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We undertake a covariance error analysis of the pion-nucleon-nucleon coupling constants from the Granada-
2013 np and pp database comprising a total of 6720 scattering data below LAB energy of 350 MeV. Assuming
a unique pion-nucleon coupling constant in the One Pion Exchange potential above a boundary radius rc = 3fm
we obtain f 2 = 0.0763(1). The effects of charge symmetry breaking on the 3P0, 3P1 and 3P2 partial waves
are analyzed and we find f 2

p = 0.0761(4), f 2
0 = 0.0790(9) and f 2

c = 0.0772(6) with a strong anti-correlation
between f 2

c and f 2
0 . We successfully test normality for the residuals of the fit. Potential tails in terms of different

boundary radii as well as chiral Two-Pion-Exchange contributions as sources of systematic uncertainty are also
investigated.
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I. INTRODUCTION

The meson exchange picture is a genuine quantum field the-
oretical feature which implies, in particular, that the strong
force between protons and neutrons at long distances is dom-
inated by the exchange of the lightest hadrons compatible
with the conservation laws, namely neutral and charged pi-
ons. The strong force acting between nucleons at sufficiently
large distances or impact parameters & 3fm is solely due to
one pion exchange (OPE) and was suggested by Yukawa 80
years ago [1]. The verification of this mechanism not only
provides a check of quantum field theory at the hadronic level
but also a quantitative insight onto the determination of the
forces which hold atomic nuclei [2]. While the mass of the
pion may be determined directly from analysis of their tracks
or electroweak decays, the determination of the coupling con-
stant to nucleons needs further theoretical elaboration. The
pion-nucleon-nucleon coupling constant is rigorously defined
as the πNN vertex function when all three particles are on the
mass shell and in principle any process involving the elemen-
tary vertices p→ π0 p, n→ π0n, p→ π+n and n→ π−p (or
their charge conjugated) is suitable for the determination of
the corresponding couplings provided all other relevant effects
are accounted for with an acceptable level of precision. In this
work we extract these coupling constants from NN scattering
data and look for signals of charge symmetry breaking.

The combinations entering in NN scattering are (we use the
conventions of [3] and when possible, for simplicity, omit the
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π label),

f 2
p = fπ0 pp fπ0 pp (1)

f 2
0 =− fπ0nn fπ0 pp (2)

2 f 2
c = fπ−pn fπ+np (3)

Usually the charge symmetry breaking is restricted to mass
differences by setting fp = − fn = fc = f0 = f . The rel-
evant relationship between the pseudo-scalar pion coupling
constant, gπNN , and the pseudo-vector one, fπNN , is given by

g2
πaNN′

4π
=

(
MN +MN′

mπ±

)2

f 2
πaNN′ (4)

where N,N′ = n, p and πa = π0,π± (the factor mπ± is con-
ventional). Thus, we may define g2

0, g2
c and g2

p. We take
Mp = 938.27231 MeV the proton mass, Mn = 939.56563
MeV the neutron mass, and mπ± = 139.5675 MeV the mass
of the charged pion.

There is a long history of determinations of pion-nucleon
coupling constants using different approaches. A variety
of methods and reactions have been used since the seminal
Yukawa paper. A more complete account of the subsequent
numerous determinations can be traced from comprehensive
overviews [4–6]. Here we will mainly review determinations
based on NN-scattering.

The very first determination was made in 1940 by Bethe
by looking at deuteron properties [7, 8] soon after Yukawa
proposed his theory and before the pion was experimentally
discovered, finding the common value f 2 = 0.077− 0.080.
On a more theoretical ground, based on dispersion relations
and the Partial Conservation of the Axial Current (PCAC)
Goldberger and Treiman deduced a relation between the πNN
form factor, GπNN(t), the nucleon axial coupling constant,
gA = 1.26, and the pion weak decay constant, Fπ = 93.4(3)
MeV. The relation, GπNN(0)Fπ =MNgA [9], shown by Nambu
to follow from chiral symmetry [10], is strictly valid at the
pion off-shell point, q2 = 0, and numerically it yields f 2

πNN =
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g2
Am2

π+/(16πF2
π ) = 0.072. Almost simultaneously, Chew pro-

posed [11] to determine it from the occurrence of the pion
pole in the renormalized Born approximation, by using an ex-
trapolation method which was implemented soon thereafter
for np [12] and pp [13] data. The first direct and quantitative
evidence for OPE was found in 1960 by Signell [14] by fitting
the neutral pion mass to the differential cross section in p-p
scattering data. The method of partial wave analysis (PWA)
was soon afterwards used by Macgregor et al. [15].

During many years πN scattering determination through
fixed-t dispersion relations was advocated as a precision tool,
yielding initially f 2

c = 0.0790(10) [16], and later providing
f 2
c = 0.0735(15) [17] (see also [18] and references therein).

The latest most accurate πN scattering determinations are: i)
the one based on the GMO rule [19], g2

c/(4π) = 14.11(20)
( f 2

c = 0.0783(11)); ii) the one using fixed-t dispersion re-
lations, g2

c/(4π) = 13.76(8) [20]; iii) the most recent one
[21, 22], based on πN scattering lengths, π−d scattering and
the GMO sum rule, yielding g2

c/(4π) = 13.69(12)(15) =
13.69(19). Another source of information has been the N̄N
system, as shown by the Nijmegen group [23], providing
f 2
c = 0.0751(17).

The modern era of high-quality NN interactions initiated
by the Nijmegen group [24] enabled to decrease the reduced
χ2/ν from 2 to 1, thanks to the implementation of charge de-
pendence (CD), vacuum polarization, relativistic corrections
and magnetic moments interactions, and a suitable selection
criterion for compatible data. Their analysis comprised a total
of 4313 NN scattering data. This promoted the determina-
tion of the pion-nucleon coupling constant from np and pp
scattering to a competitively accurate approach. The main
advantage of an NN analysis as compared to the πN anal-
ysis, which has so far been restricted to charged pions, is
that one can determine both neutral and charged-pion cou-
pling constants simultaneously, to search for isospin break-
ing effects. The three compatible values, f 2

p = 0.0751(6),
f 2
0 = 0.0752(8) and f 2

c = 0.0741(5), were determined from
NN scattering data [25]. The originally recommended charge
independent value f 2 = 0.0749(4) [25] was revised [26] and
confirmed in the 1997 review on the status of the pion-
nucleon-nucleon coupling constant [4]; this is the most ac-
curate NN determination to date. There, it was suggested that
a charge-independence breaking could be checked with more
data and better statistics. The most recent determinations of
the Nijmegen group have been given after the inclusion of
charge-independent chiral two-pion exchange (χTPE) poten-
tial [27] which depends on three additional chiral constants,
c1, c3, c4, which also appear in πN scattering. A combined
fit of f 2

p and c1,3,4 to pp scattering data, provides the value
f 2
p = 0.0756(4) [28], and a simultaneous fit to pp+np data of

a common f 2 and c1,3,4 [29] provides linear correlations be-
tween f 2 and c1,2,3.

Most of the analyses determining the pion nucleon coupling
constants involve heavy statistical analysis for a large body of
experimental data, mostly χ2−fits, which are subjected to a
number of a posteriori tests [30]. The verification of these
tests buttress a sensible analysis of uncertainties of theoreti-

cal models [31]. To the time of their analysis, the Nijmegen
group [26, 32] checked the statistical quality of pp fit residu-
als using the moments test, which for increasing orders over-
weights the tails.

In this paper we study the possible differences among the
pion-nucleon coupling constants by analyzing np and pp scat-
tering data using the NN Granada-2013, 3σ -self consistent
database, designed and analyzed recently [33–36] 1. There,
we have selected 6713 out of 8000 published np and pp ex-
perimental data for LAB energies below 350 MeV and mea-
sured in the period 1950-2013, which satisfactorily verify the
tail-sensitive test [37], based on the quantile-quantile plot for
the combined np+pp residuals (see also Ref. [38] for an ap-
plication of these ideas to ππ scattering). As a side remark
we note that the Uppsala controversial measurement [39, 40],
which gives the value f 2 = 0.081 and appears in Weinberg’s
textbook [41], was disputed by the Nijmegen group [42] and
contested [43]. An overview of the situation can be glanced
in [44]. This measurement has been rejected by our 3σ self-
consistent database [34]. A latter re-measurement at IUCF
by the partly the same group [45, 46], which is compatible
with the original Nijmegen PWA, is not rejected by the self-
consistent 3σ criterion.

