this entire region numerical results
for the proxy-SU(3) predictions for γ, compared to em-
pirical values extracted from ratios of the γ vibrational
bandhead to the first 2+ state,

R =
E(2+2 )

E(2+1 )
, (5)

according to [19, 53, 54]

sin 3γ =
3

2
√

2

√
1−

(
R− 1

R+ 1

)2

. (6)

Values extracted from other observables such as B(E2)
values can differ by 2-3 degrees giving a feeling for the
experimental uncertainties (see Refs. [19, 55]).
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The comparisons are particularly interesting. First,
the data in Fig. 5 show two distinct patterns - roughly
constant values near 10-15 degrees for well deformed nu-
clei, and a sharp rise toward maximum axial asymmetry
in the Os (Z = 76) and Pt (Z = 78) isotopes. It is im-
portant to note that physical differences in the ground
and γ band wave functions for γ values below about 15
degrees are extremely small. For example, probabilities
for K = 2 components in the ground state band 4+ state
are about 1% or less [19, 53, 55]. Hence, differences of
a few degrees in predicted and empirical γ values in this
range are not physically very significant and the qualita-
tive agreement is quite good.

We note that there are, however, two obvious areas of
disagreement. Near the end of the shell the empirical
γ values (determined in the way described above) satu-
rate at about 30 degrees (maximum axial asymmetry),
while the proxy-SU(3) predictions show a return to axial
symmetry for oblate shapes (γ approaching 60 degrees).

Also the empirical values from Z = 62 to 72 are rather
smooth and gradually increasing, while the predictions
show rather strong oscillations. It is our speculation that
this reflects the effects of pairing which are ignored here
and which will tend to spread the orbit occupancies in
the ground state (and hence in the γ mode which is re-
lated to the ground state through a Y22 operator) and
mute these oscillations. Further work is needed to test
this hypothesis. Nevertheless, despite this discrepancy
we note an interesting common feature: The empirical
values do show a drop going to Z = 62 and a soft bot-
toming out at Z = 70, just where proxy-SU(3) also has

(more distinct) minima.

In Fig. 6 we show detailed comparisons for four ele-
ments spaced out over the region, including, for Os and
Pt, the results of Gogny D1S predictions [8]. Overall the
agreement is reasonable. Both empirical values and the
proxy-SU(3) predictions are uniformly below about 15
degrees for Dy and Yb, although the proxy-SU(3) results
show strong oscillations for Yb with a distinct minimum
near N = 102. This latter may be related to the onset of
a bosonic SU(3) axial symmetry, which has been argued
for in these nuclei near N = 102, 104 [56]. In Os and Pt,
both the empirical values and the predictions agree on a
sharp increase in γ beyond N ∼ 110. The proxy-SU(3)
results are certainly no worse than those using a Gogny
D1S interaction [8], but the agreement is only qualitative.

The same analysis can be carried out for the Z = 50-
82, N = 50-82 shell. Again, the axial asymmetry variable
γ has modest values around 10-15 degrees near mid-shell,
and rises towards 30 degrees near the end of the shell. We
thus see that the behavior of these variables is similar in
different shells, as again reflected in abundant data.

Finally, we again stress the extreme simplicity of these
predictions, based on an approximate group structure
and on the filling of nucleons in a quadrupole field. No
account is taken of pairing, the contributions of other
shells, or other higher multipole or other interactions. In
particular, one expects the effects of pairing to wash out
the predicted oscillations as pairing scatters pairs of par-
ticulars among several orbitals near the Fermi surface.
Taking pairing into account would presumably therefore
improve the agreement. We are pursuing an implementa-
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FIG. 5: Proxy-SU(3) predictions for γ, obtained from Eq. (1), compared to empirical values extracted from ratios of the γ
vibrational bandhead to the first 2+ state. See Section VI for further discussion.

tion of pairing but that is beyond the scope of the current
paper.

