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Background: Microscopic calculations of heavy nuclei face considerable difficulties due to the
sizes of the matrices that need to be solved. Various approximation schemes have been invoked,
for example by truncating the spaces, imposing seniority limits, or appealing to various symmetry
schemes such as pseudo-SU(3). This paper proposes a new symmetry scheme also based on SU(3).
This proxy-SU(3) can be applied to well-deformed nuclei, is simple to use, and can yield analytic
predictions.
Purpose: To present the new scheme and its microscopic motivation, and to test it using a Nilsson
model calculation with the original shell model orbits and with the new proxy set.
Method: We invoke an approximate, analytic, treatment of the Nilsson model, that allows the
above vetting and yet is also transparent in understanding the approximations involved in the new
proxy-SU(3).
Results: It is found that the new scheme yields a Nilsson diagram for well-deformed nuclei that is
very close to the original Nilsson diagram. The specific levels of approximation in the new scheme
are also shown, for each major shell.
Conclusions: The new proxy-SU(3) scheme is a good approximation to the full set of orbits
in a major shell. Being able to replace a complex shell model calculation with a symmetry-based
description now opens up the possibility to predict many properties of nuclei analytically and often in
a parameter-free way. The new scheme works best for heavier nuclei, precisely where full microscopic
calculations are most challenged. Some cases in which the new scheme can be used, often analytically,
to make specific predictions, are shown in a subsequent paper.

I. INTRODUCTION

Microscopic approaches to the structure of atomic nu-
clei are becoming increasingly sophisticated and complex,
and have made great strides, enabled by the rapid growth
in the feasibility of computer intensive approaches using
large bases and sophisticated interactions. Nevertheless,
realistic calculations of many observables in medium and
heavy mass nuclei, or in exotic nuclei generally where
there may be many valence nucleons, still (and for the
foreseeable future) impose the need to invoke various sim-
plifications, truncations, and approximations. There are
many examples of such methods, ranging from straight-
forward limitations on the Hilbert space used, to, for ex-
ample, seniority restrictions, or to symmetry-based ap-
proximation schemes such as pseudo-SU(3).

Indeed, the present paper is inspired by the idea and
success of pseudo-SU(3) but is based on a different sub-
stitution founded in the recognition that pairs of Nilsson
orbits, K[NnzΛ], that are related by quantum numbers
differing by 0[110], have high spatial overlap and identical
angular momentum projection behavior. This leads to an
approximate oscillator shell symmetry. Of course, being
based on an idealized symmetry, it is not at all a replace-
ment for detailed microscopic shell model or ab initio
calculations which are achieving more and more success,

with great potential for the future. However, it does al-
low the possibility of very simple, analytic, parameter
free predictions of certain nuclear properties, related es-
pecially to collective properties and nuclear shapes, that
are robustly dependent on counting the number of nucle-
ons (which determines the irreps of an applicable sym-
metry) interacting under a quadrupole interaction. It
is applicable to deformed nuclei and provides the most
advantages in heavier nuclei.

In particular, the immediate purpose of this paper is to
present a Nilsson calculation that demonstrates that this
new scheme, called proxy-SU(3), leads to an excellent
approximation to the actual Nilsson diagram. We carry
out this calculation in a transparent way that illuminates
both the key ingredients in the new scheme and the level
of approximation it entails.

In the end, having vetted the approximate scheme, one
can then exploit it (which we do in a subsequent paper
[1]), to make specific predictions about the behavior of
deformed nuclei.
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II. SU(3) AND NUCLEAR DEFORMATION:
THE MOTIVATION AND NATURE OF A NEW
APPROXIMATE SU(3)-BASED SYMMETRY

SCHEME

The relation of SU(3) symmetry to nuclear deforma-
tion was discovered by J. P. Elliott [2, 3] in the sd shell
nuclei, in which its microscopic origins have been demon-
strated. The SU(3) symmetry also appears in the frame-
work of the microscopic symplectic model [4], which can
be seen as a generalization of the Elliott SU(3) scheme to
more than one nuclear shell. Since then the SU(3) sym-
metry has been used in a number of models, including the
interacting boson model (IBM) [5], the fermion dynami-
cal symmetry model (FDSM) [6], and the interacting vec-
tor boson model (IVBM) [7], especially in heavier nuclei,
where the LS coupling scheme of the Elliott model breaks
down [8]. It also forms the rationale for pseudo-SU(3) [9–
13], which we will discuss below. Finally, a quasi-SU(3)
symmetry [14, 15], based on the smallness of ∆j = 1 ma-
trix elements, leads to an approximate restoration of LS
coupling in heavy nuclei.

On the other hand, the Nilsson model [16–18], despite
its simplicity, has been very successful in describing in
detail many properties of heavy deformed nuclei. For
large deformations, its wave functions reach an asymp-
totic limit, in which the number of oscillator quanta, N ,
the number of quanta along the cylindrical symmetry
axis, nz, and the projections of the orbital angular mo-
mentum, Λ, and of the spin, Σ, along the symmetry axis
become good quantum numbers. They remain rather
good even at intermediate deformation values [17]. As a
consequence, Nilsson states for even nuclei are labelled
by K[NnzΛ], where K = Λ + Σ is the projection of the
total angular momentum along the symmetry axis.

As remarked by B. Mottelson [19], the asymptotic
quantum numbers of the Nilsson model can be seen as
a generalization of Elliott’s SU(3), applicable to heavy
deformed nuclei. Working along this line, we demon-
strate in the present paper that a proxy-SU(3) symmetry
of the Elliott type can be developed in heavy deformed
nuclei. In order to achieve this, we take advantage of
the large overlap of pairs of Nilsson orbits related by
∆K[∆N∆nz∆Λ] = 0[110]. The high overlaps of such
pairs have already been shown, in the case of proton-
neutron pairs in the rare earth region [20, 21], to play a
key role in the onset and development of nuclear defor-
mation.