The paper is organized as follows. In Section II we describe
the OPE potential, introduce our notation, and discuss the
conditions under which we naturally expect to unveil charge
dependence in the pion-nucleon coupling constants. In Sec-
tion III we review the main aspects of our partial wave analysis
and the Granada-2013 database. Our motivation for incorpo-
rating charge dependence in the P-waves, besides the custom-
ary charge dependence on S-waves implemented in all modern
high quality fits, is presented in Section IV along with a dis-
cussion of our numerical results based on a covariance anal-
ysis. An effort to quantify systematic errors by analyzing the
long range component of the CD-OPE is made in Section V.
Finally, in Section VI conclusions are presented. In the Ap-
pendix we show the extended operator basis accommodating
S-wave and P-wave charge dependence.

II. CHARGE-DEPENDENT ONE PION EXCHANGE

The charge-dependent, one-pion exchange (CD-OPE) po-
tential incorporates charge symmetry breaking by considering
the mass difference of the neutral and charged pions as well
as assuming different coupling constants. We use the conven-
tion for πNN Lagrangians defined in the review of ref. [3].
The quantum mechanical potential which reproduces in Born
approximation the corresponding Feynman diagrams for on-
shell static nucleons, is given in the pp, nn and np channels

1 The 2013 Granada database is available at http://www.ugr.es/

~amaro/nndatabase/

http://www.ugr.es/~amaro/nndatabase/
http://www.ugr.es/~amaro/nndatabase/
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as

VOPE,pp(r) = f 2
pVm

π0 ,OPE(r), (5)

VOPE,nn(r) = f 2
n Vm

π0 ,OPE(r), (6)

VOPE,np(r) =− fn fpVm
π0 ,OPE(r)− (−)T 2 f 2

c Vm
π± ,OPE(r),(7)

respectively. Here, Vm,OPE is given by

Vm,OPE(r) =
(

m
mπ±

)2 1
3

m [Ym(r)σ1 ·σ2 +Tm(r)S1,2] . (8)

Here Ym and Tm are the usual Yukawa functions,

Y (r) =
e−mr

mr
(9)

T (r) =
e−mr

mr

[
1+

3
mr

+
3

(mr)2

]
, (10)

σ1 and σ2 are the single nucleon Pauli matrices, and S12 =
3σ1 · r̂σ2 · r̂−σ1 ·σ2 is the tensor operator. Unfortunately, the
CD-OPE potential by itself cannot be directly compared to ex-
perimental data, and the only way we know how to determine
these pion-nucleon couplings is by carrying out a PWA.

From a purely classical viewpoint, in order to measure the
nuclear force directly it would just be enough to hold and
pull two nucleons apart at distances larger than their elemen-
tary size, which is or the order of 2fm [33]. For such an
ideal experiment the behavior of the system at shorter dis-
tances would be largely irrelevant, because nucleons would
behave as point-like particles. This situation would naturally
occur if nucleons were truly infinitely heavy. In that case the
potential would correspond to the static energy of a system
with baryon number B = 2 and total charge Q = 2,1,0, for
pp, pn nn, respectively2. Of course, the quantum mechan-
ical nature of the nucleons prevents such a situation experi-
mentally and we are left with scattering experiments. Good
operating conditions are achieved when the maximum rela-
tive CM momentum, pmax, is small enough to avoid compli-
cations due to inelastic channels and large enough to contain
as many data as possible. This generates a resolution ambigu-
ity of the order of the minimal relative de Broglie wavelength,
λmin = ∆r∼ 1/pmax. Since the NN→ πNN channel opens up
at pmax ∼

√
mπ MN ∼ 360MeV, we have ∆r ∼ 0.6fm. Unfor-

tunately, in the quantum mechanical NN scattering problem
the scales are somewhat intertwined, and thus some informa-
tion on the unknown short-distance components of the poten-
tial have to be considered in order to evaluate the scattering
amplitude, the cross section or the polarization asymmetry.
The low energy behavior of the NN interaction is expected
to depend strongly on its long distance properties. Although
some coarse grained information of the unknown contribu-
tion is needed, it can be deduced from the experiment with

2 This is the case in lattice calculations, where static sources are placed at a
fixed distance [47, 48]. In the quenched approximation it has been found,
for a pion mass of mπ = 380 MeV, the value g2/(4π) = 12.1±2.7, which
is encouraging [49] but still a crude estimate.

an overall sufficient accuracy as to determine the differences
between the pion-nucleon couplings. This viewpoint allows to
determine a priori the number of independent parameters NPar
needed for a successful fit3. These ideas where introduced by
Aviles long ago [50], and they underlie the recent NN analy-
sis carried out by the present authors, where a large database,
comprising about 8000 published experimental data measured
in the period 1950-2013, was considered [33, 34].

A. The number of data

There is no symmetry reason why the strong force be-
tween protons and between neutrons should be exactly iden-
tical; if a difference exists one should be able to see it with
a sufficiently large amount of experimental data. These dif-
ferences are in fact small and hard to pin down because a
priori the electromagnetic corrections should scale with the
fine structure constant δg/g ∼ α ∼ 1/137, and the strong
(QCD) corrections should scale with the u− d quark mass
difference (relative to the s-quark mass) which means δg/g∼
(mu−md)/ΛQCD ∼ (Mp−Mn)/ΛQCD ∼ 1/100, for ΛQCD ∼
250MeV. This simple estimates suggest that in order to wit-
ness isospin violations in the couplings we should determine
them with a target accuracy better than 1− 2%, which is not
too far from the most recent values. On a purely statistical
basis the relative uncertainty due to N independent measure-
ments is ∆g/g ∼ 1/

√
N. If we have some extra parameters

(λ1, . . . ,λNPar),the condition ∆g∼ δg∼ 0.01−0.02 would re-
quire N = NDat−NPar ∼ 7000− 10000 independent degrees
of freedom. Since NDat� NPar this is comparable to the total
amount of existing elastic np and pp scattering data. While
these are rough estimates, we stress the independence char-
acter of the measurements in order to make these estimates
credible; it is not just a question of having more data. From
the point of view of χ2-fits this requires passing satisfactorily
normality tests guaranteeing the self-consistency of the fit. In
particular, adding many incompatible data would invalidate
this analysis.

B. Naturalness of fitting parameters

While our approach is based on a standard least squares op-
timization, which minimizes the distance between the theory
and the experiment for many pp and np scattering data, it is
important to mention that we do not consider that all fits are
eligible and in fact some of them will be rejected. In what
follows, we specify these criteria a priori.

3 In [33] it was found that, for rc = 3fm , the number of needed parameters is
NPar ∼ 60. The argument is based on the idea that, if we adopt the CD-OPE
potential above rc, we can estimate the number of independent potential
values V (rn) below rc in any partial wave channel, with rn = n∆r. Since
the maximum angular momentum in the partial wave expansion is lmax ∼
pmaxrc and there are four independent waves for each l, we would have
NPar ∼ 4lmax(rc/∆r). Excluding the points rn below the centrifugal barrier,
the number becomes NPar ∼ 2(pmaxrc)

2.
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As a matter of principle, we reject fits which display bound
states in channels other than the deuteron (occurring in the
3S1−3 D1 channel only) which will be considered spurious.
The appearance of such states in the fitting process is not so
unlikely, particularly in the case of peripheral waves. This
is usually detected by use of Levinson’s theorem, δl(0)−
δl(∞) = nπ , which requires checking phases at energies much
larger than the fitting range. An equivalent way to find spu-
rious bound states is by checking the volume integrals (and
high moments) for which a large degree of universality has
been found [51]. Too large attractive couplings in the poten-
tial permitting a bound state would consequently generate un-
naturally large volume integrals of the potentials.

