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The failures of single-reference coupled cluster for strongly correlated many-body systems is
flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries
of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals
that coupled cluster fails because it factorizes high-order excitation amplitudes incorrectly. How-
ever, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or
weak) correlation. Here we pursue a merger of symmetry projection and coupled cluster theory,
following previous work along these lines that utilized the simple Lipkin model system as a testbed
[J. Chem. Phys. 146, 054110 (2017)]. We generalize the concept of a symmetry-projected mean-
field wave function to the concept of a symmetry projected state, in which the factorization of
high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is
not exponential, and combine them with coupled cluster theory in order to model the ground state
of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate
physical symmetries which are broken under strong correlation. We show how the combination of
symmetry collective states and coupled cluster is effective in obtaining correlation energies and order
parameters of the Agassi model throughout its phase diagram.

I. INTRODUCTION

In single-reference coupled cluster (CC) theory, high-
order particle-hole excitation amplitudes out of a refer-
ence determinant are factorized into products of lower-
order particle-hole excitations via the exponential ansatz
[1–4]. Single-reference CC methods are at the center of
modern quantum chemistry calculations [5] because of
their optimal combination of computational affordabil-
ity and quantitative accuracy. Similarly, there has been
a renaissance of the method in nuclear physics where
high precision studies of medium-mass nuclei close to
magic numbers were successfully performed in the last
decade [6–8]. However, single-reference CC is only ac-
curate when applied to systems characterized by weak
correlations, a category that excludes systems exhibit-
ing such important properties as superconductivity or
superfluidity [9, 10], or nuclear deformation [11], and
such ubiquitous phenomena as bond breaking in quan-
tum chemistry [12]. Under weak correlation, the under-
lying reference wave function that coupled cluster usually
takes as a given, and which in single-reference CC must
be a single determinant, is a qualitatively good approx-
imation of the ground state eigenfunction. Only if this
condition is satisfied can the coupled cluster expansion
of the wave function be truncated at a low order [12].

A single determinant labors under significant con-
straints in modeling real many-body wave functions. In
particular, when the correlations are strong, it is im-
possible for a single-determinantal wave function to si-

multaneously exhibit accurate total energy and to re-
spect the physical symmetries of the Hamiltonian - that
is, in order to get a qualitatively good total energy,
a mean-field treatment of the problem must break the
real physical symmetries that the true many-body wave
function would exhibit; this is called the “symmetry
dilemma” [13]. Coupled cluster methods can be built off
of symmetry-broken determinants, such as unrestricted,
quasiparticle, or Bogoliubov coupled cluster methods
[9, 14]. These usually produce good total energies, but for
finite systems, this comes at the cost of other properties
of the wave function, including quantum numbers defined
by physical symmetries such as angular momentum and
particle number [15, 16] which are lost in the broken-
symmetry treatment. In the thermodynamic limit, this
is not an issue, but to obtain good properties for fi-
nite systems, it is usually necessary to obtain explicitly
symmetry-adapted wave functions.

It is possible to restore good quantum numbers to
a broken-symmetry mean-field wave function by pro-
jecting out its symmetry-adapted component [17–22].
The resulting wave function is a linear combination
of non-orthogonal determinants with good symmetries
and qualitatively good energies under strong correlation.
However, despite this qualitative superiority to single-
reference CC, projected mean-field wave functions are
still not exact and a good deal of “leftover” dynamic (i.e.
weak) correlation remains to be accounted for. Further-
more, the static/strong correlation included in the sym-
metry projection of a mean-field reduces to the broken-
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symmetry mean-field in the thermodynamic limit [22]. A
formalism for restoring particle number in quasiparticle
coupled cluster has been presented [10] but, to the best
of our knowledge, not yet implemented.

We have recently explored the possibility of interpolat-
ing between projected mean-field and CCSD for the at-
tractive pairing (“reduced BCS”) model exhibiting mean-
field number symmetry breaking [23, 24], as well as ex-
plicitly combining the two approximations for molecules
exhibiting mean-field spin symmetry breaking [25]. In
a previous work [26], we used the Lipkin model [27–
29] as a testbed to develop projected restricted coupled
cluster (PRCC), projected quasirestricted coupled clus-
ter (PQCC), and projected unrestricted coupled cluster
(PUCC). All three methods combine mean-field symme-
try breaking, symmetry-projection operators, and cou-
pled cluster theory in various manners. They are de-
scribed in detail in Sec. II A below.

Here we expand on this development using the Agassi
model Hamiltonian [30, 31] as a second testbed which has
more elaborate physics. The Agassi model is a schematic
version of the paring-plus-quadrupole model [32] exten-
sively used in nuclear physics to describe deformed super-
conducting nuclei. It combines the Lipkin model with the
two-level pairing model [33]. Although its Hamiltonian
is not integrable, the number of states in its collective
Hilbert space grows slowly with the size of the system,
as O(n2), and therefore the Hamiltonian can be diagonal-
ized for systems of up to hundreds of particles. However,
despite its simplicity, the Agassi model is rich in non-
trivial phenomena; it has two separate physical symme-
tries that are broken at the mean-field level in various
regions of its phase diagram [31]. We test two of our new
methods (PRCC and PQCC) on this model and find that
they produce good agreement with exact results over the
entire phase diagram. The successful tests of these meth-
ods on the Lipkin and now Agassi model Hamiltonian
lay the foundation for their future application to realistic
finite many-body systems. An Appendix details some al-
gebraic properties and basis functions that are useful in
performing calculations on the Agassi model.

II. THEORY

A. Symmetry-adapted formalisms

The restricted coupled cluster (RCC) wave function is

|RCC〉 = eT |0〉, (1)

in which |0〉 is a symmetry-adapted determinant, usually
obtained from a mean-field approximation such as the re-
stricted Hartree–Fock (RHF) method. The cluster oper-
ator, T , consists of a sum of particle-hole excitations out
the reference determinant, weighted by excitation am-
plitudes (“T amplitudes”), that do not change any of
the quantum numbers associated with symmetries of the
Hamiltonian. It can be expanded, and the expansion can

be truncated, in terms of the number of particle-hole ex-
citations out of the reference determinant,

T = T1 + T2 + T3 + . . . . (2)

Because of the exponential ansatz [Eq. (1)], high-order
particle hole excitations arise both from high-order terms
in the expansion of the cluster operator and from prod-
ucts of lower-order terms. For instance, triple excitations
originate both from T3 and from T1×T2, in terms of Eq.
(2).