In the present work we also take advantage of nu-
cleon pairs with Nilsson quantum numbers differing by
∆K[∆N∆nz∆Λ] = 0[110], but in a different way. In-
stead of focusing attention on proton-neutron pairs, we
use proton-proton pairs and neutron-neutron pairs. This
approach turns out to be successful in several ways, since
it reveals a proxy-SU(3) symmetry in heavy deformed nu-
clei, which can be used either for making predictions of
nuclear properties within the SU(3) symmetry using alge-
braic methods, or it might be useful as an approximation

scheme for simplifying shell model calculations in heavy
deformed nuclei away from closed shells, that are not yet
accessible because of computational constraints.
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FIG. 1: Schematic representation of the 50–82 shell and the
replacement leading to the proxy sdg shell. See Section II for
further discussion.

In order to see how this works, it is best to use a spe-
cific example, depicted in Fig. 1. We consider the 50-82
major shell and enumerate the following steps in the de-
velopment of the new approximate scheme.

1) The 50–82 major shell consists of the 3s1/2, 2d3/2,
2d5/2, and 1g7/2 orbitals (shown in Fig. 1 by solid lines),
which are the pieces of the full sdg shell remaining after
the spin-orbit force has lowered the 1g9/2 orbitals (in-
dicated by dashed lines) into the 28-50 nuclear shell. In
addition, it contains the 1h11/2 orbitals (shown by dashed
lines plus one dotted line), lowered into it from the pfh
shell, also by the spin-orbit force.

2) The 1g9/2 orbital consists of the Nilsson orbitals
1/2[440], 3/2[431], 5/2[422], 7/2[413], 9/2[404]. Note
that these are the 0[110] partners of the 1h11/2 Nilsson
orbitals 1/2[550], 3/2[541], 5/2[532], 7/2[523], 9/2[514],
in the same order. A pair of these 0[110] partners shares
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exactly the same values of the quantum numbers corre-
sponding to the projections of orbital angular momen-
tum, spin, and total angular momentum. Thus the or-
bitals in such a pair are expected to exhibit identical be-
havior as far as properties related to angular momentum
projection are concerned. This has been corroborated by
calculating overlaps of orbitals in Ref. [21].

One can thus think of replacing all of the 1h11/2 or-
bitals (the upper group of dashed lines in Fig. 1), except
the 11/2[505] orbital (the dotted line in Fig. 1) in the
50-82 shell by their 1g9/2 counterparts (the lower group
of dashed lines in Fig. 1) and checking numerically the
accuracy of this approximation, taking carefully into ac-
count that during this replacement the N and nz quan-
tum numbers have been changed by one unit each, while
the parity has changed sign. These changes will obviously
affect the selection rules of various relevant matrix ele-
ments, as well as the avoided crossings [22] in the Nilsson
diagrams, as we shall discuss in detail below.

3) Note that the 1h11/2 11/2[505] orbit has been ex-
cluded here since it has no partner in the 1g9/2 shell. This
is the sole orbit that has to be dropped in this approxi-
mation. It is important to recognize, however, that this
orbit plays a very minor role in the evolution of structure
in heavy nuclei, since it lies at the very top of the 50-82
shell in the Nilsson diagrams [16, 17], and hence its influ-
ence is expected to be minimal. Moreover, it only comes
into play in nuclei near the 82 shell closure that are not
likely to be well-deformed in any case. The same remark
applies to analogous orbits in other shells such as the
13/2[606] orbit in the 82-126 shell.

4) After these two approximations have been made, we
are left with a collection of orbitals which is exactly the
same as the full sdg shell. The sdg shell of the spherical
harmonic oscillator is known to possess a U(15) symme-
try, having an SU(3) subalgebra [23]. Therefore we can
expect that some of the SU(3) features would appear
within the approximate scheme. Of course one should
bear in mind that in axially symmetric deformed nuclei
the relevant symmetry is not spherical, but cylindrical
[24]. Therefore the relevant algebras are not U(N) Lie
algebras, but more complicated versions of deformed al-
gebras, in which, among the angular momentum opera-
tors, only the Lz operator has the same physical content
as the Lz operator in the Nilsson model [25–30].

5) The same approach can be applied to the 28-50,
82-126, 126-184 shells, leading to approximate pf, pfh,
sdgi shells, respectively, corresponding to U(10), U(21),
U(28) algebras having SU(3) subalgebras (see [23] and
references therein).

6) An important consideration concerns the role and
effect of level crossings in the Nilsson model. Orbits
with different angular momentum and/or parity quantum
numbers cannot interact, while in the case of identical
angular momentum and parity, interactions and avoided
crossings [22] appear. As a result, one difference in the
present approximate scheme in comparison to the origi-
nal Nilsson model picture comes from the fact that in a

nuclear shell individual particles in the intruder levels do
not interact with those in the normal parity levels, while
the proxies for the intruder levels used in the present
approximate scheme will interact with normal parity lev-
els of the same angular momentum. These interactions
are spurious and a consequence of our orbit substitution.
Their effects need to be carefully assessed. For the cur-
rent scheme to be useful, such interactions need to be
small. We will show that this is the case in the next sec-
tion. We also note that pair scattering can occur among
both the shell model orbitals and those in our scheme.
The effect of this does not come into the treatment be-
low of the Nilsson model for both situations, but will
enter into practical calculations for actual observables.
This will be addressed at the end and in a subsequent
paper [1].

III. THE NILSSON HAMILTONIAN FOR
LARGE DEFORMATIONS

The Nilsson single particle Hamiltonian [16, 17] is
based on a harmonic oscillator with cylindrical symme-
try supplemented with a spin-orbit term and an angular
momentum squared term. The Hamiltonian reads

H = Hosc + vls~ω0(l · s) + vll~ω0(l2 − 〈l2〉N ), (1)

where

Hosc =
p2

2M
+

1

2
M(ω2

zz
2 + ω2

⊥(x2 + y2)) (2)

is the Hamiltonian of a harmonic oscillator with cylindri-
cal symmetry. The quantity

〈l2〉N =
1

2
N(N + 3) (3)

is the average of the square of the angular momentum l
within theNth oscillator shell, M is the nuclear mass, s is
the spin, p is the momentum. The rotational frequencies
ωz and ω⊥ are related to the deformation parameter ε by

ωz = ω0

(
1− 2

3
ε

)
, ω⊥ = ω0

(
1 +

1

3
ε

)
, (4)

leading to

ε =
ω⊥ − ωz

ω0
, (5)

with ε > 0 corresponding to prolate shapes and ε < 0 cor-
responding to oblate shapes. The standard values of the
constants vls and vll, determined from the available data
on intrinsic nuclear spectra [31], are shown in Table I. In
an alternative notation widely appearing in the literature
[17], the parameters κ and µ are used, with vls = −2κ
and vll = −κµ. Their values are given in Table I.