In the case of the pion-nucleon coupling constant we ex-
pect some theoretical constraints to be fulfilled. The renowned
Goldberger-Treiman relation was deduced as a consequence
of exact PCAC, and yields the value (in the isospin limit)

GπNN(0) = MNgA/Fπ (11)

The physical coupling constant corresponds to gπNN ≡
GπNN(m2

π) > GπNN(0). It is expected to be larger than value
appearing in GT-relation. This suggests

gπNN > MNgA/Fπ (12)

and hence, for the PDG values FPDG
π+ = 92.21(14)MeV and

gA = 1.2723(23),

f 2
πNN > f 2

πNN,GT ≡
1

16π

(
gAmπ+

Fπ

)2

= 0.07324(4) (13)

The uncertainty is about 5%. More generally, a GT-
discrepancy is defined (see e.g. [52] for a review),

∆GT = 1− MNgA

gπNNFπ

(14)

The value of this number has been changing but typical val-
ues nowadays are at the few percent level, ∆GT ∼ 0.01−0.03.
In the limit of zero quark masses, chiral symmetry becomes
exact, and hence ∆GT =O(m2

π/F2
π )

The fact that (mu−md)/(mu +md) ∼ 1/3 suggests that, if
we obtain a GT discrepancy different from zero, about three
more times precision would be needed to pin down isospin
breaking. According to our 1/

√
NDat estimate above, this

can be accomplished by increasing the number of indepen-
dent data by a factor of 10. At the level of isospin breaking
some estimates have also been made [53, 54].

In the case of χTPE exchange, which will also be consid-
ered below, the chiral constants c1,3,4 are saturated by me-
son exchange [55]. Actually, c1 is saturated by scalar ex-
change. The saturation value is cS

1 = −gScm/m2
S. Taking

MN = gSFπ and cm =Fπ/2 , mS =mV =Fπ

√
24π/Nc [56] and

MN = Ncmρ/2 we get cS
1 ∼ −Nc/(4

√
2mρ) ∼ −0.7GeV−1.

In the case of the constants c3 and c4, they are saturated by
∆ resonance; taking ∆ = M∆−MN , the saturation values are
c∆

2 = −c∆
3 = 2c∆

4 = g2
A/(2∆) ∼ 2.97GeV−1. Of course, these

are not very accurate values, but indicate the order of magni-
tude one should expect.

III. THE GRANADA-2013 ANALYSIS

In a series of works we have upgraded the NN database to
include a total of 6720 np and pp published experimental data
by using a coarse grained representation of the interaction,
and applying stringent statistical tests on the residuals of the
χ2-fits after implementing a 3σ self consistent selection pro-
cess [35]. The resulting Granada-2013 is at present the largest
NN database which can be described by a CD-OPE contribu-
tion. There are about 60% more data than the 4313 data used
in the latest Nijmegen upgrade [4]. This suggests that we
can improve on the errors for the pion-nucleon couplings as
discussed in the previous section.

We have discussed in detail the many issues in carrying out
the data selection, the fit and the corresponding joint np+pp
partial wave analysis. We review here the main aspects as a
guideline and refer to those works for further details.

We separate the potential into two well defined regions de-
pending on a chosen cut-off radius, rc, fixed in such a way that
for r > rc the CD-OPE is the only strong contribution. In ad-
dition, for r > rc we also include electromagnetic (Coulomb,
vacuum polarization, magnetic moments) [34] and relativistic
corrections which we simply add to the strong potential.

V (r) =VOPE(r)+VEM(r), r > rc (15)

Below the cut-off radius, r < rc we regard the NN force as un-
known, and we use delta-shells located at equidistant points
separated by ∆r = 0.6fm, corresponding to the shortest de
Broglie wavelength at pion production threshold. The fit-
ting parameters are the real coefficients (λi)

JS
ll′ for each partial

wave:

V JS
l,l′(r) =

1
2µ

N

∑
i=1

(λi)
JS
ll′δ (r− ri), r ≤ rc. (16)

where µ is the NN reduced mass. Alternatively the poten-
tial can be expanded in an operator basis extending the AV18
potentials in coordinate space, see appendix A. The transfor-
mation between partial wave and operator basis was given in
Ref. [34].

It turns out that rc = 3fm provides statistically satisfactory
fits to the selected 3σ -self consistent Granada-2013 database.
While it would be interesting to separate explicitly the known
from the unknown pieces of the interaction below the cut-off
radius rc, this is actually a complication in the fitting proce-
dure, and will not change the values of the most-likely pion-
nucleon coupling constants. Another advantage of taking
rc = 3fm is that in our analysis there is no need of form fac-
tors of any kind, and thus we are relieved from disentangling
finite size effects, quark exchange and the intrinsic resolution
∆r inherent to any finite energy PWA 4

The possible Ay problem for np scattering, raised by the
data of Ref. [58], suggested a sizable isospin breaking of cou-
pling constants. The problem was re-analyzed theoretically in

4 An Explanation of the Apparent Charge Dependence of the Pion Nucleon
Coupling was attributed to the strong form factor [57].
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ref. [59], and motivated the reanalysis of the data [60] and
the disentanglement between systematic and statistical errors.
Actually, in ref. [59] it was found that these data might be ex-
plained in an isolated fashion when isospin was broken. Thus,
we allow this isospin breaking to foresee the possibility of re-
covering the data.

IV. STATISTICAL ANALYSIS

In our previous analysis we took a fixed common value
for the pion-nucleon coupling constant suggested by the Ni-
jmegen group. When we relax this assumption and also fit the
pion-nucleon coupling constant as another parameter in the
potential, we obtain f 2 = 0.0763(1), which is 3σ compatible
with the Nijmegen recommendation [25], f 2 = 0.0749(4) and
more accurate.

A. Charge symmetry breaking on S- and P waves

An old problem in NN scattering fitting is if it is possible to
predict the neutron-neutron potential fron np and pp data. A
necessary condition would be that the unknown piece of the
short distance interaction for np and pp coincide in the isovec-
tor channels. Once we allow to vary the coupling constants f 2

p ,
f 2
0 and f 2

c from their common value f 2 we have first searched
for a fit without CD in the λ ′s (i.e. assuming that they are
equal for np and pp). We get χ2/ν = 1.2 for CD-OPE above
rc = 3fm. On the other hand, χ2/ν = 9 for CD-OPE+χTPE
above rc = 1.8fm. Therefore, and in harmony with all high-
quality previous attempts we cannot deduce nn-scattering be-
low rc = 3fm.

Following the common practice of other analyses [24, 61,
62] , we have previously allowed different pp and np parame-
ters only on the 1S0 partial wave [33, 34, 63, 64] and found that
this symmetry breaking is indeed necessary to obtain an accu-
rate description of the pp and np scattering data. The large
collection of about 8000 available data also makes it possible
to test charge symmetry breaking on the parameterization of
higher partial waves, e.g. 3P0, 3P1 and 3P2.

To carry out such a test we have considered different np
and pp parameters on those partial waves and performed a full
PWA and selection process as described in [34, 64], by fitting
the delta-shell potential parameters to the complete database
and then applying the 3σ rejection criterion iteratively until a
self consistent database is obtained. The consistent database
obtained in this case has 3006 pp data and 3735 np data, in-
cluding normalizations, and the value for the chi square per
number of data is χ2/Ndata = 1.02. When comparing with
our previous consistent data base [34] this symmetry breaking
can only describe 21 additional data out of more than 1000
rejected data. Fig. 1 compares the low angular momentum
phaseshifts of the PWA in [34] (blue bands) with this new
analysis (red bands). The pp phaseshifts show no significant
difference, while the np ones are statistically different and
the differences are even greater for higher angular momen-
tum partial waves. Tabulated values for the lower phase-shifts

for selected LAB energies are provided in Appendix B.
Usually the charge symmetry breaking is restricted to mass

differences by setting fp = − fn = fc = f . The value f 2 =
0.075 recommended by the Nijmegen group [25] has been
used in most of the potentials since the seminal 1993 par-
tial wave analysis [24]. Here we test this charge indepen-
dence with the large body of data available today, by us-
ing fp, f0, and fc as extra fitting parameters along with the
previous 46 delta-shell parameters. We show our results in
Table I depending on different strategies regarding isospin
breaking: S-waves, S- and P-waves, and in the coupling con-
stants. The working group summary of 1999 provides a re-
cent compilation of coupling constants in a chronological dis-
play [5]. The most recent determination [21, 22], based on πN
scattering lengths and π−d scattering, and in the GMO sum
rule, yields g2

c/(4π) = 13.69(12)(15) = 13.69(20). From our
full covariance matrix analysis we get g2

p/(4π) = 13.774(75),
g2

0/(4π) = 14.30(16) and g2
c/(4π) = 13.984(82). The last

value is 2σ compatible with these determinations, but slightly
more accurate.