In the standard RCC algorithm, the Hamiltonian is
subject to a similarity transformation which renders it
non-Hermitian, H̄ = e−THeT , and the T amplitudes
are obtained by stipulating that the symmetry-adapted
reference is a right-hand eigenstate, H̄|0〉 = E|0〉. The
similarity-transformed Schrödinger equation is then left-
projected against excited states, leading to a set of
nonlinear equations defining residuals, {R1, R2, R3, . . .},
which must be made to vanish by varying T and which
are coupled to each other [34]. That is, Rn depends on at
least Tn, Tn+1, and Tn+2, so that the equations for the
residuals of each order must be solved simultaneously.
In practical applications this coupling chain is broken by
setting amplitudes of an immediately higher order than
a certain cutoff to zero; for example, in RCC with double
excitations (RCCD), T3 and T4 are assumed to vanish.
In the regime of dynamic (weak) correlation, this is a
reasonable assumption and such methods give accurate
energies. However, under the regime of static (strong)
correlation, T3 and T4 become non-negligible and RCCD
breaks down; the nonlinear equations for T frequently do
not have solutions or lead to complex energies. Alter-
natively, the cluster operator T can be calculated using
a variational method; this approach always yields real
energies, but under strong correlation variational RCC
(vRCC) undercorrelates substantially [25]. Either way,
RCC is not an appropriate ansatz for systems character-
ized by strong correlation.

Strong correlation also corresponds to spontaneous
symmetry breaking at the mean-field level. In other
words, a symmetry-adapted state such as |0〉 ceases to be
the lowest-energy solution to the mean-field equations.
A lower-energy broken-symmetry determinant appears,
which we label |Φ〉 and which is related to the symmetry-
adapted state via a Thouless transformation,

|Φ〉 = eT1+Q1 |0〉, (3)

omitting a normalization factor. Here, Q1 consists of
weighted (by “Q amplitudes”) single particle-hole excita-
tions out of the symmetry-adapted reference which, un-
like T1, change the quantum numbers associated with
unitary symmetries of the Hamiltonian. Note that
particle-hole excitations in the same basis, such as those
in T1 and Q1, commute with one another. An exam-
ple of a symmetry-broken mean-field method is the spin-
unrestricted Hartree–Fock (UHF) method used in quan-
tum chemistry. The molecular Hamiltonian used in quan-
tum chemistry commutes with the magnitude of the total
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electron spin angular momentum, S2 and its z-axis com-
ponent, Sz, and the two corresponding quantum numbers
are labeled S and MS , respectively. The UHF method
allows for mean-field symmetry breaking of the spin mag-
nitude, S, but not z-axis component, MS . The corre-
sponding T1 and Q1 operators are

T1 =
∑
i,a

taiE
i
a, (4)

Q1 =
∑
i,a

qai S
i
a, (5)

where tai and qai are the T and Q amplitudes and Eia
and Sia are particle-hole excitations from the ith occu-
pied spatial orbital to the ath unoccupied spatial orbital.
Eia is an excitation which leaves both S and MS un-
changed, while Sia is an excitation that leaves MS un-
changed but increases S by 1 [25, 35]. Combining these
two excitations in the exponential ansatz [Eq. (3)] results
in a UHF state, |Φ〉, which (in general) contains multiple
components with different S, so that |Φ〉 itself cannot be
described by any single spin quantum number.

In the Agassi model we work with below, there are no
single particle-hole excitations that preserve the symme-
tries of the Hamiltonian, so T1 is nonexistent. Therefore,
for the rest of this work, we drop T1. The definition of
the broken-symmetry determinant is restated as

|Φ〉 = eQ1 |0〉. (6)

Since symmetry-broken determinants appear when
RCC breaks down, a simple solution is to use the
symmetry-broken determinant itself as the reference for
a coupled cluster expansion, resulting in the unrestricted
coupled cluster (UCC) wave function,

|UCC〉 = eU |Φ〉, (7)

where U consists of particle-hole excitations out of |Φ〉
and, similar to T , is expanded and truncated in terms of
particle-hole excitation order,

U = U1 + U2 + U3 + . . . . (8)

Neither |Φ〉 nor the UCC wave function has good quan-
tum numbers associated with symmetries, and the in-
dividual terms in U cannot easily be matched to spe-
cific transitions between symmetry quantum numbers.
Although total energies calculated with the UCC wave
function are usually very accurate, the results for wave
function properties other than the energy are less reliable
for finite systems because of the loss of symmetry.

In a previous work [26], we experimented with a
method that applies a symmetry projection operator
to a UCC wave function, which we named projected-
unrestricted CC (PUCC). The PUCC wave function is

|PUCC〉 = PeU |Φ〉, (9)

where P selects those components of the wave function
with the desired symmetry quantum numbers. PUCC

was applied to the Lipkin model system [26] and was
found to improve on the accuracy of the total energies cal-
culated with UCC, especially in the limit of very strong
correlation. The Agassi Hamiltonian we will investigate
below breaks number symmetry at the mean-field level
under strong correlation, and the corresponding “unre-
stricted” CC method is quasiparticle or Bogoliubov CC
[9, 14]. Here, we do not further discuss UCC or PUCC,
which will be presented in due time, and focus on the
symmetry adapted variants discussed in detail below.

An alternative to PUCC explored for the Lipkin model
[26] is to substitute the symmetry-adapted RCC cluster
operator, T , for U in Eq. (9). The whole expression can
then be written in the symmetry-adapted basis by using
Eq. (6) for the broken-symmetry determinant, |Φ〉. This
is the projected-restricted CC (PRCC) wave function,

|PRCC〉 = PeT+Q1 |0〉. (10)

Note that the projection operator commutes with a
symmetry-adapted excitation operator such as T , so that
it can be moved to the right,

|PRCC〉 = eTPeQ1 |0〉
= eT |PHF〉, (11)

thus expressing PRCC as a coupled cluster ansatz with
a symmetry-adapted cluster operator and a projected
Hartree–Fock (PHF) wave function as the reference “de-
terminant.” However, a PHF state is actually a linear
combination of several non-orthogonal determinants [22]
which arise from applying the projection operator to the
broken-symmetry mean-field determinant. In the lan-
guage of particle-hole excitations, PHF wave functions
contain excitations to all orders. To see how this comes
about, we can closely examine the PHF wave function

|PHF〉 = PeQ1 |0〉

= P

(
1 +Q1 +

Q2
1

2!
+
Q3

1

3!
+ . . .