The eigenvalues of Hosc are

Eosc = ~ω0

(
N +

3

2
− 1

3
ε(3nz −N)

)
. (6)
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TABLE I: Parameters vls and vll [31] used in the Nilsson
Hamiltonian of Eq. (1). The corresponding values of the pa-
rameters κ and µ of an alternative, widely used notation [17],
are also shown.

region vls vll κ µ
N,Z < 50 −0.16 0 0.08 0

50 < Z < 82 −0.127 −0.0382 0.0635 0.602
82 < N < 126 −0.127 −0.0268 0.0635 0.422
82 < Z < 126 −0.115 −0.0375 0.0575 0.652

126 < N −0.127 −0.0206 0.0635 0.324

Taking advantage of the cylindrical symmetry, and us-
ing the standard creation and annihilation operators a†x,
ax, a†y, ay for the quanta of the harmonic oscillator in
the Cartesian coordinates x and y, one can define cre-
ation and annihilation operators [17, 32]

R+ =
1√
2

(a†x + ia†y), R =
1√
2

(ax − iay),

S+ =
1√
2

(a†x − ia†y), S =
1√
2

(ax + iay), (7)

satisfying the commutation relations

[R,R†] = [S, S†] = 1, (8)

thus going over to a |nzrsΣ〉 basis, where r is the number
of quanta related to the harmonic oscillator formed by
R† and R, and s is the number of quanta related to the
harmonic oscillator formed by S† and S, for which

n⊥ = r + s = N − nz, Λ = r − s (9)

hold, where n⊥ is the number of quanta perpendicular
to the z-axis. It is then a straightforward task, described
in detail in Ref. [17], to calculate the matrix elements of
the l · s and l2 operators in the new basis, the explicit
results being given in Appendix I.

Note that our approach here is to use the asymptotic
wave functions (suitable for well-deformed nuclei) so that
we can obtain analytic matrix elements for each term in
the Hamiltonian. This enables us to isolate and explic-
itly exhibit the facets of our replacement scheme and to
compare those with the traditional shell model level se-
quences. Our numerical solutions are therefore not iden-
tical to those of the usual Nilsson diagrams, although
they are very close to them for ε > 0.15.

The correspondence between states in the |nzrsΣ〉 ba-
sis and the standard Nilsson orbitals K[NnzΛ] can be
easily obtained using Eq. (9) and K = Λ+Σ, and is given
in Table II. Results for the matrix elements of l ·s for the
50–82 and sdg shells are given in Table III and those for
the matrix elements of l2 for the same shells are given
in Table IV. It should be remembered that the l · s and
l2 terms are already relatively small perturbations of the
oscillator potential for well-deformed nuclei, therefore the
effects of the deformation on them can be neglected [31],

TABLE II: Nilsson model states in the K[NnzΛ] and |nzrsΣ〉
notation, in which Σ = +1/2 is represented by + and
Σ = −1/2 is represented by −. See Section III for further
discussion.

K[NnzΛ] |nzrsΣ〉 K[NnzΛ] |nzrsΣ〉 K[NnzΛ] |nzrsΣ〉
pf pf pfh pfh sdgi sdgi

1/2[301] 021− 1/2[501] 032− 1/2[611] 132−
1/2[321] 210− 1/2[521] 221− 1/2[600] 033+
3/2[312] 120− 3/2[512] 131− 3/2[602] 042−
1/2[310] 111+ 1/2[510] 122+ 1/2[631] 321−
3/2[301] 021+ 3/2[501] 032+ 3/2[622] 231−
5/2[303] 030− 5/2[503] 041− 5/2[613] 141−
1/2[330] 300+ 1/2[541] 410− 1/2[620] 222+
3/2[321] 210+ 3/2[532] 320− 3/2[611] 132+
5/2[312] 120+ 5/2[523] 230− 5/2[602] 042+
7/2[303] 030+ 7/2[514] 140− 7/2[604] 051−

1/2[530] 311+ 1/2[651] 510−
sdg sdg 3/2[521] 221+ 3/2[642] 420−

1/2[400] 022+ 5/2[512] 131+ 5/2[633] 330−
1/2[411] 121− 7/2[503] 041+ 7/2[624] 240−
3/2[402] 031− 9/2[505] 050− 9/2[615] 150−
1/2[420] 211+ 1/2[550] 500+ 1/2[640] 411+
3/2[411] 121+ 3/2[541] 410+ 3/2[631] 321+
5/2[402] 031+ 5/2[532] 320+ 5/2[622] 231+
1/2[431] 310− 7/2[523] 230+ 7/2[613] 141+
3/2[422] 220− 9/2[514] 140+ 9/2[604] 051+
5/2[413] 130− 11/2[505] 050+ 11/2[606] 060−
7/2[404] 040− 1/2[660] 600+
1/2[440] 400+ pfhj pfhj 3/2[651] 510+
3/2[431] 310+ 1/2[770] 700+ 5/2[642] 420+
5/2[422] 220+ 3/2[761] 610+ 7/2[633] 330+
7/2[413] 130+ 5/2[752] 520+ 9/2[624] 240+
9/2[404] 040+ 7/2[743] 430+ 11/2[615] 150+

9/2[734] 340+ 13/2[606] 060+
11/2[725] 250+
13/2[716] 160+
15/2[707] 070+

since they would correspond to second order corrections.
As a result, the l · s and l2 matrix elements appearing in
Tables III and IV are (within the approximation used)
independent of the deformation.