The fitting delta-shell parameters obtained in our different
strategies, regarding charge independence breaking in just S-
waves and charge independence breaking in S and P waves,
can be seen in Tables II and III respectively. We use the result-
ing parameters along with their covariance matrix to calculate
f 2
p , f 2

0 and f 2
c , and propagate the corresponding statistical un-

certainties and test charge dependence. Fig. 2 shows the 1σ

correlation ellipses along with the scatter diagram resulting
from drawing 1000 random variates following the multivari-
ate normal distribution dictated by the covariance matrix. The
fit without charge dependence on the P waves is indicated by
the blue dots and yellow line while the fit with charge depen-
dence on the P waves corresponds to the red diamonds and
green line. Charge independence, f 2

p = f 2
0 = f 2

c , is marked by
the diagonal black line. Several aspects should be noted from
Fig. 2. First, while the values on Table I seem to suggest that
the determinations with and without charge charge dependent
P waves for f 2

0 and f 2
c are 1 and 2σ compatible respectively,

in fact the strong anti-correlation between the two coupling
constants makes the determinations completely incompatible.
The determination with charge dependence on the S waves
only is compatible with the f 2

p = f 2
0 = f 2

c = 0.0763(1) fit at
the two sigma level; this is in accordance with the slight de-
crease in χ2 in spite of the fact that two extra parameters are
fitted. Finally, the fit with charge dependent P waves is in-
compatible with f 2

p = f 2
0 = f 2

c , once again due to the strong
anti-correlation between f 2

0 and f 2
c .

B. Normality tests

The standard assumption underlying a conventional χ2-fit
is that the sum of ν-independent squared gaussian variables
belonging to the normal distribution N(0,1) follows a χ2 dis-
tribution with ν-degrees of freedom [30]. One can actually
check a posteriori if the outcoming residuals do indeed fulfill
the initial assumption with a given confidence level. The self-
consistency of the fit is an important test, since it validates
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FIG. 1. (Color online) Phaseshifts obtained from a partial waves analysis to pp and np data and statistical uncertainties. Blue band from [34]
and red band from a fit with charge symmetry breaking on the 3P0, 3P1 and 3P2 partial waves.

the current statistical analysis, and provides some confidence
on the increase in accuracy that we observed as compared to
previous works. For a number of data much larger than the
number of fitting parameters, NDat � NPar, the conventional

χ2-test requires

Nσ =
|χ2

min/ν−1|√
2/ν

(17)
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TABLE I. The pion-nucleon coupling constants f 2
p , f 2

0 and f 2
c determined from different fits to the Granada-2013 database and their charac-

teristics. We indicate the partial waves where charge dependence is allowed.

f 2
p f 2

0 f 2
c CD-waves χ2

pp χ2
np χ2 NDat NPar χ2/ν

0.075 idem idem 1S0 2997.29 3957.57 6954.86 6720 46 1.042
0.0763(1) idem idem 1S0 2995.20 3952.85 6947.05 6720 47 1.041
0.0764(4) 0.0779(8) 0.0758(4) 1S0 2994.41 3950.42 6944.83 6720 49 1.041
0.0761(4) 0.0790(9) 0.0772(5) 1S0, P 2979.37 3876.13 6855.50 6741 55 1.025

102f2
c

1
0
2
f
2 p

(a)

7.97.87.77.67.57.4

7.8

7.75

7.7

7.65

7.6

7.55

7.5

7.45

102f2
c

1
0
2
f
2 0

(b)

7.97.87.77.67.57.4

8.2

8.1

8

7.9

7.8

7.7

7.6

7.5

102f2
p

1
0
2
f
2 0

(c)

7.87.757.77.657.67.557.57.45

8.2

8.1

8

7.9
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FIG. 2. (Color Online) Correlation ellipses and scatter diagrams for the coupling constants f 2
c , f 2

p and f 2
0 appearing in the OPE potential from

a PWA with (yellow line and blue dots) and without (green line and red diamonds) charge independence on the P waves and a 3σ consistent
database. The black diagonal line indicates f 2

c = f 2
p = f 2

0

TABLE II. Fitting delta-shell parameters (λn)
JS
l,l′ (in fm−1) with their

errors for all states in the JS channel for a fit with isospin symme-
try breaking on the 1S0 partial wave parameters only and the pion-
nucleon coupling constants f 2

0 , f 2
p and f 2

c as fitting parameters We
take N = 5 equidistant points with ∆r = 0.6fm. − indicates that the
corresponding fitting (λn)

JS
l,l′ = 0. The lowest part of the table shows

the resulting OPE coupling constants with errors

Wave λ1 λ2 λ3 λ4 λ5
1S0np 1.16(6) −0.77(2) −0.15(1) − −0.024(1)
1S0pp 1.31(2) −0.716(5) −0.192(2) − −0.0205(4)
3P0 − 0.94(2) −0.319(7) −0.062(3) −0.023(1)
1P1 − 1.20(2) − 0.075(2) −
3P1 − 1.354(5) − 0.0570(5) −
3S1 1.79(7) −0.47(1) − −0.072(2) −
ε1 − −1.65(2) −0.33(2) −0.233(7) −0.018(3)
3D1 − − 0.40(1) 0.070(9) 0.021(3)
1D2 − −0.20(1) −0.206(3) − −0.0187(3)
3D2 − −1.01(3) −0.17(2) −0.237(6) −0.016(2)
3P2 − −0.482(1) − −0.0289(7)−0.0037(4)
ε2 − 0.32(2) 0.190(4) 0.050(2) 0.0127(6)
3F2 − 3.50(6) −0.229(5) − −0.0140(5)
1F3 − − 0.12(2) 0.089(8) −
3D3 − 0.54(2) − − −

f 2
p f 2

0 f 2
c

0.0764(4) 0.0779(8) 0.0758(4)

with ν = NDat−NPar for a Nσ -standard deviation confidence
level. The tail-sensitive normality test is more demanding and
for the three fits presented on this section are summarized on
Fig. 3 as rotated quantile-quantile plots. The tail-sensitive test
compares the empirical quantiles of the residuals with the ex-

TABLE III. Same as Table II for a fit with isopsin symmetry breaking
on the 1S0, 3P0, 3P1 and 3P2 partial waves parameters. ∗ indicates that
the np parameter is fixed to be the same as the pp parameter

Wave λ1 λ2 λ3 λ4 λ5
1S0np 1.07(4) −0.708(7) −0.192(2)∗ − −0.0205(3)∗
1S0pp 1.31(2) −0.717(5) −0.192(2) − −0.0205(3)
3P0np − 0.95(3) −0.31(1) −0.079(4) −0.019(1)
3P0pp − 0.94(2) −0.319(7) −0.063(3) −0.022(1)
1P1 − 1.27(2) − 0.068(2) −
3P1np − 1.21(2) − 0.051(1) −
3P1pp − 1.364(5) − 0.0570(6) −
3S1 1.54(7) −0.39(1) − −0.071(2) −
ε1 − −1.69(2) −0.36(2) −0.233(8) −0.016(3)
3D1 − − 0.44(2) 0.07(1) 0.014(3)
1D2 − −0.19(1) −0.207(3) − −0.0186(3)
3D2 − −0.97(5) −0.21(2) −0.234(8) −0.016(2)
3P2np − −0.445(4) − −0.043(2) −0.0024(7)
3P2pp − −0.483(1) − −0.0282(7)−0.0040(4)
ε2 − 0.30(2) 0.191(4) 0.051(2) 0.0123(6)
3F2 − 3.41(7) −0.222(5) − −0.0142(6)
1F3 − − 0.23(2) 0.061(6) −
3D3 − 0.76(3) − − −

f 2
p f 2

0 f 2
c

0.0761(4) 0.0790(9) 0.0772(5)

pected ones from an equally sized sample from the standard
normal distribution. The red bands represent the 95% confi-
dence interval of the normality test. For more details of the
Tail-Sensitive test see [36].
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FIG. 3. (Color Online) Rotated quantile-quantile plots for the fits introduced in this work. All points should be inside the confidence band to
state that residuals of the fit follow a normal distribution N(0,1), in which case the fit is self-consistent a posteriori. Left panel, assuming a
charge independent pion-nucleon constant used as a fitting parameter and charge symmetry breaking only on the 1S0 partial wave parameters.
Central panel, assuming three different charge dependent pion-nucleon constants used as a fitting parameters and charge symmetry breaking
only on the 1S0 partial wave parameters. Right panel, assuming three different charge dependent pion-nucleon constants used as a fitting
parameters and charge symmetry breaking on the 1S0 and P partial wave parameters

TABLE IV. Contributions to the total χ2 for different pp observables.
We use the notation of [67, 68].