)
|0〉

= F (K2)|0〉, (12)

where K2 consists of symmetry-adapted double excita-
tions which are products of single excitations in Q1, and
F is some polynomial of K2 to all orders. As discussed
above, the powers of Q1 arising from the exponential cre-
ates components of the wave function that mixes the sym-
metry quantum numbers albeit in a “controlled” manner.
In selecting particular terms corresponding to the target
quantum numbers from the exponential, the projection
operator creates a new polynomial, F , in which high-
order particle-hole excitations are expressed in terms of
products of lower-order ones by some non-exponential
formula. We have found in previous works that project-
ing out spin symmetry in this way leads to a hyperbolic
sine function [35], and that projecting out number sym-
metry for the reduced BCS Hamiltonian results in a mod-
ified Bessel function of the first kind [23]. Attempts to
model these functions with an exponential ansatz will fail
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and this is at the root of why single-reference restricted
coupled cluster is unstable under strong correlation.

Another alternative to PUCC involves a straightfor-
ward generalization of Eq. (10),

|PQCC〉 = PeT+Q|0〉, (13)

where Q now contains Q1, as in PRCC, but also can con-
tain higher-order symmetry-quantum-number-switching
particle-hole excitations,

Q = Q1 +Q2 +Q3 + . . . . (14)

This was named the projected quasirestricted coupled
cluster (PQCC) method in Ref. 26. PRCC can be char-
acterized as a form of PQCC in which Q is restricted to
Q1. As in PRCC, each excitation in Q can unambigu-
ously be assigned a specific transition between symme-
try quantum numbers, because the particle-hole basis is
symmetry-adapted. However, unlike PRCC, PQCC can-
not generally be interpreted as coupled cluster with a
PHF reference state, because Q is not limited to one-
body excitations and eQ|0〉 is therefore not a Thouless
transformation of the symmetry-adapted reference deter-
minant. We use the name “symmetry collective state,”
or “SC,” to refer to this sort of generalization of PHF,

|SC〉 = PeQ|0〉. (15)

A PHF wave function is the simplest example of a sym-
metry collective state. All symmetry collective states are
symmetry-adapted and contain particle-hole excitations
to all orders out of a symmetry-adapted reference deter-
minant. PQCC can be described as the combination of a
coupled cluster ansatz with a symmetry collective state
reference,

|PQCC〉 = eTPeQ|0〉
= eT |SC〉. (16)

In the test on the Lipkin model [26], PUCC was found
to give superior accuracy in the strong-correlation limit,
whereas PQCC was found to give better accuracy in
the recoupling region, i.e., at correlation strengths near
where the lowest-energy mean-field wave function transi-
tions between symmetry-adapted and symmetry-broken.
Also, PQCC was found to have slightly superior accu-
racy in the energies compared to PRCC at higher orders
of truncation (i.e., triples or higher) because of the addi-
tional excitations included in Q.

Throughout the remainder of this work, we intro-
duce a symbolic nomenclature in which terms all of the
wave functions hitherto described (other than UCC and
PUCC) can be expressed:

|OAOBOC . . .〉 ≡ PeOA+OB+OC+...|0〉, (17)

where OA, OB, and OC are particle-hole excitation op-
erators in the basis of the symmetry-adapted reference

state, |0〉. In this nomenclature, PHF, RCC, a general
symmetry collective state, PRCC, and PQCC are

|PHF〉 = PeQ1 |0〉 = |Q1〉, (18a)

|RCC〉 = PeT |0〉 = |T 〉, (18b)

|SC〉 = PeQ|0〉 = |Q〉, (18c)

|PRCC〉 = PeT+Q1 |0〉 = |TQ1〉, (18d)

|PQCC〉 = PeT+Q|0〉 = |TQ〉. (18e)

Note that in the case of methods such as RCC, which
include no symmetry-breaking operators, the projection
operator has no effect.

B. Agassi Model

In this work, we apply the PRCC and PQCC methods
to a more sophisticated testbed than the Lipkin model on
which they were originally developed: the Agassi model.
According to the labeling conventions of Davis and Heiss
[31], the Agassi model describes a set of 2j spinless
fermions occupying two sets of single-particle states, la-
beled σ = −1 and σ = +1, each of which is 2j-fold
degenerate. The individual states in each level are fur-
thermore labeled with an index m, with −j ≤ m ≤ j and
m 6= 0. The Hamiltonian operator for this model is

H = εJ0 −
V

2

(
J2
+ + J2

−
)
− g

∑
σ,σ′

A†σAσ′ , (19)

where ε, g, and V are adjustable parameters and where
the one-body operators, J and A, are

J0 =
1

2

∑
m

(
c†+1,mc+1,m − c†−1,mc−1,m

)
, (20a)

J+ =
∑
m

c†+1,mc−1,m, (20b)

J− =
∑
m

c†−1,mc+1,m, (20c)

A†σ =
∑
m>0

c†σ,mc
†
σ,−m, (20d)

Aσ =
∑
m>0

cσ,−mcσ,m. (20e)

That the size of the Hilbert space for this model grows
quadratically with the number of particles, as mentioned
in Sec. I, is demonstrated in the Appendix.

However, despite this simplicity, the physics of the
Agassi model is rich in non-trivial phenomena. The
Agassi model is, in essence, a union of the Lipkin model
[27–29] and the two-level pairing model [33]. The Hamil-
tonian, Eq. (19), combines two qualitatively distinct
channels of many-body correlation. The second term in
Eq. (19), involving J− and J+ and with strength param-
eter V , is equal to the correlation term of the Lipkin
model Hamiltonian. It moves pairs of particles in either
the lower or upper level “vertically” up or down, between
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m=−3 m=−2 m=4m=3m=2m=1m=−1

=+1

=−1

=−4m

σ

σ

FIG. 1: A representative state of the Agassi model with
j = 4. Starting from the non-interacting ground state,

in which all lower levels and no upper levels are
occupied [see Eq. (24)], this state is reached by the

action of two J+ excitation operators at m = −4 and
m = 1, one A−1 annihilation operator at m = 2,−2,

and one A†+1 creation operator at m = 3,−3.

σ = −1 and σ = +1, but cannot change the “horizontal”
indices m. On the other hand, the third term in Eq. (19),
involving Aσ and A†σ and with strength parameter g, is
equivalent to the two-body term in the pairing Hamilto-
nian. It moves pairs of particles with opposite m indices
(e.g. σ,m and σ,−m) to another pair of states at σ′,m′

and σ′,−m′. A diagrammatic representation of all this
is depicted in Fig. 1.
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 0  1  2  3  4  5

χ

Σ0

qL = qP
= 0

qL ≠ 0

qP ≠ 0

FIG. 2: The mean-field phase diagram of the Agassi
model. The two parameters qL and qP define the

general mean-field wave function of the Agassi model
[Eqs. (6) and (23)]. Along the ray where χ = Σ0 > 1,

both qL and qP are nonzero.