The calculation of the energy eigenvalues of the full
Hamiltonian becomes then a simple task of diagonaliza-
tion of a matrix in which the diagonal matrix elements
depend on the deformation, as given in Eq. (6), while the
non-diagonal matrix elements remain invariant, as stated
in the last paragraph. Therefore, the deformation enters
formally only through the linear dependence of the diag-
onal matrix elements of the oscillator Hamiltonian on ε.
In order for the proxy orbitals from the next lower shell
to be brought to the energies of the intruder orbitals that
they replace, their energies need to be uniformly pushed
up by 1− 2ε/3, as implied by Eq. (6), since both N and
nz have to be increased by one unit. Numerical results
for ε = 0.3 for the 50–82 and sdg proton shells are given
in Table V. Nilsson-like diagrams involving either just the
diagonal terms of the Hamiltonian, or obtained through
the diagonalization of the full Hamiltonian, are plotted
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for the 50–82 and sdg proton shells in Fig. 2. Since the
results have been obtained by using the asymptotic wave
functions, they are expected to be reliable for large and
moderate deformations [17], but they should fail com-
pletely for ε ≤ 0.1, where different approximate wave
functions, providing different slopes of the energy levels
as a function of ε, are appropriate [17, 31].

Results for the 28–50 and pf shells, the 82–126 and
pfh shells, and the 126–184 and sdgi shells for the matrix
elements of l2 and l · s, as well as for those of the full
Hamiltonian of Eq. (1) are available in Ref. [33], which
also contains figures similar to Figs. 2 and 3 below, for
the other shells.

IV. DISCUSSION

A. The l · s, l2, and H matrix elements

In the upper half of Table III the matrix elements of
the spin-orbit term in the 50–82 shell are shown. These
are compared to the relevant matrix elements appearing
in the full sdg shell, that is, the shell comprising the 3s,
2d, and 1g7/2 positive parity orbits in the 50–82 shell
and the 1g9/2 orbit from the next lower shell that we are
using as a proxy for the 1h11/2 orbit, seen in the lower
half of Table III. The boldface entries in the lower half
of Table III are the new values appearing in the case of
the modified shell occurring after replacing the 1h11/2

levels of the 50–82 shell (the last 6 levels in the rows and
columns of the upper half of Table III) by their 0[110]
counterparts of the 1g9/2 levels (the last 5 levels in the
rows and columns of the lower half of Table III). Each
half of the table is divided into four blocks by straight
lines.

We see that the upper part of Table III has one more
column (the last one) and one more row (the last one)
than the lower part of Table III because the 11/2[505]
level of the 50–82 shell has no 0[110] counterpart in the
sdg shell. The upper left blocks of the two parts of the
table are obviously identical, since they refer to the same
set of states. The lower right blocks of the two parts of
the table are also identical, since the 0[110] pairs pos-
sess the same orbital angular momentum and spin quan-
tum numbers, taking also into account that the last level
of 1h11/2, 11/2[505], has no counterpart in 1g9/2. Fi-
nally, the upper right block in the top half of Table III is
“empty”, since all matrix elements vanish, while in the
bottom half of Table III a few non-vanishing matrix el-
ements (4 out of 50 in each block) appear. They occur
because the 1g9/2 orbitals have non-vanishing matrix el-
ements with the same parity orbits of the 50–82 shell,
while the opposite parity 1h11/2 orbitals do not. These
spurious matrix elements are a consequence of the proxy
scheme we are invoking here. We will see that they are
few and have very small effects, since within the total
Hamiltonian they get multiplied by the small values of
the coefficient vls, given in Table I. These spurious non-

vanishing matrix elements represent the “damage” made
by the approximation imposed. In what follows, it will be
clear that the spurious matrix elements are responsible
for a modification of the single particle energies result-
ing from the diagonalization of the full Hamiltonian ma-
trix, as well as the occurence of interactions connecting
in each shell the 0[110] proxies of the intruder orbitals
with the normal parity orbitals, resulting in additional
avoided crossings in the Nilsson diagrams.

Similar comments apply to all other shells starting with
28–50, shown in [33]. The numbers of spurious matrix
elements for each shell are summarized in Table VI.

Qualitatively similar results are obtained in the case of
the matrix elements of the l2 operator, shown for the 50–
82 and sdg shells in the upper and lower halves of Table
IV reprectively, and in [33] for the rest of the shells, but
also a few differences appear. In particular, no l2 term is
used in the 28–50 and pf shells. Also, in all pairs of shells,
the diagonal matrix elements appearing in the lower right
block are slightly different, since they depend on nz, as
seen in Eq. (12). Table VI also contains a similar list for
the number of these spurious matrix elements.

Finally, in order to get a feeling of the number and
magnitude of matrix elements of the full Hamiltonian af-
fected by the approximation, we present results for the
special case of ε = 0.3 for the 50–82 and sdg proton
shells in the upper and lower halves of Table V reprec-
tively, and in [33] for the rest of the shells. In each shell,
the appropriate vls and vll values taken from Table I
are used. In all cases the numerical values of the diago-
nal matrix elements are at least one order of magnitude
larger than the numerical values of the non-diagonal ma-
trix elements. Table VI includes the number of spurious
matrix elements for the full Hamiltonian as well.

From this analysis we see that a very small percentage
of matrix elements are affected by the approximations
made in the present scheme. In the sdg shell, 8.4% are
spurious. In heavier shells, this number drops to 5.4% in
the pfh shell and to 3.7% in the sdgi shell and, in gen-
eral, our model is expected to work best the heavier the
nucleus. Therefore the example shown in this discussion,
the sdg shell, is the one in which the “damages” caused
by the approximation are the most severe.