Observable Code Npp χ2
pp χ2

pp/Npp
dσ/dΩ DSG 935 903.5 0.97

Ayy AYY 312 339.0 1.09
D D 104 135.1 1.30
P P 807 832.4 1.03

Azz AZZ 51 47.4 0.93
R R 110 112.8 1.03
A A 79 70.5 0.89

Axx AXX 271 250.7 0.92
Ckp CKP 2 3.1 1.57
R′ RP 29 11.9 0.41

Ms′0sn MSSN 18 13.1 0.73
Ns′0kn MSKN 18 8.5 0.47

Azx AZX 264 250.6 0.95
A′ AP 6 0.8 0.14

C. Separate contributions to the fit

In line with previous studies, it is interesting to decompose
the contributions to the total χ2 both in terms of the fitted ob-
servables as well as in different energy bins. The separation is
carried out explicitly in Tables IV and V for pp and np scat-
tering observables respectively. As we can see the size of the
contributions χ2/N are at similar levels for most observables.
Note that observables with a considerable larger or smaller
χ2/N are also observables with a small number of data and
therefore larger statistical fluctuations are expected.

Likewise, we can also break up the contributions in order to
see the significance of different energy intervals, see Table VI.
We find that, in agreement with the Nijmegen analysis (see
[65, 66] for comparisons with previous potentials), there is
a relatively large degree of uniformity in describing data at
different energy bins.

TABLE V. Contributions to the total χ2 for different np observables.
We use the notation of [67, 68]

Observable Code Nnp χ2
np χ2

np/Nnp
dσ/dΩ DSG 1712 1803.4 1.05

Dt DT 88 83.7 0.95
Ayy AYY 119 96.0 0.81
D D 29 37.1 1.28
P P 977 941.7 0.96

Azz AZZ 89 108.1 1.21
R R 5 4.5 0.91
Rt RT 76 72.2 0.95
R′t RPT 4 1.4 0.35
At AT 75 77.0 1.03

D0s′′0k D0SK 29 44.0 1.52
N0s′′kn NSKN 29 25.5 0.88
N0s′′sn NSSN 30 20.3 0.68
N0nkk NNKK 18 13.5 0.75

A A 6 2.9 0.49
σ SGT 411 500.2 1.22

∆σT SGTT 20 26.3 1.31
∆σL SGTL 16 18.4 1.15

V. ANALYSIS OF SYSTEMATIC ERRORS

In this section we seek to identify some sources of system-
atic errors. Besides the success of our fits on purely statistical
grounds, it is helpful at this point to analyze why we have
chosen our potential representation and the possible system-
atic uncertainties related to it.

A. Anatomy of the potential

The present approach uses a coarse grained interaction in
the unknown region, below a cut-off radius rc = 3fm. The
choice of rc = 3fm, however, is not arbitrary nor blind and in
fact it has been guided by a detailed analysis of existing NN
forces. We have checked that high quality potentials used in
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TABLE VI. The χ2 results of the main combined pp and np partial-wave analysis for the 10 single-energy bins in the range 0 < TLAB <
350MeV.

Bin (MeV) Npp χ2
pp χ2

pp/Npp Nnp χ2
np χ2

np/Nnp N χ2 χ2/N
0.0-0.5 103 107.2 1.04 46 88.2 1.92 149 195.4 1.31
0.5-2 82 58.8 0.72 50 92.8 1.86 132 151.5 1.15
2-8 92 80.1 0.87 122 151.0 1.24 214 231.0 1.08
8-17 124 100.3 0.81 229 183.9 0.80 353 284.1 0.80

17-35 111 85.5 0.77 346 324.2 0.94 457 409.7 0.90
35-75 261 231.2 0.89 513 559.7 1.09 774 790.9 1.02
75-125 152 154.8 1.02 399 445.2 1.12 551 600.0 1.09

125-183 301 300.5 1.00 372 381.7 1.03 673 682.2 1.01
183-290 882 905.0 1.03 858 841.4 0.98 1740 1746.4 1.00
290-350 898 956.1 1.06 798 808.1 1.01 1696 1764.1 1.04

the past, are local at large distances and do implement CD-
OPE as the main contribution above 3fm of strong origin.
We remind that a plain extrapolation of the CD-OPE poten-
tial down to the origin presents a short distance 1/r3 singu-
larity and a certain regularization is needed which becomes
innocuous at r > rc = 3fm. We have also analyzed quark mod-
els from a cluster viewpoint where there appears a form fac-
tor naturally regulating both electromagnetic Coulomb, OPE
and TPE interactions only below rc = 1.8− 2fm [33, 69], so
that we can assume that nucleons interact exchanging one
or two pions as point-like particles for distances larger than
rc > 1.8fm. Actually, this assumption can be validated since
lowering down to rc = 1.2fm results in large χ2/ν values (see
e.g. [70, 71] for a discussion within chiral perturbation the-
ory).

One good motivation to analyze the NN interaction is the
possible application to nuclear structure calculations. How-
ever, the nuclear many body problem is difficult enough to
make specific techniques not suitable for all representations of
the interaction; the form of the potential matters. Thus, quite
often, potentials fitting data are designed to be suitable for a
specific technique. This choice introduces a bias which acts
as a source of systematic errors. In our previous work [72] we
have addressed the systematic uncertainties arising from us-
ing several tails and short distance forms of the potential. The
purpose there was to devise a smooth and non-singular poten-
tial in the inner region, friendly for nuclear structure appli-
cations, since it turns out that the delta-shells produce a long
high momentum tail which hinders the nuclear structure cal-
culations. This includes some bias because, similarly to other
local potentials, smoothness is not a requirement of any phys-
ical significance. Thus, these systematic uncertainties stem
from a prejudice on insisting in a particular form of the po-
tential based on its possible application in theoretical nuclear
physics, and are relevant within that context.

B. Sampling scale

The motivation for the coarse grained short distance poten-
tial has been given many times. The sampling scale ∆r ∼
1/pmax might be varied from its Nyquist optimal sampling
value. For a finite range potential that means sampling with

more points since rc = n∆r. We generally find that increasing
the number of delta-shells results in over-fitting, i.e., it does
not improve the quality of the fit but it does increase the corre-
lations among the fitting λi’s parameters, exhibiting a param-
eter redundancy. Correlation plots for this optimal sampling
situation have been presented in Ref. [35] for the short dis-
tance parameters and in Ref. [36] for the corresponding coun-
terterms. As it has been discussed in a recent work [73] the
Nyquist sampling works up to LAB energies as high as 3 GeV.

C. Boundary radius

In the previous section we have assumed a fixed cut-off ra-
dius rc = 3fm above which a CD-OPE potential is assumed.
Here we analyze the robustness of our determination by modi-
fying the cut-off radius, looking for the cases rc = 1.8,2.4,3.0
and 3.6 fm. Although the reasons for choosing rc = 3fm have
been explained in subsection V A, the variation of the cut-off
radius allows to explore the dependence of the statistical anal-
ysis on the particular form of the potential. While this type of
cut-off variation in coordinate space is not entirely equivalent
to a cut-off variation in momentum space, it can provide in-
sight of cut-off dependence in the latter. Our results are sum-
marized in Table VII. For each value of rc three PWA are per-
formed. In the first one the coupling constant f is fixed and
not fitted. In the second PWA a common coupling constant f
is fitted as a parameter. In the third one, the three constants
fp, f0 and fc are fitted as distinct parameters.

Several interesting features are worth mentioning. When
the short distance cut-off is shifted towards smaller values the
χ2/ν increases several times more than the standard statistical
tolerance 1±

√
2/ν . Larger χ2/ν values generate smaller

uncertainties. This was expected, and it is just a consequence
of the larger penalty to change parameters in a worse fit.