The two distinct channels of correlation correspond to
the breaking of two separate symmetries of the Agassi
Hamiltonian at the mean-field level when the respective
correlation strength parameters are large enough. The
two relevant symmetries here are parity, which is in-
herited from the Lipkin model and which breaks at the
mean-field level when V is large, and particle number,
which breaks at the mean-field level when g is large, as

in the two-level pairing model [33]. The parity symmetry
operator, Π, and particle number operator, N , are

Π = eiπJ0 , (21)

N =
∑
m

(
c†+1,mc+1,m + c†−1,mc−1,m

)
, (22)

and the Hamiltonian has [H,Π] = [H,N ] = 0. A state
has Π-eigenvalue +1 or −1 depending on whether it has
an even or odd number of particle-hole excitations from
the lower level to the upper level and whether j is even
or odd.

The general mean-field wave function of the Agassi
model which can break these two symmetries is given
by Eq. (6) with

Q1 = qLJ+ + qP

(
A†+1 +A−1

)
, (23)

where the symmetry-adapted reference determinant is

|0〉 =
(
A†−1

)j
|−〉, (24)

and where |−〉 is the physical vacuum. Eq. (24) describes
the full occupation of the lower level of states (σ = −1)

created by the maximum possible number of A†−1 pair
creation operators, and the full vacancy of the upper level

(σ = +1), indicated by the absence of any A†+1 pair cre-
ation operators or any J+ particle-hole excitations. In
Eq. (23), the two terms correspond to excitations along
the two Agassi correlation channels and to breaking of
the two Agassi symmetries. Nonzero qL corresponds to a
parity-broken mean-field and nonzero qP corresponds to
a number-broken mean-field. Throughout the rest of the
paper, we refer to the symmetry-adapted reference state
as the “RHF” state and the general mean-field determi-
nant |Φ〉 as the “UHF” state which is equivalent to the
Hartree-Fock-Bogoliubov vacuum of Ref. 31. Figure 2 de-
picts the mean-field phase diagram; here and throughout
the following we have made the change from ε, V , and g
to to the dimensionless variables of Davis and Heiss [31]

χ =
V (2j − 1)

ε
, (25)

Σ0 =
g(2j − 1) + V

ε
, (26)

which are defined so that mean-field parity symmetry
breaking occurs for χ > 1 and mean-field number sym-
metry breaking occurs for Σ0 > 1.

The breaking of these symmetries at the mean-field
level signals the impending failure of typical single-
reference methods to model the structure of the Agassi
model (or of any model Hamiltonian, for that matter).
Figure 3 tracks this failure for the RCCD method ap-
plied to an Agassi model with j = 20. The RCCD wave
function [|T2〉 in the nomenclature of Eq. (17)] is given
by Eq. (1) with

T = T2 = tLLJ
2
+ + tPPA

†
+1A−1. (27)
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FIG. 3: Ground-state energy errors of the Agassi model
with j = 20 calculated by RCCD [Eqs. (1) and (27)],
RHF, [Eq. (24)] UHF, [Eqs. (6) and (23)], and PHF

[Eqs. (12) and (28)]. The inset shows the lines through
the phase diagram along which the energies were
calculated, and x is the larger of χ or Σ0. No real
solutions to the RCCD equations were found for

x > 1.1.

In Fig. 3, we obtain the amplitudes tLL and tPP through
the standard CC algorithm based on a similarity transfor-
mation; the existence of real solutions to the correspond-
ing equations is not guaranteed. Under weak correlation;
i.e., χ < 1 and Σ0 < 1, the RCCD method is nearly
exact. However, near χ = 1 or Σ0 = 1, RCCD begins
to overcorrelate, and starting shortly thereafter, we were
unable to find solutions to the nonlinear equations. Un-
der strong correlation, T3 and T4 becomes non-negligible;
RCCD calculations assume that they are zero and thus
fail.

The failure of restricted CC is due to its inability to
model the strong correlation captured by the symmetry
breaking at χ = 1 and Σ0 = 1 in the mean-field wave
function. Starting at x = 1 in Fig. 3, the UHF solution to
the Agassi model begins to diverge from the RHF state,
with UHF exhibiting lower energy errors. Going from
UHF to PHF [|Q1〉 in terms of Eq. (17)] further reduces
the energy errors. (A variation-after-projection method
is used to obtain the PHF results in Fig. 3 and everywhere
else in this work.) For the Agassi model the PHF wave
function is explicitly

|PHF〉 = |Q1〉 = PeQ1 |0〉

= P
∑
l1,l2

ql1L
l1!

ql2P
l2!
J l1+

(
A†+1 +A−1

)l2
|0〉

=
∑
l1,l2

q2l1L

(2l1)!

q2l2P

(l2!)2
J2l1
+

(
A†+1A−1

)l2
|0〉

= cosh(qLJ+)I0

(
2qP

√
A†+1A−1

)
|0〉, (28)

where Q1 is given by Eq. (23) and where I0 is a modified
Bessel function of the first kind. The projection oper-
ator selects those terms with even powers of J+, which
preserve parity symmetry, and those terms with equal

powers of A†+1 and A−1, which preserve particle number.
The resulting excitations are separable into a product of
a hyperbolic cosine of J2

+ (as reported in the work on Lip-
kin parity projection in Ref. 26) and a Bessel function of

A†+1A−1 (as reported in the work on number projection
in Ref. 23).

The PHF wave function is exact for the Agassi model in
the strong attractive pairing limit (Σ0 →∞ and Σ0 � χ)
and in the simultaneous thermodynamic and strong Lip-
kin correlation limit (χ → ∞, χ � Σ0, and j → ∞).
The behaviors of the red (Σ0 > χ) and green (χ > Σ0)
curves in Fig. 3 are suggestive of these limits. There
is still visible error in the PHF energies, however, es-
pecially near the recoupling region. We attribute this
to weak (dynamical) correlation and therefore we expect
that this error can be substantially cured with our PRCC
approach. Augmenting Eq. (28) with the doubles clus-
ter operator of RCCD results in a PRCC wave function
which, in the nomenclature of Eq. (17), is labeled |T2Q1〉:

|T2Q1〉 = PeT2+Q1 |0〉

= etLLJ
2
++tPPA

†
+1A−1 |PHF〉, (29)

Note that, although the |T2Q1〉 wave function has more
parameters than the PHF (|Q1〉) wave function, the ex-
citations are still separable into a product of two poly-
nomials, one for the J2

+ excitations related to the Lipkin

correlation channel and one for the A†+1A−1 excitations
related to the pairing correlation channel.