B. Nilsson orbit energies

Numerical results for the normal 50–82 proton shell
are shown in Fig. 2(a),(b), while results for the sdg pro-
ton shell, resulting after the replacement of the 1h11/2

orbitals of the 50–82 shell by their 0[110] 1g9/2 coun-
terparts, are depicted in Fig. 2(c),(d). In Fig. 2(a),(c)
the diagonal matrix elements are plotted, including the
contributions from both the Hosc term and the small per-
turbations (the l · s and l2 terms), while in Fig. 2(b),(d)
the results of the diagonalization of the full Hamiltonian,
in which the non-diagonal matrix elements are taken into
account, are given.
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TABLE III: l · s matrix elements (in units of ~ω0) for Nilsson orbitals in the 50–82 shell (upper part) and in the full sdg shell
(lower part), occurring after replacing the 1h11/2 orbitals of the 50–82 shell by their 0[110] counterparts in the 1g9/2 orbitals.
These matrix elements, and those in Tables IV and V, are calculated with the asymptotic Nilsson wave functions discussed
in Section III. Therefore they are not precise eigenstates of the Nilsson Hamiltonian but go over to the latter in the limit of
large deformation where the off-diagonal matrix elements are negligible compared to the diagonal ones. See subsection IV.A
for further discussion. Note also that these are the matrix elements of the l · s operator alone. In the full Nilsson Hamiltonian
of Eq. (1) they will be multiplied by the vls coefficient (−0.127) which will reduce their contributions to the Hamiltonian by a
considerable factor. Both matrices are symmetric, so only the diagonal and the upper half of each matrix are shown. The new
matrix elements appearing in the lower part of the table are shown in boldface. Otherwise, the upper and lower parts of the
table are identical.

1
2
[400] 1

2
[411] 3

2
[402] 1

2
[420] 3

2
[411] 5

2
[402] 1

2
[431] 3

2
[422] 5

2
[413] 7

2
[404] 1

2
[550] 3

2
[541] 5

2
[532] 7

2
[523] 9

2
[514] 11

2
[505]

1/2[400] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2[411] −0.5 0−1.414 0 0 0 0 0 0 0 0 0 0 0 0
3/2[402] −1 0−1.225 0 0 0 0 0 0 0 0 0 0 0
1/2[420] 0 0 0 1.225 0 0 0 0 0 0 0 0 0
3/2[411] 0.5 0 0 1 0 0 0 0 0 0 0 0
5/2[402] 1 0 0 0.707 0 0 0 0 0 0 0
1/2[431] −0.5 0 0 0 0 0 0 0 0 0
3/2[422] −1 0 0 0 0 0 0 0 0
5/2[413] −1.5 0 0 0 0 0 0 0
7/2[404] −2 0 0 0 0 0 0
1/2[550] 0 0 0 0 0 0
3/2[541] 0.5 0 0 0 0
5/2[532] 1 0 0 0
7/2[523] 1.5 0 0
9/2[514] 2 0

11/2[505] 2.5

1
2
[400] 1

2
[411] 3

2
[402] 1

2
[420] 3

2
[411] 5

2
[402] 1

2
[431] 3

2
[422] 5

2
[413] 7

2
[404] 1

2
[440] 3

2
[431] 5

2
[422] 7

2
[413] 9

2
[404]

1/2[400] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2[411] −0.5 0−1.414 0 0 0 0 0 0 0 0 0 0 0
3/2[402] −1 0−1.225 0 0 0 0 0 0 0 0 0 0
1/2[420] 0 0 0 1.225 0 0 0 0 0 0 0 0
3/2[411] 0.5 0 0 1 0 0 0 0 0 0 0
5/2[402] 1 0 0 0.707 0 0 0 0 0 0
1/2[431] −0.5 0 0 0 −1.414 0 0 0 0
3/2[422] −1 0 0 0−1.732 0 0 0
5/2[413] −1.5 0 0 0−1.732 0 0
7/2[404] −2 0 0 0−1.414 0
1/2[440] 0 0 0 0 0
3/2[431] 0.5 0 0 0
5/2[422] 1 0 0
7/2[413] 1.5 0
9/2[404] 2

Note that these figures are not the same as the usual
Nilsson diagrams since they use the approximate asymp-
totic basis, where analytic results can be obtained for
all terms in the Hamiltonian. Thus these results are not
valid (and not shown) for small deformations. In the well-
deformed region, however, they closely approximate the
usual diagonalizations of the Nilsson Hamiltonian in the
NljΩ basis [17]. In panels 2(a) and 2(c), where only the
diagonal results are shown, the energies lie along straight
lines without curvature. In 2(b) and 2(d) the full Hamil-
tonian with off-diagonal elements is used, resulting in the
familiar curved trajectories and avoided crossings.

To see the patterns in this figure, and in Fig. 3, more
easily, we have color coded groups of orbits in the panels

of Fig. 2 so that the locations of similar sequences of
orbits can be identified at a glance.

We first compare Fig. 2(a) with Fig. 2(c) (the two pan-
els in the left hand side of the figure), i.e. the diagonal
terms in the 50–82 and sdg proton shells.

In Fig. 2(a) the normal parity levels are shown as solid
lines, while the six intruder 1h11/2 orbitals are indicated
by dashed lines.

In Fig. 2(c) the normal parity levels, shown again as
solid lines, correspond to those in Fig. 2(a), while the
dashed lines indicate the five 1g9/2 orbitals which have
replaced the 1h11/2 orbitals.

We see that the five 1g9/2 orbitals in Fig. 2(c) lie at
positions very similar to those of their 0[110] partners in
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TABLE IV: Same as Table III, but for the l2 matrix elements for Nilsson orbitals in the 50–82 shell (upper part) and in the
sdg shell (lower part). Note that these are the matrix elements of the l2 operator alone. In the full Nilsson Hamiltonian of
Eq. (1) they will be multiplied by the vll coefficient (−0.0382) which will reduce their contributions to the Hamiltonian by a
considerable factor. See subsection IV.A for further discussion.