As we see, the best global χ2 (and nearly equal) values
are obtained for rc = 3fm and rc = 3.6fm. However, we ob-
serve that, in going from rc = 3.0 to rc = 3.6, the value of
χ2

pp increases by 40 (with 13 more parameters) whereas the
χ2

np result decreases by 50. Increasing the cut-off means re-
placing the CD-OPE dependence between 3 and 3.6 by un-
known interactions so that many more partial waves will be
charge-dependent, increasing the number of parameters. At
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FIG. 4. Relative error in f 2 as a function of the number of data
ordered according to a decreasing Hessian value.

this point the number of CD parameters becomes rather large.
Furthermore, for rc = 3.6, the values obtained for the pion-
Nucleon coupling constants are excluded as unnatural by the
Goldberger-Treiman relation shown in Eq. (13).

D. Adding Chiral Potential tails

The Nijmegen group estimated systematic errors by in-
cluding different potential tails, particularly with Heavy Bo-
son Exchange (HBE). More recently, the inclusion of charge-
independent chiral two-pion exchange (χTPE) potential [27],
depending on three chiral constants, c1, c3, c4, which also ap-
pear in πN scattering, allowed them to perform a combined
fit of f 2

p and c1,3,4 to pp scattering data, obtaining the value
f 2
p = 0.0756(4) [28], and a simultaneous fit to pp+np data of

a common f 2 and c1,3,4 [29].

In Table VIII we show several fits of the pion-nucleon cou-
pling constant f 2 after including the χTPE with different cut
radius rc on the analysis. In our previous work [63, 70, 74]
we determined the value of the chiral constants c1, c3 and c4
from NN data but maintaining f fixed. The good feature of
implementing χTPE is that we can generally lower the bound-
ary radius rc down to the elementary radius, re = 1.8fm with
a smaller number of parameters. The outcoming values of
the chiral constants should be compared with the recent re-
analysis in πN scattering using a great deal of theoretical con-
straints [75]. As with the case of including only CD-OPE on
the potential tail, the Goldberger-Treiman relation excludes
the fits with rc = 3.6 fm. The unnaturally large values for
the chiral constants also calls into question the analysis with
rc = 3.0fm and rc = 2.4. Finally lowering the boundary all the
way to rc = 1.2 fm no longer gives a satisfactory description
of the data, as indicated by the large value of χ2/ν , which is
several standard deviations away from the most likely value.

1000 10 00050002000 30001500 7000
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NDat Htime orderedL
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FIG. 5. Relative error in f 2 as a function of the number of data
ordered according to their date of publication. Every point represents
the number of np+pp scattering data extracted from the Granada-
2013 NN database and starting in 1960 forward in 5 years step. We
also show the statistical estimate ε( f 2) = 1/

√
NPar (black,dashed)

and the fitting ε( f 2) = 30/NPar (red,solid)

E. Sensitivity to particular data

The selected database provides 3σ consistent values for the
χ2 distribution. An important issue concerns the dependence
of our results on the chosen data. We do not expect all data
to contribute equally to the determination of the coupling con-
stants. In the past selected data or dedicated experiments have
been used to extract the coupling constant. Our analysis rests
on a global fit, but it is still interesting to identify the most
significant data in the fit of the coupling constant f 2.

From a statistical point of view, this can be done by looking
at the simplest case: the variations ∆χ2 due only to variations
on f , and by identifying the largest contributions.

The Hessian involving any two fitting parameters pi and p j
is in general given by

1
2

∂ 2χ2

∂ pi∂ p j
≈

NDat

∑
n=1

1
σ2

n

∂On

∂ pi

∂On

∂ p j
(18)

where the standard approximation of neglecting second
derivatives has been made. Here On is the nth observable in
the fit and σn is the experimental error. We can look at this
sum for one fitting parameter such as the coupling f after or-
dering the contributions to the Hessian according to their size,
i.e. n→ π(n)

1
σπ(n)

∣∣∣∣∂Oπ(n)

∂ f

∣∣∣∣> 1
σπ(n−1)

∣∣∣∣∂Oπ(n−1)

∂ f

∣∣∣∣ (19)

and define the error due the first N largest contributions

∆χ
2
N =

N

∑
i=1

[
1

σπ(n)

∂Oπ(i)

∂ f

]2

(∆ f )2
N ≡ 1 (20)

so that the relative error is εN( f ) = ∆ fN/ f We plot in Fig. 4
the result for εN( f 2) = 2εN( f ) and as we see about 10-20 data



11

TABLE VII. The pion-nucleon coupling constants f 2
p , f 2

0 and f 2
c determined from different fits to the Granada-2013 database and their

characteristics for the CD-OPE potential depending on the cut-off radius rc. Charge dependence is only allowed on the 1S0 partial wave.

rc(fm) f 2
p f 2

0 f 2
c χ2

pp χ2
np χ2 NDat NPar χ2/ν Nσ

3.6 0.075 idem idem 3065.13 3919.57 6984.71 6720 59 1.049 2.8
3.6 0.0697(3) idem idem 3038.53 3913.10 6951.63 6720 60 1.044 2.5
3.6 0.0689(8) 0.085(1) 0.0703(8) 3035.14 3897.41 6932.55 6720 62 1.041 2.4
3.0 0.075 idem idem 2997.29 3957.57 6954.86 6720 46 1.042 2.4
3.0 0.0763(1) idem idem 2995.20 3952.85 6947.05 6720 47 1.041 2.4
3.0 0.0764(4) 0.0779(8) 0.0758(4) 2994.41 3950.42 6944.83 6720 49 1.041 2.4
2.4 0.75 idem idem 3120.97 4028.61 7149.58 6718 39 1.070 4.1
2.4 0.07568(3) idem idem 3116.56 4031.38 7147.94 6718 40 1.070 4.1
2.4 0.0768(3) 0.0723(5) 0.0750(3) 3115.41 4017.76 7133.17 6718 42 1.068 4.0
1.8 0.75 idem idem 4739.51 4230.16 8969.68 6709 31 1.343 19.8
1.8 0.076568(5 ) idem idem 4725.30 4212.96 8938.26 6708 32 1.339 19.6
1.8 0.0763(2) 0.0786(3) 0.0765(2) 4724.73 4198.16 8922.89 6708 34 1.337 19.5

TABLE VIII. The pion-nucleon coupling constant f 2 = f 2
p = f 2

0 = f 2
c and the chiral constants c1, c3 and c4 determined from different fits to

the Granada-2013 database and of the CD-OPE plus χT PE depending on the cut-off radius rc. Charge dependence is only allowed on the 1S0
partial wave.

rc(fm) f 2 c1(GeV−1) c3(GeV−1) c4(GeV−1) χ2
pp χ2

np χ2 NDat NPar χ2/ν Nσ

3.6 0.075 1010.0(306) -990.9(264) 9.6(140) 2975.09 3879.15 6854.24 6719 63 1.030 1.7
3.6 0.0710(6) 978.3(390) -961.1(353) -4.0(148) 2965.28 3869.62 6834.90 6719 64 1.027 1.6
3.0 0.075 -44.4(70) 39.5(51) -4.4(26) 2979.46 3980.27 6959.73 6721 49 1.043 2.5
3.0 0.0763(3) -35.2(79) 31.3(60) -6.4(27) 2983.95 3968.28 6952.23 6721 50 1.042 2.4
2.4 0.075 -10.6(18) 5.2(10) -2.1(8) 3064.38 4049.88 7114.26 6718 41 1.065 3.8
2.4 0.0748(2) -11.9(20) 6.0(12) -2.3(9) 3065.80 4048.30 7114.11 6718 42 1.066 3.8
1.8 0.075 -1.9(6) -3.7(2) 4.4(2) 3101.24 4059.32 7160.56 6717 33 1.071 4.1
1.8 0.0763(2) -1.6(6) -3.7(3) 4.3(2) 3077.00 4050.22 7127.22 6717 34 1.066 3.8
1.2 0.075 -11.17(9) 0.76(2) 2.822(2) 3428.38 4659.52 8087.90 6715 25 1.209 12.1
1.2 0.07500(3) -11.17(9) 0.76(3) 2.821(6) 3428.28 4659.02 8087.31 6715 26 1.209 12.1

build the main contribution to the precision in f 2. These data
corresponds to the deuteron binding energy, the np scattering
length, low energy np total cross sections and low energy pp
differential cross sections.

F. Systematics as a function of the number of data

As already mentioned, the Granada-2013 database is 3σ -
self consistent according to our coarse grained PWA. That
implies that we can treat measurements as independent. On
the other hand we expect the precision will increase with the
number of data. Of course, our selection of data is susceptible
to change by gathering more data in the future. The Cramer-
Rao inequality provides a lower bound on the error on the
fitting parameters which can be determined from least squares
fitting [30]. Thus, errors will in general be larger than the
NDat→ ∞ case. Given the large amount of data considered in
the present analysis it is of utmost relevance to analyze this
point in some more detail.