There is one limit of strong correlation in which PHF
is not exact regardless of system size: the simultaneous
strong correlation limit along both channels, Σ0 = χ →
∞. The PHF energy error along that line in Fig. 3 (blue)
grows monotonically with correlation strength instead of
converging, suggesting a non-dynamical correlation effect
not captured by PHF in this region of the phase diagram.
We conjecture, and confirm in Sec. III below, that the rel-
atively poorer performance of PHF in this region is re-
lated to the lack of any terms coupling correlation along
the two channels. An analogy can be made to the differ-
ence between a wave function obtained in an adiabatic
approximation separating two different interaction chan-
nels and one which includes non-adiabatic coupling. We
anticipate that the latter wave function will outperform
the former in modeling a system in which the character-
istic excitations of the two channels have similar energy
scales.

The lowest-order way to couple J2
+ excitations to

A†+1A−1 excitations is to include a higher-order Q term:

Q2 = qLPJ+

(
A†+1 +A−1

)
. (30)

Although we call this Q2, we note that a number-

breaking, parity-preserving term with A†+1A
†
+1+A−1A−1
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as the operator part should formally be added to Eq. (30).
We don’t expect this latter excitation to be important,
so we omit it here. Q2 as given by Eq. (30) changes the
quantum numbers of parity and number symmetry si-

multaneously. Adding Q2 to the excitations included in
PHF generates a more general symmetry collective state
labeled |Q1Q2〉:

|Q1Q2〉 = PeQ1+Q2 |0〉

= P
∑
l1,l2,l3

ql1L
l2!

ql2P
l2!

ql3LP
l3!

J l1+l3+

(
A†+1 +A−1

)l2+l3
|0〉

=
∑
l1,l2

(2l2)!

(l2!)2

min(2l1,2l2)∑
l3=0

(
q2l1−l3L

(2l1 − l3)!

q2l2−l3P

(2l2 − l3)!

ql3LP
l3!

)
J2l1
+

(
A†+1A−1

)l2
|0〉. (31)

Unlike PHF (|Q1〉), |Q1Q2〉 is not a symmetry projection
of a mean-field wave function, because the exponential
of Q2 cannot be considered a Thouless transformation.
Making the same modification to the |T2Q1〉 wave func-
tion generates a PQCC method labeled |T2Q1Q2〉,

|T2Q1Q2〉 = PeT2+Q1+Q2 |0〉

= etLLJ
2
++tPPA

†
+1A−1 |Q1Q2〉. (32)

We expect |Q1Q2〉 and |T2Q1Q2〉 to outperform PHF
(|Q1〉) and |T2Q1〉, respectively, in the region of the phase
diagram where both correlation strength parameters are
simultaneously high.

Another potential way to couple the two correlation
channels is in the cluster operator; i.e., by including terms
such as

T4 =tLLPPJ
2
+A
†
+1A−1 + . . . , (33)

which is similar to Q2 in that it excites along both cor-
relation channels simultaneously. However, in this work
we seek a method that can handle strong correlation at
the doubles level or lower, and T4 contains quadruple
excitations. Furthermore, CC methods excel at describ-
ing weak, dynamic correlation, and the coupling between
pairing and Lipkin channels is expected when correlation
along both channels is strong. For these reasons we do
not here pursue methods using T4.

III. RESULTS

We test a PRCC wave function (|T2Q1〉) and a PQCC
wave function (|T2Q1Q2〉) on the Agassi model and exam-
ine both the accuracy of the computed energies and the
quality of the wave function, as measured by several order
parameters. We compare |T2Q1〉 and |T2Q1Q2〉 to the
results from exact diagonalization of the Agassi model
(“FCI”) as well as a variational implementation of RCCD
(|T2〉) and the PHF (|Q1〉) and |Q1Q2〉 wave functions.
We take two separate approaches to determining the T
and Q amplitudes: first we test a variational formalism

in which all amplitudes are determined by minimizing
the energy expectation value over a given wave function,
and then we test a similarity-transformed basis approach
more common to coupled cluster theory. The former is
robust and has guaranteed solutions for any point on the
phase diagram (although obtaining those solutions may
not always be computationally easy), whereas the latter
is more practical for large systems where FCI codes are
not available. We continue to use the j = 20 system
which is large enough to significantly reduce finite-size
effects.

A. Variational Energies

Our variational treatments of CC theories are here de-
noted by the prefix “v”. We make a Hermitian energy ex-
pectation value stationary with respect to all wave func-
tion parameters simultaneously. For instance, the vR-
CCD energy is obtained by solving the set of equations,

EvRCCD =
〈T2|H|T2〉
〈T2|T2〉

, (34)

0 =
dE

dtLL
=

dE

dtPP
. (35)

In this section we evaluate the accuracy of various wave
functions in recovering the correlation energy. “Correla-
tion energy” in this case is defined with relation to the
RHF energy:

Ec = E − 〈0|H|0〉. (36)

RHF is used as a reference point instead of the symmetry-
broken mean field because the latter happens to give ex-
act energies in various limits of the Agassi model [9, 26],
limiting its usefulness as a reference in measuring the
accuracy of approximate methods.

The error from FCI of the vRCCD (|T2〉 wave function)
correlation energy across the phase diagram is plotted in
Fig. 4a. The vRCCD method fails quantitatively outside
of the weak-correlation region at low χ and low Σ0; at
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(a) RCCD (|T2〉) wave function.
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(b) PHF (|Q1〉) wave function. The color axis is slightly
shifted and an ellipse inscribed to guide the eye towards the
region of the phase diagram where |Q1〉 results differ from

|Q1Q2〉 results.
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(c) |Q1Q2〉 wave function. The color axis is slightly shifted and
an ellipse inscribed to guide the eye towards the region of the
phase diagram where |Q1〉 results differ from |Q1Q2〉 results.