1
2
[400] 1

2
[411] 3

2
[402] 1

2
[420] 3

2
[411] 5

2
[402] 1

2
[431] 3

2
[422] 5

2
[413] 7

2
[404] 1

2
[550] 3

2
[541] 5

2
[532] 7

2
[523] 9

2
[514] 11

2
[505]

1/2[400] 4 0 0−5.657 0 0 0 0 0 0 0 0 0 0 0 0
1/2[411] 12 0 0 0 0−6.928 0 0 0 0 0 0 0 0 0
3/2[402] 8 0 0 0 0−4.899 0 0 0 0 0 0 0 0
1/2[420] 14 0 0 0 0 0 0 0 0 0 0 0 0
3/2[411] 12 0 0 0 0 0 0 0 0 0 0 0
5/2[402] 8 0 0 0 0 0 0 0 0 0 0
1/2[431] 14 0 0 0 0 0 0 0 0 0
3/2[422] 18 0 0 0 0 0 0 0 0
5/2[413] 20 0 0 0 0 0 0 0
7/2[404] 20 0 0 0 0 0 0
1/2[550] 10 0 0 0 0 0
3/2[541] 18 0 0 0 0
5/2[532] 24 0 0 0
7/2[523] 28 0 0
9/2[514] 30 0

11/2[505] 30

1
2
[400] 1

2
[411] 3

2
[402] 1

2
[420] 3

2
[411] 5

2
[402] 1

2
[431] 3

2
[422] 5

2
[413] 7

2
[404] 1

2
[440] 3

2
[431] 5

2
[422] 7

2
[413] 9

2
[404]

1/2[400] 4 0 0−5.657 0 0 0 0 0 0 0 0 0 0 0
1/2[411] 12 0 0 0 0−6.928 0 0 0 0 0 0 0 0
3/2[402] 8 0 0 0 0−4.899 0 0 0 0 0 0 0
1/2[420] 14 0 0 0 0 0 0 −6.928 0 0 0 0
3/2[411] 12 0 0 0 0 0 0−6.928 0 0 0
5/2[402] 8 0 0 0 0 0 0−4.899 0 0
1/2[431] 14 0 0 0 0 0 0 0 0
3/2[422] 18 0 0 0 0 0 0 0
5/2[413] 20 0 0 0 0 0 0
7/2[404] 20 0 0 0 0 0
1/2[440] 8 0 0 0 0
3/2[431] 14 0 0 0
5/2[422] 18 0 0
7/2[413] 20 0
9/2[404] 20

Fig. 2(a). For example, 1/2[550] of Fig. 2(a) and 1/2[440]
of Fig. 2(c) lie at very similar positions.

The high-lying 11/2[505] orbital of Fig. 2(a) has no
analog in Fig. 2(c).

We now compare Fig. 2(a) with Fig. 2(b) (the two top
panels in the figure), i.e., we turn on the non-diagonal
interactions in the 50–82 proton shell.

The intruder 1h11/2 orbitals, shown by dashed lines in
both figures, are not affected, since there are no matrix
elements connecting them to other orbitals, as is clear
from the upper part of Table V.

The normal parity orbitals, shown by solid lines in both
figures, are changed by the non-diagonal matrix elements
interconnecting them, as seen in the upper part of Table
V. Since the non-diagonal matrix elements are at least
one order of magnitude smaller than the diagonal matrix
elements, the relative positions of the various lines are
not affected much, although the mixing of states is clear
from the small curvatures seen.

We can now compare Fig. 2(c) with Fig. 2(d) (the two

bottom panels in the figure), i.e., we turn on the non-
diagonal interactions in the sdg proton shell.

The 1g9/2 orbitals, which have replaced the 1h11/2

orbitals, do interact with the normal parity orbitals, a
shortcoming of our approach, as seen in the lower part
of Table V, with the exception of 9/2[404], which is still
indicated by a dashed line in Fig. 2(d). However, as we
shall see, the effects of this approximation are modest. As
a result of the non-diagonal matrix elements, all lines in
Fig. 2(d) (except 9/2[404]) are curved, forming, however,
a figure quite similar to Fig. 2(c).

We finally compare Fig. 2(b) with Fig. 2(d) (the two
panels in the right hand side of the figure), i.e., the final
results for the 50–82 and sdg proton shells. The similarity
of the two figures is clear.

As noted above, the differences are due to the fact
that the 1g9/2 orbitals in Fig. 2(d) interact with the nor-
mal parity orbitals (see lower part of Table V) while the
1h11/2 orbitals in Fig. 2(c) do not interact with the nor-
mal parity orbitals (upper part of Table V). These ad-
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TABLE V: Same as Table III, but for the H matrix elements with ε = 0.3 for Nilsson orbitals in the 50–82 proton shell (upper
part) and in the sdg proton shell (lower part). Note again that these calculations use the asymptotic wave functions defined in
Section III. The deformation comes in only through the linear dependence on epsilon of the diagonal matrix elements of Hosc.
See subsection IV.A for further discussion.

1
2
[400] 1

2
[411] 3

2
[402] 1

2
[420] 3

2
[411] 5

2
[402] 1

2
[431] 3

2
[422] 5

2
[413] 7

2
[404] 1

2
[550] 3

2
[541] 5

2
[532] 7

2
[523] 9

2
[514] 11

2
[505]

1/2[400] 6.28 −0.13 0 0.22 0 0 0 0 0 0 0 0 0 0 0 0
1/2[411] 5.74 0 0.18 0 0 0.27 0 0 0 0 0 0 0 0 0
3/2[402] 6.26 0 0.16 0 0 0.19 0 0 0 0 0 0 0 0
1/2[420] 5.30 0 0 −0.16 0 0 0 0 0 0 0 0 0
3/2[411] 5.61 0 0 −0.13 0 0 0 0 0 0 0 0
5/2[402] 6.00 0 0 −0.09 0 0 0 0 0 0 0
1/2[431] 5.06 0 0 0 0 0 0 0 0 0
3/2[422] 5.27 0 0 0 0 0 0 0 0
5/2[413] 5.56 0 0 0 0 0 0 0
7/2[404] 5.93 0 0 0 0 0 0
1/2[550] 5.88 0 0 0 0 0
3/2[541] 5.81 0 0 0 0
5/2[532] 5.82 0 0 0
7/2[523] 5.90 0 0
9/2[514] 6.06 0

11/2[505] 6.30

1
2
[400] 1

2
[411] 3

2
[402] 1

2
[420] 3

2
[411] 5

2
[402] 1

2
[431] 3

2
[422] 5

2
[413] 7

2
[404] 1

2
[440] 3

2
[431] 5

2
[422] 7

2
[413] 9

2
[404]