Among the many ways of analyzing the systematic uncer-
tainties a particularly interesting one regards a chronological
display of our self-consistent database as a function of the
year where data where published and hence on the number

of scattering data. This can be seen for pp and pp+np analysis
separately in tables IX and X respectively in 5 years inter-
vals. As expected, accuracy improves when the total number
of data NDat included in the analysis are increased. Most re-
markable is the fact that, instead of the purely statistical esti-
mate ∆ f 2/ f 2∼ 1/

√
NDat, a fit to the actual trend reveals more,

∆ f 2/ f 2 = 29.3/NDat, which is in fact better, see Fig. 5. This
may be due to the fact that newer data tends to be more pre-
cise than older data. In fact, while the database contains more
np data than pp data, the pp data have smaller statistical er-
rors and the corresponding fitting parameters tend to be better
determined.

G. Summary

The conclusion of all these investigations is that accept-
able and natural fits produce smaller errorbars than the purely
statistical analysis presented in the previous Section. This is
probably due to the optimal sampling of the interaction com-
plying with Nyquist theorem.
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FIG. 6. Proton-proton and neutron-neutron interaction above 3fm due to exchange of a neutral pion for different spin polarization states. The
bands correspond to the statistical uncertainties from a fit to 6713np+pp scattering data below TLAB = 350MeV with χ2/ν = 1.039.

TABLE IX. The pion-proton-proton coupling constant f 2
p deter-

mined from different fits to the Granada-2013 database including
only pp data up to a given year.

Year f 2
p ∆ f 2

p χ2
pp Npp χ2

pp/Npp

1960 0.07867 0.00421 459.50 535 0.86
1965 0.07568 0.00210 669.05 748 0.89
1970 0.07273 0.00094 978.78 1137 0.86
1975 0.07317 0.00089 1149.63 1247 0.92
1980 0.07339 0.00069 1486.35 1585 0.94
1985 0.07443 0.00052 1559.43 1648 0.95
1990 0.07528 0.00050 1774.58 1831 0.97
1995 0.07542 0.00049 1809.02 1872 0.97
2000 0.07596 0.00043 2985.70 3003 0.99

VI. CONCLUSIONS

Since the strong proton-proton and neutron-neutron poten-
tials correspond to the exchange of a neutral pion, the differ-
ence in the couplings manifests in the difference of the po-
tentials above the estimated exclusive domain of the CD-OPE
interaction. We can illustrate the main result pictorially in
Fig. 6 by choosing the transversely and longitudinally polar-
ized protons and neutrons. So we see that in any of the cases
considered the strength of the nn potential is stronger than the
pp potential, for instance |Vn↑,n↑| > |Vp↑,p↑| for r > rc = 3fm.
Note that we cannot determine the neutron-neutron interaction
below rc, and in particular the corresponding neutron-neutron
scattering length cannot be determined from the present cal-
culation.

We summarize our points. Using the 3σ self-consistent

TABLE X. The pion-nucleon-nucleon coupling constant f 2 deter-
mined from different fits to the Granada-2013 database including
only data up to a given year.

Year f 2 ∆ f 2 χ2
pp Npp χ2

np Nnp χ2/N

1960 0.07860 0.00378 460.07 535 186.92 233 0.84
1965 0.07740 0.00192 671.34 748 791.65 836 0.92
1970 0.07427 0.00088 982.23 1137 922.94 981 0.90
1975 0.07504 0.00082 1156.39 1247 1145.81 1221 0.93
1980 0.07421 0.00061 1492.55 1585 2299.10 2311 0.97
1985 0.07499 0.00046 1580.77 1648 2612.23 2584 0.99
1990 0.07580 0.00043 1786.61 1831 2875.34 2806 1.01
1995 0.07607 0.00039 1821.38 1872 3022.34 2950 1.00
2000 0.07654 0.00034 2996.49 3003 3708.46 3528 1.03
2005 0.07631 0.00034 2995.27 3003 3827.69 3634 1.03
2013 0.07633 0.00014 2995.20 3003 3951.86 3717 1.03

Granada-2013 database for np and pp scattering comprising
LAB energies below 350 MeV we have investigated isospin
breaking in the pion-nucleon coupling constants by separat-
ing the nuclear potential in two distinct contributions: Above
3 fm we use charge dependent one pion exchange potential
for the strong part along with electromagnetic and relativistic
corrections. Below 3 fm we regard the interaction as unknown
and we coarse grain it down to the shortest de Broglie wave-
length corresponding to pion production threshold which is
about 0.6 fm. With a total number of 55 parameters, includ-
ing the three pion-nucleon coupling constants, we describe a
total number of 6741 np and pp data including normalization
factors provided by the experimentalist which a total χ2 of
6855.5, which means χ2/ν = 1.025. We see clear evidence
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that the coupling of neutral pions to neutrons is larger than
to protons. As a consequence neutrons interact more strongly
than protons.
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Appendix A: Operator basis

To incorporate charge dependence on P waves two more
operators need to be added to the basis we used previously
getting a total of 23 operators On. The potential is written as
a sum of functions multiplied by each operator

V (r) = ∑
n=1,23

Vn(r)On (A1)

The first fourteen operators are charge independent and corre-
spond to the ones used in the Argonne v14 potential

On=1,14 = 1,τ1·τ2, σ1·σ2,(σ1·σ2)(τ1·τ2), S12,S12(τ1·τ2),

L·S,L·S(τ1·τ2),L2,L2(τ1·τ2), L2(σ1·σ2),

L2(σ1·σ2)(τ1·τ2), (L·S)2,(L·S)2(τ1·τ2) .

(A2)

These fourteen components are denoted by c, τ , σ , στ , t,
tτ , ls, lsτ , l2, l2τ , l2σ , l2στ , ls2, and ls2τ . The remaining
charge dependent operators are

On=15,21 = T12, (σ1·σ2)T12 ,S12T12, (τz1 + τz2) ,

(σ1·σ2)(τz1 + τz2) ,L2T12,L2(σ1·σ2)T12 .

L·ST12,(L·S)2T12 (A3)

and are labeled as T , σT ,tT , τz,στz, l2T , l2σT , lsT and
ls2T . The first five were introduced by Wiringa, Stoks and
Schiavilla in [61]; the following two were included in [34] to
restrict the charge dependence to the 1S0 by following certain
linear dependence relations between VT , VσT , Vl2T and Vl2σT .
The last two terms are required for the charge dependence on
the 3P0, 3P1 and 3P2 partial waves.

As in our previous analysis we set VtT = Vτz = Vστz = 0
to exclude charge dependence on the tensor terms and charge
asymmetries. To restrict the charge dependence to the S and
P waves parameters the remaining potential functions must

follow

48Vl2T =−5VT +3VσT +12VlsT −48Vls2T (A4)
48Vσ l2T =VT −7VσT +4VlsT −16Vls2T (A5)

Appendix B: Phase-shifts

Here we provide the pp and np phase-shifts for the lower
partial waves and selected LAB energies with their corre-
sponding errorbars for the fit with charge dependence in S and
P waves. In the case that errors are smaller than 10−3 we just
represent it by the symbol −.
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TABLE XI. pp isovector phaseshifts.