FIG. 4: The fractional correlation energy (Ec) error
from FCI for an Agassi model with 40 particles,

calculated variationally with the RCCD (|T2〉), PHF
(|Q1〉), and |Q1Q2〉 wave functions.

higher correlation strengths vRCCD systematically un-
dercorrelates by 5-10%. There is no failure to converge
the equations, as depicted in Fig. 3, but that is because
of the inherent robustness of the variational approach,
as contrasted to the projective method more commonly
used in coupled cluster calculations [4] and which RCCD
(without the “v”) utilizes. The vRCCD results still con-
firm that coupled cluster is poorly suited to modeling
strong correlation.

In contrast, the correlation energy error for PHF (|Q1〉
wave function) is plotted in Fig. 4b. The PHF energy
has notably poorer accuracy than the vRCCD energy in
the weakly-correlated region of the phase diagram. How-
ever, at either strong correlation limit, PHF outperforms
vRCCD, undercorrelating by only up to 1% in the strong
Lipkin correlation region (χ > Σ0) and achieving accu-
racy to within 0.01% of the exact correlation energy in
the strong pairing region (Σ0 > χ). The better perfor-
mance in the strong pairing limit is attributable to the
fact that PHF reduces to the PBCS wave function in
that limit, and in the strong-correlation limit of the at-
tractive pairing model the PBCS wave function is exact
[23, 36, 37]. The limit of the PHF wave function under
strong Lipkin correlation, meanwhile, is also exact for
the Lipkin model, but only in the simultaneous thermo-
dynamic and strong-correlation limits. The worse perfor-
mance of PHF in the strong Lipkin region compared to
the strong pairing region is thus attributable to finite-size
error.

Surprisingly, the |Q1Q2〉 wave function does not ap-
pear to improve significantly on the PHF results; indeed,
the difference between the two in Figs. 4b and 4c is barely
visible. Because these are variational methods and be-
cause |Q1Q2〉 has one more parameter than does |Q1〉,
the energy of the |Q1Q2〉 wave function is indeed lower
than that of PHF, but not by a significant amount. This
seems to falsify our hypothesis discussed in Sec. II B that
|Q1Q2〉 would make a critical improvement in the re-
gion where both correlation strengths are simultaneously
large. The only region of the phase diagram where any
improvement over PHF is visible is the strong-Lipkin re-
gion that, as discussed above, is subject to finite-size er-
ror.

Regardless, none of these three methods alone provide
good-quality correlation energies across the entire phase
diagram. However, they complement one another when
combined. The energy error of vPRCC (|T2Q1〉), which
is a combination of PHF and vRCCD, is plotted in Fig.
5a. The vPRCC energy is uniformly superior to both
vRCCD and PHF, which is perhaps unsurprising since
these are all variational methods and the |T2Q1〉 wave
function has the greatest number of parameters of these
three. However, the details are significant: the vPRCC
energy is nearly exact everywhere except in the regions
near phase transitions. The worst result is along the di-
agonal ray χ = Σ0 > 1, where vPRCC undercorrelates
1-2%. In this region of the phase diagram, both number
and parity symmetry are broken at the mean-field level,
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(a) PRCC (|T2Q1〉) wave function.
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(b) PQCC (|T2Q1Q2〉) wave function.

FIG. 5: The fractional correlation energy (Ec) error
from FCI for an Agassi model with 40 particles,

calculated variationally with the PRCC (|T2Q1〉) and
PQCC (|T2Q1Q2〉) wave functions.

neither correlation channel dominates the other, and an
adiabatic-like ansatz in which the excitations are factor-
ized into products of excitations along each channel is
inappropriate.

Going from vPRCC to vPQCC (that is, going from
|T2Q1〉 to |T2Q1Q2〉) improves the quality of the correla-
tion energy in this region by an order of magnitude, as
also shown in Fig. 5a. Now the hypothesis we discussed in
Sec. II B, that Q2 is critical to include when both correla-
tion strengths are large, is confirmed. Clearly, the basic
reason for this improvement is that Q2, which is included
in the PQCC (|T2Q1Q2〉) and |Q1Q2〉 wave functions but
not the PRCC (|T2Q1〉) or RCCD (|T2〉) wave functions,
couples Lipkin-like excitations to pairing-like excitations
at the level of the symmetry collective state, which is
the part of our wave function that is designed to account
for strong-correlation effects. However, it does seem that

this effect only appears when combined with other dou-
ble excitations, as in |T2Q1Q2〉, and not when it is the
sole double term, as in |Q1Q2〉.

B. Quality of the variational wave function

While PRCC (|T2Q1〉) and PQCC (|T2Q1Q2〉) yield
highly accurate energies, it remains to see whether those
wave functions are accurate for properties other than
energies. We seek to test the accuracy of the Agassi
wave function by probing several order parameters de-
rived from the wave function. The simplest is a measure
of the average level of excitation; that is, a measure of
the number of particles in the upper level (σ = +1) on
average:

n =
1

2j − 1

∑
m

〈c†+1,mc+1,m〉

=
1

2j − 1

∑
m

〈N+1〉. (37)

This is a straightforward measure of the strength of cor-
relation in the wave function and does not distinguish
between Lipkin-channel and pairing-channel correlation:
the closer our wave function is to RHF, the closer n will
be to zero.

We additionally probe order parameters which track
the effects of the two correlation channels indepen-
dently. For mean-field wave functions that are allowed
to break symmetry, the obvious candidates involve ex-
pectation values of the excitation operators that produce
the broken-symmetry mean field:

J =
〈J+〉

2j − 1
, (38)

∆ =
εΣ0 − V
2j − 1

(〈
A†+1

〉
+
〈
A†−1

〉)
. (39)

Note that ∆ is the gap in the BCS sense [17]. However,
these parameters cannot be used as written because the
approximate wave functions we are using (not to men-
tion the exact wave function) are symmetry-adapted, so
J and ∆ as defined in Eqs. (38) and (39) are zero by
construction. Therefore, for the purpose of tracking cor-
relation strength in these wave functions, we modify Eqs.
(38) and (39) to read

J =

√
(〈J2

+〉+ 〈J2
−〉)/2

2j − 1
, (40)

∆ =
εΣ0 − V
2j − 1

(√〈
A†+1A+1

〉
+

√〈
A†−1A−1

〉)
,(41)

which, if evaluated with a UHF wave function, give the
same results as Eqs. (38) and (39) in the thermodynamic
limit.