VII. CONCLUSIONS

In the present work the prolate over oblate domi-
nance in deformed rare earth nuclei is obtained within
the framework of a parameter-free proxy SU(3) sym-
metry, using the symmetry properties alone. In addi-
tion, within the same SU(3) framework, the point of the
prolate-oblate shape phase transition is predicted to be
at N ≈ 116, as supported by the existing experimen-
tal data and recent microscopic calculations. Finally, we
have used Eqs. (1) and (3) to obtain simple, analytic,
parameter-free (except for a single global value of r0 in
the case of β) predictions of the β and γ deformation vari-
ables for the rare earth region. Similar results for other
regions are trivially obtainable once the irreps (analogous
to Table II) are obtained. The predictions are broadly
consistent with the empirical results. The quadrupole de-
formation β has the observed roughly parabolic behavior
across deformed nuclei. For γ, the empirical results of
values near 10-15 degrees for most of the deformed rare
earth nuclei and the sharp rise towards 30 degrees at the
upper end is also reproduced. Clearly the predictions

show oscillations not evident, or at least highly muted,
in the data. We suspect that this is due to the neglect
of pairing for which pair scattering would have the ten-
dency to smooth out the variations, but that needs to be
checked by further study.

SU(3) symmetry in nuclei is known to be connected to
the dominance of the quadrupole-quadrupole interaction
[34, 35, 57, 58]. Therefore one could think that the pro-
late over oblate dominance in the deformed rare earths,
as well as the prolate-oblate shape phase transition are
direct consequences of the quadrupole-quadrupole inter-
action dominance.

It should be remembered that the Nilsson levels are
not changed much by the approximation involved in the
proxy-SU(3) scheme [4], since in each shell the normal
parity orbitals remain intact, while the intruder parity
orbitals are replaced by their 0[110] partners. In particu-
lar, downwards leading prolate orbits remain downwards
leading, while upwards moving oblate orbits remain up-
wards moving. Moreover, the enhanced mixing of single
particle states on the prolate side also persists, leading
to avoided crossings and a further lowering of the pro-
late states [19]. As a result, it is expected that this sim-
ple approximate scheme should provide results consistent
with microscopic treatments concerning nuclear proper-
ties related to the prolate or oblate character of deformed
nuclei.
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FIG. 6: Proxy-SU(3) predictions for γ, obtained from Eq. (1), compared with empirical values obtained from Eq. (6) [19, 54],
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are used because their experimental values for the ratio R of Eq. (5) are a few percent below the limiting value for 30 degrees
and hence γ cannot be rigorously extracted; however there is abundant evidence that these isotopes have asymmetry values
near 30 degrees. The corresponding theoretical values are denoted by open circles. See Section VI for further discussion.

The present work suggests that it is worth investigat-
ing how far one can go in the description of the properties
of heavy deformed nuclei taking advantage of the proxy-
SU(3) symmetry scheme. There are, however, important
caveats about what this approach can and cannot ac-
complish and about its inherent limitations. It invokes,
through SU(3), the valence space quadrupole interaction.
Hence effects such as pairing, or a larger space involving
additional major oscillator shells, or more complex inter-
actions, are so far ignored. In no way can it replace large
scale shell model calculations, ab initio, first principles,
methods, nor is it intended to do so. It is complementary
to such microscopic approaches and is adept at predict-
ing, in a very simple way, as illustrated in this paper,
those observables that robustly depend primarily on va-
lence nucleon number and the quadrupole interactions
amongst them. In this first application of the proxy-
SU(3) scheme, we feel that the simplest approach is rea-
sonable, in order to see what the model can do on its
own. To go further, of course, some ways of incorporat-
ing at least some additional degrees of freedom, such as
pairing, will need to be studied. For now, we feel that
the success of the proxy-SU(3) has exhibited its potential
for the prediction of global nuclear properties and that

this should encourage further study of it and its possible
extensions.