ELAB
1S0

1D2
1G4

3P0
3P1

3F3
3P2 ε2

3F2
3F4 ε4

3H4
1 32.674 0.001 0.000 0.135 −0.081 −0.000 0.014 −0.001 0.000 0.000 −0.000 0.000

±0.003 - - - - - - - - - - -
5 54.836 0.043 0.000 1.599 −0.901 −0.004 0.213 −0.052 0.002 0.000 −0.000 0.000

±0.008 - - ±0.005 ±0.003 - ±0.001 - - - - -
10 55.238 0.166 0.003 3.772 −2.054 −0.032 0.648 −0.204 0.013 0.001 −0.004 0.000

±0.011 ±0.001 - ±0.011 ±0.006 - ±0.002 ±0.001 - - - -
25 48.759 0.699 0.040 8.666 −4.888 −0.234 2.490 −0.820 0.107 0.019 −0.050 0.004

±0.014 ±0.002 - ±0.027 ±0.010 ±0.001 ±0.006 ±0.003 ±0.001 - - -
50 39.133 1.711 0.154 11.577 −8.224 −0.696 5.856 −1.719 0.346 0.104 −0.200 0.027

±0.018 ±0.004 ±0.001 ±0.046 ±0.013 ±0.004 ±0.011 ±0.005 ±0.002 ±0.001 ±0.001 -
100 25.340 3.774 0.422 9.535 −13.260 −1.502 10.986 −2.650 0.842 0.466 −0.561 0.112

±0.036 ±0.009 ±0.002 ±0.072 ±0.021 ±0.010 ±0.024 ±0.009 ±0.009 ±0.005 ±0.002 ±0.001
150 15.116 5.618 0.703 4.839 −17.637 −2.077 14.021 −2.921 1.203 1.019 −0.883 0.225

±0.050 ±0.015 ±0.006 ±0.079 ±0.027 ±0.020 ±0.023 ±0.013 ±0.017 ±0.010 ±0.003 ±0.002
200 6.892 7.206 1.000 −0.214 −21.554 −2.471 15.803 −2.907 1.334 1.638 −1.133 0.351

±0.060 ±0.022 ±0.012 ±0.071 ±0.039 ±0.037 ±0.027 ±0.017 ±0.023 ±0.017 ±0.005 ±0.006
250 0.178 8.552 1.295 −5.098 −24.984 −2.623 16.739 −2.698 1.224 2.205 −1.311 0.479

±0.075 ±0.025 ±0.017 ±0.068 ±0.055 ±0.054 ±0.034 ±0.023 ±0.029 ±0.024 ±0.006 ±0.013
300 −5.222 9.571 1.571 −9.601 −27.919 −2.418 16.981 −2.293 0.918 2.659 −1.439 0.591

±0.102 ±0.032 ±0.019 ±0.095 ±0.070 ±0.066 ±0.034 ±0.032 ±0.041 ±0.029 ±0.008 ±0.020
350 −9.447 10.140 1.832 −13.545 −30.348 −1.820 16.635 −1.707 0.454 3.012 −1.552 0.670

±0.138 ±0.055 ±0.027 ±0.152 ±0.082 ±0.080 ±0.031 ±0.042 ±0.058 ±0.047 ±0.010 ±0.027

TABLE XII. np isovector phaseshifts.

ELAB
1S0

1D2
1G4

3P0
3P1

3F3
3P2 ε2

3F2
3F4 ε4

3H4
1 62.047 0.001 0.000 0.183 −0.105 −0.000 0.025 −0.001 0.000 0.000 −0.000 0.000

±0.024 - - ±0.003 ±0.002 - - - - - - -
5 63.559 0.041 0.000 1.683 −0.911 −0.004 0.284 −0.049 0.002 0.000 −0.000 0.000

±0.046 ±0.001 - ±0.029 ±0.016 - ±0.004 ±0.001 - - - -
10 59.851 0.155 0.002 3.823 −1.996 −0.026 0.796 −0.185 0.011 0.001 −0.003 0.000

±0.053 ±0.003 - ±0.058 ±0.031 ±0.001 ±0.009 ±0.004 - - - -
25 50.712 0.673 0.032 8.699 −4.666 −0.195 2.846 −0.765 0.091 0.017 −0.040 0.003

±0.062 ±0.012 ±0.001 ±0.096 ±0.053 ±0.005 ±0.027 ±0.014 ±0.002 ±0.001 ±0.001 -
50 40.225 1.695 0.134 11.682 −7.822 −0.594 6.364 −1.660 0.309 0.105 −0.170 0.021

±0.083 ±0.019 ±0.003 ±0.109 ±0.059 ±0.015 ±0.045 ±0.020 ±0.006 ±0.004 ±0.004 ±0.001
100 26.129 3.760 0.391 9.484 −12.592 −1.299 11.070 −2.658 0.780 0.514 −0.507 0.095

±0.138 ±0.018 ±0.009 ±0.163 ±0.080 ±0.036 ±0.061 ±0.009 ±0.013 ±0.021 ±0.011 ±0.002
150 15.917 5.568 0.671 4.399 −16.716 −1.915 13.334 −3.000 1.117 1.130 −0.828 0.204

±0.191 ±0.017 ±0.013 ±0.216 ±0.120 ±0.062 ±0.082 ±0.020 ±0.020 ±0.039 ±0.015 ±0.005
200 7.810 7.118 0.961 −1.038 −20.374 −2.536 14.510 −3.028 1.217 1.773 −1.091 0.334

±0.243 ±0.023 ±0.017 ±0.261 ±0.170 ±0.085 ±0.109 ±0.027 ±0.024 ±0.054 ±0.014 ±0.011
250 1.289 8.435 1.238 −6.196 −23.543 −2.989 15.158 −2.834 1.072 2.318 −1.290 0.464

±0.302 ±0.025 ±0.020 ±0.304 ±0.224 ±0.101 ±0.125 ±0.030 ±0.030 ±0.070 ±0.010 ±0.018
300 −3.856 9.421 1.488 −10.830 −26.215 −2.958 15.386 −2.426 0.733 2.732 −1.441 0.561

±0.367 ±0.033 ±0.021 ±0.356 ±0.274 ±0.135 ±0.122 ±0.036 ±0.042 ±0.090 ±0.008 ±0.027
350 −7.791 9.947 1.720 −14.770 −28.375 −2.224 15.185 −1.828 0.244 3.053 −1.574 0.593

±0.439 ±0.057 ±0.028 ±0.427 ±0.318 ±0.250 ±0.107 ±0.045 ±0.059 ±0.126 ±0.011 ±0.036



15

TABLE XIII. np isoscalar phaseshifts.

ELAB
1P1

1F3
3D2

3G4
3S1 ε1

3D1
3D3 ε3

3G3
1 −0.191 −0.000 0.006 0.000 147.685 0.105 −0.005 0.000 0.000 −0.000

- - - - ±0.017 ±0.001 - - - -
5 −1.528 −0.010 0.226 0.001 118.043 0.654 −0.186 0.002 0.013 −0.000

±0.003 - - - ±0.024 ±0.005 - - - -
10 −3.119 −0.066 0.876 0.012 102.425 1.112 −0.690 0.005 0.083 −0.003

±0.009 - ±0.001 - ±0.034 ±0.011 ±0.002 - - -
25 −6.413 −0.435 3.839 0.177 80.364 1.696 −2.843 0.039 0.572 −0.055

±0.029 - ±0.010 - ±0.059 ±0.026 ±0.009 ±0.001 - -
50 −9.656 −1.173 9.265 0.755 62.489 2.032 −6.496 0.292 1.658 −0.274

±0.062 ±0.002 ±0.037 ±0.001 ±0.078 ±0.047 ±0.026 ±0.005 ±0.004 ±0.001
100 −14.214 −2.304 17.776 2.321 43.135 2.515 −12.295 1.321 3.532 −1.007

±0.097 ±0.015 ±0.076 ±0.014 ±0.086 ±0.082 ±0.054 ±0.020 ±0.018 ±0.011
150 −18.203 −3.097 22.620 3.986 30.862 2.927 −16.683 2.338 4.833 −1.873

±0.114 ±0.036 ±0.096 ±0.045 ±0.098 ±0.110 ±0.081 ±0.042 ±0.031 ±0.036
200 −21.765 −3.831 24.866 5.583 21.462 3.272 −20.284 2.931 5.790 −2.718

±0.142 ±0.053 ±0.123 ±0.080 ±0.123 ±0.131 ±0.114 ±0.067 ±0.040 ±0.064
250 −24.856 −4.634 25.699 7.011 13.557 3.677 −23.290 3.067 6.565 −3.516

±0.181 ±0.061 ±0.149 ±0.102 ±0.148 ±0.142 ±0.130 ±0.095 ±0.055 ±0.083
300 −27.487 −5.498 25.991 8.197 6.566 4.262 −25.639 2.870 7.195 −4.314

±0.221 ±0.077 ±0.194 ±0.117 ±0.171 ±0.175 ±0.143 ±0.129 ±0.069 ±0.101
350 −29.666 −6.335 26.295 9.101 0.223 5.068 −27.156 2.492 7.647 −5.173

±0.257 ±0.129 ±0.312 ±0.142 ±0.193 ±0.265 ±0.210 ±0.166 ±0.082 ±0.146
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