1/2[400] 6.28 −0.13 0 0.22 0 0 0 0 0 0 0 0 0 0 0
1/2[411] 5.74 0 0.18 0 0 0.27 0 0 0 0 0 0 0 0
3/2[402] 6.26 0 0.16 0 0 0.19 0 0 0 0 0 0 0
1/2[420] 5.30 0 0 −0.16 0 0 0 0.27 0 0 0 0
3/2[411] 5.61 0 0 −0.13 0 0 0 0.27 0 0 0
5/2[402] 6.00 0 0 −0.09 0 0 0 0.19 0 0
1/2[431] 5.06 0 0 0 0.18 0 0 0 0
3/2[422] 5.27 0 0 0 0.22 0 0 0
5/2[413] 5.56 0 0 0 0.22 0 0
7/2[404] 5.93 0 0 0 0.18 0
1/2[440] 5.73 0 0 0 0
3/2[431] 5.74 0 0 0
5/2[422] 5.82 0 0
7/2[413] 5.98 0
9/2[404] 6.22

TABLE VI: Number of matrix elements of the operators l · s,
l2, and H in the pf, sdg, pfh, and sdgi shells, differing from
the corresponding matrix elements in the 28–50, 50–82, 82–
126, and 126–184 shells. The total number of matrix elements
for each operator is given in the last column. See subsection
IV.A for further discussion.

shell l · s l2 H total
pf 6 - 6 100

sdg 8 11 19 225
pfh 10 14 24 441

sdgi 12 17 29 784

ditional interactions, which are spurious in the sense of
arising from the introduction of the 1g9/2 orbit in the
approximate scheme we use, account for the greater cur-
vature in Fig. 2(d) than in Fig. 2(b).

Figure 3 shows similar results for the 82-126 and pdf
neutron shells where the similarity of patterns is even

more apparent than in Fig. 2. Similar plots can be made
for other shells, being provided through EPAPS [33].

In the case of the 28–50 and pf shells, non-diagonal
matrix elements are contributed only by the l · s term,
since no l2 term is used in these shells, resulting in very
similar diagrams, since only 6% of the matrix elements
are affected by the approximation (see Table VI).

In the cases of the 82–126 and pfh shells, as well as
of the 126–184 and sdgi shells, the resulting diagrams
are also very similar (as noted above for the first of these
shells for Fig. 3), since the percentage of matrix elements
affected by the approximation is very low, being 5.4% and
3.7% respectively (see Table VI).

It should be noticed that the example of the 50–82
and sdg shells, shown in Fig. 2, is therefore the worst
possible one, since the percentage of the matrix elements
affected by the approximation is highest, 8.4% (again,
see Table VI). Indeed, as noted above, the agreement in
Fig. 3 between the exact and the approximate cases is
greatly improved compared to Fig. 2.
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FIG. 2: (color online) Energies (in units of ~ω0) of the Nilsson Hamiltonian as functions of the deformation parameter ε. Note
that, in these panels, the energies shown are not the usual solutions to the Nilsson Hamiltonian, but use matrix elements
obtained analytically in the asymptotic deformed basis. Therefore they are not valid for small deformations and would not go
to the usual degeneracies at ε = 0. They are, however, quite accurate for ε > 0.15. The panels in this figure therefore also
start at ε = 0.15. The Nilsson parameters are taken from Table I. The 1h11/2 orbitals in (a) and (b), as well as the 1g9/2

orbitals in (c), are indicated by dashed lines. The 1h11/2 orbital labels in (a) and (b), as well as the 1g9/2 orbital labels in (c)
and (d), appear in boldface. Orbitals are grouped in color only to facilitate visualizing the patterns of orbital evolution. Note
that the Nilsson labels at the right are always in the same order as the energies of the orbitals as they appear at the right
as well (largest deformation shown). Therefore, in some cases the order of the Nilsson orbitals changes slightly from panel to
panel. (a) Energies (diagonal matrix elements) for the 50–82 proton shell, including the contributions from both the Hosc term
and the small perturbations (the l · s and l2 terms). Therefore the Nilsson trajectories are straight and exhibit crossings. (b)
Results of the full diagonalization for the 50–82 proton shell, in which the non-diagonal matrix elements are taken into account.
Hence the Nilsson trajectories show the usual curvatures and avoided crossings. (c) Energies (diagonal matrix elements) for
the sdg proton shell, resulting after the replacement of the 1h11/2 orbitals of the 50–82 shell by their 0[110] 1g9/2 counterparts.
Therefore the Nilsson trajectories are straight and exhibit crossings. (d) Results of the full diagonalization for the sdg proton
shell. Hence the Nilsson trajectories again show the curvatures (enhanced relative to Fig. 2(b) by the mixing related to the
spurious off-diagonal matrix elements of the 1g9/2 orbit) and avoided crossings. See subsection IV.B for further discussion.
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In all shells one sees that the changes inflicted on the
Nilsson diagrams by the replacement of the intruder par-
ity orbitals with their 0[110] counterparts do not affect
the main features of the diagrams. Thus we have ob-
tained a new approximate symmetry scheme which mod-
els the role of quadrupole interactions throughout a ma-
jor oscillator shell that resembles the actual shell. As
such we can imagine that it can be used to predict the
evolution of observables that depend robustly on the
number of nucleons interacting in a quadrupole field.
Such predictions will obviously ignore other interactions,
such as pairing, the roles of other shells, and the like, and
it remains to be seen how that affects them. This is dis-
cussed again in a companion paper [1]. Importantly, we
remark that our approach is intended as a complement,
not a replacement for, more comprehensive (and often
computer-intensive) approaches such as large scale shell
model calculations or multi-shell symplectic models.