Figure 6 plots the values of n, J , and ∆ calculated us-
ing Eqs. (37), (40), and (41) from the exact (FCI) wave
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(a) Order parameter n [Eq. (37)]
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(b) Order parameter J [Eq. (40)]
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(c) Order parameter ∆ [Eq. (41)]

FIG. 6: Three order parameters for the 40-particle
Agassi model calculated from the FCI wave function.
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FIG. 7: Fractional errors from the exact result of order
parameters for the 40-particle Agassi model obtained
from various wave functions, plotted along two lines

through the phase diagram, Σ0 = x and χ = a− x with
various a. The lines are are displayed in insets.

function. It can be seen that n is large whenever the sys-
tem is strongly correlated along either channel, whereas
J and ∆ are large only when Lipkin correlation or pairing
correlation, respectively, is strong.

Holding the above in mind, we examine the errors from
FCI of the three above-described order parameters for
the vPRCC (|T2Q1〉) and vPQCC (|T2Q1Q2〉) methods,
which are plotted for two lines through the phase dia-
gram in Fig. 7. These order parameters are estimated to
within 0.5% in most regions of the phase diagram by both
vPRCC and vPQCC. In the weakly correlated region, the
values of all three order parameters are nearly zero; in the
strongly Lipkin-correlated regions and strongly pairing-
correlated regions, |T2Q1〉 and |T2Q1Q2〉 display minor
errors. However, in the simultaneous strongly Lipkin-
correlated and pairing-correlated region (the center of
Fig. 7b), the errors of |T2Q1〉 estimation of all three



11

parameters jump to 1-10%, while the errors from the
|T2Q1Q2〉 wave function remain small. These results fur-
ther support the inference above that |T2Q1Q2〉 accounts
for coupling between the two correlation channels which
is important when the two are of similar strength and
both symmetries are broken - the region where |T2Q1Q2〉
is a significant improvement over |T2Q1〉 in the order pa-
rameters is the same region where it is an improvement
in the energies.

C. The Similarity-Transformation Formalism

Although the variational method is robust, it is not
practical for realistic systems because variational coupled
cluster equations do not truncate until the order of ex-
citations reaches the number of particles [38]. Here we
experiment with replacing the variational formalism with
a more standard projective formalism [4], in which the
Hamiltonian is similarity-transformed with the coupled-
cluster operator and then left-projected against selected
excitations.

The Schrödinger equation, when approximated with a
PRCC or PQCC ansatz, is

HeT |Q〉 = EeT |Q〉, (42)

where |Q〉 is the relevant symmetry collective state [Eqs.
(17) and (18)], i.e. PHF (|Q1〉) for |T2Q1〉 or |Q1Q2〉 for
|T2Q1Q2〉. We multiply by e−T on the right to obtain
our similarity transformation,

e−THeT |Q〉 = H̄|Q〉 = E|Q〉, (43)

which renders the transformed Hamiltonian, H̄, non-
Hermitian. We project the Schrödinger equation against
the left-hand eigenstate of H̄, which we parameterize as

〈Q′|(1 + Z)H̄ = E〈Q′|(1 + Z), (44)

where the prime on 〈Q′| indicates that the Q amplitudes
defining the symmetry collective state are, in general, al-
lowed to differ from those in the right-hand eigenstate,
|Q〉, and where Z contains de-excitation operators con-
jugate to the excitations in T . For instance, Z2 is

Z2 = zLLJ
2
− + zPPA

†
−1A+1. (45)

The overall energy expression is

E =
〈Q′|(1 + Z)H̄|Q〉
〈Q′|(1 + Z)|Q〉

, (46)

and we make the energy stationary with respect to all T ,
Z, and Q amplitudes.

Note that we have only similarity-transformed with the
CC part of our method, and left the symmetry collective
state essentially variational, or rather bivariational, as
the bra and ket have different Q amplitudes. That is,
we have not explicitly performed a polynomial similar-
ity transformation [23, 35], F−1(Q)HF (Q) where F (Q)
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(a) PRCC (|T2Q1〉) method.
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(b) PQCC (|T2Q1Q2〉) method.

FIG. 8: The absolute value of the energy error from
FCI for an Agassi model with 40 particles, calculated

with the PRCC (|T2Q1〉) and PQCC (|T2Q1Q2〉)
methods using a similarity-transformation formalism.

is defined by F (Q)|0〉 = PeQ|0〉. If we had, it would be
necessary to determine the form of the left-hand eigen-
state of the doubly-similarity-transformed Hamiltonian,
which is not trivial. This problem is discussed for the
case of spin-projected unrestricted Hartree–Fock (SUHF)
in Ref. 35.

Figure 8 shows the error from FCI of the PRCC
(|T2Q1〉) and PQCC (|T2Q1Q2〉) methods, respectively.
The accuracy is slightly reduced in both cases from the
variational results, but not qualitatively different. |T2Q1〉
is extremely accurate in all except recoupling regions and
diagonal strong correlation, and |T2Q1Q2〉 remedies its
defect in the latter, with correlation energies accurate to
within 1%. These results confirm that the combination
of coupled cluster with symmetry collective states im-
proves dramatically on the results demonstrated in Fig.
3 in Sec. II B; at every point on the phase diagram, real
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solutions to the equations for the T amplitudes are ob-
tained, despite the fact that we have discarded the vari-
ational method.

IV. CONCLUSION

The PRCC and PQCC methods, initially tested on the
Lipkin model Hamiltonian [26], are shown to very effec-
tively estimate the wave function of the Agassi model,
recovering more than 99% of correlation energy and pre-
dicting order parameters of the wave function with very
high accuracy. While the previous work [26] demon-
strated the principle by which such methods could model
systems under strong correlation, here we have shown
how they can be used for systems with multiple dis-
tinct correlation channels, including multiple simulta-
neous motifs of strong correlation. Certainly, more
work is necessary in generalizing this formalism to re-
alistic nuclear and electronic structure problems of nu-
clear physics, quantum chemistry, and condensed matter
physics. However, the fact that methods with between 5
and 8 parameters including no excitation amplitudes be-
yond the level of doubles are so powerful for this simple
model system is very promising about the potential of
symmetry-collective-state-plus-CC approaches to strong
correlation.
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Appendix A: Algebra of the Agassi model

The Hamiltonian of the Agassi model [Eq. (19)] is given
in Sec. II B in terms of seven one-body operators, whose
mapping to fermions is given in Eqs. (20). If we add to
these seven the number operator [N , Eq. (22)] along with

A†0 (A0), which creates (destroys) a particle σ = +1 and
another one in σ = −1,

A†0 =
∑
m>0

(
c†−1,mc

†
+1,−m − c

†
−1,−mc

†
+1,m

)
, (A1a)