A possible path is briefly mentioned here. For the nu-
clei shown in Table II the most leading SU(3) irrep will
contain bands with K = µ, µ − 2, . . . , 0 [35]. As a con-
sequence, in principle several bands will coexist within
the most leading irrep. In the case of µ = 6, for ex-
ample, the K = 0 ground state band, the K = 2 γ1
band, the first K = 4 band and the first K = 6 band
will coexist. The degeneracy among these bands can be
broken through the use of three-body and/or four-body
terms which are known to be O(3) scalars belonging to
the SU(3)⊃O(3) integrity basis [57–59]. Although this
goes beyond proxy-SU(3) per se, since it involves addi-
tional interactions, the proxy-SU(3) starting point may
simplify such calculations. Work along these lines is in
progress.
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Appendix A: The origins of Eqs. (1) and (3)

In this Appendix the concepts behind the derivation of
Eqs. (1) and (3) [37–39] are discussed.

Eqs. (1) and (3) are obtained through a linear mapping
[38, 39] between the eigenvalues of the invariant opera-
tors of the collective model [40], β2 and β3 cos 3γ, and the
eigenvalues of the invariants of SU(3). The basic idea be-
hind this approach is that if the invariant quantities of
two theories are used to describe the same physical phe-
nomena, their measures must agree [37–39]. The deriva-
tion is based on the fact that SU(3) contracts [60] to
the quantum rotor algebra [61] for low values of angular
momentum and large values of the second order Casimir
operator of SU(3), the eigenvalues of which are given in
Eq. (2). Large values of C2 occur for large values of λ
and/or µ. The SU(3) irreps appearing in Tables II and
III do have λ and/or µ large, thus the use of the con-
traction limit is justified in these cases. Furthermore, it
turns out that to each (λ, µ) irrep corresponds a unique
value of the (β, γ) variables.

Appendix B: The U(N)⊃SU(3) decompositions

In this Appendix we briefly explain the way in which
the results reported in Table I are obtained.

1. The U(15)⊃SU(3) decomposition

In the U(15) algebra the fundamental irreducible rep-
resentation (irrep) is [1] (a Young tableau with one box).
Since U(15) is the algebra describing the sdg shell, the
corresponding SU(3) irrep should contain the angular
momenta L = 0, 2, 4. It is known [34] that the an-
gular momentum eigenvalues appearing within an irrep

(λ, µ) with K = 0 are

L = max{λ, µ}, max{λ, µ} − 2, . . . , 1 or 0. (7)

Therefore in this case the SU(3) irrep has to be (4,0).

The outer product [62] of U(15) irreps [1] ⊗ [1] re-
sults in the symmetric irrep [2] and the antisymmetric
irrep [11]. Using the standard techniques [62] of calcu-
lating the outer product of SU(3) irreps (4, 0) ⊗ (4, 0)
one finds that the symmetric U(15) irrep [2] contains the
SU(3) irreps (8,0), (4,2), (0,4), while the antisymmetric
U(15) irrep [11] contains the SU(3) irreps (6,1) and (2,3).
Among these SU(3) irreps, the most leading one, defined
as the one possessing the highest value of the second or-
der Casimir operator of SU(3), given in Eq. (2), is (8,0),
belonging to the irrep [2] of U(15).

Since we are considering a system of protons or neu-
trons, larger U(15) irreps will be limited by the Pauli
principle to a maximum of two columns (allowed because
of the two possible orientations of spin). Soon enough the
calculation for larger irreps becomes cumbersome, thus
one has to rely on the computational method described
in Ref. [45]. An earlier tabulation of several results for
the U(15)⊃SU(3) decomposition have been given in Ref.
[63].

2. The U(21)⊃SU(3) decomposition

The decomposition of U(21) is similar. Since U(21) is
the algebra describing the pfh shell, the corresponding
SU(3) irrep should contain the angular momenta L = 1,
3, 5. Therefore in this case from Eq. (7) one sees that
the SU(3) irrep has to be (5,0).

The outer product [62] of U(21) irreps [1] ⊗ [1] re-
sults in the symmetric irrep [2] and the antisymmetric
irrep [11]. Calculating the outer product of SU(3) irreps
(5, 0) ⊗ (5, 0) one finds that the symmetric U(21) irrep
[2] contains the SU(3) irreps (10,0), (6,2), (2,4), while the
antisymmetric U(21) irrep [11] contains the SU(3) irreps
(8,1), (4,3), and (0,5). The most leading SU(3) irrep is
(10,0), belonging to the irrep [2] of U(21).
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