V. CONCLUSIONS

In this manuscript we propose that a proxy-SU(3) sym-
metry appears in heavy deformed nuclei, very similar to
the Elliott SU(3) symmetry appearing in light (sd shell)
nuclei. In order to demonstrate this fact, we use an ele-
mentary and completely transparent Nilsson calculation,
in which it becomes clear that the changes induced by
replacing in each major shell the intruder parity Nilsson
orbitals by their 0[110] counterparts are small, therefore
offering the basis for a reliable approximate scheme. The
main reasons behind the good quality of this approxima-
tion are:

1) the fact that the intruder parity orbitals have ex-
actly the same orbital angular momentum, spin, and to-
tal angular momentum projection quantum numbers as
their 0[110] substitutes,

2) the small number and small contribution to the
total Hamiltonian of the additional non-vanishing spin-
orbit and angular-momentum-squared matrix elements
appearing because of the approximation induced, which
imply that the additional avoided crossings caused by
the approximation are of small size, thus not affecting
drastically the form of the Nilsson diagrams,

3) because of 1) and 2), the real Nilsson diagrams have
nearly the same structure as they would have had if the
missing normal parity orbitals were present in the place
of the intruder parity orbitals, completing an oscillator
major shell with the appropriate U(N) symmetry algebra,
having an SU(3) subalgebra.

The main open question is if this proxy-SU(3) scheme
can be of any practical use, in other words if the approx-
imations made result in an SU(3) scheme from which
reliable conclusions on physical quantities can be drawn.
The demonstration that the Nilsson diagram based on
the present proxy-SU(3) scheme is a good approximation
to the actual one can be taken as a validation to use
this scheme to carry out actual predictions for nuclear

behavior.
More specifically, the new set of states comprising the

proxy scheme now allows the system to be described by a
symmetry (instead of a collection of orbits that have to be
solved in a complex diagonalization process) correspond-
ing to full sets of oscillator states such as the sdg orbits
or the pfh orbits. Having a symmetry means that many
results can now be obtained analytically, often by inspec-
tion, and often in a parameter-free way. This could in-
volve, for example, how various observables behave across
a set of nuclei. It can also provide initial predictions
for currently inaccessible nuclei. Ultimately, deviations
from those predictions may help point to changes in shell
structure or for the enhancement of certain interactions
in unstable nuclei. A first application is given in Ref.
[1], in which it is shown that the present scheme can pre-
dict the prolate-over-oblate dominance in deformed nu-
clei, the location of the prolate-oblate shape phase tran-
sition in rare earth nuclei and specific predictions of the
γ and β deformation values for deformed nuclei that are
in good overall agreement with the data without any free
parameters. We stress again that we do not view the
proxy-SU(3) scheme as a substitute for detailed micro-
scopic calculations or that it can even make plausible
predictions for many of the spectroscopic results of such
calculations. But we do suggest that it can be a valuable,
and certainly extremely simple, complement to such ap-
proaches, and a way of predicting certain more global
properties of deformed nuclei related to their collectivity
and shapes.

Appendix I

The spin-orbit term, l ·s, has diagonal matrix elements

〈nzrsΣ|l · s|nzrsΣ〉 = (r − s)Σ = ΛΣ, (10)

as well as non-diagonal matrix elements

〈nz − 1, r+ 1, s,Σ− 1|l · s|nzrsΣ〉 = − 1√
2

√
nz(r + 1),

〈nz + 1, r, s− 1,Σ− 1|l · s|nzrsΣ〉 =
1√
2

√
(nz + 1)s,

〈nz + 1, r − 1, s,Σ + 1|l · s|nzrsΣ〉 = − 1√
2

√
(nz + 1)r,

〈nz − 1, r, s+ 1,Σ + 1|l · s|nzrsΣ〉 =
1√
2

√
nz(s+ 1.

(11)

The orbital angular momentum term, l2, has diagonal
matrix elements

〈nzrsΣ|l2|nzrsΣ〉 = 2nz(r+s+1)+(r+s)+(r−s)2, (12)

as well as non-diagonal matrix elements

〈nz+2, r−1, s−1,Σ|l2|nzrsΣ〉 = −2
√

(nz + 2)(nz + 1)rs,

〈nzrsΣ|l2|nzrsΣ〉 = −2
√

(nz − 1)nz(r + 1)(s+ 1).
(13)
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    7 / 2 [ 5 0 3 ]
   1 1 / 2 [ 6 1 5 ]
    3 / 2 [ 5 1 2 ]
    1 / 2 [ 5 1 0 ]
    9 / 2 [ 6 2 4 ]
    7 / 2 [ 5 1 4 ]
    5 / 2 [ 5 1 2 ]
    7 / 2 [ 6 3 3 ]
    1 / 2 [ 5 2 1 ]
    5 / 2 [ 5 2 3 ]
    3 / 2 [ 5 2 1 ]
    5 / 2 [ 6 4 2 ]
    3 / 2 [ 6 5 1 ]
    3 / 2 [ 5 3 2 ]
    1 / 2 [ 5 3 0 ]
    1 / 2 [ 6 6 0 ]
    1 / 2 [ 5 4 1 ]

FIG. 3: (color online) Same as Fig. 2, but for the diagonal matrix elements (in units of ~ω0) of the Nilsson Hamiltonian for the
82-126 (a) and pfh (c) neutron shells compared to the results of the full diagonalization for the 82-126 (b) and pfh (d) neutron
shells, as functions of the deformation parameter ε. The Nilsson parameters are taken from Table I. The 1i13/2 orbitals in (a)
and (b), as well as the 1h11/2 orbitals in (c), are indicated by dashed lines. The 1i13/2 orbital labels in (a) and (b), as well as the
1h11/2 orbital labels in (c) and (d), appear in boldface. Orbitals are grouped in color only to facilitate visualizing the patterns
of orbital evolution. Note that the Nilsson labels at the right are always in the same order as the energies of the orbitals as
they appear at the right as well (largest deformation shown). Therefore, in some cases the order of the Nilsson orbitals changes
slightly from panel to panel.
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The above equations are equivalent to these given in
Ref. [17] in a |nzn⊥ΛΣ〉 notation. Additional results
for matrix elements in various notations can be found in
Refs. [34–36].

Supplementary material

Tabulations of l · s, l2, and H matrix elements for
the 28–50 and pf, 82–126 and pfh, as well as 126–184
and sdgi shells as well as figures of spectra for the same
shells, either involving only the diagonal terms of the
Hamiltonian, or derived through the diagonalization of
the full Hamiltonian, are provided through the Electronic

Physics Auxiliary Publication Service (EPAPS) [33].
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