A0 =
∑
m>0

(c+1,−mc−1,m − c+1,mc−1,−m) , (A1b)

then the combined set of ten one-body operators closes
an O(5) algebra. All commutators among the ten A,
J , and N operators are summarized in Table I. Note
that the SU(2) algebra of the Lipkin model and the three
SU(2) algebras of the pairing model are subalgebras of
this O(5) [39]. Other useful one-body operators can be
defined as linear combinations of these ten generators; for
instance, the number of particles in the upper and lower
levels are given by

N+1 = N/2 + J0

=
∑
m

c†+1,mc+1,m, (A2a)

N−1 = N/2− J0
=
∑
m

c†−1,mc−1,m. (A2b)

Following Ref. [39], a complete (although non-
orthogonal) set of states for the Agassi model can likewise
be defined in terms of pair creation (A†) operators acting
on the physical vacuum:

|n−, n+, n0〉 =
(
A†−1

)n− (
A†+1

)n+
(
A†0

)n0

|−〉, (A3)

which is complete because all other generators in theO(5)
algebra annihilate the physical vacuum to the right. Fur-
thermore, if we seek only the states with 2j particles, then
we have n− + n+ + n0 = j and the size of the Hilbert
space is therefore quadratic in j, as asserted in Sec. II B.
As for parity symmetry, even or odd sectors correspond
simply to even or odd n0 − j. The symmetry-adapted
non-interacting ground state (|0〉 in the main text) in
these terms is |j, 0, 0〉.

By repeatedly applying the commutation relationships
summarized in Table I, the effects of all ten generators
on a state |n−, n+, n0〉 can be evaluated:
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TABLE I: Commutators of the 10 generators of the O(5) algebra of the Agassi model, in the format [row, column].
The mappings of all operators to fermions are given in Eqs. (20), (22), (A1), and (A2), and j is 1/2 times the

number of particles in the system.

J+ J− J0 A†+1 A+1 A†−1 A−1 A†0 A0 N

J+ 0 2J0 −J+ 0 −A0 A†0 0 2A†+1 −2A−1 0

J− −2J0 0 J− A†0 0 0 −A0 2A†−1 −2A+1 0

J0 J+ −J− 0 A†+1 −A+1 −A†−1 A−1 0 0 0

A†+1 0 −A†0 −A†+1 0 (N+1 − j) 0 0 0 J+ −2A†+1

A+1 A0 0 A+1 (j −N+1) 0 0 0 −J− 0 2A+1

A†−1 −A†0 0 A†−1 0 0 0 (N−1 − j) 0 J− −2A†−1

A−1 0 A0 −A−1 0 0 (j −N−1) 0 −J+ 0 2A−1

A†0 −2A†+1 −2A†−1 0 0 J− 0 J+ 0 (N − 2j) −2A†0
A0 2A−1 2A+1 0 −J+ 0 −J− 0 (2j −N) 0 2A0

N 0 0 0 2A†+1 −2A+1 2A†−1 −2A−1 2A†0 −2A0 0

J+|n−, n+, n0〉 = n−|n− − 1, n+, n0 + 1〉+ 2n0|n−, n+ + 1, n0 − 1〉, (A4a)

J−|n−, n+, n0〉 = n+|n−, n+ − 1, n0 + 1〉+ 2n0|n− + 1, n+, n0 − 1〉, (A4b)

J0|n−, n+, n0〉 = (n+ − n−)|n−, n+, n0〉, (A4c)

A†+1|n−, n+, n0〉 = |n−, n+ + 1, n0〉, (A4d)

A+1|n−, n+, n0〉 = n+(j − n+ + 1− n0)|n−, n+ − 1, n0〉 − n0(n0 − 1)|n− + 1, n+, n0 − 2〉, (A4e)

A†−1|n−, n+, n0〉 = |n− + 1, n+, n0〉, (A4f)

A−1|n−, n+, n0〉 = n−(j − n− + 1− n0)|n− − 1, n+, n0〉 − n0(n0 − 1)|n−, n+ + 1, n0 − 2〉, (A4g)

A†0|n−, n+, n0〉 = |n−, n+, n0 + 1〉, (A4h)

A0|n−, n+, n0〉 = n0(2j − n0 − 2n− − 2n+ + 1)|n−, n+, n0 − 1〉 − n−n+|n− − 1, n+ − 1, n0 + 1〉, (A4i)

N |n−, n+, n0〉 = 2(n− + n+ + n0)|n−, n+, n0〉. (A4j)

Equations (A4e), (A4g), and (A4i) can be utilized to
construct recursive equations that are used to evaluate
the overlap matrix of the states |n−, n+, n0〉. Keeping

in mind that states with differing N and J0 eigenvalues
are orthogonal, and that 〈0, 0, 0|0, 0, 0〉 = 〈−|−〉 = 1, we
have

〈n′−, n′+, n′0|n−, n+, n0〉 = n−(j − n− + 1− n0)〈n′− − 1, n′+, n
′
0|n− − 1, n+, n0〉

−n0(n0 − 1)〈n′− − 1, n′+, n
′
0|n−, n+ + 1, n0 − 2〉, (A5a)

= n+(j − n+ + 1− n0)〈n′−, n′+ − 1, n′0|n−, n+ − 1, n0〉
−n0(n0 − 1)〈n′−, n′+ − 1, n′0|n− + 1, n+, n0 − 2〉, (A5b)

= n0(2j − n0 − 2n− − 2n+ + 1)〈n′−, n′+, n′0 − 1|n−, n+, n0 − 1〉
−n−n+〈n′−, n′+, n′0 − 1|n− − 1, n+ − 1, n0 + 1〉. (A5c)

Given the overlap matrix [Eqs. (A5)] and the actions
of all ten generators on the non-orthogonal basis [Eqs.
(A4)], an orthonormal basis and matrix elements of all
ten operators are easily obtained. Since, as demon-
strated, the size of the basis (at least in the symmetry-
adapted space) grows quadratically with j, the overlap

and (symmetry-adapted products of) operator matrices
in the symmetry-adapted space require only O(j4) stor-
age space. The largest computational difficulty is nu-
merical instability in systems of 102 particles or more,
arising from overlap matrix elements with values that
differ by more than 16 orders of magnitude, which is
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partially resolved by using quadruple-precision storage
of floating-point numbers. This means that FCI and all
of the symmetry-adapted methods described in this work
are easily implemented using complete-basis representa-

tions of all operators. The symmetry-broken mean-field
is another matter; however, this can be calculated very
easily using simple closed-form equations as explained by
Davis and Heiss [31].
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